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J A N  B L A T O N
1907-1948

O bituary  notice by A. RU BIN O W ICZ, W arsaw .

The trag ic  death  of Professor J a n  B la -  
to n  on 17th May 1948 as the  resu lt of an  
accident in  th e  T a tra  M ountains was a  severe 
blow to  all of us. W e have lost in  him, 
a  physicist, devoted h ea rt and  soul to  scien
tific  research, a teacher who carried away 
his studen ts and  who kindled in  them  th e  
flam e of desire for independen t scientific 
thought, a  m an w ith  a  character like rock 
crystal. The knowledge th a t  th is  cruel blow 
need never have fallen and  th a t  a  little ' 
m ore presence of m ind m ight have sufficed 
to p reven t th e  te rrib le  ca tastrophe has 
alarm ed us and has, if possible, plunged 
us a ll in to  even g rea ter sorrow.

J a n  B laton  was born on 17th M ay 1907 in  Sporysz in  the  beautifu l 
hills near the  locality  of Żywiec. H e w as.the  fifth  and youngest child 
of a  w orker’s fam ily. P resum ably  i t  never entered his head th a t  the  
m ountains in  which he had  spent his childhood, those m ountains 
which he loved so dearly  and which in  his young days he so passionately 
explored, were p lo tting  his un tim ely  death .

A fter his having  graduated , w ith honours, a t  the  gym nasium  
a t  Bielsko, we find B la ton  enrolled in  1925 a t  the  F acu lty  of Civil 
Engineering a t  the  Lwów In s titu te  of Technology. H e was, however, 
m ore in terested  in  theoretical problem s th a n  in  technical questions 
and therefore he passed to  the  General F acu lty  of th is In s titu te  in  order 
to  s tudy  physics. I t  was here, in  1928, th a t  I  m ade his acquain tance. 
H e was an uncom m only capable s tuden t, and his progress in  th e  s tudy  
of theore tical physics was astonishing. E ven  so, I  was quite  taken  
aback  when th is  young en thusiast for theore tical physics came before 
th e  sum m er holidays after barely  one year of studies to  ask me for
A c ta  P h y sica  P o lo n ic a  3
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a sub ject for th is  m agister exam ination  thesis. I  was, however, m ore 
astounded  still when, after the  holidays, he showed me the  thesis 
alm ost com pleted. This work, on the  in tensities of th e  quadrupole 
lines in  th e  B alm er series, was the  first of a series of his publications 
concerning m ultipole rad ia tion , am ong which we find his m ost valuable 
scientific achievem ents.

In  1929 he becam e m y assistan t. H e held th is  position  only for 
a few weeks, however, since he was a t  th a t  tim e under court sentence 
for tw o weeks deten tion  — th e  sentence rem ain ing  suspended — for 
the  d istribu tion  of com m unist leaflets. D evoted, to  th e  po in t of self- 
sacrifice, to  th e  cause of th e  progress of h um an ity , B la ton  had  en tered  
d irec tly  afte r he had passed his m atricu la tion  in to  con tac t w ith  
a  group of studen ts belonging to  the  s tuden ts’ union „Życie“ (Life) 
and  in  sp ite  of in tense scientific work he continued to  be politically  
active. Considerable efforts were needed to  m ake i t  possible for h im  
to  rem ain  a t  the  In s titu te , if only in  th e  character of a  studen t.

In  M arch 1931 B la ton  took his m agister degree and less th an  tw o 
m onths la te r  he subm itted  a second paper for publication. I ts  purpose 
was to  investigate  the  problem  of w hether, in  the  scattering  of ligh t 
q u a n ta  by  atom s, tw o photons can be tu rn ed  in to  one photon.

B la ton ’s th ird  paper was presented  to  the  Polish A cadem y of 
Sciences and L ette rs  in  J u ly  of th e  same year. In  i t  th e  au th o r en
deavoured to  prove th a t  th e  electric field of a w ave of light, despite 
i ts  periodicity , causes a S ta rk  effect.

In  1932, B la ton  was aw arded a  N ational Culture F u n d  Scholarship 
and, on th e  basis of his thesis on the  dispersion of ligh t in  the  v in ic ity  
of quadrupole lines, he took  his docto r’s degree a t  th e  Lwów In s titu te  
of Technology. Together, in  th is  sam e year, he and I  w rote a report 
on quadrupole rad ia tio n  for th e  „Ergebnisse der exak ten  N atu r- 
w issenschaften“ .

C ontinuing to  benefit from  the  N ational C ulture F und  Scholarship, 
B la ton  proceeded to  M unich where, under th e  direction of Professor 
Som m erfeld, he continued his studies u n til th e  advent of H itlerism  
forced him  to  leave G erm any. H e th en  w ent to  Zurich.

F rom  1933 to  1935, afte r his re tu rn  to  his na tive  land, B la ton  
occupied th e  post of an  assis tan t in  th e  D epartm en t of Theoretical 
Physics a t th e  U niversity  of W ilno. One of his best scientific achieve
m ents, th a t  is his p a rtic ip a tio n  in  the  discovery of m agnetic  dipole 
lines, dates from  th is  period. In  1933 H . N iewodniczański discovered 
th a t  in  m ix tures of lead vapour w ith  helium  and argon there  appear 
in  the  spectrum  of high frequency electric discharges forbidden lines 
of non-io'nized lead. In  a le tte r  da ted  N ovem ber 1933, addressed to
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th e  E d ito rs of the  Physical Review, B laton  together w ith Niewodni
czański came to  the  conclusion th a t  one of these lines m ust be a m agnetic 
dipole line not contain ing any adm ix ture  of electric quadrupole rad i
ation. N iewodniczański, by investigating its Zeeman effect, confirmed th is 
resu lt la te r and thus finally  discovered the  m agnetic dipole rad iation .

The year 1934 saw B la ton  subm itting  his thesis for admission 
as lectu rer of Theoretical Physics a t  the  W ilno U niversity . In  it  th e  
au tho r shows how to calculate the  intensities of m agnetic dipole lines in 
case of any  coupling.

In  1935 B la ton  published a paper on quaternions, sem ivectors 
and  spinors, investigating the  relations betw een these quantities.

B la ton  was appointed, in 1936, H ead of th e  N ational M eteorol
ogical In s titu te . H e occupied th is  post u n til th e  ou tbreak  of th e  war 
A proof to the  versa tility  of his in tellect is the  rap id ity  w ith  which 
he m astered meteorology, a sphere of science a t th a t  tim e quite unknown 
to  him . Two papers of his, quoted in meteorological textbooks, provide 
evidence of this. In  one, the  au tho r investigates th e  dependence of 
th e  w ave lengths of the  g rav ita tiona l waves on depth , em ploying 
m ethods used in wave m echanics. In  the  other, he gives for any plane 
flu id  m otion a sim ple k inem atic relation  betw een th e  ra te  of change 
of th e  velocity direction of the fluid m otion and the  rad ii of curvatures 
of the  p a th  of the  fluid particles and of th e  stream  line. A pplying 
th is  form ula to  the  dynam ics of the  atm osphere, he dem onstrates 
how it  is possible to calculate changes in  the  d irection of winds w ith 
a  horizontal m ovem ent in  the  atm osphere w ith  a  knowledge only 
of the  coefficient of friction and th e  d a ta  derived from  synoptic m aps.

Since the  post he then  held involved a considerable degree of 
responsibility , it  was necessary for B la ton  to  concentrate his whole 
m ind and a tten tio n  on meteorology ; ye t he found the  tim e, in  1937, to  
w rite  the  last of his m ultipole papers. In  i t  he explains how to  split 
th e  rad ia tion  created  by any periodic electric curren ts in to  electric 
and m agnetic m ultipole radiations. U nfortunately , th is paper appeared 
only in th e  Acta Physica Polonica and was overlooked by  certa in  
foreign au thors.

D uring the  Germ an occupation of Poland, B la ton  lived a t  the  
Jegiel D istric t F o restry  House and, in  order to  lecture on Theoretical 
M echanics and Physics a t the  clandestine U niversity, journeyed to  
W arsaw  a t  regular in tervals u n til Ju ly  1944. H is enthusiasm  in over
coming difficulties and the  spontaneous adm iration  he aroused in  
his studen ts are proved by the  fac t th a t  am idst the  difficult w ar con
ditions lie m anaged to  educate several pupils who have have already 
become independent scientific workers.
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D uring  th e  w ar years B la ton  was also occupied w ith w riting  
a  tex tb o o k  of m echanics. Judg ing  from  w hat he to ld  m e abou t it, i t  is 
perfectly  up  to  date  and answers all our p resen t-day  needs. So far, 
i t  has been im possible, un fo rtu n a te ly , to  find a publisher w illing to  
b ring  i t  out.

O ctober 1944 found B la ton  helping to  organize th e  M arie Curie 
Skłodowska U niversity  in Lublin . A t the  ou tset he accepted th e  chair 
of General Physics th ere  and  in  1945 th a t  of Theoretical Physics. 
F rom  th e  A u tum n of 1946 he was professor of Theoretical M echanics 
a t  the  Jagellon ian  U niversity  in  Cracow.

In  M ay 1947, a t  the  firs t post-w ar sym posium  on physics in 
W arsaw , B la ton  spoke on the  collision of e lem entary  particles in 
re la tiv istic  m echanics. H e fu rth e r  developed th is  w ork during his 
v isit to  Copenhagen in  the  A utum n of the  same year and the  first 
few m onths of the  nex t. I t  appeared posthum ously  in  th e  publications 
of the  D anish  A cadem y.

In  Copenhagen, B laton  also devoted m uch tim e and th o ugh t to  
the  problem  of the  forces causing /¿-mesons to  en ter in to  the  com po
sition of ,-r-mesons. H e surm ised th a t  these forces are caused by the  
e lectron-neutrino field. One week before his death  he lectured  on 
these deliberations a t  the  second W arsaw  sym posium  in  M ay 1948, 
em phasizing, however, th a t  his idea was open to  criticism . D espite 
th e  fac t th a t  he did no t publish  his considerations we find a m ention 
of them  in  a  note of Professor O. K lein.

Thus i t  was th a t  J a n  B la ton  m et his death  a t  the  very m om ent 
when, following the  forced in ac tiv ity  of th e  w ar years, he was en tering  
a period of increased scientific ac tiv ity . H e recom m enced his scien
tific work w ith  w onderful energy. P itiless fate , however, plucked him  
from  our m idst a t  the  very  m om ent when he was en tering  upon th e  
p a th  which would possibly have led him  to  his life’s g rea test scientific 
achievem ent. Am ong Polish physicists his m em ory will rem ain alive 
for ever, ju s t as I  shall keep for ever in  m y soul the  m em ory of one 
who was m y good friend  as well as a pup il dear to  m y h eart.

In  1949 J a n  B laton  was posthum ously  aw arded a N ational Scien
tific  Prize. He was being the  first Polish physic ist to  receive it.

Papers published by th e  la te  Jan Blaton

(1 )  Uber die In ten sitäten  der M ultipollinien in der Balm erserie, Z. Phys.-, 61, 
263 (1930).

( l a )  0  natężeniu lin ij m ultipolow ych w  serii B ahnera, Spraw, i P race P o lsk . 
T ow . F iz ., 5, 17 (1930).

(2 )  G ibt es eine D oppelstreung von L ichtquanten? Z. P h y s ., 69, 835 (1931).
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(3 )  über die R ichtungsquantelung der A tom e durch eine L ichtw elle, B ull. 
I n t . A cad. Polonaise Sei. L ett., Serio A , 599 (1931).

(4 )  l)b er die D ispersion des L ichtes in  der U m gebung von Quadrupollinien, 
Z . P h y s ., 74, 418 (1932); 82, 684 (1935).

(5 )  D ie Quadrupolstrahlung (w ith A . R ubinow icz), Erg. exak t. N aturw iss., 
11, 176 (1932).

(6 )  T he N ature of th e  Forbidden L ines in the P b I Spectrum  (w ith  H . N ie 
w odniczański), P h ys. R ev ., 45, 64 (1934).
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ON THE TH EORY OF SPONTANEOUS AND „FO R CED “ 
iT-CAPTURE

B y M arian G Ü N TH ER , In s ti tu te  of Theoretical M echanics, U niver
sity  of W arsaw , W arsaw

(received N ovem ber 27, 1948)

The m ain purpose of th is paper is to  calculate th e  probability  of electron  
If-capture on th e  basis of th e  theory  of interaction of nucleons w ith  electron-neutrino  
fields ( 1 ) ,  in  such a w ay  as to  avoid  as far as possible a ll special assum ptions 
regarding the m agnitude of th e  nucleon radius and th e  behaviour of th e  electron  
w ave-function  inside it . Our final form ulas contain only th e  range of th e  nuclear 
forces, i. e . th e  m eson m ass.

W e shall estab lish  also th e  dependence of th e  probability  of a  If-capture  
process on th e  atom ic number Z  of th e  elem ent w hich is thu s transform ed into  
another one w ith  th e  atom ic number Z — 1. F in a lly , w e shall be led to  draw som e 
consequences regarding the hypothetical „forced“ If-capture probability  when  
irradiating a su itab le m aterial b y  antineutrinos —  th is being a consequence of 
th e  neutrino-hole theory.

H am iltonian of th e  problem

In  order to  in troduce consistent no tations for a ll th e  five fields 
(electron, neu trino , meson, pro ton , and neu tron  fields) i t  is necessary 
to  give first a sho rt survey of th e ir  basic equations.

(a) E l e c t r o n  f ie ld  

The differential H am iltonian  of the  electron field is

JETel=ip{e<p+a(cp — eA) +  ßmc2}y ,  (1)

where e is the  (negative) electron charge. The spinor com ponents of y> 
obey the  following an ticom m utation  relations 1

[v.(*)>ve( ® ) ] + = ^ ( ® —**)• (2 )
In tro d u c in g  the  orthonorm al set of functions (c-numbers) un describing 
the  d ifferent s ta tes  of th e  electrons and being th e  eigenfunctions of

1 A s argum ent of a function  x  stands for aq, a;2, x3.
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th e  tim e-free wave equation, according to  the  form ulas

E f u (n)^{eq> +  t ( c p - c A )  +  pmc*}u{n\  (3)
j  v^n)u ^ d r = à nm, (4 )

we can expand the  ip function (g-number) in the  series

y >=Sanu(Qn) , (5)
n

w ith  th e  a ’s obeying the  com m utation  relations (2)

[&n^ni]+“  • (3)

The to ta l in teg ra l H am ilton ian  of the electron field becomes thus 

H el= f  J I eld r = 2 â nanE ^ = N ? =  anan . (7)
n  n

W e m ust fu rth e r rem em ber th a t  th e  application of the  a„ or ip oper
ations to  th e  s ta te  function m eans ann ih ila tion  and the  application 
of an or ïp — creation of electrons.

The operators describe the  num ber of electrons occupying 
th e  w-th s ta te  w ith  the  eigenvalues 0  and 1 .

W hen dealing w ith hole-theory i t  is also convenient to  in troduce 
th e  operators

anan= N (np)= l - N <t ) for z£>< 0 , (9)

i. e. for the  s ta tes  of negative energy accounting for the  num ber of 
positrons, the  energy of these positrons being

E („p)— —E ^ ) . (10)

(b) N e u t r i n o  f ie ld

All the  neu trino  field quan tities obey the  sam e equations as the  
quan tities  of the  electron field, the  only difference being th a t  we m ust 
p u t m =  0  and  e = 0 .

W e shall use the  following no tations for the  neutrino  field quan
tities

<p for th e  neu trino  field, instead of ip for the  electron field,
1̂* 33 35 33 33 S3 33 n 33

V v  33 33 33 S3 33 33 tl  n  3,
r,i(n) pG)

yy yy yy 3) î î  n  yy

p(°) r<P)
■ E'ï  yy yy yy y> yy yy L j  n  yy

y W  v(e)
v  yy yy yy yy yy yy n  yy

N {a) N {p)v  yy yy yy yy yy yy n  s '
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Thus, in stead  of (7) we get

# ntno =  f H n,nad x = J>¡bvbv E ln) =  ' ( 11)

W e shall deal here consistently  w ith  the  convention th a t  in  processes 
like the  Jf-cap tu re  electron and  an tineu trino  or positron and neutrino 
a re  alw ays created  and ann ih ila ted  together. Therefore, only <py- or yy- 
like products will appear in  the  in teraction  term .

(c) P r o t o n  a n d  n e u t r o n  f ie ld s

A ll th a t  has been said abou t the  electron field is also valid , in 
princip le a t least, for the p ro ton  and  neu tron  fields, only the  wave 
equations (analogous to  (3)) can be more com plicated owing to  the  
forces of non electrom agnetic origin.

We in troduce  the  following notations

W for p ro ton  field, 0  for neutron  field, instead of y  for electron field,
■ E f t  s>  s i  A m  , ,  „  „  „  „  G*n  „  , ,  , ,

P / i .  sj U /n , ,  , ,  ,5 , )  ,5 11n ) j »  jj

y (f)  ,vW N (e)fl  55 55 55 -¿V m  55 55 >5 55 55 / I  55 55 55

T?(ñ nW
-TJ fl  5.* 55 55 -L* m  55 55 55 5 )  55 11 55 5J 55

Then we have, instead of (3),

for pro tons H pr— j J I vxd r = (1 2 )
t‘ H

and  for neu trons H ne utr= J  Hoe u t r i » ' = A mA n,E {,¡?= N ^ E ^  ■ (13)

(d) M e so n  f ie ld

The m eson field we shall deal w ith  here is a  certa in  com bination 
of the  charged vecto r and  pseudosclalar fields. W e shall s ta r t  first 
w ith  the  M eller-Eosenfeld com bination, enabling us to  perform  the  
calculations for th e  vecto r and the  pseudoscalar p a rts  of the  field u n til 
a  certain  po in t in  a uniform  way, owing to  the  form al invariance  of 
th e  equations against five dim ensional ro ta tions . To get th e  o ther 
com binations a fte r th e  vector pseudoscalar p a rts  have been separated  
m eans sim ply to  ascribe different coupling constan ts to  their in ter-
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action term s w ith  the  o ther fields. The equations of the  M eller-Rosenfeld 
field are (4)

G^ = 5- $ t - j £ v + S ^  V  =  (14)
4 4

O',* = 0 ,1 ,2 ,3 ,4 )  (15) 2 j £  =  0 ' d 6)
v=0 v=0
We can get the  equations (14) and  (15) together w ith  th e ir conjugates 
from  the  following differential Lagrangian

(17)/i=0 f—0 /t=0 /¿=0 /u=0 /<=0

To have th e  term s needed in  our problem  we m ust p u t (5)

yM<p +  g \ & y M W ,

(18)

th e  gf's being the  coupling constan ts. Q uantities w ith  th e  , , t “-sign are 
defined as follows:

rp1— iq>yW= iafi (the same for cp

M p = M p ,  Zn=Xt* (//, v==f 0,3, 2j 3), (19) 

<?* = -©,. 4, Sl,v= - S Mi, z l = ~ x * -  (20)

The well-known relations betw een th e  y ’s and the  D irac a and (i opera
to rs are

yW = — ¿/9av (v =  3 ,2 ,3 ), y<4> =  /i, y(°)= y(i)y(2)y(3)yp) =  {aia2a3. (21)

In  order to  sp lit th e  field in to  its  vecto r and pseudoscalar p a rts  i t  is 
sufficient to  observe th a t  the  fifth  coordinate x 0 was in troduced  from  
a  purely  form al po in t of view, i. e. all field quan tities are independent 
of it. I n  th is  w ay we get instead  of (14), (3 5) and (36) tw o independent 
system s of equations:
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th e  eqs. (22) describing th e  vector (3),  and (23) th e  pseudoscalar p a rt  
of the  field. According to  th e  rem ark  m ade before i t  is sufficient to  
change the g’s in (.18) in to  S0u and M 0 to  get o ther com binations of 
these field th a n  the  M eller-Rosenfeld m ixture.

In troducing  the  canonical variables jt,, by m eans of the  Lagran- 
gian (17)

7Tfl = Y v ' ~ ~ i G ^ 4<“’ '77'“ =  8T r ~ ~ i cA, f  t  A, 11

from  which it follows th a t

^ 4=  «1 =  0 , n\, =  nv, (v— 0 ,1 ,2 ,3 ) (25)

and  elim inating and y\  as hav ing  vanishing dynam ical conjugates 
w ith  th e  help of the  equations (15) and (24), as follows:

3 3

V— 1 V—\

we get the  differential H am ilton ian  of the meson field and the  in te r
action in  the form

JTmei= H i t i + H*? +  / / « ct+ Jfps. (27)

These four term s correspond to  the  vector and pseudoscalar parts  
of th e  field and to  the  in teraction  of the  vector and pseudoscalar p a rts  
with o ther fields respectively, and are

j? ie c t= ro t y r o t  x +  c2(n,ji) + ^ d i v  n- d i\  n + f j 2-/,x,  (28)

grad Xo' Srad Z o + ^ o  +  f^XoXoi (29)
-> ->■-> -> -> -> io ¿0 — 1 —

ro t x +  Sj ro t x +  S lS ---- -2M A div +  div

-> -> ->-> - > - >  ^
— %,M—%M—icn, S t .+  i c n S . 0,

-> -> _____
J7pa= S.„, g r a d j 0 +  5 .0, grad Xo+  S.0S . 0 ^

yf 0 - ^ 0  *C^0'S40+ iC7l0 ■

O rdinary  threedim ensional no tations have been used in these form ulas, 
th e  threedim ensional vectors occuring there, having  the com ponents:

Z=  (#1? #2? fo)? ^ := ^2? -̂ 3)? ^  -̂ *3)
->• ->■ _ -> (3 2 )
S  — (S23, S3), S 12), S t . — (¿ 41, S42, 843), 'S.Q— ($10! ^ 2 0 )  $ 30 ) -
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F inally , to  quantize the  H am ilton ian  according to  Bose sta tistics, 
we postu la te  the  usual com m utation  relations:

%f,(x )]_ =  \n(x), %fi{% )]—— x  ) (33)

a ll o ther pairs of meson field quan tities  com m uting.

(d) T o t a l  H a m i l to n i a n

In  order to  get th e  to ta l H am ilton ian  of all th e  fields, we m ust 
add  th e  in teg ral ham ilton ians of these fields and those of th e  in te r
action  term s (space in tegrals of eqs. (30) and (31)) and — stric tly  
speaking — the  term s due to  electrom agnetic in teractions also (the 
one, a t  least, which corresponds to  the  in terac tion  betw een protons 
and  electrons). B u t, as we shall see la te r, we need only know the  form  
of th e  zero H am ilton ian  for th e  meson field and th e  „m eson“ in te r 
action  term s given by  th e  equations (28), (29), (30) and  (31).

C anonical transform ation  of th e  H am iltonian

The „source“ quan tities  in  the  in terac tion  term s (30) and  (31) 
of the  meson field H am ilton ian  can be divided in to  two groups w ith 
respect to  th e ir  m agnitude in  the  case of slow „source“ particles

(electrons, pro tons, etc.). H am ely, there are quan tities as ill, M 0, , S i0
th e  expectation  values of which vanish for slow particles w ith  vanishing

velocity , and others as AT,, 8, S .0 w ith  non-vanishing expectation 
values.

As we shall lim it ourselves to  nonrelativ istic  velocities for protons 
and neutrons contained  in  the  nucleus (and even for th e  electrons 
in  the  Ji-shell), we can elim inate, in  th is  approxim ation , the  meson

quan tities  x, %0, n, n0 from  the  in terac tion  term s by a procedure equi
va len t to  the  in troduction  of the  s ta tic  Y ukaw a po ten tia l instead  of 
them . W e can do th is  by m eans of a su itab le  canonical transform ation  
of the  H am ilton ian . W e proceed as follows: first of all, we divide the  
sum  of and Jfp3 in to  three parts:
th e  „b ig“ one

£[(>>= s  ro t x +  S  ro t /  — % M i  d iv  rc-f ̂  M t div n
r  ** (34)

->• _
+  aS'.0, grad X o + S - o ,  &rad Xo,
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th e  „sm all“ one

*■> *4 *4 "4 *4   __ _    
jH2)==—x M — x M — ic7iS4. +  icnSi .— XoMo—XoM0 — icji0S 40-\-iC7z0S io (35)

and finally

J I " = S S  +  \  Af4i¥ 4 + £ . 0S.0, (30)
I1

th e  las t one n o t contain ing  meson field quan tities a t  all. W e w rite 
down th e  transfo rm ation  m atrix  in  the  form eIK and have for every 
operator Q

Q =  eIKQe~lK, (37)

where Q m eans the  opera to r in  th e  „new “ coordinates. W e have thus 

=  eIK(H (t  t +  Hfa + H'vc u + H;s) e~tK =
=  ( l  +  i K - ^ K 2+ . . . ) ( H ^ t + H ^  +  H ^ + H m + H " )

X ( l - i K — \ K * + . . . ) =  (38)
=  Bi°,)ct+  H f l  +  i lK ,  et+ B fg ]_ +  H (l)+  i [ K , H 0)]L

-* [ J T , [K,H™ct+  H " +  ...

I f  we choose now K  to  satisfy

[ K , H (% t + H $ ] _ = i H {i), (39)
we get

S mez= H % + H ^ + r , [ K , H 0)]_ +  H " .  (10)

How, in troducing  the  Y ukaw a p o ten tia l function (7)

3 e ~ f rV(r)=TZ-T -  ( 4 1 )4  71 )

which satisfies the  „ s ta tic “ meson field equation

{ d - V } 7 ( r )  =  0  for r  +  0  (42)

and  rem em bering the  form ula

f  V(r) {A -^}v(r)dT.=J V[r){A -f)cp-<p{A - /< 2} F ( r ) ]d r=  - ? ( 0 ) (43)

valid  for a rb itra ry  functions <p, we get for K  satisfying (39) the  expres
sion _

K J J V ( x - x ' )  j£  M a ( x )  div ' x(x) -  l-  Mi{x)  d iv ' J® ')

—S(x)  ro t ' n \ x ) ~ S ( x )  ro t n(x) (4 4 )
-> _ _

— S . 0{x) g rad ' 7r0(a:)—S .0{x) g rad ' 7t0 (a;)}dT<ZT'.
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To verify  it, we m ust use the  com m utation  relations (33) and  the  
form ula (43). In  order to  show how th e  calculation runs, we shall cal
cu late for instance th e  following com m utato r

(45)

J M A{x)V{x—x')  d iv ' %{x')dxdx'

=  c2 [ y j 'M A{ x ) V { x - x ' )  d i v ' ^ { x ' ) d x d x ' , J t ( x " ) , n ( x " ) d x "

-j- J '  M l{x )V (x— x')  d iv ' x{x')dxdx’, J '  d iv "  n{x")  d iv ” 7t{x")dx"

T aking  in to  account the  com m utation  relations (33) and perform ing 
some p a rtia l  in tegrations, we have

[ / J M i{ x )V (x—x') d iv ' x(^ ' )drdr ' ,  J n ( x " ) n { x " ) d r " ^  —

=  i h f  f  f  M ( x ) V { x - x ' ) n ( x " ) V ' d ( x —x")dxdx'dx: '  =  (46)

=  th  J  J  M 4( x )V (x —x') d iv ' n{x ' )dxdx \
sim ilarly

[ y J M 4(x )V (x —x')  d iv ' x (x ’)dxdx', J  d iv "  n(x")  d iv "  n(x")dx"J =
„  +  “ m

— —ih j  J  V ( x - x ' )  A'{M^{x)  d iv ' n(x')}dxdx', 

and finally , w ith the  help of (43),

\ ^ J  j ' M ^ x ) V { x —x') d iv ' %{x')dxdx' ,H(̂ ci

=  — —x r J ' J ' v ( x - x ’) { A '—ft2} {M(x)  d i v ’ n(x")}dxdx'  (48)

i  li (? f* _
=  —5-  / M(:c) d iv  7i(x')dx,

J

where the  Y ukaw a p o ten tia l has disappeared. Calculations w ith 
o ther com m utators are sim ilar. W hile perform ing the  p a rtia l in teg ra
tions m entioned above, we m ust jjay special a tten tio n  never to  in troduce 
second derivatives of V  in to  volum e in teg rals  or firs t derivatives 
in to  surface in tegrals.

The only te rm  we have to  calculate in our problem  is now

H = ^ [ K , H d ) ] _ + H " ,  (49)

th is  being valid  also if we perform  the  transfo rm ation  tak in g  in to  
account o ther p a rts  of the  to ta l H am ilton ian  corresponding to  o ther
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fields. Indeed , we can easily verify th a t  th e  com m utators of K  w ith  
the  zero H am ilton ians of those fields (electron, neu trino , p ro ton  and 
neu tro n  fields) and th e  e lec trosta tica l in te rac tion  term s betw een them , 
have  th e ir  zero m atrix  elem ent corresponding to  the  A -cap tu re  process. 
The o ther term s, for which th is  elem ent does n o t van ish , are e ither 
sm all for non-re lativ istic  velocities of the  particles, or can be neglected 
because of the ir being proportional to  h igher powers of the  coupling 
constan ts.

A fter som ew hat lengthy calculations, b u t proceeding along the  
sam e lines as in  th e  exam ple given above, we get

where th e  term s m arked  (...) appear due to  non-com m uta tiv ity  of th e  
„source“ qu an titie s  (as a consequence of the  an ticom m utation  rules 
of th e  form  (2 )), b u t  have no m atrix  elem ents corresponding to  our 
problem . I t  is convenient to  express the  quan tities  M it S, S.0 w ith  
th e  help of D irac ’s q and  a m atrices, g e tting  thus

W e m ust bear in  m ind th a t  we m ay also change the coupling constan ts 
g2, (j'2 for 8 . 0 in  order to  get a m ore general field th a n  the  M eller-Eo- 
senfeld m ixture .

[K,H«)]= J 'J ' V(x^xl)A’^ - ^ M i(x)Mi{a!,)—̂ M A{x)Mt(af)

— i S .0(x)8.0(x ' )— i S . 0(x)S .0(x ' )— iS{x)S (x ' )— iS(x)S(x ' ) id rdr’

r  r - >  -»■ (50)
—2? / / S(x)  d iv ' S(x' )  V ' V ( x — x ' )d r d r '

F ina lly , owing to  th e  eqs. (36), (43) and (49), we get 

H = f f  V ( x - x ' ) { M ^ x ) 3 1 ^ x ' )  +  F2S .0( x ) t 0(x') +  f>2S(x)S{x ' ) }drdr '

(51)

f  f  S. 0(x),{V V[x—x') x r o t ' S.0{x’)} dr d r ' +  {■■■)

(52)

where

a — —fa1a2 «3a j Qs=  ft • (53)
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The tran sition  m atrix  e lem en t

The m atrix  elem ent H  corresponding to  the  IT-capture process 
is easily seen to  be

H k =  J ' j ' v i x — x') {(jxg\U{x)V{x)v(x' )u{x' )

    ">■ ->
+  Szd'ii U(x)oV{x), v(x' )au(x' )  -j- U(x) g3oV(x), v(x')g3au{x'))}drd,T'

1 / ’ / * _ - >  -> ( 5 1 )
+ J  J  g3g'2U{x) g3aV (x)  d iv ’ {v{x ’ ) g3a u [ x ' ) } V V ( x — x ’ ) (h dr '

— -pr J J  g2g'2 U(x)oV(x),  ( V V ( x - x ' )  x r o t ' {v{x')*ou(x')}) drdx'.

The functions u and  v describe the  neutron  and p ro ton  sta tes, respec
tively , th e  la t te r  superseding the  form er in our process, u  is the  electron 
function in  the  ii-shell, v th a t  of th e  neu trino  p lane wave. In  our 
fu rth e r  calculations we shall neglect the  last two term s in (54). W e 
can do th is  — as shown in th e  appendix  — by assum ing th e  ra tio  of 
th e  nuclear rad ius a (being defined, e. g., as the  m ean extension of
th e  u  and v functions) and the  range of nuclear forces l / / t  to  be great
in com parison w ith the  fine s tru c tu re  constan t m ultip lied  by the  atom ic 
num ber:

Za  <X«/i. (55)

I t  m ight also be shown th a t  when dealing w ith  these term s one would 
be forced to  m ake special assum ptions abou t the  behaviour of the 
electron function  inside of the  nucleus which we shall avoid.

On th e  o ther hand , in order to  be able to  perform  th e  fu rth e r 
calcu lation  w ithou t special knowledge about the  behaviour of th e  u  
and v functions, we m ust assum e th e  range of the  meson forces 3 //< to  
be great in com parison to  th e  nuclear rad ius a, so th a t  we m ust com plete 
the  inequality  (55) to

« a/( «  1 • (56)

I f  the  las t condition can be fulfilled we m ay w rite

r — -H k — J  V{r){glg'1{l)v(x)v{x)+g2g2({Q3o),v(a:)e3<ju{x)+(o),v(æ)ou(x))}dT, (57)

where the  rad ius vec to r r  is to be taken  from  th e  electric centre of 
th e  nucleus, and

(!)== f Ü ( x )V (x )d x 1 (cr)= f  U{x)aV{x)dr, (g3o ) = J  U{x)g3aV(x)dr.  (5S)
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F or th e  more general meson field th an  the  M eller-Bosenfeld field we 
should have

H k = J  )v{x)u(x)+(j,(^(n3a),v[x)n3au(a:Hi/.s<j:i(a),v{x)au(x)}dT. (57')

I t  is understood also th a t  th e  approxim ation  (57) or (57') is valid  if 
the neu trino  wave length is g rea t in com parison w ith th e  range of the 
meson forces l// j ,  i. e. if th e  neu trino  energy is small in  com parison 
w ith  the  meson rest energy.

W e m ust in sert now for u  th e  solutions of the  D irac equations 
for the  Jf-shell, for v th e  neu trino  plane wave, and then  average the 
square of the  absolute value of I I  w ith  respect to:

.1 ) two different o rien tations of the spins of the  electrons in 
the  /{"-shell,

2 ) two d ifferen t o rien tations of th e  neu trino  spin w ith respect 
to  its  m otion,

3) all possible directions of th e  rejected  neutrino ,
as the  tran sition  p robab ility  depends only on th is m ean value.

The D irac equation  of an electron in th e  cen tral e lectrosta tic  
field of the  nucleus of charge — Ze  is

{ ( f  +  +  1 k «v  “  Pmc) « =  0  • (59)

I f  we use the  custom ary represen tation  for the  a,- and f) m atrices:

/ 0  0  0  1 \  / 0  0  0  —
0  0 1  0 \ ( 0 0 i 0
0 .1 0 0 ’ "2~  1 0 — i 0 0
,1 0 0 ()/ \ i  0 0 0,

(60)
! 0  0  1 0

0  0  0  —1

1 0  0  0
v0  — I 0  0  /  \ 0  0  0  —1 ,

we get the  following form  of the  tw o solutions for the K -electrons

, / 0 = / q , q _ L  U(\ =  °>
1 f i b t ’ ’ 1'  ,i(2 )

=  0 , - ' /s I U VT:t ’

^ » / ( r f o L  cos 0, 0r » % = f ( r ) r L  sin
| /  4  71 71

=  f{r)ÿL= sin drj'f, u- \ ' ,=  ~ / ( r )¡7=^ cos
>)/Tn ’ --/* n , y r ,

A c ta  P b y sica  P o lon ica

71
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These solutions belong to  the  common low est energy value •

E K= m c - \ l — Z-a:\ n =  <?2/kc (02)

and correspond to  th e  two possible o rien tations of the spin of the 
electron, so th a t  if we in troduce the  angu lar m om entum  operator

m = —¿h(r X Vj-f- -1-her, (03)

we will have for its 2 -com ponent:

■ m z U \ :3 —  to,-,, —  2-M -v  (04)

The functions f(r) and f'(r) satisfy the equations

(tire , , . Z a A /, , -LI(U

and  are

 — Z c e r

(65)

(60)_____________________  , , ---------- _ n i c

f  =  c V l  +  Y l —  Z 2a2 r^ ~ Z'a‘ e * 

w ith the  norm alization  fac to r

„  /,.Zamc\Vl- 7'la,+Vt 1
h j \ 2 r { 2 \ l — Z W + 1' ( }

The neu trino  function  r  satisfies the  equation

( /r<n> ->->■) ->
a p f i ’ =  0, (p =  —ii  iV) (68)

I c

th e  p lane wave solution of which is given by

v =  ^ = e t k ^,  (09)
y n  ' '

where D is the  period icity  volum e in  which we norm alize it, k the 
wave vector, e the  un it sp inor satisfy ing the  equations

E (n)e = h e o ^ e  (70) or 7i(n)e =  hc |£  |(«, A-0)e (e e =  1 ) (70')

where A-0 is the un it vector in  the d irection  of wave p ropagation . The 

opera to r (a ,k0) has tw o eigenvalues equal to 1 , belonging to  positive
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neu trino  energy, and tw o eigenvalues equal to  —1 , belonging to  negative 
energy. W e have thus

—# ( - ) = he | fc|, /«'’(+)=  - ^ > = h e i [ ,  (71)
and

e ( + ) = ( a , k 0) e (-+ \  —  £<~>= (a , k 0) e S - \  (72)

where E (n) and  E^n) m ean the  neu trino  and an tineu trino  energies respec
tively , th e  subscrip ts „ +  “ and “ being easily understood to  refer 
to positive and  negative energies. I t  is useful for the  sequel to  w rite  
the eqs. (71) in th e  form

! { lT ( « io ) } * (±)= 0 ,  |{ l ± ( a , f c 0)}£<±>==£(±>. (72')

In se rtin g  (01) and (69) in to  (54), we get

HK=Y=}9i9i( ' i )  +  g2Si{{e3a )7Qa^+(a )ia)} J V ( r ) e ~ l * * udr.  (73) 

If, as m entioned above,

p » \k \ ,  i . e .  h,wc »/?<">, (74)
we can w rite

—w —►
/ -+-*■ 1 r e-pr- ikx  q f  e-/<r

Vlr)  e_i * x u d x =  — ■ / ------------ u d r ^ - — /  -udr .  (
4 n J  r  4n j  r

75)

If we fu rth e r  assum e, as m ay safely be done, th a t  the  meson mass 
■ is g rea t in  com parison w ith  th e  m ass of the  electron

h  /ucyymo2, (76)

we get finally  a fte r elem entary  calculations w ith the  help of eqs. (61), 
(6 6 ), (67)

—— j ” udr~Ny}+'> where

\  K 2 / b 2 h —  W + l )
<77)

and  where (cf. (60))
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are  the  u n it „eigenspinors“ of the  /3-operator, belonging to  th e  eigen 
value 1 . I f  we in troduce form ally the  tw o o ther „eigenspinors“ of th is  
opera to r, nam ely

we shall have
| ( 1  ± S8)^ (± )= Z(±), (79)

tw o equations which are sim ilar to  (72').
In stead  of (73), we get

jsf _
^ K = Y ^ £ { g i g ' i { ^ ) Jr ( ]2 (J li { { Q z a ) , Q z a + { a ) , a } y } + ) . (80)

S ow , we are able to  perform  the  above m entioned  averaging  of the  
square of the  absolute value of th e  expression (80). W e denote by

Q = y = { 9 l { l ' l ( ^ )  +  9 2 (A { ( S 3 <J) , e 3 (J+ { a )>a ) }  (81)

th e  m ost im p o rta n t opera to r in  (80), which is of the  ty p e  of D irac ’s 
a and  /? operators, and  average w ith  respect to  the  neu trino  spin orien
ta tio n s  firs t. This average value  is (owing to  (72'))

-kSs(±) \HK\ * = i S si±) W+)Qe • I Q y W )
-»-» -»o- (82)

S e(±) deno ting  th e  sum m ation over positive or negative energies only, 
while S t over both of them  (we reserve th e  sum m ation over si- ) for th e  
case of „forced“ ^ -c a p tu re ) . How we can easily average over all possible

¿.•-directions, by  sim ply dropping out (ci,k0).
D enoting  the  angu lar m ean value by <......... >, we get thus

<hSet±)\HK\ ^ \ x M Q Q 7M .  (83)

F ina lly , we perform  the sum m ation over b o th  possible o rien tations 
of th e  e lectron  spin in  the  Jf-o rb it, and get in  a sim ilar way as before 
th an k s  to  (79)

\ H k \ ~ =  S x<.+)<l-Se(±)\HK\*>=Tr{QQ(l  +  o3)} (84)

but w ithout the fac to r ^  before S x(+), OAving to the fac t th a t  there are 
two electrons on th e  it-orb it. In se rtin g  the expression (81) and  cal-
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d ilu tin g  according to  well-known rules the  „ tra ce “ of the  expression 
{£ }< ? (!+  ¡?3)}> w e  £ e t

| f f / r | 2 =  { ( i / . 9 ,i ) 2 d ) 2 +  ( i f e f i f i F K f t " )  +  M * }  ( 2 ^  j ^ J

x r ( Y T ^ * + \ ) r t y T = z w + 2) (8o)

2/’(2 |/l—2 2a2+ l)

To deal w ith  more general com binations of the  vector and pseudo- 
scalar m eson fields we m ust replace the  b racket expression by

{(^ifiri)2 i(T) I2 + Ii/2i?2( e3̂ ) + I2} - (85')

T ransition probab ilities

In  order to  get a su itab le  survey of the  possible phenom ena it 
is convenient to  deal shortly  w ith  the  p e rtu rb a tio n  m ethod for the 
case of resonance absorp tion . The basic equations in  our case are (8)

| P > * = £  | / >  W i O e x p  ( f f e - H / ) ) ,  

i k j t \ i y  =  \P y < P {H \ I> e x v  (H r-f f r )}  +

tit \ (8fi)+  2  |F , > \ F , \ H \ i y  exp j i  (H j -H r , ) } ,

i k |  !?/>* =  |!>*< /1H | F f> exp (U F - H , ) j ,

where we have used D irac ’s b racke t no ta tion  (thus, < . does no t 
m ean angu lar average, as in  the  preceding section), the  suffixes P , I ,  P /  
refer to  p rim ary , in te rm ed ia te , and  final s ta tes  respectively, the  sum  E

Fi
m eans sum m ation  over all F i  w ith  fixed I .

T he |P>* s ta te  corresponds in  our case to  an  a tom  of atom ic 
num ber Z  w ith  2 electrons in  the  Jt-shell, and to  no neutrino  in  the  
positive energy range. W e m ay postu la te  fu rth e r in th is |P>* s ta te  
th e  existence of an tineu trino  rad ia tion  in space, corresponding in the  
neutrino-hole  form alism  to  some unoccupied s ta tes  of the  neutrino  
negative energy range. In  th is  w ay we shall be led to  th e  aforesaid 
„forced“ 7f-cap tu re  in  case of a su itab le  (negative) energy difference 
betw een th e  in itia l and  th e  final energy of th e  atom ic system .

The j iy*  s ta tes  correspond to  the  atom ic system  a fte r the  P -c ap tu re  
process and  one add itional neu trino  m ore th a n  in  th e  [P>* sta te . We
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call th is  s ta te  „ in te rm ed ia te“ only from  a som ew hat form al poin t 
of view, owing to  a  possible „ reabso rp tion“ of th e  neu trino  („re- 
em ission“ of an  an tineu trino ).

The |Fjy* s ta tes  correspond to  th is  „ reabso rp tion“, w ith  th e  
a tom ic system  back  again  in  th e  p rim ary  configuration. I t  is neces
sary to  ascribe to  these s ta tes  tw o indices, F  and I ,  th e  firs t in d ic a t
ing  the  neu trino  which has been absorbed, the  second th e  em itted  one.

The approx im ate  solutions .of the  equations (8 6 ) for | P>* and 
\iy* are

an d  where q{HFj) is th e  final s ta te  density  per energy in te rv a l, while

where q ( H i ) is th e  density  of in te rm ed ia te  sta tes, if th e  energy con
servation  condition H i = I I P dem ands the  em ission of a neutrino  
of positive energy, or if th e  „w id th “ of the  an tin eu trin o  line is g reat 
in  com parison to  th a t  given by y  when dealing w ith negative neutrino  
energy; or by

\py* =  e ~ 2 t
r

\ i y = < p \ H \ i y
(87)

where

( 88 )

1 — exp -g (l ip —H j - f- ih \  —F))

H p— H i  -j- i h ,( (y—J1) (89)

which gives:

(a) (89')

(b) R(r)  =  0Fp (89” )

if we deal w ith  a very  „narrow’“ an tin eu trin o  line,

( 90 )

being the  to ta l num ber of an tineu trinos contained in it.
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W e can now see th a t:
(1) In  th e  positive energy range of th e  neu trinos the density  of 

th e  in te rm ed ia te  |I>* s ta tes  is the  m axim um  possible one, owing to  
P a u li’s exclusion principle:

£?(£<»>)2 I 2 F  412
e(H t ) - e p  ^ . ¿ 3  n h c  ]iC;y ( *

where i l  is the  periodicity  volum e, w hereas the  fina l-sta te  density  
(j(HFj) vanishes:

q(HF/) =  0 , (91)

corresponding to  the  fac t th a t  only one neutrino  can he reabsorbed, 
nam ely th is  one which has been em itted  firs t, and th is leads exactly  
to  th e  re s titu tio n  of th e  p rim ary  s ta te  |P>* only.

(2) In  the  negative energy range of th e  neutrinos the  interm e-
d ia te s ta te  density  o(7//) is determ ined  by the  in tensity  of the  assum ed 
an tin e u tr in o  rad ia tion , so th a t  if we designate by I ( E ^ )  th e  num ber 
of th e  an tineu trinos  of energy betw een E (a> and JEa) + i l E <n) passing 
in  u n it  tim e perpend icu larly  through  u n it area, we will have

q{Hi) ^ \ q 1{H^). (92)c

The final s ta te  density  q(HFj ) is now a t its m axim um , because of the 
presence of neutrinos occupying the  negative s ta tes  of energy. Thus

q(HFj) = pp . (92')

In  order to  know w ith  which of these two cases we have to  do, we 
m ust realize th a t

H P- H j = ( E {F)+ E ^ ) - ( E w + E (n)) or =  (E{p)+ E ^ + E {a)) - E m , (93) 

where E $  is given by (62). The condition I I P—E ¡ = 0  leads thus to  

E (n) =  - E ia) =  (E (P) -  E (n)) +  E f = A Q  (94)

AQ m eaning the  m ass difference m easured in  energy u n its  betw een the  
a tom ic w eights of the  Z  and  the  Z — l  isobars (nucleus +  electron shell).

In  th e  following form ulas we m ay in sert \Uk \2 from  the  preceding 
section in stead  of ¡<IjI7|.F/>l2and |< P |/ / |I > | 2 and in troduce  an  im p o rtan t 
new q u an tity , nam ely the  tran s itio n  p robab ility  corresponding to 
m axim um  density  of sta tes:

i'p =  2j -  W e , =  { ( » . ¡ i l 'l f f l l '+ l j , / . ( s .? ) ! • + » ,s i l i l 1}

y>( w ^ + !  r ( \ i - Z ic ? + 4 ) r ( \ \  - Z * a2+  2) (9o)i o r ,  m o  X 2 Za
1 W  2 P ( 2 | / l - W + l )
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Thus, we are led to  the  following conclusions:
(1 ) „ Spontaneous“ K-captvre.  In  th is  case we have A Q > 0 ,

i. e. th e  energy of th e  a tom  w ith atom ic num ber Z  is g rea ter th an  th a t 
of its  isobar of atom ic num ber Z  — l  in which i t  is transm uted . I t  is 
qu ite  obvious th a t  i t  is only th is  th a t  we observe in all the  n a tu ra l 
/^ -em itte rs . As AQ— E^n\  we have to  do w ith  real em ission of the 
(positive energy) neu trino  and  m ay w rite

d $ < 0 ,  i. e. th e  isobar Z  — l  to  possess g rea ter energy th a n  th a t  of 
a tom ic num ber Z , and  the  gap to  be filled up by the absorbed an ti- 
neu trino . W e have now

b u t for r  we m ust still d istinguish  betw een the  two cases of „w ide“ 
and „narrow “ an tineu trino  lines: (a) „wide“ line

where 1(E)  is the  num ber of an tineu trinos  of energy in the  in te rval 
{EUE  dE)  passing in  u n it of tim e u n it of area  perpendicular to  the  
d irection  of th e ir  m otion. W e get as before for the  m ean lifetim e

(b) „narrow“ line. A ccording to  (89"), (95) and (98) the tran sition  
p robab ility  per u n it tim e is

T ak ing  in to  account th a t  the  to ta l num ber of an tineu trinos passing 
in u n it tim e un it perpendicular area  is 6h!Q,  we get th an k s to  (91)

y — 0 , l ' — Ep. (96)

The m ean lifetim e of such a  A '-em itter is given by

t0=  11 E p . (97

(2 ) „Forced“ K-capture.  The energy condition would now dem and

y = i ' p , (98)

!a 2 + 2 )
(99)

X

¿ 0 = 1 /7 1 (97')

( 100 )
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and  (93) the  following expression for the  to ta l cross-section fo r a  single 
an tin eu trin o

o K= * 1 ------------ L 2 1   , ( 1 0 1 )

( EW +A Q )*+ 1 P

where X is th e  w ave-length of the  an tineu trino , and T P is still given 
by  (95).

D iscussion  of th e  orders of m agnitude (0).

W e shall com pare first the  order of m agnitude of the  ^ '-c o e ff i
cients, which we get by  inserting  the  know n experim ental d a ta  for several 
A -em itters  in to  the  eqs. (95) and  (97), w ith those given by Y ukaw a.

W e assum e (1), ( g s a) ,  ( a)  to be of order one, b u t th is  order can be 
sm aller when the tran sition  is forbidden by nuclear selection rules, 
so th a t  we m ay com pare the sho rt life A -em itters  only and establish  
th e  upper lim it for the  (/¡/'-estimations, as they  will be underestim ated  
in  general. W e m ust fu rth e r pay special a tten tio n  to  those sho rt life 
A -em itte rs  which possess sm all A ’s, because, owing to  (95) and (97), 
th e  m ean lifetim e should th en  have the  tendency  to  decrease w ith 
increasing  Z.  W hile perform ing these estim ations, we assum e th a t  
th e  m eson mass is 2(10 tim es th a t  of the  electron.

As a firs t exam ple we choose the A -reaction

.( 13o y 3 Li.
K

The half lifetim e r  is in th is case 53 days, so th a t the  energy difference 
AQ betw een \Bc  and i L i ,  as calculated  from  th e ir mass defects, is

Z0= tZ h 2 = 6 ,6 1  x  106 s.

and  we have for the  b racket expression in (95), w ith sufficient approx i
m ation,

_  Y h4c'! 1 i 2 0 0  f 1
{(giy[) )̂\2+\g2g2{ü3a)+9303(a)2}x-j^7ÿjr x  137J

=  (2.t)4 X 8  X 10~5'.

The g and g' coefficients estim ated  by Y ukaw a are given approx i
m ately  by

(«/2 tt)2 1 ..
he ~~T0 ’ ? / 2-'r - 4 x l °  >

so th a t
(gg ' f  =* (2.t)4 x  5 X 10~51,
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-which gives the  same order of m agnitude as our estim ation . Because 
AQ has no t been m easured for oilier A -em itters , we will only give 
one m ore exam ple, nam ely th a t  of the  reaction

31 Oa - >  30 An.A

In  th is  case we can be sure th a t  A <  2mc2 as there  is no ft rad io ac tiv ity  
accom panying the  A -cap tu re . The half lifetim e r  of is the  shortest 
one am ong all „pu re ' 1 A -em itters  and equals 35 m in. Thus

i 0 =  t /?«2 =  1 ,2 9  x  3 03 s.

If  we carry  ou t the  estim ation  in  the  same way as before, p u ttin g  
sim ply AQ— '2mc2, we get

{Ai/;)2! U ) |2+ ! ( i / 2i/2) ( c ^ )  +  (i/3i73) ( u ) |2} * ( 27r)<X 2 7 x 1 0 - « ,

which gives th e  sam e order of m agnitude as for \Be.
The p robab ility  of „forced“ A -capfu re  — if such a A -cap tu re  

exists — would be in  general m any orders of m agnitude sm aller th an  
the  p robab ility  of „spontaneous" A -cap tu re .

If the  form ula (99) applies — this would be the  case, e. g., when 
irra d ia tin g  a  su itab le  elem ent by the  broad spectral line of a n tin eu 
trinos produced together w hith  electrons by a ft em itte r — the  ratio  
of p robab ilities of „forced“ and „spontaneous“ A -cap tu res will be 
of the  order of m agnitude  of the  ra tio  betw een the  rad ia tion  density  
owing to  the  presence of these em itters  to  the  m axim um  s ta te  density  
provided by P a u li’s principle. W e shall estim ate  the  order of m agnitude 
of th is ra tio  in  the  centre of a  sphere of rad ius A contain ing  the  u n i
form ly d istr ib u ted  em itte r, which we can choose to  be rad ium  C pos
sessing the  half lifetim e

7- * =  3 9 ,5  m i n . ,  tR ~ r Kj l n  2

and th e  m axim um  /3-ray energy

>3,3 o M e\ .

A fter elem entary  calculations we get fo r th e  in tensity  in the  sphere
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where L  is the  L oschm idt num ber and v the  num ber of gram  molecules 
of l ia  contained in th e  sphere. If  we calcu late now the  m axim um  
energy density  (91), assum ing for in stance  2mc2, we get

I rI I m u= <> X 10~23 v / R 2,

where / max is the  rad ia tio n  density  corresponding to  the  s ta tes  density  qp.
I f  we assum e tw o elem ents — one of which is a n a tu ra l ¿ -e m it te r  

and the  o ther the  h y p o thetica l „forced” K -em itter — to have equal \Hk \2 
and equal absolute values \AQ\='lmcl and  place v’ moles of th e  la tte r  
in  the  centre of our sphere, we get for th e  num ber of these „forced“ 
if-processes in  u n it tim e

V being the  m ean lifetim e of the  n a tu ra l ¿ '-e m itte r .
I  wish to  express my deepest thanks to  P rof. A. Rubinowicz, 

to  w hom  I  owe th e  idea of th is  paper, for his suggestions and constan t 
in te rest du ring  the. work.

A ppendix.

W e have still to  discuss the  order of m agnitude of the  last two 
term s in  (51) which we have neglected.

Using th e  sam e approx im ation  as in (54) (based on the  assum p
tion  (55)), we get for these two term s

1 r  V (r)
—2{l2(A(<23a), J  — —  r d i\  {v(r)i>3a u(r)}(h

and  (a)
i  r  v t )

— —-— ( r x  ro t {v(r)o-u(r)}dr,

■ respectively , where V r(r)=(lV(r),'dr.
W e can easily see th a t

->
d iv  {ü(»’)e3u«(i-)} =  i;(i-)tj3(CT)VH(r)-f ü{r)g3(oV)v{r)-.

_  ->
=  iv(r)g2a V u(r) — iu(r) g2aVv(r ) . 

T hanks to  (56) and (69), th is  is equal to

(b)
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which, s tr ic tly  speaking, would even lead to  divergent integrals, owing 
to  the  term  Zajr,  if we assum ed a too sm all nuclear radius. In  order 
th a t  th e  last expression be sm all, for every r, in com parison w ith

/uv(r)v(r) and  like term s (c)

we m ust p u t Zuja  « /< , th u s  g iving us the  condition (55).
Perform ing  th e  in teg ra tion  in (a) shows th a t  when div {v(r)n3ov(r)}  

is sm all in  com parison w ith  the  (c) — term s the  firs t te rm  in (a) is 
sm all in com parison w ith  the  o ther term s in (54) and can th u s  be 
neglected.

In  a s im ilar way, we get the  sam e condition (55) when the  second 
te rm  in (a) has to be neglected.
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A  NOTE ON THE INVARIANT FORM ULATION OF THE 
QUANTUM  FIELD TH EORY

B y Jerzy  B A Y S K I, Nicholas Copernicus U niversity , Toruh 
(rece ved  June 18, 1949)

T he Schrödinger equation is w ritten  in a relativ istica lly  invariant form in  
th e  general case w here th e  in teraction-energy density  is not. a scalar. T he invariance  
m ay be exh ib ited  w ith out introducing a generalization called „ in fin itely-m any-tim e  
form alism “. The autonom y of th e  form ulation of T o m o n a g a ,  i. e ., its independence  
of th e  Lagrangean and H am iltonian form alism s, is em phasized.

The fam ous rela tiv istically  in v arian t form ulation  of the  theory  
of quantized  fields developed by T o m o n a g a  (1946) consists of two 
decisive steps: (a) The tran s itio n  to  the  in te rac tion  represen tation  
where th e  field variab les obey in teraction-free field equations and 
co v arian t com m utation  relations, (b) The rew ritting  of th e  Schrö
dinger equation  in  an in v arian t form:

(1 ) is n o t y e t sufficiently general as i t  applies only to  the  case of a scalar 
H am ilton ian  density  of in terac tion . In  general, the operator H  is no t 
a  scalar b u t  m ay be represented as th e  four-four com ponent of 
a tensor I fW. The special case of a  scalar E  is contained  in  the  more 
general one if I /tv is of the  form  — Hduv.

A n in te resting  fea tu re  of the  Tom onaga theo ry  is th a t  i t  p erm its  
to  forget the  Lagrangean  and H am ilton ian  form alism s: The field 
equations and  the  com m utation  rela tions in  the  in te rac tio n  rep re
sen ta tion  are sufficiently sim ple to  be regarded as p rim ary  concepts. 
They are understandab le  by someone who has never heard , e. g., abou t 
th e  canonically  conjugated m om enta. The tensor I hV m ay be postu 
la ted  (sim ilarly  as there  was alw ays postu la ted  a Lagrangean) and  
we are no t obliged to  rem em ber th a t  its  four-four com ponent is iden tical 
w ith (the in te rac tion  p a r t  of) a  H am ilton ian . This s ta tem en t seems 
to  the  au tho r n o t qu ite  triv ia l since there  exist possibilities of theories

(1)
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which are not derivable from  a H am ilton ian  form alism  but which 
m ight be expressed in term s of the  Tom onaga form ulation l .

The replacem ent of th e  planes f= c o n s t ,  by more general space- 
like surfaces (i. e. th e  so called in fin ite ly-m any-tim e form alism ) has 
been in troduced in order to  give the  Schrödinger equation  an  invarian t 
form . How ever, it is ev iden t th a t  in t he fram e of the restric ted  re la tiv ity , 
i t  is not necessary to  use th is last generalization  in order to w rite the 
Schrödinger equation  in a n  invarian t form . In  the  theory  of special 
re la tiv ity  a space-like p lane 2  is also an in v arian t concept so th a t  
we do not need to  in troduce  a rb itra ry  surfaces.

W e consider a functional !F[Z] and define a „norm al derivative 
of XP[E] in  the  p lane E0“. W e take  a set of planes 2 , parallel to  2 ’0 

and form  the  differential quo tien t

where I m eans the  four-dim ensional d istance betw een the hyperplanes 
l ' i  and  2’0. If  the  lim es exists for E t -+E0 it will be denoted by

and called „ the  norm al derivative in the plane E 0“.
Given is a tensor I nv, th en  we m ay w rite  the equation

a  u n it  vecto r norm al to  th e  p lane E  {nvn v= —1). F or definitness, we 
m ay also assum e th a t  n v po in ts to  the  fu tu re , (n0 > 0 ). (2 ) is an in v arian t 
equation  since it m akes use only of geom etrical concepts independent 
of any  special fram e of reference.

I f  th e  system  m ay be expressed in  term s of the  H am ilton ian  
form alism  th en  Z00 will be identical w ith  the  in terac tion  p a r t of a H a
m ilton ian  and (2) will be equ ivalen t to  the  Schrödinger equation  in 
the  in te rac tion  represen tation . To see this, it is sufficient to  w rite (2) 
in  a  special L orentz fram e in  which the  planes t — const, are parallel

denotes the  surface in tegral over the  p lane E  and  n v is

1 A s exam ples of non-H am iltonian  system s w e m ention th e  theories where 
th e  interaction  is cu tt off (spread out) by m eans of integral (Peierls <£• Me Manus) 
or d ifferential operators (J . K ayski, 1947).
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to  th e  p lane E0. I n  th is system  of reference the  functional 2 '] m ay 
be replaced by  a  function  of t, while the  norm al derivative, becomes 
th e  usual derivative w ith  respect to  t. MoreoA'er, I pvn v=  I 00=  H  so 
th a t  we get from  (2) th e  trad itio n a l Schrödinger equation

i (2')

B y comparing (2) Avith (2') a v c  recognize the double meaning 
of the Arariable t in the Schrödinger equation. In  H[xyzt)  it appears 
as a  space-tim e variab le , Avhile in W(t) it is only a  su b s titu te  for the 
four-dimensional distance, betw een tw o parallel space-like planes.

Of course, the  restric tion  to  planes m ay be as A\’e l l  abandoned. 
I t  is easily seen hoAv (2) should be generalized for a rb itra ry  space-like 
surfaces S:

i =  nfl(P) I /lv{ P ) n v(P)  • !P[S1. (3)

I n  case I flv=  —H6fiv th e  equation  (3) becomes the  equation  ( 1) of Tomo- 
naga. L e t us denote by C th a t p a r t  of S + ö S p 0 Avliich does n o t over
lap  S.  The po in ts on C will be denoted by P c ■ F o r reasons of consistency 
i t  is required  th a t  (a) C con tracts to  the  po in t P 0 (P c —Po->-0) and (b) the  
angle betw een any norm al to  the  surface C and th e  norm al n,,{P0) 
tends to  zero: n /t(P c)— n f,{P0) - >-0 for 6S->0 . D ue to  these conditions 
th e  va ria tions  are w eak and  th e  functional deriAra tiv e  ¿>lóSp0 refers 
to  and  only to  the  p roperties of the surface S  in  the  v icin ity  of the  
po in t P 0.

A form ulation  equivalen t to  our (3) has been given by M atthew s 
(1949) by m eans of a generalization of the  H am ilton ian : H = n f,Iflvnv.

(2) is a special case of (3), nam ely, Ave m ay replace in (3) the  
surface S  by a p lane E  and, by m eans of a set of successive local varia
tions öS, Ave m ay perform  a tran sition  to  ano ther plane E-\-dE  parallel 
to  E. B y sum m ing up th e  local varia tions a v c  ob tain  in limes the  equa
tion  (2 ) 2.
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- B y  tak in g  (2) as basic equation of the theory, w e are released from the con 
dition o f in tegrab ility  Avhich was necessary in  case of (3). This is of im portance for 
th e  form alism s w ith  a  spread out in teraction  — energy density .
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INFLUENCE OF TORSIONAL VIBRATIONS OF LUMINES
CENT M OLECULES ON THE FU N D AM EN TAL POLARI
ZATION OF PHOTOLUMINESCENCE OF SOLUTIONS

B y A lexander JA B Ł O Ń SK I, Physics D epartm en t, N icholas Copernicus
U niversity , Toruń.

(received June 19, 1949)

The observed values of fundam ental polarization are alw ays sm aller than  
those to  be expected  on th e  ground of theoretical considerations. T his fact can bo 
explained (at least partially) by  the influence of torsional v ibrations of fluorescent 
m olecules on th e  rate of polarization of photolum inescence. Som e conclusions can  
be drawn from th e difference betw een theoretical and experim ental values o f th e  
polarization. This note contains som e provisional results of theoretical investigation . 
A fuller report is intended to  be published shortly.

A ccording to  P au ling  (1930) and S tern  (.1931) the  molecules (and 
p a rts  of molecules) in  m any crystals can ro ta te  if th e  tem pera tu re  
of th e  c ry sta l is sufficiently high. A t low tem pera tu res th e  molecules 
carry  ou t small oscillations (torsional v ib rations) abou t th e ir  equ i
lib rium  orien tations. The energy levels and  th e  corresponding eigen
functions approach  in  the  case of d iatom ic molecules to  those of a  tw o 
dim ensional oscillator. The case of po lyatom ic molecules (three finite 
p rinc ipal m om ents of inertia) was studied by Mrs W . H anus (to be 
published shortly). In  the  las t case the  levels and eigenfunctions of 
th e  lowest torsional v ib ra tion  s ta tes  are very  nearly  those of a three- 
dim ensional harm onic oscillator. Thus molecules in crystals m ust 
possess an  am ount of torsional v ib ra tio n  energy even in  th e ir lowest 
s ta te  („zero po in t energy“').

There is no doub t th a t  sim ilar torsional v ibrations are carried 
out by lum inescent molecules in  solid (vitreous) or very viscous solutions. 
These v ib ra tions (and sometim es also some of th e  norm al in te rn a l 
v ib ra tions of molecules) m ust cause a p a rtia l depolarization of photo- 
lum inescence. Since th is cause persists down to  the  lowest tem pera tu res 
(zero po in t energy!) i t  cannot be thoroughly  elim inated  by choosing 
su itab le  experim ental conditions h H ence, the  explanation  of th e  fact

1 In contrad istinction  to  th e  tw o other thus far know n causes, i. e . to  th e  
Brownian rotation  of lum inescent m olecules and th e  transference of th e  excitation  
energy from one m olecule to  another.
A c ta  P b y sica  P o lon ica  3
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th a t  th e  observed values of the  fundam ental po larization  2 are always 
sm aller th a n  those to  be expected on the  ground of theoretical con
siderations.

A th eo ry  of the  fundam en ta l po larization  for molecules a t absolute 
rest (no t executing torsional v ib rations) was given by  th e  present 
w riter (1935, 193G). A ccording to  i t ,  the  fundam ental po larization  for 
the  case in  which th e  sam e v irtu a l electronic oscillator is responsible 
for th e  absorp tion  as well as for the  em ission of ligh t is given by 3

3 ¿ r f - d r j f  

= -------*7— > (D
E r t + s i S W/= l 7=1

where P ; denote the  re la tive  p rinc ipal tran sition  probab ilities along 
the  th ree  m utually  perpendicular (principal) axes of the  v irtu a l electronic 
oscillator.

F rom  (1) one ob tains P 0 =  l /2  for a  linear oscillator (J\=\= 0, 
r 2= F 3— 0 ), P 0=  1/7 for a sym m etrical f la t oscillator (P1= P 2=bO, P3=  0) 
and  P 0=  0  for a spherical oscillator (P1= P 2= P 34 =0 ).

L et us now take  in to  consideration the  influence of th e  torsional 
v ib ra tions of lum inescent molecules on th e  ra te  of polarization. In  th is 
no te  we res tric t ourselves to  two sim plest cases. L et y  denote the  
angle of dev iation  of one of th e  p rinc ipal axes from  its  equilibrium  orien
ta tio n  and  le t th e  average value of cos2 y  be cos2 y — 1 —sin2 y — 1 — e. 
P rovided  the  d istribu tion  of y  be ax ially  sym m etrical, a linear v irtu a l 
oscillator becomes (owing to  th e  torsional v ibrations) equ ivalen t 
to  an ax ially  sym m etrical spatia l (three dim ensional) oscillator w ith 
re la tiv e  tra n s itio n  p robab ilities P 2 =  1  — e, P 2 = P 3 =  e / 2  (instead 
of P i = l )  F 2= F 3=  0 ; th e  com m on fac to r is om m ited as irre levant). 
P u ttin g  these values in to  (1) we o b ta in 4

p ’ ... 9g2 12e+  4
F ° - - 3? ^ i s +8  •

Thus P q< 1/2 for £ > 0 .

3 T he lim iting  va lue of th e  polarization of lum inescence of an isotrop ic solu tion  
observed at right angle to  th e  electric vector of p lane polarized prim ary ligh t w hen  
depolarizing factors (footnote (-)) are elim inated .

3 T his form ula is g iven  in a different bu t equ ivalent form  in papers Jab łoń 
ski (1935) and (1936).

4 This form ula is equ iva len t to  a form ula derived by  F . Perrin (1929) for 
a linear oscillator carrying out quick irregular oscillations about its  m ean orientation .
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F o r an axially  sym m etrical fla t oscillator th e  tran sition  p roba
b ilities become (provided the  d istribu tion  of y  for th e  sym m etry  axis 
perpend icu lar to  the  p lane of the  oscillator be axially  sym m etrical)

F3=  sin2 y = e ,  A = A = 1  — |  (instead of r i =  r 2= l ,  F3=  0 ) and  hence 

by m eans of (1.)
9&2 J 2 e + 4 

0 . 3e2 —4£+ 2 8 ’ 1 '

which shows th a t  P o < l /7  for £ > 0 .
W e should like to  postpone the  pub lica tion  of m ore general fo r

m ulae to  a la te r  paper. F o r the  tim e being we adm it an approx im ate  
va lid ity  of (2) and (3) for p a rticu la r cases discussed below and  draw  
some conclusions from  experim ental d a ta  published by P errin  (1929) 
and  by  Feofilov (1947).

A ssum ing the  v irtu a l oscillator to  be linear in  the  case of fluores- 
ceine and  resorufine and using th e  experim ental value P o =  0,44 of 
P errin , Ave calculate e by m eans of (2) W e ob ta in  £= 0 ,048 . P rovided  
th e  whole „polarization deficiency“ P 0 —P J =  0,5 — 0,44 =  0,06 is due 
to  the  torsional v ib rations of the  aboAre molecules, there  resu lts a s ta n 
dard  dev iation  of the  d irection of th e  v irtu a l oscillator from  its  equ ilib 
rium  orien tation  equal to  1 0 ° for fluoresceine and  resorufine solutions 
in  glycerine a t  room  tem peratu re .

Using Feofilov’s value Po =  l/1 4  for the  fluorescence of benzene 
solution in  glycerine and  assum ing th e  oscillator in  th is  case to  be fla t 
and  sym m etrical (the tran sitio n  m om ent is know n to  be para lle l to  
th e  p lane  of th e  benzene molecule for th e  band  under consideration), 
Ave ob ta in  by m eans of (3) £ = 0 ,2 , Avhich corresponds to  a s tandard  
dev iation  of the  sixfold sym m etry  axis of the  benzene molecule equal 
to  26°. This value seems to  be som ew hat to  large. Possibly th ere  Avere 

add itional depolarising factors in  Feofilov’s experim ents.
In  general the  d istribu tion  of y  depends on th e  p rincipal m om ents 

o inertia , on in term olecular forces, and  on tem pera tu re . The po lari
za tion  deficiency depends a p a rt from  th e  above factors also on the  
an iso tropy  of the  v irtu a l oscillator and  on its  o rien tation  w ith respect 
to  th e  p rincipal axes of in e rtia  of the  fluorescent molecule. P ostpon ing  
the  discussion of the  general case to  a la te r  paper, Ave confine ourselves 
to  a  rough trea tem en t of a sim ple case of a  f la t m olecule hav ing  an a t  
least threefold  sym m etry  axis and  a  tran sitio n  m om ent ly ing  in  the  
p lane of the  molecule, i. e. to  the  fluorescence of th e  benzene m olecule 
in  glycerine solution. In  th is case two of the  th ree  p rinc ipal m om ents of 
in e rtia  are  equal. The th ird  m om ent of in e rtia  is irre levan t. W e assum e

3*
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also th e  tw o relevan t to rsional eigenfrequencies to  be equal. Then 
th e  angu lar frequency of th is v ib ra tio n  is w =  \-t¡1, where r  is the  m o
m en t of torsion and  I  th e  m om ent of in ertia . A ssum ing the  eigen
functions to  be those of a  tw o-dim ensional sym m etrical harm onic 
oscillator, we ob ta in  th e  following form ula for th e  m ean square of y

for Iciyykco

Since £ =  sin2 y and  sin2 yp«y? for y « l ,  we can easily calculate co on 
ground of th e  values of e deduced from  experim ent by m eans 
of (3), provided  the  m om ent of in e rtia  of the  molecule is know n. P u t 
tin g  I = l - 4 - 1 0 _ 38p-cm 2 and T = 2 6 3 ° K , we o b ta in  v=a>l2nc=  2 6 cm -1 
as order of m agnitude  of the  frequency of to rsional v ib rations abou t 
axes ly ing  in  the  p lane  of the  benzene molecule for benzene solution 
in  glycerine. Thus th e  frequency appears to  be of th e  same order of 
m agnitude  as th a t  deduced from  th e  E am an  spectra  produced by 
to rsional v ib ra tions of d ifferen t molecules in  crystals (Rousset, 1947).

As can be easily seen e does no t vanish  tvhen th e  tem pera tu re  
of th e  lum inescent solution tends to  0 ° K . A t 0° K

I t  seems p robab le  th a t  the  investiga tion  of the  fundam en ta l 
po lariza tion  and  of its  dependence on tem pera tu re  can provide us in  
some cases w ith  inform ations concerning in term olecular forces.

A  fu ller rep o rt is in tended  to  be published  shortly .
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THE PHENOMENA OF M OLECULAR ORIENTATION 
IN POLAR LIQUIDS AND THEIR SOLUTIONS. PART I. 

EXTENTION OF O N SAG ER’S TH EORY

By A. P IE K A R A , In s titu te  of Technology, Gdańsk.

(received Ju ly  8, 1949)

§ 1. The assum ptions of Onsager’s theory  are sum m arized; th e  v iew  th a t  
a ll m olecules surrounding a g iven  m olecule m ay h e considered as a continuous m edium  
is rejected  as inadm issible. § 2. Onsager’s theory is generalized by  treatin g  th e  
nearest m olecules in th e  neighbourhood of th e  given  m olecule ind iv id ually , whereas 
all th ose  further aw ay are considered as a continuous m edium . The Onsager sphere 
separating th e  nearest neighbourhood of th e  m olecule from  th e  continuous m edium  
has to be increased in size. § 3. Form ula (36) is deduced and by m eans of th is th e  
m olecular dipole polarization of a g iven  polar substance, pure or dissolved,

m ay be calculated . The ratio of th is q u antity  to  P dlp =  is called th e  re-
J ■ SaS 9 KT

duction  factor P .  T he dependence of P dlp and JR on th e  concentration  of nitrobenzene  
dissolved  in benzene is show n graphically (fig. 1). I t  is  ev id en t from  Onsager’s curves 
th a t for greater concentrations a new  kind of coupling appears increasing the p o lari
zation . I t  consists probably in  th e  coupling of m olecules into ensem bles greater than  
pairs. I t  is  possib le th a t antiparallel pairs are coupled in parallel (fig. 2c) .  § 4. F o r
m ulae (43) and (64) for th e  m odified Kerr constan t K m* are deduced and applied  
to so lu tions of substances in non-polar so lven ts. H ence, th e  m olar constant K™  of 
th e  d issolved  substance m ay be calculated . T he results for n itrobenzene are pre
sented  graphically  (fig. 4). Here also Onsager’s curve in contrast to  L orentz’s curve  
rises for greater concentrations w hich seem s to  suggest, as in  th e  case of polarization, 
a  m ultip le coupling. § 5. The increase of th e  dielectric constant Ae under th e  influence  
of an external electric field  is expressed by  form ula (84). T he m olar con stant 8 m of 
electric saturation  is defined in (86). For dipolar substances dissolved in  a non-polar  
so lven t th ey  m ay be determ ined from form ula (85). E xperim ental data  for th e  sam e 
nitrobenzene so lu tions are illustrated graphically in  fig . 5. § 6. In  th e  Cotton-M outon  
effect th e  orientation  of m olecules is due to  an external m agnetic field . Owing to  th e  
extrem ely  sm all m agnetic perm eability  of organic liquids th e  external and th e  local 
fields are identical. For th is reason Onsager’s idea cannot produce any different 
resu lts in  th is  case. T he Cotton-M outon m olar constant Cm as defined b y  (92) 
is  expressed by  (93) and (94). For liquids form ula (96), expressing th e  ad d itiv ity  of 
th e  constan t Cm, is applied. The molar constant C™ for nitrobenzene calculated  b y  
m eans of th e  la tter  form ula is presented graphically  in  fig . 6. I ts  increase w ith  in 
creasing concentration  suggests coupling o f m olecules in aggregates of tw o or more.
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§ 1. T he fie ld s  of L orentz and O nsager. W hen in  a dielectric 
m edium  there  exists an  electric field of in tensity  E,  then  each molecule 
is under th e  action  of a  field F,  which is a  little  stronger th a n  E,  and  
is called m olecular field. This is due to  the  fac t th a t  the  field E  is 
ex definitione a field acting  inside a  long and narrow  tu b u la r cav ity  
cu t in  the  m edium  along the  lines of forces, while the  molecules of 
th is  m edium  are subjected  to  an  add itional field due to  the  surrounding 
polarized molecules.

Lorentz has calculated  the  m olecular field in  a  well-known way. 
H e surrounds th e  molecule under consideration w ith  a  sphere from  
which all o ther molecules are rem oved, assum ing th a t  th is does no t 
a lte r  th e  field F,  nor th e  d is tribu tion  of force lines inside the  sphere. 
The field is given by the  equation

i n J / 3  (J  — the  electric m om ent of 1 o. c. of the  m edium) is the add i
tional field due to  the  electric charges of the  polarized surface of the  
sphere. Since <7= (e—l )E j± n

On the  o ther hand  J —N 'aF ,  where 2F is the  num ber of molecules 
per c. c. of the  m edium , and  « — their po larizability . This leads to  the  
fam ous L o r e n tz  form ula:

F = E + ^ J , ( I )

( l a )

Since N ' = N - ^ j r  ( N  — A vogadro’s num ber, M  — m olecular weight, 

d — density  of the  m edium ),

(2  a)

The expression

( 2  b)

is called m olar or m olecular polarization.
If the molecules are polar (dipole m om ent /j ) then , according to 

D ebye’s theory , we have instead of a th e  expression
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and  for the  m olar polarization the  expression

(3)

The p a r t of polarization due to  dipoles

(3 a)

is called „dipole polarization".

is m uch sm aller th an  th a t  for the  vapour of the  sam e substance a t 
th e  same tem pera tu re . This fac t is explained as a result of association 
or coupling of the molecules. Onsager (1936) tries to  explain  th is fact 
in  a  different way. H e supposes the  existence of a cavity  field different 
from  th e  Lorentz field, and  so he obtains for the  polarization P  a  for
m ula which is different from  ( 2  a).

Onsager im agines the  molecule to be a spherical cav ity  of radius a 
equal to  the  rad ius of a molecule in a uniform  and  continuous medium.

I n  the  center of th is  sphere he localises the  m olecular m om em t m  
(perm anent plus induced). Inside th is sphere there  is a ra th e r weak

The m om ent m,  inducing on the  surface of the sphere an electric charge, 
form s an  add itional „reaction field“

field

(4)

-»

t ,  2 ( t - l )  m 
2 e + l  a3’ (5)

so th a t  the  to ta l in te rn a l field is

F = G  +  R. (6 )

If  we consider still th a t
->• ->
m ~  aF-  j~ //,

where

(3)

(Hoo _  refractive index of the  m edium  for in fin ite  wave-length), then  
we have cited all Onsager’s assum ptions leading to his equations.
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I  do n o t quote these form ulae here, as they  will he given in  a  more 
general form  in the  n ex t paragraph . F u rth e r, O nsager’s form ula has 
a  ra th e r inconvenient form  which m akes i t  im possible to  recognize 
th e  role of the  param eters G, R  and a in  the  phenom enon of dielectric 
polarization.

The ra th e r  serious defect of L oren tz’s theory , nam ely th a t  i t  does 
no t take  in to  account the  action of the nearest molecules, is no t re
m oved by O nsager’s theory , which trea ts  the neighbourhood of each 
given molecule as a continuous.m edium , a procedure which, according 
to  m y opinion, is inadm issible. This is proved by m any facts, especially 
by the  behaviour of the  electric sa tu ra tion  and the  Cotton-M outon 
phenom enon in  liquids which will be considered in la te r p a rts  of th is 
w ork. Therefore, in  a generalized O nsager’s theory , the  au tho r su r
rounds the  molecule under consideration w ith a larger sphere, containing 
several of th e  molecules in  the  im m ediate neighbourghood; the mole
cules outside th is sphere are  trea ted  in O nsager’s way b u t the  few ones 
inside the  sphere keep their ind iv iduality ; they  can be coupled in  
th e ir  own way causing an  a ltera tion  in  the  observed phenom ena.

§ 2. F oundation  of O nsager’s ex ten d ed  th eo ry . Accor
d ing to  O nsager’s theory  a polar molecule is placed in  the  center of 
a  hollow sphere of rad ius a, equal to  the  radius of the  molecule. This 
sphere is contained in  the  m edium  which is considered to  be con tin 
uous; its  surface is to  be „sm ooth“ , which seems ra th e r unreasonable 
if we consider th a t  i t  is b u ilt up of molecules as large as the  sphere 
itself. According to  Onsager the  given molecule induces charges on the  
surface of the  sphere, p roducing a  „reaction fie ld“ R.  I n  consequence 
of th is  „sm oothness“ of th e  surface, the  reaction  field does no t exert 
any  d irecting  action on the  molecule, b u t only increases its perm anen t 
m om ent by  an  add itional induced m om ent. W e can say th a t  the  re 
action field m erely „s tre tches“ the  dipole, w ithou t ro ta tin g  it. The 
dipole in  its  ro ta tio n  would not have any position of m inim um  p o ten tia l 
energy. Such a supposition seems to  be very  im probable and, as will 
be seen later, canno t be reconciled w ith  several facts, especially w ith 
the  behaviour of the  Cotton-M outon m olecular constan t in liquids.

G eneralizing O nsager’s theory , I  assum e th a t  the  sphere su r
rounding  the  molecule considered has a rad ius larger th an  a, and thus 
several molecules can now be found inside th is sphere. If  the  radius 
of the  sphere grows, the  reaction field due to  a cen trally  located molecule 
becomes weaker. B u t, since th e  molecules are d istribu ted  th roughout 
the  sphere, the  average reaction field per molecule will be stronger 
th an  th a t  of the  cen tral one, and will depend upon the  properties of
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the  molecules, and  especially upon  th e  position  of the m om ent inside 
the  molecule. In  equation  (5) there  appears a  factor 7c, which can be 
sligh tly  larger, equal to  or sm aller th an  1 ; its  value will be chosen to  
satisfy th e  experim ental da ta . Thus we shall w rite  the  equation (5) 
in  th e  form

*  =  (9)

where

r - * 2 £ = l i .  (9 a )

On th e  o ther hand  form ula (4) will rem ain unchanged. In  order 
to  give to  the  calculations and to  the  final form ulae a  clearer form ,
we shall w rite  the  form ulae (4) and  (8 ) in  the  following way

G = g E ,  (10)
where

and

where

3e
( 1 0  a)

' 2 e + l

a = p a (11)

2 i
T l o o  1

P =  - r — . (l l a )
n l + 2

In  th e  firs t p a r t  of th is  w ork we om it purposely the  forces th a t  
couple together th e  molecule considered w ith  its nearest neighbours 
inside O nsager’s cavity , as well as the  forces th a t  couple i t  w ith  the  
d iscontinuities of its  walls. We shall in troduce both  couplings in the  
second p a r t  of th is  work. In  th is paper we deduce some equations 
disregarding the  coupling; when com paring them  w ith experim ents 
we can find  some inform ation as to  the k ind of coupling forces charac
teris tic  of the  investigated  liquid.

A ccording to  these assum ptions the  to ta l field acting  on a m o
lecule, expressed by the  form ula (6 ), is

-)■
-* -> rm

F = g E + ^ .  (1 2 )

Thus, using the  form ula (7), we ob tain  for th e  to ta l m om ent of the 
m olecule th e  expression

m = a F *  +  /u*, (13)
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where F*  and ¡u* differ from  E  and ¡.i only by  num erical coefficients, 
nam ely

•> a ->
F * = —Z— E  (13 a)

1 —rp
and

-> j ->
f t*=-  /i. (13 b)r 1 —r p 1

Com bining (13) w ith  (12), we obtain  a more convenient equation for F:
o' ->

^  =  +  (14)

Now we are able to  calculate the  m om ent of the  forces ac ting  on the  dipole1

M = F x p * ,  (15)
or

M  — //*F* sin 0, (15a)

where 0 is the  angle betw een th e  directions E  and  ¡j. Therefore, the 
p o ten tia l energy of a dipole MdO will be expressed by the form ula

W  — —,u*F* cos 0. (16)

§ 3. D ie lec tr ic  p olarization , (a) Pure liquids. In  order to 
calculate the  polarization, we m ust know  the com ponent of the  m om ent 
of the  molecules in  th e  direction of the  ex ternal field:

m E= a F *  +  p* cos 0. (17)
The po larization  of 1 c. c. of the  m edium  is then

J=N~'mn—N'[aF*-]r  p* cos 0], (18)

where the  double line ind ica tes the  s ta tis tica l m ean and  N '  — the 
num ber of molecules in  1  c. c. cos Ö is to  be calculated  in  the well 
know n way -from th e  M axw ell-Boltzm ann theorem :

71
fco& 0 e~wlkT2ji sin 0 dd 

  J 1 1cos 0 =  —  -----------------------------= L ( x )  =  - x — —  . p p  ..., (19)
4 ô  4 5

/ e~wlkT2n sin 0 dO

1 Onsager calcu lates th is m om ent in  a different w ay; h e puts nam ely
-> -> •*

M —Gxni
and obtains different equations. T his m ethod is not correct, because th e  directing field

is not G but F , and the dipole, ro ta tin g  together w ith  th e  m olecule, is not m  but /<*. 
W e have called a tten tion  to  th ese  facts w ith  Prof. K . Zakrzewski in  N ature (1939, b).
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where L(.c) =  eoth x — ~  is L angev in’s function of the  variable

u * F *
x  =  ‘- j 7j r • (19 a)

T aking  in to  account only the  firs t term  of the  developm ent, i. e. neglect
ing th e  sa tu ra tion  effect, which appears in very  strong  fields, we
obtai n

J = N ' { a  +  ^ V * .  ( 2 0 )

Since J =  (e — 1 )E I4 n  we ob ta in  th e  relation

1 (21)1
3 g 3 I 1 3 kT) 1 —rp

If  we apply  th is  form ula to  non-polar liquids (/< =  0 , «£ ,=  «) and  
suppose th a t  k — \ ,  we ob tain  the  well-known equation  of Lorentz.

F or polar gases and vapours, where e and ?i2 are very  nearly  
equal to  un ity , r and p are very nearly equal to  0  and g x  1 ; th e  equa
tion  (2 1 ) tu rn s  in to  D ebye’s form ula:

_1= 4- - i d - ] . (22)
‘ 3k T j  '3 3 \ 3/i

Thus we see th a t  both  theories: of Onsager and D ebye (eq. (21)) and 
of L orentz and D ebye (eq. (22)) lead to  iden tical results for gases and 
vapours. B o th  theories agree therefore upon the  po in t th a t  th e  m om ent 
determ ined  by the  m ethod of m easuring the  dielectric constan t of 
gas 0 )' v apour is the  „ rea l“ m om ent of the molecule.

On the  o ther hand , if we apply  the Lorentz-D ebye equation 
to dipole liquids we ob tain  generally a sm aller value for ¡i. This d im i
nu tion  is a ttr ib u ted  to association or coupling. O nsager’s theory , 
however, suggests th a t  it  can also be applied to  liquids w ithou t any 
fu rth e r restrictions, and th a t  equation (2 1 ), applied  to  liquids, should 
also give the  real value of the dipole m om ent of the  molecule. Prof. 
K . Zakrzewski and  the  au tho r (1939, a) have already shown th a t  
th is is no t so.

(b) Solutions.  We shall consider here solutions of a polar solute 
in a non-polar solvent. The equation  (21) applied to  such solutions 
changes in to

—1 4c7l , r, 1 , 4 71 , fJ*2 \ 1

3¡/„ 3
jV’ia , — - -----+  ^  N r2L +  £ - )  1 . 123)

i — 12 Pi 3 \ r >A. x / 1 ^12jP2
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The indices 1, 2 and  12 refer, as usual, to  th e  solvent, th e  solute and  
th e  solution. A tten tion  m ust be called to the  fac t th a t  the  value of 
th e  m om ent u* depends n o t only on th e  properties of the  molecule 
b u t also on those of the  solution, nam ely on its  dielectric constan t, 
since

1 r12p 2
where

(24)

(24a)

-ATi and N'2 ind ica te  the  corresponding num bers of molecules of both 
com ponents per 1 c. c. of the  solution. If  q  and c2 ind ica te  the  w eight 
concentrations of bo th  com ponents and  M % th e ir  m olecular 
weights, iZ12 the  density  of the  solution and N  — A vogadro’s num ber, 
then

A j =  ct (712, N 2 — c2d12. (25)

Som etim es in stead  of weight concentrations cx and c2, i t  is 
m ore convenient to  use th e  „m olar frac tions '“ of bo th  com ponents 
determ ined by  the  equations

then
~  N ’l + N i 1 + W  ( >

U H l „ _ u m 2

- - i f , , '  m
where

+  (27a)

Using these equations, we ob ta in  instead  of (23)

&
=  j £ y „ , . ^ _  +  j£ ,Y ( q 2 + i g , )  - A —  (28)

(In  ^ 1 2  '4 1  — 112 P i 3  \ 3 k T )  1 — r 12p 2

B ut L o ren tz’s equation  applies to  nonpolar liquids, and we m ay 
w rite  i t  in  the  form

ex — 1 M x 4 n
■Na1= P 1. (29)

Besides th is  we in troduce in (28) the expression (3) for m olecular po la
rization  of the solute:

P= =  T - Y (»’ + 3V f ) '  <30>



F o r th is purpose the  polarization  P 2 m ust be divided in  tw o p arts : 
the  non-polar p a r t

P n2~ N a 2 (31)

and  th e  po lar p a rt
p d i P_ 4 n N jP

2 ~ M T  ■ (32)

The firs t one is usually  determ ined  in  the  optical way from  L oren tz’s
re la tion  by ex trapo la ting  n 2 to  infin ite  wavelengths

(33)
W 2 o o + 2  -

I t  can also be determ ined by m easuring the  dielectric constan t e0 in 
condition in  which th e  dipoles are  im m obilized, for instance in  soli
dified substances

p "  £o 1
T ,-(34>

This m ethod was applied by th e  au tho r in  his previous w ork (1933).
The po lar p a r t  of the  polarization, P ^ ,  is determ ined  either in  

gases, according to  a form ula analogous to  (2 2 ):

3dip_ e — 1 -If 4tt %7(  , /(2
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< 3 5 >

or, m ore frequen tly , in  solutions. A ccording to  O nsager’s theory  the 
fo rm ula (28) should be used for th is  purpose.

B y using the  equations (29), (31) and  (32), we can sim plify th is 
fo rm ula and w rite

£12 I -If 12 _  p  /1_____ l_ (p n _±_ p diP_____ ! 'j /a
3*/i2 f?!2 rnPi 1 I 2 ( I —rnV-ift 1 ~ rvAh

(36)

This form  will serve to  determ ine the  m olecular po larization  P 2 p 
of the  solute. The quan tities p : and p2 can be determ ined  from  the  
form ulae (29) and (33):

Pl= P P i= P 3 - ^ .  (36 a)

If  we assum e the  m olecular field to  be the Lorentz field F — (6+2)22/3, 
th en  we m ust in se rt in the  equation (36) the  values </i2= (£ i2 + l ) / 3  and
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rJ2=  0. I t  is then  transform ed in to  the  form ula derived from  th e  Lo- 
rentz-D ebye theo ry  expressing the ad d itiv ity  of polarization:

I \ , =  I \ h  +  P 2U,  (37)
where:

1 M V1
T  2 f/|2

(37 a)

Thus we see th a t  in  th e  Onsager-D ebye theo ry  th e  m olar po lari
zation  does n o t fulfil th e  ad d itiv ity  rela tion .

(c) Interpretation oj experimental results. The theories considered 
lead to  different ways of calcu lating  the  m olecular dipole polarization  
Pt 'p, b u t  th e  theo ry  of O nsager supplies d ifferent values for P 2V 
according to  the  choice of th e  reaction-field coefficient 1c. W e shall 
m ake th e  calculations for m ixtu i’es of n itrobenzene and benzene, for 
which th e  d ielectric  constan t, as well as the  o ther effects of m olecular 
orien tation , have  been carefully investigated . Thus we shall be able 
to  apply  the  sam e m ix tu re  for the  calculation of different m olar constan ts 
of nitrobenzene, such as K e rr’s constan t and others.

F o r calcu lating  P%'p the  au tho r has used the  m easurem ent of 
L. Kozłowski (1938). In  tab le  I  are compiled the  values of e12 and dl2, 
in te rpo la ted  for m olar concentrations in  round num bers, and  P 2lp 
calculated  according to  th e  theo ry  of L orentz (equation (37)) and 
Onsager (equation (36)) for f t= 0 ,5 , 1, 1,5. F o r th e  non-polar p a r t  of 
th e  m olecular po larization  P 2 th e  au th o r lias accepted the  value 41 c. c. 
resu lting  from  his m easurem ents of th e  dielectric constan t of soli
dified n itrobenzene (1933).

T a b l e  I.  D ipole  p a rt o j m olecular po larization  of nitrobenzene as a  function o 
concentration (solu tion  nitrobenzene —  benzene, tem p. 20° G ).

ft
Pg'P according to  th e  th eory  of B  according to  th e  

theory  of
£12 « 1 2  jV 'x 10“21

L orentz
Onsager Onsager

L orentz
& = 0,5 k =  1 Jc= 1,5 1

0 2,282 0,8791 0 (c. 330) (c. 520) (c. 240) (c. 20) (c. 0,9) (c 0.66)
0,01 2,51 0,883 0,0678 300 472 214 37,7 0,820 0.584
0,02 2,75 0,887 0,130 294,5 412 212 82,4 0,804 0.579
O,05 3,40 0,899 0,338 247,4 325 180 82,6 0,676 0,492
0,10 4,56 0,9174 0,673 207,9 300 159 71,0 0,568 0,434
0,20 7,05 0,954 1,32 157,5 292 143 58,7 0,430 0,390
0,30 9,82 0,991 1,95 126,5 293 140 52,6 0,345 0,382
0,40 12,80 1,025 2,57 105,8 300 138 48,0 0,289 0,376
0 ,60 18,80 1,087 3,73 79,0 317 143 47,9 0,216 0,390
0 , 8 0 25,80 1,1467 4,85 63,2 343 151 49,1 0,173 0,412
1 34,33 1,2032 5,88 52,8 379 164 51,2 0,144 0,448
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These resu lts are illu s tra ted  by  th e  curves in  fig. 1 . C ontrary to  
th e  previsions of O nsager’s theory , the  polarization  and also the  value 
of the  polar m om ent are no t constan t, and  for a  pure  liquid the  form er 
is n o t equal to  the  polarization  in  th e  gaseous s ta te  (gas P2ip= 3 6 6  c. c. 
a t  i= 2 0 ° C ) . The value of p, determ ined  for th e  liquid  sta te , will no t 
be the  tru e  value (see C. J .  B ö ttcher, 1938).

W e see th a t  bo th  in  O nsager’s theory  and in  th a t  of Lorentz 
we are  obliged to  assum e a  certa in  fac to r which alters the  po lar orien-

F ig . 1. D ependence of dipole polarization on concentration  b y  th e  assum ption of 
a Lorentz or of an Onsager field .

ta tio n . According to  previous w orkers th is fac to r was th e  association, 
i. e. th e  form ation  of a certa in  num ber of double molecules w ith  a  re 
su lta n t m om ent equal to  zero. According to  D ebye (1935) th is  factor 
is a  quasi-crystalline coupling; we shall call i t  the  ty p e  I  coupling. 
B u t m any facts have compelled the  au tho r (1937 a; 1939) to  in tro 
duce a  coupling of a  second k ind  (type I I  coupling), differing 
from  th e  association proper and consisting of a  stronger or weaker 
coupling of each molecule w ith  one of its nearest neighbours. E x p e r
im en ta l facts convince us, th a t  the  type  I I  coupling is very  im p o rtan t, 
though the  ty p e  I  coupling is irreplaceable in  some ways (see p a r t I I  
of th is  work).
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A ccording to  these opinions the  in te rp re ta tio n  of th e  results shown 
in  fig. 1  would be approx im ately  as follows:

Lorentz curve. This curve ex trapo la ted  for in fin ite ly  g rea t d i
lu tion  (/2=  0) gives th e  value 0of>2ip equal to  abou t 330 c. c. I t  is sm aller 
th a n  th e  value P^'Z and  ind icates th e  existence of a coupling of n itro 
benzene molecules w ith  the  solvent. The corresponding values of the 
reducing factor:

p d i p

p d i p
x  gas

can be read  on th e  rig h t h an d  scale of th e  diagram . F rom  this value 
the  curve begins to  fall. The reducing factor

p d i p

^ = ^ r P (38)
x  gas

decreases. I t  proves increasing coupling of nitrobenzene molecules 
am ong them selves. W e pass over the  question of the  n a tu re  of th is 
coupling; in  every case i t  dim inishes apparen t m olecular m om ent. 
Results to  be discussed la te r, especially the  double refraction  in  a  m a
gnetic field, show th a t  bo th  k inds of coupling are present. A ntic ipating  
th e  results of th e  second p a r t  of th is  work, we can m ention  th a t  if we 
adhere to  L o ren tz’s theory , we shall m eet w ith  insurm ountab le  diffi
culties. W e shall be compelled to  re ject th a t  theory  and  to  adop t an 
ex tended  O nsager’s theory .

Onsager's curves. (1) F o r k =  0,5, ooP^ is equal to  abou t 500 c. c., 
which proves th a t  th e  coupling w ith  th e  solvent raises the  average 
m olecular m om ent above its  real value; th is increase grows as k  gets 
sm aller. As such a behaviour seems to  be deprived of physical m eaning, 
we exclude k  equal to  0,5 w ithou t fu rth e r  consideration of th e  curve.

(2 ) F o r k =  1  th e  coupling w ith  the  solvent is a  l it tle  stronger 
th a n  according to  the  curve of L orentz. The coupling grows w ith  con
c en tra tion  and  the  curve drops to  a m inim um  a t /  equal to  0,4. I t  
rises again  for higher concentrations, b u t qu ite  slowly. This seems to  
ind ica te  the  existence of an  add itional coupling of a th ird  k ind  (type I I I ) ,  
depending on th e  form ation  of aggregates w ith  increased m om ents. 
I t  is n o t supposed th a t  th ey  are quasi-parallel pairs (fig. 2 a), since 
n itrobenzene molecules show inclination  to  quasi-an tiparalle l coupling 
(fig. 2 b). W e should ra th e r  suppose th a t  th ey  form  a com bination 
of tw o quasi-an tiparalle l pairs, coupled quasi-parallelly  (fig. 2 c). 
A gain, i t  should be m entioned th a t  th is opinion is strongly  supported  
by  the  Cotton-M outon effect in  n itrobenzene solutions. W e m ay
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add th a t  th e  above m entioned aggregates loose and tran sito ry  ra the r 
th a n  rigid, and  as such they  will be considered in the  theory  of coup
ling  in  th e  second p a rt of th is work.

P ig . 2. Coupling of tw o dipoles:
(a) nearly parallel, (b) nearly antiparallel, and 
(c) nearly parallel coupling betw een tw o nearly  

antiparallel pairs.

(3) F o r 1c= 1,5 the  coupling is very strong, as the  curve Pt 'p 
runs  very  low. In  particu lar, as the  d ilution becomes infinitely  great 
(/2~>'0 ), th e  coupling grows imm ensely, which again seenjs to  be w ithout 
physical m eaning: we exclude therefore the  value Jc= 1,5 in  O nsager’s 
theory .

In  consequence of the  above discussion, the  m ost su itab le  value 
for the  reaction  field coefficient is 7c= 1  or a  value very  little  different 
from  it.  I n  the  sequel we shall adm it Tc— 1. In  O nsager’s original theory 
i t  m eans th a t  the  radius of the spherical cav ity  is equal to  th e  radius 
of the  molecule. B u t le t us rem em ber th a t  in  the  extended theory  
the  sphere m ust have a larger radius, as i t  m ust contain  several m ole
cules. This circum stance reduces the  reaction-field coefficient Jc, b u t 
on the  o ther hand  ano ther factor tends to  increase it as th e  polar m o
m ents cannot be considered as sm all elem entary  m om ents acting 
from  a g rea t d istance; they  are n o t placed exactly  in the  center of the  
sphere and  m ay approach closely to  th e  surface of O nsager’s cavity , 
and  thus  produce a m uch stronger reaction field.

§ 4. K err Effect, (a) Pure liquids. K e rr’s constan t is given by 
the  form ula

K  =  (39)
n  EP

where n  is the refractive index of ligh t and n% and n x  are the  refractive 
indices for ligh t v ibrations in the  direction of the vector of external 
electric field E,  and in  the  d irection X  norm al to  the  la tte r  respectively. 
I t  prooved to  be convenient to  in troduce in  connection w ith  the  K err

4A c ta  P b y sica  P o lon ica
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effect in  p a rticu la r in  solutions, th e  so called „m olar K err co n stan t“ K m. 
Several au thors give various form ulae for th is constan t, differing 
by  a  num erical coefficient. The following definition seems to  be m ost 
suitable

T_ R E —Rx
K "‘ =  J 12 ’ (40)

where R E and R x are th e  m olecular refractions in  the  directions of E 
and X ,

ft2—1 M  n \ — l  M

and  F  is th e  in tensity  of the  local field.
T aking in to  account th a t  n E and n x  differ only slightly  from  n, 

we come to  th e  following form ula connecting K m and  K

6 n 2 M  f E \ 2 

(ft2+  2 ) 2 d \ F ) '  (42)K m= K

I f  we assum e th a t  the  L orentz form ula for the  in te rn a l field ( la )  
is tru e , we get th e  well-known form ula

rjr 6 ft2 M  [ 3 \ 2

1 (ft2 +  2 ) 2 d ( l + 2 / ‘ ( 4 2  a)

On the  o ther hand , in  th e  case of Onshger’s field we define the  m olar 
K err constan t K m* by replacing F  by  th e  local field which acts m ain ly  
in  o rien tating  the  molecules, i. e. by  p u ttin g  6 = g E ■ (cf. th e  form ulae 
(10) and (10a)). Thus, we have

K-n* =  fig  - R x  =  K  6»2 K  1  (43)
G2 (ft2 +  2 ) 2 d g2’

The K err constan t m ay be also expressed by m eans of con
s tan ts  characteriz ing  the  molecule itself (and n o t the  m edium , as the  
constan ts e, ft, K).  F o r th is purpose we m ake use of th e  Lorentz — 
Lorenz function  well know n in  optics:

R E =  ^ - X y E and  R X = ~ N ^ X , (41a)

where y E and y x  are s ta tis tica l averages of th e  optical susceptib ility  
of the  molecule. Thus, for O nsager’s field we get

=  (44)

I t  rem ains now to calculate the  susceptibilities and  the ir s ta tis tica l 
averages.
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W e shall denote by bu b2,b3, th e  com ponents of the  optical suscepti
b ility  of the molecule, referred to  its  m ain  axes x ,y ,z .  L e t the  ex ternal 
electric field E  ac t in  the  d irection of the  Z -axis of ano ther coordinate 
system  X ,  Y ,  Z  fixed in  space (fig. 3). The angles betw een the  molecule

F ig . 3. E xplanatory diagram  for Kerr effect. X  and Z  —  directions of vibrations 
of tb e  ligh t vector, K  —  direction of th e  beam , Z  —  direction of th e  electric field , 
x , y , z  —  coordinate system  connected w ith  th e  m olecule (z —  ax is of sym m etry  

and of th e  electric m om ent), e, q>, ip —  E uler’s angles.

axes and  the  field E  are av a2,a3, and those betw een the  molecule axes 
and  the  direction X  are ai, 012, 0 3 . W e m ay consider tw o cases in  which 
the  electric field of the  ligh t w ave E 0 is respectively parallel and per
pendicular to  E.  In  bo th  cases an  induced electric m om ent will arise 
in  th e  molecule. The com ponents of th is m om ent along E  and X  respec
tive ly  are (1 ) 
for E 0\\E:

■ b^E0xCOS a i+ b 2E 0u cos a2+ b 3E 0i cos a3= y EE Q,nit
w here

(45) 

(45 a)y E=  b2 cos2 a1+ b 2 cos2 a2+  b3 cos2 a 3 ;
(2 ) for E 0J_E:

m x ~  bxE Qx cos « ;+  b2E 0y cos a; +  b3E 0z cos a'3=  y x E 0, (46)
where

y x =  bx C O S 2 a[ +  b2 cos2 a'2+  b3 cos2 a '3 . (46 a)

L et 0, <p, ip, be E u le r’s angles de term ining  the  position of the  m ole
cule in  reference to  the  system  X Y Z  (as shown in  fig. 3); 0 and cp cor
respond to  geographical longitude and  la titu d e , ip is the  angle of ro ta tion  
around th e  z  axis. W e have

cos 0! =  —sin 0  cos ^ , cos o8= s in  0 sin ip, c o sa 3= c o s 0 ,
cos a{=  cos 0 cos cp cos ip— sin cp sin ip, (47)
cos 0 2 = —cos 0 cos cp sin ip—sin <p cos ip, cos 0 3 =  sin 0 cos cp.

4*
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W e shall assum e th a t  the  molecules are ro ta tiona lly  sym m etrical 
and  th a t  z  is their axis of sym m etry . Thus, the  ro ta tio n  of the  molecule 
around th e  z  axis is com pletely free in  spite of the  ex te rnal field E,  
an d  a ll possible values of ip are equally  probable. W e m ay therefore 
by  in serting  the  d irection  cosines (47) in to  (45a) and (46a) calculate 
th e  geom etric m ean over a ll positions around th e  axis z:

2jt 2/r
±  f y Edip and  ~  j y x dip. 

o o
How ever, all positions of the  z axis rela tive  to  the  direction of the 
e lectric  field E  also have the  same p robab ility . Thus, we calculate 
th e  m ean value for a ll values of the  azim uth  <p by m eans of sim ilar 
in tegrals, b u t in  reference to  (p. P u ttin g  b ^ b ^  we get

VE= b i + ( b3 ~ bi) c o s2  °> y x =z? (bi + b3) — :? (b3— b1) cos2 Q. (48)

F ina lly , the  s ta tis tica l m eans of y E and yx  should be calculated  by 
calcu lating  th e  s ta tis tica l m eans of cos2 6 over a ll possible positions 
of th e  axis of sym m etry  z, which now are obviously n o t equally  probable,

y E= bi +  (bs ~ bi'> c o s2  s) — i ( b3— bi) c o s '2 0. (49)
Hence, th an k s to  (44), we have

K m* =  2 siN (ebsM) — j ) . (50)

Thus, we have reduced the  problem  to th e  calcu lation  of cos2 0. The 
M axwell and  B oltzm ann  theorem  yields

n
J  cos2 6 ■ e—wlkT sin OdO

cos2 0 = -    . (51)
f  e - wlkT sin OdO 
0

To calculate th is expression the  p o ten tia l energy W  of th e  molecule 
m ust be calculated.

L e t the  com ponents of the  po larizab ility  of the  molecule in  an 
ex te rnal field be av a2,a3-, th e  molecule being sym m etrical around 
th e  z  axis, we have ax= a i , (u1= / i 2 = 0  and  /u3— /x. I f  the  field F  
ac ts on th e  molecule, the  m om ent of the  molecule will have th e  com 
ponents

m x =  a1F x, m y =  a1F y , m z = a 3F 2 +  fi. (52)

A ccording to  O nsager’s theory , the  molecule should be trea ted  as if 
enclosed in  an em pty  ellipsoidal space of identical dim ensions w ith



those of the  molecule. In  th e  m odified form  of th is theory , however, 
we assume th a t  several molecules are found in  a  spherical volum e th e  
rad ius of which g reatly  exceed th a t  of the  molecule. The in te rn a l field 
is expressed as before by (1 2 ):

F x =  gEx +  ̂ -3m x , F y = g E g +  - ^ m y , F z= g E z +  ^ - m z . (53)(A> CO

The solution of the  equations (52) and (53) m ay be presented in  vector

form , where th e  vectors F  and m  will be composed of two com ponents:

one parallel to  E,  and ano ther parallel to  //. W e shall use th e  following 
symbols

¿ '- 1= 7^ ’ (55)

M olecular O rientation in  P o lar L iqu ids 53

where

A i= -^ , 13 — - 2  ( a = = 3  (ai +  a 2+  a3)j • (56)

and  give a m easure of m olecular anisotropy. 
F u r th e r  le t us p u t

w ith

(57)1  — rpX3
-> •>

F inally , le t u  s tand  for a u n it vector parallel to  ¡i. The solution is as
follows

->■ ->■ 
F = F *  + — (y— l )F*  cos 0

L a 3

u,  (58)

m = a 1F* +  [Ju* +  (a3 — a ^ F *  cos 0]w. (59)

F or isotropic molecules (a1 = a 2= a 3=  a) the  above form ulae become 
iden tical w ith  our previous form ulae (14) and  (13).

The m om ent acting  on the  molecule is

M = F x  [/jt* +  (aS— a1)F* cos 0]», (60)
therefore

M =  fi*F* sin 0 +  (a-3 —a 1)F *2 cos 0 sin 0. (60 a)

Hence the  energy

W = —J M d O — - fu*F* cos 0 — fl3 ~ —F *2 cos2 0. (61)
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F o r isotropic molecules th is expression goes over in to  (16). The form  
of (61) is such th a t  w ithou t the  asterisks we ob ta in  th e  sam e expression 
as w ith  th e  Lorentz field; in  th is  case 3P m eans of course ( e+ 2)E /3 .  
W e m ay now calculate cos2 6 from  (51). E xpand ing  the  exponential 
in to  a  series and in teg ra ting  term  by  term , we ob tain

F rom  the  above and from  (50) th e  final expression for K e rr’s m olar 
constan t is obtained . W e give i t  here in  symbols which are connected 
w ith  th e  theo ry  of th e  K err effect based on the  L orentz field:

I n  th e  case of a  L orentz field, i. e. if we p u t  g = ( e + 2 ) / 3  and  r = 0 ,  
th e  asterisks in  th e  above expressions should be om itted  and we ob tain  
th e  well know n form ula

are a p a rticu la r case of the  expressions know n from  th e  theo ry  of th e  
K err effect, nam ely

■ (62)

where

(63)

(64)

where
2

( a j —a j  (&3—M ,4 5 k T
(65)?!

45 W T2

K m— 2nN(61-\- 02), (66)
in  which the  expressions

01 45fc T ^ 3(«3—ai) ( h — h)

and
2

e2 = 45 j p p M h — h ) (67)

(67 a)

02= 4 ( b — b2)+{/ i l—nl) ( b - b 3) + (^¡—¡*1) (b3— bt)].
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(b) Solutions. K e rr’s m olar constan t I l m* is calculated in  the  
.previous paragraphs on the  one hand , by  m eans of quan tities characte
ris tic  of th e  m edium  (form ula (43)) and on the  other, by  m eans of 
quan tities characteristic  of the  molecule (form ula (64)). I n  the  la tte r  
form ula, however, there  appears th e  q u an tity  r  which is characteristic  
of the  m edium , th a t  is the  reason w hy th e  constan t K m* is no t additive  
for solutions, in  opposition to  K m which is based on the  assum ption 
of a Lorentz field. Nevertheless, we shall calculate K m* for solutions. 
W hen tak in g  the  solution to  be a  continuous m edium , we shall use 
fo rm ula  (43) b u t, regard ing  it as a  m ix tu re  of two kinds of molecules, 
we shall use form ula (64).

W e shall lim it our reasoning to  the  case of a po lar substance 
in  a  non-polar solvent, th e  anisotropic term  dx of th e  polar substance 
being so sm all in  rela tion  to  the  term  d2 as to  be negligible. A sim ilar 
reasoning to  th a t  of § 3 (b) leads to the  application of the  form ulae 
for K m* to  the  case of one gram  molecule of the  m ix ture  ( i f 12 for
m ula (27a)). We ob tain

6n\2 I M n 2nN Q l   ̂ 2 tzN 0 2
K l 2 (n*2+  2 f J n =  (1  - r uPi  A',)2 fl +  ( l -  ra p ^ " ) * ( l - r 12p 2%)* h ' (° 8)

As the  first term  on the  righ t-hand  side is a sm all fraction  of the  second 
for bo th  big and sm all concentrations, we m ay p u t in  its  place the  
expression

2 n N 6 1 
O - ^ P i F 1'

R egarding
2 n N 0 1= K T

and
2 n N d 2= K ? ,

as K e rr’s m olar constan ts of the  dissolved substance and  the  solvent 
respectively, for a Lorentz field, the  form ula (6 8 ) m ay be w ritten  in 
a sim plified form  as follows

(69) 

(69 b)

(70)

where
6 n\2 1 M n
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By m eans of th is form ula we m ay calculate K or 2 n N d 2. Accor
ding to  O nsager’s idea th is  q u a n tity  (as well as the  dipole m om ent) 
should be in v arian t for all concentrations and for vapour. W e shall 
see th a t  th is  is n o t so.

W e notice th a t  in  the  case of a L orentz field, i. e. if we p u t r12=  0 
and <7l2= (£ i2 +  2)/3, form ula (70) assum es the  well-known form

by which the  ad d itiv ity  of K e rr’s m olar constan t is expressed.

(c) Interpretation of experimental results. W e shall apply  the  above 
results to  the  case of a  m ix tu re  of nitrobenzene and  benzene. N itro 
benzene actually  fulfils the  condition assumed in  (b), nam ely 2 0 * ^ 0 *. 
Thus the  form ula (64) takes th e  form

H ence, we m ay calculate K e rr’s m olar constan t K m for pure  n itro 
benzene. How ever, K e rr’s m olar constan t of nitrobenzene determ ined 
from  solutions is to  be calculated  (as K 2 ) from  (70). I n  the  case where 
/2=  1 th is form ula obviously takes the  form  (72).

W e shall tak e  num erical d a ta  from  experim ents of H . F riedrich  
(1937) perform ed a t 23° C. F riedrich  m easured K e rr’s constan t K 12 
of nitrobenzene-benzene solutions and  calculated th e  m olar constan t 
of the  solution „51,2“ from  a form ula which differs from  our form ula (42 a) 
only by a fac to r of 9, nam ely 5 Accordi ngl y,  the  constan t Kfl*  
appearing  in  (70) is calculated as follows: -^™*=5I12(£12+ 2 ) 2/^22; its  
value is tab u la ted  in  the  six th  colum n of Table I I .  K e rr’s m olar con
s ta n t for pure benzene K i  is 95I12 for /2=  0 and am ounts to  48,33 X 10-12; 
p1 and p2 are calculated from  (36 a). F o r P 2 we have assum ed the  po lar
isation  of solid n itrobenzene, i . e .  41 c. c. F inally , we have evaluated 
X'i and  A3 on the  basis of bv  b2 and b3 taken  from  S tu a r t’s book quoted 
p rev io u sly 3. Table I I  contains th e  results of calculations of K e rr’s

2 A ccording to  data from  investigations of the Kerr effect in  nitrobenzene  
vapour a t 235,5° C, w e h ave $Jo2= K J K 2—7 /1 3 9 = 0 ,0 5 0  (see H . S t u a r t  Molekiil- 
struklur,  Berlin 1934, tab le  55, p . 211). A t 23° C th is ratio  is 0,029. T he ratio e*/e* is 
s t ill sm aller.

3 In tab le  59, p . 222 w e find 6 ,= 1 3 2 ,5 x  10“ “ , 6 ,= 7 7 ,5 x  10“ “  and 63= 1 7 7 ,6 x  10“ “ - 
These are polarizab ilities o f th e  nitrobenzene m olecule for v isib le  ligh t determ ined by  
m eans of th e  Kerr effect and th e  depolarization of ligh t in  n itrobenzene vapour. A s
sum ing an approxim ate proportionality  betw een a l , a 2, a 3 and blt  b2, b3, w e calculate

(71)

(1 —rpA, ) 2 (1 — rpA3)2 (.1—:rpA, ) 2 (1 — rpX3f

X,r— 7
1 I (&i+ bt +  63)

^(6, -f- b2)
=  0,813 and A
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m olar constan t of nitrobenzene according to  bo th  the  generalised 
theory  of Onsager (for 7c— 1) and to  the  theory  of Lorentz. In  the  
firs t place we see th a t  the  „constan t“ K™ is no t constan t as it  should 
be according to  O nsager’s theory  b u t depends in  a  ra th e r  queer way 
on the  concentration. This dependence is represented by the  diagram , 
fig. 4.

F ig . 4. K err’s molar constant of nitrobenzene as a function  of concentration.

T a b le  I I . K err's molar constant K™ of nitrobenzene for different concentrations (from  
nitrobenzene —  benzene solutions at 23° C).

h £12 rf12 t f 'x io - J© to X H- O K j f x lO 9
Onsager 

Jf^'xlO“ R

Lorentz

K™X 10“ R  
*

0 2,26 0,8748 0 5,37 0,0646 (ca. 4,5) (ca. 0,4) (ca. 10) (ca. 0,85)
0,0930 4,42 0,9097 0,62 61,5 1,395 3,27 0,28 5,48 0,47
0,1957 7,01 0,9468 1,29 77,0 3,190 2,75 0,24 3,34 0,29
0,2618 8,80 0,9701 1,70 80,7 4,687 2,73 0,23 2,64 0,23
0,3532 11,3 1,0014 2,27 84,2 7,210 2,83 0,24 2,06 0,18
0,4659 14,6 1,0387 2,95 78,5 10,28 2,82 0,24 1,46 0,12
0,5769 18,3 1,0743 3,59 72,7 14,05 2,93 0,25 1,10 0,094
0,6872 22,5 1,1083 4,21 65,0 18,12 3,07 0,26 0,83 0,071
0,7829 25,6 1,1369 4,73 65,8 23,15 3,32 0,28 0,74 0,063
0,8805 29,6 1,1654 5,25 67,1 30,80 3,84 0,33 0,68 0,058
1 34,5 1,1992 5,87 70,9 43,20 4,64 0,40 0,64 0,054

* Friedrich’s data  m ultiplied b y  9.
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The reducing fac to r E  is a  m easure of th e  d im inu tion  of the 
m olar constan t in com parison w ith  the  value for vapour. E  is calculated as 
th e  ra tio  of the  constan t K™ determ ined  from  the  solution or from  
th e  pure liquid  to  the  m olar constan t of the  same substance 
in  gas or vapour form :

7-r/n

R = - ~ -  (73)Z m ' '
gas

F o r nitrobenzene vapour 4 a t 23° C K ^ =  11,736 x  10. The calculated 
values of E  m ay be found in Table I I ;  the  same diagram s on fig. I  
represent the  dependence of E  on /2.

The L orentz curve, th e  form  of which is well know n, shows th a t  
th e  m olar constan t of nitrobenzene falls ab ru p tly  w ith  increasing 
concentration , so th a t  for pure liquid the  reduction  fac to r is only 0,054. 
I t  m ight be noticed th a t the decrease of the value of K™ is no t connected 
w ith  the  decrease of any  q u a n tity  directly  observable by the  experi
m enter. R a th e r the  opposite occurs; the experim enter when m easuring 
th e  o rd inary  K err constan t sta tes th a t  i t  increases rem arkably  w ith 
increasing concentration. Only when he calculates the  m olecular con
s ta n t  R 12 by m eans of a form ula analogous to  (42 a) does he divide 
by  the  term  (e-f-2 ) 2 which increases strongly w ith  increasing concen
tra tio n . This effect is still g rea ter in  th e  calculation of electric sa tu ra 
tio n  (§5), where the  divisor is (e +  2 )4.

I t  m ight be said th a t  th is  rem arkable fall of K™ is due to  the use of 
th e  Lorentz field, which is expressed in  the  form ula (42a) in the  form  
of a very  large divisor. One is inclined to  arrive a t the  conclusion th a t, 
in stead  of explain ing  the  fall of K™ by a very strong  coupling of m o
lecules 5, i t  would be m ore n a tu ra l to  revise the  m ethod of calculating 
th e  in te rn a l field. In  fact, assum ing the  field of Onsager, one obtains 
a  fa ll of the  cuiwe K% which is m uch less steep, and though some degree 
of coupling m ust be accepted as an explanation  the  coupling m ay be 
m uch weaker.

nevertheless the  Onsager curve has a very rem arkable form ; 
i t  corresponds exactly  to  th e  varia tion  of th e  m olecular polarisation  
(fig. 1). A t firs t the  curve falls down, which is an  argum ent for an 
increasing an tipara lle l coupling of the  dipole molecules of nitrobenzene. 
F o r stronger concentrations there  is an  overw helm ing influence of 
ano ther type  of coupling which, I  am  inclined to  suppose, consists 
in  a  paralle l coupling of an tipara lle l pairs (fig. 2 ).

4 A ccording to  Friedrich, th is value is one ninth as large, i. e. 1 ,3 0 1 x 1 0  9.
s As has been done by  D ebye (1935), Friedrich (1937) and th e  author (1939).



M olecular O rientation in  P olar L iqu ids 59

A n in te resting  irregu la rity  appears in  th e  neighbourhood of 
/ =  0 ,3—0,4, which is connected w ith  the  a tta in in g  of a  m axim um  
by  i t 12, found experim entally .

§ 5. E lectric  Saturation, (a) Pure Liquids.  The com ponent 
of the  m om ent of the  molecule along E  is given by  th e  form ula derived 
d irectly  from  (59):

Our problem  consists in  calculating the s ta tis tic  m ean value of 
%  re ta in ing the  term s w ith  F'"*. F o r th is  purpose Ave shall calculate 
cos 0 and  cos2 0. The la tte r  value has been calcula ted  already and 
is given by (62) and (63). W e shall calculate noAv cos 6 using form ula (61) 
fo r the  energy of the  molecule. W ith  the same m eaning of the  symbols 
as in  (63), A\*e haA'e

B y substitu ting  the  expressions for cos 0 and cos2 6 in to  (74) 
we get

D ifferentiating (76) w ith  regard  to  E  and substitu ting  in to  (78), 
Ave ob ta in  an expression for the  dielectric constan t in  a strong 
electric field:

Toe =  [% + (« * —«i) cos2 0]F*-\- fi* cos 0. (74)

71

cos 0 =  - 71

0

^ = (a + i g ij F *  +  (0 î +  202*-03* )^ * 3 (76)

where

a “  3 ’ 1 45 k T  ’

2/u*2(a*— a.) /r*4n*  r n*~
l ~  45 k2 T 2 ’ 3 45 k3 T 3

(77)

The dielectric constan t is expressed by  the  form ula

(78)

e=- 1-f-laW
(79)

+ 1 2 ^  ( flf +  2 6 ? -  fla*) E \
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w hereas in  a  very  w eak electric field we have

f0=  1 +  4tiN
' h + i

h2
3 k T  (1 — r0pX3)\

Qnyo (80)
1 ~ r 0pK

(the index 0 refering to  the  dielectric constan t in  a  weak field). U nder 
the  influence of a strong  applied field the  dielectric constan t is changed 
by A e = e — eQ. Using th e  definition

h2
1 — r p j ’ (81)3k T  (1 — rpk3)2 

we ob tain  by sub trac ting  (80) from  (79)

d E= / ( £?. . . ) - / ( £o;...)+ 127riY '(d?+ 202* - e 3*)-(T_ f M )3 U2-

F o r extrem ely  small A e (and only such are to  be taken  in to  account) 
we m ay w rite

f (e , . . . ) - f (e0,...) =  ̂ A e ,
hence

A e = — 1 2 n N ' ( 0 t+  2 0 ? - 0 |)  - -  g* , . - -E+ (82)£ / (1 — rpkj*
9e

I n  the  case of a L orentz field (¿r=( 2)/3, r = 0 ) ,  the  above form ula 
takes the  well-known form

^ = 1 2 ^ ^ + 2 0 ^ 0 3 )  ( n j r ) ^ 2; (83)

where 0lf 02 and 03 s tand  for expressions identical w ith  (77) b u t w ith 
ou t asterisks.

F orm ula  (82) assumes a m uch sim pler form  for substances w ith  
a  relatively  big m om ent p, for which a is sm all in  com parison to  the 
dipole p a r t  of the  po larizability . F o r these substances the  term s 
and  0 2 m ay be neglected in  com parison w ith 03 (in a still g reater degree 
th is applies to  the expression w ith the  asterisk). E . g., for nitrobenzene 
a t  20° C we have 0X=  0,013 x  10- ?2 and 02=  0,14 x  10“ "2, whereas 
03=  10,76 x  1 0 - +

In  these conditions

  12^ '03  f  ™
9f { l - r p W  { l - r p W *  ’ 
2e

(84)

where df/de is th e  deriva tive  of (81).
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I f  according to  our assum ption a is neglected, th e  form ula 
fo r Sf/9e becomes

Sf _  e - 1
de 2 e+ 1

ł _ J — h ----- ^  2i .3 , .)
e \ 1 — rpÀl 1  — r p X j

6v
2 7 + 1 '  8̂4a^

(b) Solutions.  W e shall apply  (84) together w ith  (84a) to  the  
solutions of n itrobenzene in  benzene. The error in troduced by  the 
previously  m entioned sim plification does no t exceed 1 0 %  for diluted 
solutions and  decreases alm ost to  1 %  for concentrated  solutions. 
M ore exact calculations are n o t needed as m easurem ents of electric 
sa tu ra tio n  are unusually  difficult and th e ir precision is lim ited. In  
th e  lite ra tu re  we find only few investigations concerning electric sa t
u ra tion . Besides H erw eg’s fundam enta l w ork we have the  paper of 
K au tsch  (1928) who m easured Ae w ith  g rea t care and precision; 
his investigations, however, concern ether and  chloroform  only. More 
dipole liquids were investigated  by  M alsh (1928, 8) and G underm ann 
(1930) b u t these au tho rsd id  no t take  all th e  necessary precautions and their 
m ethod  gives only q ua lita tive  and  rela tive resu lts. M easurem ents 
of Ae for solutions of nitrobenzene in  benzene and also in  o ther solvents 
were m ade by  the  au tho r together w ith  B . P iekara  (1936)G. The 
resu lts  of these m easurem ents will be discussed here in  connection 
w ith  theory .

F orm ula  (84) m ay be used here in  a rem arkably  simple way, 
Ae  for the  pure  solvent (benzene) being so sm all as to  rem ain  w ith in  
th e  lim its of experim ental error; therefore we m ay w rite A e =  0. Con
sequently , i t  is sufficient to  replace N '  by N'i from  (25) to  ob tain  the 
fo rm ula for m ixtures:

A M S m

C2d !2 ~ r izV^i)3 (1  G 2?% )4
(85)

where M , p,  +  and  A, refer to  the  n itrobenzene molecule and dfjde is 
expressed by  the  same form ula (84 a) w ith  the  only difference th a t  e12 
and r12 should tak e  the  place of e and r respectively. The new symbol S m 
appearing  here is defined by the  form ula

S m=  — 4nNd3 (8 6 )

8 T liese in vestigation s were continued in th e follow ing years and partly published  
(1937). T he rem aining notes w ere lost during th e  w ar. The m easurem ents w ith  
pure nitrobenzene were repeated in 1939 by  the author and A . te m p ic k i by  m eans 
of a m ethod different from th a t h itherto applied and using a cathode-ray oscillograph. 
T he outbreak of the war interrupted th is work and the apparatus has been destroyed.
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and  p lays th e  sam e p a r t  as K m=  2nNfJ, in  the  theory  of the  K err effect. 
W e shall refer to i t  as „ the m olar constan t of electric sa tu ra tio n “.

I t  is easy to  prove th a t  if a  Lorentz field is assum ed and  électro
stric tion  is neglected S m is th e  increase of m olecular polarization per 
u n it of ex te rnal field F :

(87)

P E is the  polarization in  th e  field, F 0 — w ithou t a  field:

e—1 M  s0—1 M
E~ 7 + 2 ~ d ’ ° ~ 7 ^ + 2 ~ d '  (88)

A ssum ing Ae=  e— e0 to  he sm all in  com parison w ith  e and applying (83), 
we get

S m= ‘i n N ( 6 1Jr'20z— 03), (89)

which for a p a rticu la r case yields (8 6 ).
W e shall calculate S m for n itrobenzene. P u ttin g  ¡x— 4,23 X lO-18, 

we obtain  03— /x*/45k3T 3— 10,76 X 10-22, hence S m= — 81,4 x  10-10- This 
value is ob tained  on th e  assum ption of an  absolute m u tu a l independence 
of the  molecules. I t  m ay be therefore applied  only to  gas or vapour; 
we shall use the  sym bol for it:

— 81,4 x  1 0 ~10.

If  we in sert th is value in to  (85) and  calculate Aen , we get a  resu lt 
largely differing from  th e  experim ental values of Ae12. This shows 
d irectly  th a t  O nsager’s theory  cannot even approxim ately  deal w ith  
th e  electric sa tu ra tio n  in  liquids (no m ore th a n  w ith  the  dielectric 
po larization  and  the  K err effect). This, however, is no reason to  condem n 
O nsager’s theory  as false. W e shall consider i t  as insufficient and  we 
shall t ry  to  explain  the  discrepancies betw een theory  and expe
rim en ta l results by the  same coupling of molecules as in  the  case of the  
po larization  and th e  K err effect.

W e shall n o t calculate th e  values of A e12 based on b u t s ta r tin g  
from  experim ental values of Ae12 we shall calculate th e  value  of S m b y  
m eans of (85), and  hence the  reduction fac to r R s of sa tu ra tio n :

S m
=  (90)

The m ore th e  la t te r  differs from  u n ity , th e  g reater is the  p a r t  p layed  
by  th e  coupling.
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(c) Interpretation of experimental results. Table I I I  contains the  
following experim ental d a ta : the  weight concentration c2 of n itroben
zene, th e  num ber of nitrobenzene molecules N'2 per c. c. of the solution, 
th e  density  and  th e  dielectric constan t of the  solution, and the  varia tion  
of the  dielectric constan t A e12 under the  influence of an  electric field 
of 70 W f cm. The last four columns contain  the  m olar constan t S m of 
electric sa tu ra tion  of nitrobenzene and the  reduction fac to r i?s calcu
la ted  on the  assum ption of a Lorentz field

as well as of an  Onsager field (form ula (85)).
The dependence of S m and  JRS on N'2 based on the  assum ption 

of a L orentz or an  Onsager field is represented by diagram s in  fig. 5. 
The Lorentz curve shows th a t  the  decrease of the  m olar constan t 
of sa tu ra tion  w ith  increasing concentration is here still more strongly

F ig . 5. Molar constant of electric saturation of nitrobenzene as a function  of con
centration . A  part of th e  L orentz curve is presented on a larger scale; th e  positive  

effect of saturation m ay be seen.
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T a b le  I I I .  Molar constant of eleotric êaturation as a function of concentration (from 
solutions of nitrobenzene —  benzene at 210 0  and E = 7 0 k V fc m )

C2 A 'x lO - 21 il “12 £ 1 2 4 e12X 104
Lorent-z 

S mx l 0 10 I?s

Onsager 

&m x l 0 10 R s

0,0499 0,217 0,891 3,00 —  1,89 — 41,6 +  0,51 — 7,48 +  0,092
0,0984 0,435 0,904 3,75 —r 2,71 —  17,0 +  0,21 ' — 3,65 +  0,045
0,1307 0,582 0,913 4,21 —  4,06 — 14,1 +  0,17 — 3,36 +  0,041
0,2874 1,343 0,955 7,20 —  9,47 — 2,93 +  0,036 — 2,11 +  0,026
0,522 2,63 1,028 13,05 — 20,3 — 0,45 +  0,0055 — 1,67 +  0,0205
0,802 4,41 1,125 23,0 — 32,7 — 0,057 +  0,00070 — 1,35 +  0,0165
0,902 5,14 1,164 28,3 — 15,7 — 0,0108 +  0,00013 — 0,53 +  0,0065
0,972 5,57 1,192 32,5 +  32,7 +  0,0124 — 0,00015 +  0,99 — 0,012
1 5,88 i ,203 34,33 +  75,4 +  0,0220 — 0,00027 +  2,12 — 0,026

m arked  th an  in  the  case of the  K err effect (fig. 4). The decrease is 
so a b ru p t th a t  the  section corresponding to  higher concentrations 
had  to  be draw n on a  bigger scale. As has been previously m entioned 
in  § 4 (c), th is is caused by  the  fac t th a t  the  ra tio  F / E = ( e  + 2)/3 entprs 
to  th e  fo u rth  power. I f  we assum e an Onsager field, there  appears 
ano ther, m uch sm aller, fac to r (see (85)); hence th e  decrease of 8 m 
and  E s w ith  increasing concentration  is here m uch less accentuated 
and  in  general th e  reduction fac to r is g reater as shown by the  curve 
of Onsager. Thus the  coupling of the  nitrobenzene molecules is no t 
so strong  as was supposed on the  basis of a  Lorentz field. This agrees 
w ith  our conclusion draw n from  the  p lots of K e rr’s m olar constan t 
and of the  m olecular polarization. How ever, the  final course of the  
curve of th e  electric sa tu ra tion  is different, S  changing its  sign from  
negative to  positive. I n  the  second p a r t  of th is w ork we shall discuss 
th is  effect which is very  characteristic  of the second-kind coupling

§ 6 T he C otton — M outon E ffect, (a) Pure liquids. The 
Cotton-M outon effect is the  m agnetic coun terpart of th e  electric 
K err effect. P lane  polarized ligh t passes through  the  liquid placed 
in  a m agnetic field, the  lines of force runn ing  in  a direction perpendic
u la r  to  the  ligh t beam , and  a t  45° to  th e  p lane of the  v ibrations of the  
lig h t wave. The effect consists in  the  change of the  p lane polarized 
beam  in to  an ellip tically  polarized one. The Cotton-M outon constan t 
is given by  the  form ula

r _ n H—n x  1 
■n ' # 2 ’

(91)

in ' which n  m eans the  ordinary  refractive index for the given wave- 
lenght, n H and n x  are the  refractive indices for v ibrations parallel 
and  perpendicular to  the  m agnetic field respectively.
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W e shall define Cotton-M outon m olar constant, according to  
K önig  (1938), as the  difference betw een m olecular refraction for 
parallel v ibrations and th a t  for v ibrations perpendicular to  a  m agnetic 
field of 1  oersted:

(92)

where R H and R x  are expressed by form ulae sim ilar to  (41). In  this 
case we do n o t m ake any distinction  between the  ex ternal and the  
in te rn a l field, as th e  m agnetic perm eability  of m ost liquids is practically  
th e  same as th a t  of the  vacuum . The form ula for Cm m ay be deduced 
from  (42) d irectly , yielding

Cm =  G
6 -n2 M

(»* +  2 ) 2 d
(93)

W e see th a t  in  th is  case we are  no t concerned w ith  the  Lorentz 
or Onsager m ethod of calculating the  local field, nevertheless, we shall 
consider the  m agnetic birefringence, as i t  will supply us w ith  im portan t 
in form ation  concerning m olecular coupling in  polar liquids (cf. p a r t  I I  
of th is work). The exceptional character of the  Cotton-M outon 
effect in  con trast to  th e  o ther effects discussed is connected w ith  the  
fac t th a t  in  th is case the  dipoles p lay  no o ther p a rt  th an  th a t  involved 
in  th e  m utua l coupling of molecules. There is no dipole orientation 
in  an  ex te rnal field. F u rth e r, from  the  poin t of view of experim ental 
m ethods, th is effect is much more convenient th an  the  preceding one, 
especially because electric conductiv ity  does no t intervene.

W e shall express the  constan t Cm y e t in  ano ther way, nam ely 
by m eans of param eters characterizing th e  molecule itself. W e have 
a  ready  form ula for i t  in  § 4, form ula (6 6 ), where in the  case of m agnetic 
dipoles we have to  p u t 02— 0 , as the  dipole liquids are diam agnetic. 
Thus, we get

(94)Cm= 2 n N 0 1,

w here

®i— 4 5 / ^ 2 ' ( ^ 3  ^i)-

c3 and Cj are here the  m agnetic polarizabilities for directions parallel 
an d  perpend icu lat to  th e  axis od sym m etry  of the  molecule respec
tive ly .

Form ula (94) is based on the  assum ption of com plete freedom 
of th e  molecules and  is therefore applicable only .to gases and those 
liquids in  which there is no lim ita tion  of freedom  of the  molecules.
A c ta  P h y sica  P o lo n ic a  5
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As we shall see, rem arkable discrepancies will appear in  eases in  which 
coupling takes place.

(b) Solutions. As before, we shall lim it ourselves to  solutions 
of po lar liquids (index 2 ) in  a non-polar solvent (index 1 ).

F rom  § 4 (b) we shall tak e  the  form ula

C n ~ C l ' h  +  C?U,  (96)
where

2 )2 ' d12
and

6 n* M.n m _  r*  i i
1( n \ + 2 f  il{ '

C2 should be determ ined from  the  equation (96) and com pared with 
th e  value of the  sam e constan t for gas (Cgl,). Therefore, we shall cal
culate the  „reducing fac to r“ B CM:

pm
R c M = - ß r -  (9 f)

y gas

(c) The interpretation of experimental results. As far as we know, 
K önig (1938) was the  first to  calculate the  Cotton-M outon m olar 
constan t. H is calculations were based on m easurem ents w ith  solutions 
of nitrobenzene in  carbon tetrachloride perform ed by A. Goldet an d  
th e  au tho r w ith  the  large electrom agnet a t  Bellevue in 1934. The 
resu lts are presented  in  Table IV. The first colum n contains th e  weight 
concentrations, the  second — the  densities of th e  solutions ex trapo la ted  
from  m easurem ents of N . N . P a l 7, the  th ird  — the num ber of n itro 
benzene molecules N'2 per c. c., calculated  from  th e  preceding, the  
fou rth  — the  Cotton-M outon m olar constan t as given by K ö n ig 8 

and  the  fifth  — the  reducing factor l ieu-  In  order to  calculate the  
la tte r , th e  value of the. Cotton-M outon m olar constan t for vapour 
is needed. K önig  m ade an a tte m p t to  m easure it, b u t found th a t  the 
m agnitude of th e  effect is w ith in  the  range of experim ental errors. 
F o r 20° C and  670 m m  H g he obtained

< 550 x  10~17,

whereas for an  infin itely  d ilu ted  solution of nitrobenzene we obtain 
by ex trapo la tion  to  c2=  0

=  ca. 400 x  10-17

7 Prom  Landolt,Bornstein Tables, vo l. I l l ,  part 3, p . 1947 (1936).
8 There is only a diagram  in  K onig’s paper. T he num erical values of th e  fourth  

colum n were obtained b y  careful m easurem ent of th e  co-ordinates.
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W e shall use th is value instead  of 0 ^ a for calculating R cm, th e  obvious 
resu lt being th a t  R cm =  ~̂ for c2=  0 , which is equivalent to  the  assum p
tion  th a t  the  coupling of th e  nitrobenzene molecules w ith the  solvent 
does n o t influence th e  constan t C™. In  fact, as will be shown in P a r t  11 
of th is  work, th is influence is negligible.

T a b le  IV . Golton-Mouton molar constant C™ as a function of concentration (from  
nitrobenzene —  CCI., solutions at 20° C)

C2 ¿12 A ' x l O - 21 c;n x i o 17 CM

0 1,5940 0 (ca. 400) 1
0,1217 1,5365 0,914 426 1,065
0,3084 1,4530 2.191 490 1,225
0,5461 1,3550 3,619 572 1,43
1 1,2035 5,885 700 1,75

As m ay be seen from  (94) the  Cotton-M outon m olar constan t 
should rea lly  be independent of the  concentration of the  molecules, 
whereas, as shown in  Table IV  and graphically in  fig. 6 , C"' increases

fc
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P ig . 6. Cotton-M outon molar constant as a function  of concentration.

rap id ly  w ith  the  concentration. The „reducing fac to r“ R Cm is in  th is 
case g reater th a n  u n ity , in  con trast to  the  preceding effects. This 
unusual behaviour is caused by th e  type  I I  coupling, and the  effect

5*
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is readily  understood from  the  following exaggerated exam ple. L et 
us suppose- th a t  the  nitrobenezene molecules are so strongly coupled 
tw o by  two th a t  one m ay consider one gram  molecule of th e  liquid 
as composed of N /2  associated pairs. The m agnetic and optical polari- 
zabilitics of each p a ir  are doubled (if we neglect m u tua l inductance 
influence). In  consequence the  expression d1 (95) is increased by  a factor 
of four and therefore th e  m olar constan t Gm is doubled, hence R EM — 2. 
I n  rea lity  for n itrobenzene Rcu =  1,75, which m eans th a t  the  m ole
cules are n o t associated in  rig id  pairs. The theory  of the  coupling (see 
P a r t  I I )  gives for RCu a value slightly  sm aller th a n  1,75 if we adm it 
a  coupling energy required  by th e  th ree  preceding effects on the  assum p
tio n  of a  L orentz field. To o b ta in  the  value R a « =  1,75 we m ust either 
a d m it a g reater coupling energy, which would disagree w ith  the  trend  
of th e  preceding effects, or adm it th e  possib ility  of a coupling of m ole
cules in  larger aggregates th a n  in  pairs. The la tte r  possibility  is in 
accord w ith  th e  v a ria tio n  of the  dielectric po larization  and  the  K err 
effect, b u t  only if the  Onsager field is assum ed. W e see th a t  a lthough 
th e  local field does no t appear d irectly  in  the  Cotton-M outon effect, 
th e  la t te r  m ay supply us w ith  valuable  in form ation  on th is subject.
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ON SOME PHOTON RADIATION OBSERVED B Y  M E A 
SUREMENTS OF COSM IC R A YS A T G REAT DEPTHS

B y M. M IĘSO W IOZ, L. JU R K IE W IC Z  and J .  M. M ASSALSKI, 
P hysica l L aborato ry  of th e  M ining Academ y, K raków

(R eceived Ju ly  11, 1949)

The problem  of great depths

As concerns th e  problem  of cosmic rad ia tion  reaching great 
dep ths (some hundred  m etres w ater equivalent) i t  is assum ed by m ost 
physicists th a t  th is rad ia tion  is a  meson rad iation  (perhaps w ith  some 
adm ix tu re  of protons) accom panied by  knock-on electrons and cas
cade showers s ta rted  by these (W ilson 1943). Q uite d ifferent views on 
th is  subject are given by  B a r n ó th y  and  F o r r ó  (1948) who assume 
th a t  a t  dep ths g reater th a n  500 m  w. e. i t  is m ain ly  non-ionizing rad ia 
tio n  produced by  the  decay of mesons which penetrates  there . They 
consider th a t  our in strum en ts a t  those depths are operated  by second
aries of th a t  non-ionizing rad iation .

These differences in  views are derived from  some anom alies 
observed by  m easurem ents of cosmic rad ia tion  a t g rea t depths. The 
best know n anom aly is th a t  giving the  rela tion  betw een th e  in tensity  
of cosmic rad ia tio n  and the  depth . If  we tak e  the  in tegral spectrum  
of mesons as given by th e  re la tion

l = c E ~ v

and  we also tak e  the  losses of energy of mesons to  be p roportional 
to  th e  dep th  E  which th ey  have traversed  we ob ta in  the  relation

I  =  c 'H~y,

in  which y  is equal to  abou t 1,8. In  a d iagram  log J  vs. log H  we should 
get a  s tra ig h t line w ith a slope y, whereas if we tak e  in to  account th e  
experim ental results, we get a  line broken a t  abou t 300 m  w. e. (Clay 
1939). U p to  300 m  w. e. we have a  line w ith a  slope of 1,8 and beyond 
th is  dep th  the  slope changes from  the  value 1,8 to  2,8. Because of the  
fac t th a t  only mesons w ith  energies higher th a n  10n  eV can pene trate  
to  th is  depth , we m ight conclude th a t  besides the  norm al loss of energy
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th rough  ion ization  th e  particles concerned suffer an  add itional loss 
th rough  some o ther m echanism . The o ther explanation m ight be th a t  
th e  spectrum  of energy of m esons above energies of 10u  eV drops 
quicker th a n  m ay  be expected from  th e  form  E ~ 1,8.

L y o n s  (1941) considers an  add itional loss of energy of very  
energetic mesons by rad ia tio n  as a cause of th is  change of the  dependence 
of in tensity  on depth . The mesons of high energies m ight rad ia te  m ost 
of th e ir  energy in  one collision and  therefore we should get in  the  depend
ence of the  in ten s ity  of cosmic rays vs. dep th  an  add itional exponential 
fac to r g iving a  quicker drop of the  in tensity  w ith  the  depth . A closer 
analysis of th is  process proves th a t  the  losses of energy by  rad ia tion  
suffered by mesons of energies sufficient to  p en e tra te  such depths 
(1 0 u  eV) are too sm all to  explain  th is  phenom enon.

There are now in  the  lite ra tu re  of the  subject two opinions on 
th is  problem , based on sim ilar assum ptions of m eson decay, given 
by  J .  B a r n o t l i y  and M. F o r r o  (1948) and K . G r e is e n  (1948). Bar- 
n o thy  had  a lready  considered th is  question in  1940.

The m ean range of a m eson in  vacuum  (because of the  decay) 
is given by  the  form ula

w here r 0 is th e  m ean proper lifetim e of the  meson, P  its  m om entum  
and  /j, i ts  rest m ass. In  th e  spectrum  of m esons we have a  lack of particles 
of low energies, b u t in  th e  spectrum  of decay p roducts we have a  lack 
of particles of very  high energies. This las t phenom enon will be observed 
fo r those energies of mesons for which th e  m ean range is equal to  the  
heigh t of production  of mesons in  th e  atm osphere. In  the  spectrum  
of decay p roducts  of m esons we have to  add to  the  form  E ~1,8 the 
fac to r E ~ l for energies corresponding to the  decay range equal to  th e  
heigh t of the  m eson production  layer. If  we assum e th a t  a t  g rea t depths 
we reg ister the  p roducts  of m eson decay and th a t  th e  losses of their 
energies are p roportional to  th e  dep th  th ey  traverse , we get for suffi
c ien tly  high energies a  dependence of the  in tensity  on the  dep th  in  the  
form  E ~ 2'8.

The m ain  difference betw een B a r n ó t h y  and F o r r ó  and G r e is e n  
is th a t  B a r n ó t h y  an d  F o r r ó  assum e th a t  a t  g rea t depths we observe 
n eu tra l p roducts of decay of norm al m esons (m,fw200); G r e is e n  on 
the  con trary  in troduces the  decay of mesons of m ass 300 w ith  a m uch 
lower lifetim e (6 ,1 0  8 sec) and ob tains in th is  way for the  spectrum  
of energy a  change of the  form  E ~ 1'8 to  E ~ 2,8 for energies g rea ter th an  
10u  eV. This is th e  energy necessary for a m eson to  traverse  some
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hundred  m etres w ater equivalent. Thus, a t  g reat depths we observe 
norm al mesons which them selves are already decay products.

F o r the  evaluation  of th is critical energy, G r e is e n  assumed 
to  long a  lifetim e for the  m eson of mass 300, viz. 6.10- 8  sec instead 
of abou t 8.10- 9  sec, as i t  is now known. F or the  la tte r  value for r 0 th e  
change of th e  exponent in  the  energy spectrum  should occur a t about 
1012 eV ra th e r  th an  a t  10u  eV. W e m ight thus  take  the  explanation 
of Greisen as quite  satisfactory , because of the  great inaccuracies in  
th e  d a ta  we have here a t  our disposal, and because of the  neglect of 
th e  losses of energy due to  rad ia tion  x).

Thus, we can assume th a t  in  cosmic rays a t  g rea t depths we 
have to  do w ith secondary particles produced by the  sam e processes 
which are know n from  experim ents a t  sea level.

B u t B a r n ó t h y  and  F o r r ó  in  the  paper m entioned (1948) 
rep o rt am ong m any in teresting  results also a phenom enon which they  
in e rp re t as an  argum ent for the  opinion th a t  a t g reat depths we have 
to  do especially w ith neu tra l m eson-decay products. This phenom enon 
m entioned  already  in  1939, was also com m unicated a t  the  Cracow 
Cosm ic-Bay Conference in  Oct. 1947. They observed a t  th e  dep th  
of 1 0 0 0  m  w. e. th a t  the  rad ia tion  there  m easured was able to  give 
m any  tim es m ore double th a n  threefold coincidences in  th e  same 
telescope. The ra tio  of threefold to  double coincidences in  th e ir m easure
m ents was 0,05. B a r n ó th y  and F o r r ó  express the  opinion th a t  th is 
phenom enon proves the  existence a t  g reat depths of a scarcely ionizing 
com ponent of cosmic rad ia tion . F o r th is  com ponent the  probability  
of threefold coincidences ought to  be decidedly sm aller th an  th a t  of 
double ones.

The aim  of th is work, of which we are giving provisional results 
in  th is paper, was to  check th is  in teresting  phenom enon and inve
s tiga te  m ore closely the  properties of th e  rad ia tion  which produces it.

D escrip tion  of th e  aparatus
O ur m easurem ents were perform ed in  the  salt m ine a t W ieliczka 

near Cracow. The deepest level a t our disposal was 282 m below ground. 
The layers above th e  telescope consisted of rock-salt, sandstone, gray

1 Since th is paper was subm itted  for publication, w e cam e across a paper 
of S a t io  H a y a k a w a  and S in - I t i r o  T o m o n a g a , P b ys. R ev., 75, 1958 (1949), 
in  w hich these authors, considering the decay of mesons of mass from  287 to  217 
w ith  a lifetim e of 1 • 10~8 sec and tak ing  into account th e  losses of energy due to  
radiation, have obtained a curve of the dependence of in ten sity  vs. depth  in  accord
ance w ith  experim ental data.



72 M . M iç80wicg, L . Jurk iew icz and J .  M . M assalski

silt and  s ilt w ith  grains of rock-salt, gypsum  and anhydrite . The w ater 
equ ivalen t was estim ated  from  sam ples taken  from  different layers 
a t  d ifferent levels. The m easurem ents were carried out in  ho rizon tal 
passages (abou t 2  m  high) in  th e  salt layers a t two levels 660 and  . 
540 m  w. e. The w ork in  th e  sa lt m ine requires th e  appara tu s  to  be 
b u ilt very  thoroughly . S a lt pow der and m oisture are deposited during 
th e  w ork and  therefore th e  whole appara tu s  m ust be tig h tly  closed. 
These difficulties m ay be easier overcome if we use a ll-m etal counters 
w ith  earthed  cathodes. Because of th e  very  large fluctuations of voltage 
in  the  m ine, th e  appara tu s had to  be supplied w ith  a stabilizer stabilizing 
th e  voltage w ith in  wide lim its. The m agnetic s ta b iliz e r2) which has 
been used was very  helpful in  th is  m atte r. The special conditions of 
Avork also needed some add itional arrangem ents to  m ake w ork con
tinuous and safe (such as an  au tom atic  sw itch to r too low voltage, 
a  delayed switch for sw itching on th e  high tension for the  register 
circuits, an  electric clock set going by  th is  delayed switch, etc.).

The m easurem ents of th e  ra tio  of threefold to  double coincidences 
were perform ed w ith  an  ap p ara tu s  m uch im proved in  com parison 
w ith  th a t  of B a r  no t h y  and  F o r r ó .  The telescope consisted of th ree 
GM -counters 1, 2, 3 (Fig. 1). The m iddle counter 2 was of larger di-

F ig . l

m ensions th a n  th e  tw o others. The telescope was p ro tec ted  against 
side showers by  6  anticoincidence counters. The double coincidences D  
of the  counters 1, 3, and the  threefo ld  coincidences T  of the  counters 
1, 2, 3 were registered sim ultaneously by tw o separate  P . O. registers. 
In  th is w ay we got a fa ir ly  sm all s ta tis tica l error of th e  ra tio  T/JD 
even for a n o t very  g rea t num ber of D  coincidences. This is very  im por
ta n t  here because of th e  very  low in tensity  of the  cosmic rad ia tion  a t  
the  depths a t  which we have w orked (the num ber of T  coincidences 
a t the  lowest level is a t the  ra te  of abou t 1 per hour). In  order to  m easure 
the  double coincidences D  th e  resolving tim e of our appara tu s  had

2 T he authors are greatly  indebted  for th e  design and th e  construction of 
th is stab ilizer to  Mr. T . C z a y k a  of th e  Cracow M ining A cadem y.
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to  be ra th e r  small. I t  was 2,6 /¿sec, which we achieved in  such a  w ay 
th a t  th e  rectangular, pulse com ing from  th e  counter am plifier was 
differen tia ted  w ith  a sm all tim e constan t in  the  circuit of th e  grid 
of th e  Bossi valves (Mi^sowicz 1947). The GM -counters we used were 
of the  a ll-m etal ty p e  lilled  w ith  th e  usual argon-alcohol m ixture . 
The dim ensions of th e  counters were

Counters 1 and 2 
Counter 3 and an ti counters

. . . . 4,3 X 65 cm2, \ ^  ,  . . . .’ ’ } Brass tubes 1 m m  th ick ,
acounters 5,2 x  70 cm2.J

The num ber of pulses per m in. of these counters in  th e  labo ra to ry  
were abou t 650 for sm aller and  900 for larger counters. The num ber 
of pulses per m in. a t the  lowest level in  the  m ine were abou t 70 and  
100 respectively. The low background ra tes of the  counters were very 
convenient for our m easurem ents. A fter p ro tec ting  the  counters 1 and 2 
by  5 cm P b  a t  the  lowest level, th e  background dropped to  16 per m in.

M easurem ents of th e  ratio  of th ree fo ld  to  double and  
fourfold to  th ree fo ld  co in c id en ces

In  our prelim inary  m easurem ents perform ed a t  tw o depths 
(660 m  w. e. and  540 m  w. e.) we found m ore double th a n  threefold 
coincidences, proving in  th is  w ay qualita tive ly  even for those depths 
th e  existence of the  effect found by  B a m ó  t h y  and  F o r r ó  a t  1000 m  w.e. 
W e d id  no t find  however any difference betw een the  num ber of th ree
fold and  fourfold coincidences. The results of the  m easurem ents are 
given in  Tables I , I I ,  and I I I .  In  a ll tables the  num bers of D-coinci- 
dences are given afte r sub trac ting  the  accidental coincidences.

T A B L E  I

V ertical telescope a t a  dep th  of 660 m  e. w.

num ber of coin - 
cidenees and tim e

average rate per 
hour

Threefold coine. T 321 1 ,3 4 ± 0 ,0 5
D ouble coinc. D 443 1 ,8 6 ±  0,06
T im e (in hours) 239,46

R atio  of threefold to  
double coinc.

(72,5 ± 2 ,7 )  %
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V ertical telescope a t  a dep th  of 540 m  w. e.

num ber of co in 
cidences and tim e

average rate per 
hour

Therefold coiuc. T 454 2,08  ± 0 ,0 7
D ouble coinc. D 660 3,01 ± 0 ,0 8
T im e (in hours) 218,6

R atio  of threefold to  
' double coinc. | =  (6 9 ,0 ±  2,2) %

T A B L E  I I I

V ertical telescope a t a dep th  of 540 m w. e.

num ber of coinc. 
and tim e

average rate per 
hour

Fourfold coinc. F 354 2,09 ± 0 ,0 7
Threefold coinc. T 356 2 ,1 0 ±  0,08
T im e (in hours) 169,3

R atio o f fourfold to F  _ __
threefold coinc. =  0,995 ±  0,04

In vestiga tion  of th e  p rop erties of th e  rad iation  causing th e  
ex ce ss  of double o v er  th ree fo ld  co in c id en ces

Let us w rite  th e  num ber of double, threefold and fourfold coinci
dences in  th e  form  (Clay 1942)

D =  A2V + J ,

E = A 4V -j-J ,

where J  is th e  in ten sity  of the  ionizing com ponent of th e  rad ia tion  
going th rough  the  telescope for which we assum e th e  efficiency of 
th e  GM -counter to  be 1 , 0 , N  th e  in ten sity  of th e  non-ionizing com 
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ponen t and  A the  efficiency of th e  GM -counter for th is  com ponent. 
F rom  our m easurem ents of the  ra tio  of F j T  i t  follows th a t  
in  o ther words th e  num ber of threefold  coincidences produced by  th e  
non-ionizing com ponent is negligible in  com parison w ith the  num ber 
of threefold  coincidences produced by the  ionizing com ponent. Then, 
we m ay  consider T  as th e  in tensity  J  of th e  ionizing com ponent and 
w rite

T  T  T
D ~  P N  +  T ~  A  +  T ’

where A  gives th e  num ber of double coincidences due to  the  non
ionizing com ponent. Table IV  gives a com parison of th e  values of 
A  and  T  for tw o depths.

T A B L E  I V

coincidences due coincidences due
D epth to  non-ion izing to  ionizing com 

com ponent A ponent T

540 m w . c. 0,93/hour 2,08/hour
660 m w . e. 0,52 „ 1,34 „

I f  A  is considered as a m easure of th e  in tensity  of the  non
ionizing com ponent of cosmic rad ia tion , we should have a strong 
dependence on th e  depth  and a  high rela tive in tensity . The ionizing 
com ponent, however, shows th a t  the  in tensity  decreases w ith  dep th  — 
in  accordance w ith  the  m easurem ents of o ther au thors. F o r the  expo
n en t in  th e  absorption form ula we get from  our figures th e  value 2 ,1 , 
which tak in g  in to  account our ra th e r poor evaluation  of th e  w ater 
equivalen t, is quite  consistent, w ith in  th e  lim its of experim ental errors, 
w ith  the  values given by o ther authors.

The o ther characteristics of the  com ponent A  correspond in  
general to  those found by B a r n o t l iy  and F o r r o  for rad ia tion  recorded 
by  double coincidences. F o r the  investigation of the  angular depend
ence of th e  com ponent A ,  m easurem ents of threefold and double 
coincidences in  a horizontal position of the  telescope have been carried 
out. The results are given in  Table V.

F rom  th e  figures given in  i t  we can see th a t  for a  horizontal 
position  of th e  telescope th e  num ber of threefold coincidences is 
negligible and th e  num ber of double coincidences has, w ith in  the  
lim its  of experim ental errors, the  same value as A .  This is an  evidence 
fo r th e  isotropic character of the  com ponent A .
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T A B L E  V

The telescope in  a  horizontal position a t  540 m  w. e.

num ber of co in c i
dences and tim e

rate per hour

T hreefold coincid. T 1
D ouble coincid. D 109 0,90
T im e (in hours) 120,5

W e have investigated  also the  influence of lead p u t betw een th e  
counters on th e  ratio  of TjD.  The figures are given in  Table Y I.

T A B L E  V I 

The telescope in  a vertica l position a t  540 m  w. e.

T hickness of lead  
in  mm

T /D A
A

A  (o cm Pb)

0 0,690 0,93 1,00
5 0,795 0,49 0,53

10 0,906 0,19 0 ,20
15 0,930 0,13 0,14
50 0,989 0 ,02 0 ,02

From  these figures we can see th a t  th e  com ponent A  is absorbed 
w ith an  absorption coefficient of abou t 1,4 cm - 1  P b .

E ffic ien cy  of th e  cou n ters for th e  com p on en t A

B a r n o t h y  and F o r r o  who evaluated  th e  ra tio  T j D  a t  1000 m  w. e. 
and found the  value 0,05 in te rp re t th is figure as the  efficiency of the  
counters for the  rad ia tio n  giving the  coincidences. W e th in k  th a t  
th is  would be correct only if th e  telescope had  no t registered also 
a  num ber of ionizing partic les for which the  efficiency of the  GM-coun- 
ters  is equal to  1 ,0 , and for which the  num bers of double and threefold 
coincidences are th e  same. F o r th e  efficiency A of the  coun ter for 
rad ia tio n  causing the  excess of the  double coincidences, we have X<TjD.  
On the  o ther hand , in  these circum stances we cannot a t  all evaluate  
the  specific ionization as i t  was done by B a r n o t h y  and F o r r d ,  who 
gave the  value of 0,04 ions/cm  ST. T. P . a ir  for th is  rad ia tion . I t  is 
n o t know n a priori w hether th is  rad ia tio n  reacts on the  counter by 
producing ions in  the  gas of the  counter, or w hether i t  gives secondaries 
in  the  walls of the  counter which in itia te  the  discharge. In  th e  first
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case, th e  efficiency of the  counter would depend on th e  specific 
ionization of th e  gas contained in  it, b u t in  th e  second case i t  would 
depend on the  p robab ility  of em itting  secondaries in  the  walls of the  
counter.

F o r ge tting  a t  least a rough evaluation  of th e  efficiency of the  
GM -counters for the  rad ia tion  A ,  we com pared th e  num ber of counts 
of a  single counter caused by  th e  rad ia tio n  which is absorbed by 5 cm P b  
w ith  th e  num ber of double coincidences A .  A t 660 m  w. e., for a  counter 
of a  leng th  of 1= 65 cm and  a  d iam eter of a =  4,3 cm, the  num ber 
of counts w ithou t .screening was 80/m in., w ith  a  screen of 5 cm P b  
from  all sides i t  was 16/m in., thu s  th e  num ber of counts due to  the  
rad ia tio n  absorbed in  5 cm P b  was 64/m in. If  we assum e th a t  th is  
rad ia tio n  is isotropic, we have a  dependence betw een the  num ber N  
of counts, the  flux  j  of th e  rad ia tio n  and  the  efficiency X of the  counters 
fo r th is  rad ia tio n  of the  form

W e get from  i t  Xj =  0 ,022/sterad. cm 2 min.
L et us now evaluate  the  p robab ility  oi double coincidences due 

to  th is  rad ia tion , w ithou t any . discussion of th e  particu lars  of the 
m echanism  of th is  process. L et X' be the  efficiency of th e  telescope 
for double coincidences for th is  rad ia tion , i. e., X' is the  p robab ility  
th a t  th e  partic le  or pho ton  which discharges th e  first counter enters 
th e  second one and discharges i t  also. A ssum ing the  rad ia tion  to  be 
isotropic and  pay ing  due regard  to  th e  solid angle determ ined by  the  
telescope, we get by sim ple in teg ration  for th e  num ber of double 
coincidences

where 71 — 18 cm  is th e  m utua l d istance of the  counters in  the  double 
coincidence telescope. F rom  th is  equation , we get

A'=  0,002,

a value 20 tim es sm aller th a n  th a t  given by B a r n o th y  and F o r r o .

T he resiilts of th is w ork therefore show th e  following properties 
of th e  rad ia tion  giving the  excess of double over threefold coincidences:

1. I t  is scarcely ionizing.
2. I t  is isotropic.
3. I t  is absorbed by  abou t 0,5 cm P b  to  50 °/0.

Conclusions
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A ll these properties seem to  prove th e  fac t th a t  th is rad ia tion  
is of pho ton  character, and  th e  absorption coefficient as well as the  
efficiency of th e  counters for th is rad ia tion  also suggest th a t  we m ay 
have here to  do w ith some y-rad iation  of abou t 1 MeV  energy, orig inating 
perhaps from  n a tu ra l rad ioactive substances.

I t  rem ains to  explain  th e  m echanism  of the  coincidences given 
by such a  rad ia tion . I t  is n o t im probable th a t  we are confronted here 
w ith  an exam ple of some com pound Com pton-effect. As a m atte r  
of fac t, i t  m ight be possible th a t  a  pho ton  en tering  the  firs t counter 
and discharging i t  m ight en te r afterw ards th e  second counter and 
give off there  ano ther electron which discharges th is  second counter.

I t  m ay be seen from  our evaluation  of the  efficiency of the  counters 
for th a t  rad ia tion  — assum ing th a t  the  discharge in  th e  counter is 
s ta rted  by  photons — th a t  we get thus quite  a  reasonable figure for 
the  efficiency for the  double coincidences. Of course, in  th is  case X'<X, 
because th e  loss of energy of the  photons in  th e  firs t coun ter causes 
a  drop in  the  efficiency and the  photons are dispersed producing in  
th is  w ay also an  add itional inefficiency.

W e wish to  th an k  the  Science D epartm en t of the  M inistry  of 
education  for xinancial aid  which m ade i t  possible to  carry  out th is 
work, and the  Polish A cadem y of Science and L ette rs  for supplying 
th e  labora to ry  a t  W ieliczka w ith  lead. Our thanks are also due to  the  
m anagers of th e  salt Mine of W ieliczka and all th e  m iners for their 
k ind  co-operation, during  our work a t W ieliczka. W e also th an k  
Mr. S. W o jtó w  and  Mr. A. M ik u c k i  for th e ir  valuable help.
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PROPAGATION OF A  CUT-OFF TRAIN OF DE 
BROGLIE WAVES

By A. RU B IN O W IC Z, In s titu te  of Theoretical M echanics, U niversity
of W arsaw , W arsaw 
(received Ju ly  17, 1949)

The propagation of a cut-off train of m onochrom atic de B roglie w aves has
been in vestigated . Form ulae have been developed describing com pletely  th e  arrival
of th e  w ave front, th e  forerunner, and th e  main w ave.

In  the  p resen t paper we deal w ith  the  following problem  of the 
p ropagation  of a cut-off tra in  of p lane de Broglie waves. A t the  tim e 
t =  0 we have a t  the  negative a:-axis a tra in  of-m onochrom atic de Broglie 
waves of frequency v0, th a t  is

la  — 2m V 0 | < — A ]

e e \ u°' (1 )

w ith  a phase velocity u 0 given by

w o ~ 7  / . .  \ 2 \ v  ^

where v1 — m 0c2/li is the  frequency corresponding to  the de Broglie 
wave length of a particle  of rest mass m 0; a is an  a rb itra ry  phase 
constan t. Our problem  is to  determ ine the  propagation  of these waves 
for t > 0  and # > 0 .

This problem  is form ally a  special case of Som m erfeld’s (1914, 
cf. also L. B rillouin 1914) problem  of the  p ropagation  of an  electro
m agnetic cut-off wave tra in  in  a dispersive m edium , nam ely the  one 
dealing w ith  free electrons vh thou t dam ping. This specialization enables 
us to  ob ta in  convergent series developm ents of th e  exact solution, 
whereas in  Som m erfeld’s general case i t  was only possible to  discuss 
it  approxim ately .

§ 1. Solution  of th e  problem  and its se r ie s  d ev e lo p 
m ents. The in tegral

e!a r
v(i, =  S 5  j e

(u)

dv
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tak en  in  th e  upper half of th e  complex v-plane along the  p a th  (17), 
fig. 1 , from  -h °°  to  —oo of the  rea l axis defines th e  function

m _ / °  for i < 0 ’
n  ' \ elae~2nlvo‘ for i > 0 .

F o r t< 0  we can nam ely deform  the  p a th  ( U) in to  the  in fin ity  of the 
upper half of the v-plane where exp (—2 nivt) for t<  0  vanishes exponen
tia lly . F o r i > 0 ,  however, we can deform  (U)  in to  the  in fin ity  of the 
lower half of th e  complex v-plane, b u t in  doing so, we m ust pass the 
pole a t  v = v 0, which gives a  residue.

To a corpuscular w ave of frequency v corresponds a phase 
velocity  u  g iven by

W e expect, therefore, th e  solution of our problem  to  be

< 4 >

(U)

where

w — — 2  niv[t  — =  — 2ni(vt  — (v2 — (5 )

Owing to  th e  fac t th a t  u  in  (3) is positive, we m ust give to  the  
square roo t in  (5) a  positive sign for rea l v-values v > v 1. The poin ts 
v = ± v x  in  (5) are branch  points. I n  order to  have to  do w ith  a definite 
b ranch  of w,  we place a branch  cu t on th e  real axis of th e  v-plane 
betw een these tw o points.

CO
F iis t  of all, we can show th a t  /(i, x) vanishes for f <  - ,  th a t  isc

for /3 >  1, if
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This m eans th a t  the  velocity of th e  wave fro n t cannot be greater than  
th e  velocity of light. In  the  case /S > 1  we can indeed deform  the  p a th  
of in teg ration  (U) in to  the  in fin ity  of the  upper half-plane, because

for large r-values the  function  w, eq. (5), is given by w —

Hence,
j(t ,x) =  0  for /? > ! .

F or /? < ! , however, we can deform  (U) in to  the  in fin ity  of th e  
lower half-plane, where, in  th is  case, w  vanishes. B u t then  there  rem ains 
still a p a th  of in teg ration  ( Z7j) surrounding the branch  cu t between 
—v1 and -l-r, and th e  pole a t  v—v0. F o r /?< 1 we can therefore use instead  
of ( U) th e  p a th  of in teg ra tio n  ( i7x).

The m eaning of (i is as follows: according to  (6 ), the  value 
of c f f=x f t  determ ines th e  velocity  of a particle  which would reach 
th e  po in t x  a t  the  tim e t s ta r tin g  from  a — 0  a t  the  tim e i = 0 .

In  order to  ob ta in  convergent developm ents for f(t ,x)  in the  case 
of /? < ! , we deform  (17,) in to  a p a th  of in tegration  (E), fig. 2, on which

F ig . 2.

th e  real p a r t  of w, eq. (5), vanishes. {E) is an  ellipse w ith  its  centre
a t  v =  0  and w ith the  p rincipal semi-axes

a =  jf==—■ and b =  ‘ ^  ■ (7)

a and b are s itua ted  on the  real and im aginary  axes of the  complex
r-plane respectively. (E) can therefore be represented by

y i - p
A c ta  P hysica  P o lon ica

(cos y) -)- iff sin xp) (0 < y < 2 n).
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Because on (E )
.  x  V l - P

w  =  Wq — —iz cos ip, where z = 2 n — v1 -—- — ,

we have
fia p2ji

ew«- ■ sin ip -f- ip cos ip

cos y>+ ip sin ip — — ) / l— (P
dip.

(8)

(9)

P u ttin g

i = r e »  r = y g f ,  , 0 =  ^  +  | / ( ^ ) ’ - i ,  (10)

we ob tain

■ sin ip-\-ip cos ip C2— 1

cos ip“}-ip sin ip — —— \ \  —p2 t 2 — 2  — C + l

so th a t  finally
2/r

eia r
- j * *

— i IX ~{-

1 + r ^  +  i

Vo
(11)

£—Yo yo £ __L 
7o

C—y0 yo ^  _ i _

yo,

dip+ (residue). ( 12 )

„ + (residue)“ m eans here th a t  the  residue of the  in tegral (4) which 
is given by  the  eqs. (1 ) and  (2 ) m ust be added to  th e  in teg ral in  (1 2 ) 
in  th e  case of the  pole a t  v = v 0 being situa ted  outside th e  p a th  (E).

As th e  frequencies v0 and vx are determ ined by hv0— rnc2 and 
hvx — m 0c- respectively, where m 0 is the rest mass and m  th e  m ass of 
th e  m oving particle , v0 is alw ays g rea ter th an  vlf so th a t  the  pole 
a t  v= v 0 lies outside of the  branch  cu t. For /?-»■1, according to  (7), the 
sem iaxes of (E ) become in fin ite , and for /? - > 0  the  p a th  (E ) approaches 
th e  branch  cut. I f  v0 is equal to  the  g reater sem iaxis a th e  p a th  of 
in teg ra tion  (E)  passes through  the  pole a t v = v 0. D enoting the  corre
sponding value of p by  p0, we get, according to  (7),

(13)
0 K w i

In se rtin g  th is in to  th e  eq. (10) for y0, we get

_ 1 / I T f o  
' V 1 _ / V

y o' (14)



U sing (12), we can now obtain  representations for j(t ,x)  by m eans 
of convergent series of Bessel functions

2.1 2 i t

J n(z) =  £ -  f G-izc<,sy e- i n f e - ^ ' P e + ^ d y ) .  (15)
2 n J  2 n j

o o

W e deal w ith  the  case 1 >  /? > /30 first. According to  (10) and (14), 
we have then  +  o o > y > y 0, so th a t  owing to  y = |£ |

+  oo >  |C| >  y0.

The p a th  of in te rg ra tion  (E) contains in th is  case the  pole a t  v = v 0 in  
its  inside, so th a t  there  does n o t appear any  residue in (12). According 
to  v0> v 1 and (10) we have y0 > l -  U nder the  supposition th a t  | i |> y 0>

we get have also | f |>  — , so th a t  th e  bracket expression under the
Vo

sign of in teg ration  in  (1 2 ) can be expanded in to  the  power-series
oo

1 +  2 ^ < ’yo + y o n)-
n=l

H ence, -with the  help of (12) and (15) we get for the  function f(t ,x)  
th e  expression

/(«, x ) = eia {J 0(z)+ f  (—«)" J  „(z) v~n{vno+ y;rn)}- (16^
71=1

The m om ent i0 given by fi0= x/ct0 defines the  velocity v0= xj t0 — cp0. 

As,  according to  (13) there  is fl0= ( l  — j , we have

" ° = c ( i - f e ) T
and  hence, using (2 ),

u0v0= c 2.

v0 is therefore the  group velocity corresponding to  the  phase velocity u0. 
A t th e  tim e t0 there  arrives a t  the  po in t x  th a t  p a r t  of the  wave tra in  
which travels w ith  th e  group velocity v0, i. e. w ith  the  velocity of the  
inciden t particles.

This m eans th a t  the  developm ent (16) describes th e  events for 
a  given po in t x  from  the  a rriva l of th e  wave fron t to  the  arrival of 
th e  waves travelling  w ith  the  particle  velocity  v0. This developm ent 
can be used also for tim es t g reater th a n  t0, th a t  is for /30 >  /? >  0. B u t 
in  th is  case the  convergence is very  slow.
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F o r these /i-values we get, however, a good convergent series

by  developing in (1 2 ) the  expressions — and — --------7—  into
C— y 0 r o C — ( i / y 0)

power-series in  C/y0 and 1/Cy0 respectively. Taking in to  account 
th a t  now the  pole a t  v = v 0 lies outside of the  p a th  of in tegration  (E ) 
and  therefore the  residue m ust be added, we ob tain

, - f e r n )  “  |cjfl \ C I I _ ^ ( _ t)n J n{z)Y-n(y n _ y- n ^  (J7)
n=1

(17) also can be used for all ^-values in the  in te rval (0,1). From  
th e  equa lity  of (16) and (.17) we ob tain  a developm ent of the  incident 
w ave given by (1) and (2 ) in a  series of Bessel functions

„-’•'■'HHaTI =lW+ J m iv .m ((*)"+ (£)").

This expansion follows also d irectly  from  the  generating function 
of Bessel functions (W atson 1944)

C2<< ‘ ) =  J 0{«)+ I J j n ( z ) ( t n+ { —t ) - n)
n—1

if we p u t here t =  —iy0ly.
F or large values of z we need an  asym ptotic  expression for the 

w ave function  f(t,x).  W e can get it' by  apply ing  to  (9) the principle of 
s ta tio n ary  phase. F o r large z -values th e  oscillations of e w° are very 
rap id  in  com parison w ith  the  changes of th e  rem aining p a r t  of the 
in teg rand  in (9). The phase tv0 has s ta tionary  values for y>— 0 and y>=7t.

w2 ®2
U sing th e  approxim ations c o s y i= l — a nd cos (n-\- q>) =  — 1 + - 5- 

in  th e  neighbourhood of these points, we get in  the  usual way

«« v b (  e+ ,M )  \
f(t ,x) =  j==     H-----------------------+  (residue). (18)fz yVl- Vo\r[=p Vi+Voyrzjtj

F orm ula  (18) can  be used only if the  p a th  of in tegration  (E) does 
n o t pass th rough  the  neighbourhood of the  pole a t v0, independently  of 
th e  fac t w hether r 0 lies inside or outside of (E). In  the  second case, 
th a t  is for /90 >  /S >  0, we m ust, however, tak e  in to  account the  
residue a t  v = v 0.

A sym ptotic  expansions contain ing  descendig powers of z and the 
expression (18) as the  first te rm  can be obtained by developing the
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product of exp —iz |(cos ip— ^1 — ̂ -) j  or exp — iz^cos(7 r+ 9> )+ l—

a n d  the  expression (1 1 ) in  a  series of ascending powers of y> and 95 re 
spectively (an der C orput 1939). We can also get the  expression (18) by 
the  m ethod of steepest descent.

§ 2. D iscu ssion  of th e  so lu tion . In  order to  have an  idea 
about th e  order of m agnitude of z we in troduce in  (8) by

A  =  -  =  -  (19)m 0c v1

th e  Com pton wave length A  of th e  incident particles. Thus we get

z = 2 n j ^ ^ .  (20)

F o r electrons, for exam ple, is A  =  2,4 10-1 0  cm, and  therefore is z 
a  large num ber for tc+ 0  and  0 < 1 .

F irs t of all, we consider the  a rriva l of th e  wave fron t a t a given 
p o in t x. I t  comes a t  the  in s ta n t determ ined by 0 = 1 , and hence 
by  z =  0 and  y — 0 0 . As J 0[z) is the  only Bessel function which does not 
d isappear for z =  0 , i t  follows from  (16) th a t  for 0 ~  1

f(t ,x)=e>“J 0(z). (21)

The in tensity  \f(t,x)\2 of the  arriv ing  w'ave fro n t is therefore of the  
o rder of m agnitude of 1 , th a t  is of th a t  of the  incident wave. More
over, (21) is independent of the  frequency of the  incident wave. We are 
hence compelled to  assum e th a t  the  events a t  the  wave fron t are de ter
m ined only by the  process of the  cu tting  off of the  incident wave.

W e ask now w hether it  is possible to  assign a wave lenght A and 
a  frequency n  to  the  fron t wave (21). The distances of two consecutive 
zero poin ts of the  Bessel functions J„(z) are of the  order of m agnitude 
of re. The variab le z can therefore p lay  the  role of a phase. If  z would

be equal to  — j j ,  then  the  wave length A and the  frequency

n  =  l / T  would be given by

1  1  dz 1 1  dzanci n = — =  —  — . (22)
A 2 n  dx T  2 71 dt

B u t following L. B rillouin (1914) we can use (22) as a  form al defi
n ition  of A and n  respectively. Using f f=x /ct  we get then  from  
(2 0 ) and  (2 2 ) _____
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X is the  de Broglie w ave length of particles m oving -with the  velocity eft, 
n  is th e  frequency associated w ith  X by the  de Broglie phase-velocity c//3. 
Owing to  (19), we have X n = A  v j p = c i p  indeed. A t th e  m om ent of 
th e  a rriva l of the  wave fron t (/?= 1) are 1 = 0  and n — oo; afterw ards X 
increases and n  decreases.

The m om ent th e  wave fro n t has passed the  po in t x  ( th a t is for 
/?< 1) the  value of 2 increases so m uch th a t  we can use the  asym ptotic  
expression (38), first for fi0< p < l  w ithou t th e  residue. This p a r t  
of the  wave f(t ,x)  is called the  forerunner or precursor. Owing to  \ z  
in  the  denom inator the  function f(t ,x)  decreases u n til /? comes in to  
th e  neighbourhood of /?„. Then, according to  (13), the  resonance denom i
n a to r of the  firs t term  in  brackets becomes very  sm all, so th a t  f(t ,x)  
increases again. B u t a t  th e  same tim e the  asym pto tic  expression (18) 
ceases to  be applicable, because the  p a th  of in tegration  (E) passes 
th rough  the  neighbourhood of the  pole a t v = v 0. I n  th is  m om ent the  
„m ain wave''' given by the  residue aiTives. Subsequently, the  contribu tion  
of the  first te rm  in the  brackets, which a t v= v 0 has changed its  sign, 
becomes less im p o rtan t. W ith  the  advance of tim e (/9->-0) the  value 
of Yz approaches in fin ity , so th a t  p ractically  only the  m ain wave 
rem ains.

The expressions (23) for X and  n  are va lid  also for th e  first term  
in the  asym ptotic  approx im ation  (18). W ith  decreasing /?, th e .w av e  
length  X increases, u n til a t  the  m om ent (/S=/30) of the  arrival of the  
m ain  wave i t  becomes equal to  th e  de Broglie w ave length  of th e  
m ain w ave. A fter th is  m om ent X increases fu rther.
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COM PARISON METHOD OF M EASURING THE A N G U 
LA R  CORRELATION OF G AM M A-RAYS

B y Je rzy  G IE R U L A , Physical L aborato ry  of the  M ining Academy,
K rakow  

(received October 30, 1949)

From  theoretical considerations (H am ilton  1940, Goertzel 1946) 
i t  follows th a t  when tw o y -quan ta  are em itted  in  cascade in  the 
process of nuclear de-excita tion  th e  re la tiv e  p robab ility  th a t  the 
second quan tum  will be em itted  a t  an  angle 0  w ith the  first is

i
W (0 )= l+ £ A i cos2i0,

/=i

where 21 is the  h ighest m ultipole order occuring.
U p to  now, the  investigations of the  angular correlation of y-rays 

(Beringer 1943, Boehm  1949, B rady  1947, Good 1946, K ikuchi 
1942) were carried ou t by  observing the  coincidences betw een a coun
ter A ,  fixed w ith respect to  the  sam ple P , and  a  m ovable counter B  
(Fig. 1). As these m easurem ents ex tend  as a  rule over 
long periods of tim e, they  require a  fa r reaching stab ility  
of th e  w orking conditions of the  counters and  an  exact 
reproducib ility  of th e  geom etrical configuration. I f  the  j r  
effects of th e  angu lar correlation are sm all (as is to  \  B j  
be expected in  th e  m ajo rity  of cases) a  very slight 
in stab ility  of the  experim ental conditions m ay spoil the  ,
m easurem ents to  such an  ex ten t as to  m ake them  wholly F ig . 1 
unreliable.

In  th is no te  a com parison m ethod of determ ining  th e  angular 
correlation is suggested which is m ore or less insensitive to  the  in sta 
b ility  of th e  working conditions of th e  counters and of th e ir  spatial 
disposition. D uring  th e  whole course of a series of m easurem ents two 
counters A and  B  (Fig. 2) are fixed, while a  th ird  one G is placed in  
position 1 during  the  firs t p a r t  of the  series and afterw ards in  position 2. 
The first p a r t  of the  m easurem ents consists in  th e  sim ultaneous counting
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of the (A jC J-  and  (B, OJ-coincidences (counter G in  position 1). The 
num bers of these coincidences are given by

where is the  num ber of decays during  the  m easurem ents, m are 
the respective solid angles, s th e  efficiencies of th e  respective counters, 
V  are the  respective losses of coincidences, and W (0) is th e  rela tive  
p robab ility  of emission of tw o successive q u a n ta  a t  an  angle 6 .  The 
ratio  of the  above num bers is given by

Sim ilarly, th e  second p a r t  of the  m easurem ents w ith counter G 
in position 2 gives

a q u an tity  which is independen t in  a  high degree of the  fo rtu itously  
changing w orking conditions of the  whole coincidence appara tu s.

In  P ig . 2, the  counters are shown in  position 
for a  m easurem ent of the  ra tio  of th e  probabilities
a t  90° and 180°, b u t i t  is easily seen th a t  th is ra tio
m ay be m easured for any  o ther tw o angles b y  an

!c 1 appropria te  change in  th e  angular se tting  of the  
counters A ,  B,  and C.

(ft, /S)-processes. The errors in troduced  by the  absorp tion  of the  /3-particles 
in th e  sam ple m ay be avoided by  a  steady  ro ta tio n  of the  sam ple 
around its  axis.

B e r in g e r  R ., P liy s. R ev ., 63 , 23 (1943).
B o e lim  F . and W a lt e r  M ., H elv . P liys. A cta , 22 , 378 (1949). 
B r a d y  E . and D e u t s c h  M ., P h ys. R ev ., 72 , 870 (1947). 
G o e r t z e l  G., P liy s. R ev ., 70 , 897 (1946).
G o o d  W . M ., P h ys. R ev ., 70 , 978 (1946).
H a m i l t o n  D . R ., P h ys. R ev ., 58, 122 (1940).
K ik u c h i ,  W a t a s e  and I t o h ,  Z. P h ys., 119, 185 (1942).

“ >Ae A V A C  W ( 9 0 ° )

( ^ A )  w ( i s o ° r (1)

and th e ir ra tio
(A ’ °>) " ^ c W (180°)
(B ,C 2) a>BeBV BC W ( 90°) ’ (2 )

From  (1) and  (2) we get

(3)

'v  Of course, the  sam e m ethod m ay be also used
Fig- 2 for angu lar correlation m easurem ents of (ft,y)- and

R eferences
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DIPOLE MOM ENT OF CA R B O N YL CYAN ID E

B y M. PU C H A L IK , In s titu te  of Physics of the  L. W aryński Silesian 
A cadem y of M edicine, R okitn ica 

(R eceived  March 16, 1950)

T he dipole m om ent of carbonyl cyan ide has been in vestigated . This com 
pound, for th e  first tim e obtained by  Prof. M ałachowski and collaborators (1937) 
has an analogous structure to  phosgene. I t  has been ascertained th a t in  carbonyl 
cyanide, ju st as in  phosgene, there appears a com pensation of d ipole m om ents of 
tw o strongly  polar groups.

The investigations of the  po lar properties of phosgene by Sm yth 
and  Me A lpine (1934) and Le F evre  and  Le Fevre (1935) led to  
th e  following conclusions: (1) The m olecule of phosgene form s a  dipole 
w ith an electric m o m e n t=  1,18 D (1934) or 1,099 D (1935). (2) The 
dipole m om ent of COCl2 m ay be calculated from  the  values of the  
m om ents of th e  two groups =  CO and -C-Cl. (3) The relatively  low 
dipole m om ent of phosgene in  spite of th e  presence of strongly  polar 
groups is due to  m u tua l com pensation of bo th  their m om ents.

I t  seem ed in te resting  to  investigate  the  polar properties of car
bonyl cyanide, as th is com pound has an  analogous chem ical s tru c tu re  
to  phosgene. C arbonyl cyanide was synthesized for the  first tim e by 
Prof. E . M ałachowski and coll. (1937). This rem arkable substance 
shows g rea t chem ical ac tiv ity , e. g., i t  reacts v io len tly  w ith  w ater 
giving C 02 and  HCK. As hydrogen cyanide shows a ra th e r  high dipole 
m om ent (^ =  2,5 D) a ll p recautions were to  be taken  to  avoid hum idity  
of the  substance as well as of- the  appara tu s . E ven  sm all am ounts of 
w ater would strongly  influence the  resu lts of the  dipole-m om ent 
m easurem ents. A  special capacito r was used which m ade i t  possible 
to p ro tec t th e  exam ined substance from  any  influence of hum idity . 
The construction of th is capacito r is shown schem atically  in fig. 1. 
I n  principle, i t  is a capacitor w ith tw o dielectrics: glass and the  in 
vestigated  substance. Before use the  capacitor wras alw ays carefully 
dried w ith a cu rren t of a ir passing through H 2S 0 4, CaCl2 and P 20 5.
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The capacity  of such a capacito r when connected to  the  m easuring 
circuit is given b y  the  form ula

where A , B  and I ) are constan ts  ( A = B D ) ,  C0 is the  capacity  of the
connecting wires, and  e the  dielectric constan t of the  exam ined sub
stance. C0 is very sm all in com parison w ith C. F rom  (1) we get

A —B(C — C0) v '
L et et and  e12 denote th e  dielectric constan ts of th e  solvent and  

th e  d ilu te  solution respectively. As the  difference AG of the  capacities
for £ = e 12 and  e = e l is sm all, we m ay  w rite

Be*
12 ( 0 , - C g f

or, neglecting higher powers of C0/C,
Be*

AC

«« ^  c 2( l - 2 C 0/G)‘

The dielectric constan ts  of the  tw o non-polar solvents used 
(CCi4 and CcH G, £250= 2 ,2 4 5  and  2,278 respectively) differed only.slightly

■AC.

and, therefore, the  b racketed  expressions in th e  denom inator m ay 
be considered as a  constan t, say H /B ,  yielding finally

*2
£ j 2  —

O'!
(3)

where H  is a  constan t to be determ ined by experim ent. This was done by  
calib ra ting  the  capacito r w ith benzene, carbon tetrachloride, and hexane.
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The determ ination  of the  dipole m om ent of CO(ClSi)2 was perform ed 
by th e  m ethod of d ilu te  solutions; those of the  dielectric constan t 
by  m eans of the bridge m ethod a t audio frequency. A general scheme 
of th e  experim ental a rrangem ent m ay be seen from  fig. 2.

The results of the  m easurem ents are shown in the  following 
ta b le s 1), where / 2 is the  m olecular concentration of the  carbonyl 
cyanide, en  and d12 are  respectively the dielectric constan t and  the  density  
of the  solution, and P ,  is the  m olecular polarization of carbonyl cyanide.

T a b le  I

CO(CX)2 in C6H 6, T =  25° C, R =  16,93 cm3

/ . ¿12 rfl t g/cm* P j cm 3

0,1149 2,444 0,8927 45

0,0548 2,391 0,8823 50

0,0276 2,339 0,8768 60

0,0184 2,320 0,8756 61

P £ °=  64 cm3, ft — 1,5 D ± 5 °/o

1 Prelim inary results were com m unicated a t th e IX  M eeting of P olish  P h ys
ic ists a t W ilno, October 1938.
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T a b le  I I  

CO(CN), in CC14, T =  25° C

/s £12 d12g /cm 3 P 2 cm 3

0,0490 2,306 1,5638 45

0,0323 2,291 1,5727 50

0,0216 2.2S3 1,5775 55

0,0108 2,263 1,5819 60

P “ = 6 4 o m 3, lt t = l ,5 D ± 5 » /„

Thus, the analogy of the chemical struc tu re  of COCl2 and CO(CN)z 
reveals itself also in the  sim ilarity  of their polar properties. Like 
phosgene, carbonyl cyanide shows in spite of th e  presence of two 
strongly po lar groups a com paratively  low value of its  dipole m om ent. 
An approxim ate calculation for carbonyl cyanide based on the known 
group-m om ents for =  CO and =  C-CN gives a value betw een 1 D 
and 2 D.

The only difference in th e  polar character of these substances 
consists in  th e  fac t th a t  the  m om ent of the  carbonyl group is greater 
in  the case of phosgene and sm aller in  the  case of carbonyl cyanide 
th an  the  geom etrical sum of the m om ents of the  C-Cl snd the  C-CÏI 
groups respectively.

These investigations were carried out in the  In s titu te  of E xperi
m ental Physics of the U niversity , Lwów, in 1938—1939. By comparison 
of th e ir results w ith  m odern litté ra tu re  the  au tho r has got the  im pression 
th a t  th e ir value rem ains unchanged.

The au th o r wishes to  express his g ra titude  to Professor S. L oria 
for his m ost valuable advice in  the  course of th is work.
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DIPOLE MOMENTS AN D FREE ROTATION IN 
MOLECULES

B y M. PU C H A L IK , In s titu te  of Physics of the L. W aryński Silesian 
A cadem y of Medicine, R okitnica 

(R eceived March 16, 1950).

To te s t  som e consequences of the concept of free inner rotation  in m olecules 
(a) th e  m ean square dipole-m om euts of som e mem bers of the hom ologous series 
C6H 8(CH2)„C1, C6H 5(CHj)„C1 and C'6HU(CH2)„C1, and (b) the tem perature dependence 
of th e  m ean square dipole-m om ent of benzyl chloride have been investigated . The 
resu lts seem  to  confirm  th e  theoretical predictions of Zahn (1932) and th e  results  
of som e, n ot num erous, experim ents of other authors.

The concept of free ro ta tio n  in molecules is based on the fact 
th a t  in m any cases where the  struc tu re  form ulas provide for the  
existence of geom etrical isom erism, such an isomerism does no t appear. 
I t  is obvious th a t  in  po lar molecules the  freedom  of ro ta tion  cannot 
be com plete; th e  m u tua l repulsion of the polar groups m akes the  trans 
configuration of the  molecule the  m ost probable one, as th is config
u ra tion  is connected w ith a  m inim um  of po ten tia l energy. A ccording 
to  know n chemical facts one m ust assum e th a t  the  difference between 
th e  m inim um  and the m axim um  poten tia l energy is sm all and the 
energy of the  m olecular m otion is sufficient to  be able to  change the  
trans configuration in to  the  cis configuration and  vice versa.

I t  m ay be inferred on theoretical grounds th a t  the m ean square 
dipole-m om ent of molecules which form  a stab le  system  w ith an 
axis of com pletely free ro ta tio n  is given by the following simple 
form ula (Zahn 1932)

7 = t * l + Z v l  ( i)
h

where //„ is the  geom etrical sum  of the  rigid group-m om ents and the 
com ponents of the  ro ta tin g  group-m om ents in  the d irection of the 
axis of free ro ta tion . I t  is ev ident th a t  during th e  ro ta tion  these com po
nen ts keep th e ir m agnitude and their direction constan t. ¡xk are the  
com ponents of the  ro ta tin g  polar groups perpendicular to  the  axis 
of ro ta tion .
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In  the  general case in  which th e  single axis of ro ta tio n  can ro ta te  
freely, th e  value of ,u2 m ay be calculated  by successive application of 
form ula (1).

The determ ination  of the  degree of the  freedom  of ro ta tio n  m ay 
be of g rea t assistance in  solving different problem s connected w ith 
th e  chemical s truc tu re  of molecules. I t  m ay be perform ed by  m eans 
of the  following considerations: The values of the  m ean square dipole- 
m om ent of a chemical com pound w ith  an  incom pletely free inner 
ro ta tio n  depends on th e  tem pera tu re  as well as on the  m u tua l distance 
of the  ro ta tin g  po lar groups. The increase of bo th  these factors m akes 
th e  freedom  of ro ta tio n  m ore and  m ore com plete and  a t  the  same 
tim e th e  m ean square dipole-m om ent tends tow ards a lim iting  value 
given by form ula (1). F o r rigid molecules and for molecules w ith 
a com plete freedom  of ro ta tio n  th e  m ean square dipole-m om ent is 
independen t of th e  tem pera tu re .

I n  th e  case of a hom ologous series hav ing  polar groups a t  bo th  
ends of a  carbon chain the  lengthening of the  carbon chain increases 
th e  d istance of th e  po lar groups, so th a t  the  higher m em bers of such 
a  series ough t to  show nearly  constan t values of th e ir dipole m om ents, 
which corresponds to  a p rac tica lly  com pletely free ro ta tio n . This was 
confirm ed by  the  investigation  of B iedinger (1938) on th e  m em bers 
of th e  homologous series B r(C H 2)„Br and C6H S(CH2)„C6H 5.

More extensive system atic  researches on th is  m a tte r  seemed to  
be advisable, and so th e  au th o r decided to  verify  the  va lid ity  of the  
above m entioned considerations on th e  inner ro ta tio n s  in  molecules 
by  experim ental investigation  of some m em bers of o ther homologous 
series. The de term ination  of ¡j? were carried o u t by  the  m ethod of 
d ilu te  solutions, benzene and carbon tetrach loride being used as non 
po lar solvents. The dielectric constan t was m easured by m eans of 
a  bridge m ethod described in  a previous p aper ( P u c h a l ik  1950).

The m em bers of th e  following hom ologous series were investi
gated : (1) C5H 9(0H 2)„C1, ( n =  0 ,1 ,2), (2) C6H 5(CH2)„C1 ( n - 0 ,1 ,2), 
(3) C6H u (CH2)„C1 ( n =  0).

The m ean square dipole-m om ents of the  following chem ical 
com pounds belonging to  th e  above series were determ ined for the  
first tim e: (1) Cycio-penthyl chloride, cyclopenthyl-m ethyl chloride, 
cyclopenthyl-ethyl chloride, (2) /3-plienyl-ethyl chloride; for chloro- 
benzene and  benzyl chloride the  resu lts obtained are in  good agreem ent 
w ith  previous determ inations of o ther au thors, (3) Cyclohexyl chloride; 
the  m ean square dipole-m om ent of 2-p-cym enom ethyl chloride has 
also been m easured.
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The results of th e  m easurem ents are shown in  the  following four 
tab les, where / 2 is the  m olecular concentration  of the  dissolved polar 
substance and R  is th e  m olecular refraction.

T a b le  I  
Homologous series C5H 9(CH2)„C1 

A . C yclopenthyl chloride in CC14

2ö° C, n D = 1,4488 <Z =  0,99458 g /cm 3 P  =  28 ,1 5 c i

u £12 ¿12 P 2 cm 3

0,1454 3,079 1,4977 109

0,0850 2,726 1,5289 115

0,5574 2,526 1,5499 110

0,0324 2,393 1,5635 107

|V = l , 9 8 D ± 5 ° / „

B . C yclopentliy l-m ethyl chloride  

t =  25° C, R =  32,78 cm 3

in CCI,

fz £12 ¿ 1 2  g /cm 3 P 2 cm3

0,0683 2,749 1,5297 148

0,0493 2,627 1,5502 154

0,0323 2,438 1,5585 142

0,0192 2,377 1,5718 147

|V=2,3 5D±5°/o
C. C yclopentliy l-ethyl chloride in  CC14 

f =  25° C, R =  37,39 cm3

U Cj2 ¿12 P a cm 3

0,0780 2,823 1,5223 150

0,0473 2,567 1,5469 157

0,0285 2,453 1,5611 157

0,0179 2,363 1,5672 156
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T a b le  I I  

Homologous series C6H 5(CH2)nCl
A. B enzene chloride in benzene

i =  25° C, nD=  1,5219, d =  1,0952 g/cm 3, 22= 3 1 ,2 6  cm3

1z dn  g /cm 3 P 2 cm 3

0,2601 3,163 0,9295 65

0,1593 2,838 0,9138 77

0,1021 2,649 0,8993 82

0,0647 2,363 0,8875 84

P ”  =  8 4 cm 3, [ îi3=  1,58 D ± 5 ° /0

B . B en zy l chloride in benzene  

t — 25° C, nD =  1,5362, d =  1,09259 g/cm 3, 22=  36,12 cm 3

h £ 1 2 rf12 g /cm 3 P 2 cm 3

0,2506 3,374 0,9408 85

0,1455 2,852 0,9118 89

0,0826 2,606 0,8961 91

0,0436 2,482 0,8857 105

fV 2~  1,86 D ±  5°/0

C. /?-phenyl-ethyl chloride in CCl4

C e =  5,43 nD =  1,5280 d =  1,0655 g /cm 3 P =  37

tension  <r = 42,7 dyn/cm V iscosity  ft =  0,0192 cm 1

U t'1 2 rfI2 g /cm 3 P 2 cm 3

0,2310 3,530 1,4492 108

0,1345 2,988 1,4997 115

0,0742 2,636 1,5559 121

0,0449 2,456 1,5537. 111

^ /.2=  1,92 D ± 5 » /„



D ipo le  M om ents and Free D otation  in  M oled les 97

T a b le  I I I  

Cyclohexyl chloride CCI* 

í =  25° C, n D ~  1,4606, d = 0,9910 g /cm 3 B - 32,80 cm3

ft e12 d12 g/cm 3 1 \  cm3

0,0973 2,888 1,5170 130

0,0847 2,810 1,5155 136

0,0509 2,560 1,5463 128

0,0289 2,440 1,5618 130

K ^=2,2D ±5»/0

T a b le  IV  

K arv ak ry l chloride in CC14 

t — 25° C, nD= 1,5233, d= 1,0104 g /cm 3 I? =  51,29 cm3

ft £ 1 2 dn  g /cm 3 Px cm 3

0,0861 2,690 1,4905 145

0,0325 2,364 1,5097 142

0,0138 2,260 1,5309 134

fV  =  2,l jD±5“/o

These experim ental results show th a t:  (a) In  good agreem ent 
w ith the  above m entioned theoretical considerations, the  change of 
the  m ean square dipole-m om ent for the  two first homologous series 
becomes sm all w ith increasing n,  which m eans th a t  the  freedom  of 
ro ta tio n  becomes soon p ractica lly  com plete. F o r the  second series 
th e  lim iting value of the  m ean square dipole-m om ent can be calculated 
and  one gets the  value 1,9 D, possessed already  by /3-phenyl-ethyl- 
chloride. (b) The m ean square dipole-m om ent of benzyl chloride is 
less th an  of cyclohexyl chloride and cyclopenthyl chloride. The change 
of the  benzene ring  to  an  alicyclic ring produces thus an  increase of 
the  m ean square dipole-m om ent. U nfortunately , the  num ber of the  
investigated  m em bers of each series was ra th e r small.

These investigations were perform ed in  the  In s ti tu te  of E xperi
m ental Physics of the  U niversity , Lwów, b u t were in te rrup ted  in 1941

7
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by  the  ou tb reak  of w ar betw een the  Soviet U nion and G erm any. B y
com paring th e ir resu lts w ith  m odern lite ra tu re , i t  has been ascertained 
th a t  th ey  have re ta ined  th e ir  value up  to  now, as th e  s ta te  of the  
experim ental knowledge of th e  dependence of the  m ean square dipole- 
m om ents on th e  freedom  of ro ta tio n  seems to  have advanced b u t 
little  during these las t years.

I t  would be in teresting  to  be able to  verify the  above m entioned 
conclusions by  m eans of m easurem ents of fu rth e r m em bers of the  
hom ologous series investigated  in  Lwow; un fo rtuna te ly , i t  is now 
very  difficult to  ob tain  the  catalyzers needed for th e  synthesis of 
these com pounds.

As the  increase of the  tem pera tu re  has a  sim ilar effect upon 
th e  m ean square dipole-m om ent of the  molecules w ith  an incom plete 
freedom  of ro ta tio n  as the  increase of th e  carbon-chain length , th e  
au th o r has decided to  investigate  the  dependence on tem pera tu re  
of th e  m ean square dipole-m om ent of benzyl chloride. These researches 
have been carried o u t in  th e  In s titu te  of M edical Physics of the  Silesian 
M edical A cadem y. The determ ination  of the  m ean square dipole- 
m om ent in  the  tem pera tu re  in te rvall from  20° C to  80° C have been 
perform ed by  the  m ethod of d ilu te  solutions, refined petro leum  being 
used as non-polar solvent. The polarization  of benzyl chloride has 
been calculated  by  m eans of th e  form ula (Müller 1933)

where n2 is the  num ber of gram  m olecules of the  dissolved po lar 
substance, and  V12 are respectively the  dielectric constan t and the 
volum e of the  solution, and V 1 are  the  sam e quan tities  for the  non 
po lar solvent.

The dielectric constan t has been m easured by m eans of the  
bridge m ethod, a  m easuring capacito r being used as in the  previous 
w ork of th e  au th o r ( P u c h a l ik  1950). The m easuring appara tu s  p ro 
duced by  the  establishm ents „D uo“ a t  Gliwice is sim ilar to  the  one 
previously used. I t s  schem atic d iagram  is shown in  P ig. 1. M odern 
vacuum  tubes and  feeding from  a lte rn a tin g  cu rren t netw ork  has been 
used. The accuracy of the  determ ination  of th e  m ean square dipole- 
m om ent was abou t 3 per cent. The whole arrangem ent was tested  
by m eans of a  solution of benzyl chloride in  benzene.

The results of the  m easurem ents are shown in the  following 
tables.
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T a b le  V. i = 2 0 ° 0

*2 T jj em3 £ 1 2 | t 2 F ^
P j [cm3]

0,1920 77,83 2,310 13,02 55,36

0,1478 79,05 2,632 16,15 79

0,1114 62,30 2,740 11,51 102

0,0901 71,40 2,342 13,55 94

0,0290 71,11 2,053 15,73 93

| / ^ = l , 6 9 D  

T a b le  V I. i= 4 0 ° C

*2 V n  cm3 e i2 g + 5 v ‘ " " ‘) P 2 [cm 3]

0,1920 79,32 2,446 13,02 66

0,1478 80,60 2,585 16,15 78

0,1114 63,52 2,650 11,51 99

0,0901 72,90 2,230 13,55 85

0,0290 72,52 2,020 15,73 92
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T a b le  V II. í =  60°C

n z Vu cm ! E12 t r - 2 7iCcm3]
P 2 [cm 3]

0,1920 81,15 2,444 13,02 69

0,1478 82,50 2,556 16,15 81

0,1114 65,08 2,640 11,51 103

0,0901 74,49 2,200 13,55 86

0,0290 74,04 2,006 15,73 95

\ J ? — 1,79 D

T a b l e  V III . <=80° C

Vn  cm 3 £12 P 2 [cm 3]

0,1920 82,86 2,360 13,02 62

0,1478 84,10 2,526 16,15 82

0,1114 66,34 2,583 11,51 102

0,0901 76,01 2,114 13,55 9S

0,0290 75,68 1,994 15,73 104

1.35 D

These experim ental results show th a t:
(1) In  th e  case of petro leum  as non-polar solvent one obtains 

for the  m ean square dipole-m om ent of benzyl chloride a som ew hat 
sm aller value th a n  by using benzene as solvent.

(2) The m ean square dipole-m om ent of benzyl chloride varies 
very  little  w ith tem pera tu re .

(3) Thus, one is d raw n to  the  conclusion th a t  the  freedom  of ro ta 
tion  in the  benzyl chloride molecule is n o t ye t com plete.

The au th o r wishes to  express his g ra titu d e  to  Professor S. Loria, 
H ead  of the  D epartm en t of E xperim en ta l Physics of th e  U niversity , 
Lwow, for his valuable advice d u rin g .th e  first p a r t  of thi§ work, and 
to  th e  late  Professor S. P ila t, H ead  of the  In s titu te  of Petro leum  
Technology a t  Lwow for his valuable suggestions and for supplying
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him  w ith  a ll th e  needed substances. H e takes also pleasure in thank ing  
Professor W . Le^nianski, H ead of the D epartm en t of Organic Technol
ogy of the  Silesian In s titu te  of Technology, Gliwice, and D r. W. Ma- 
rohski for supplying him  w ith  benzyl chloride.
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On the Theory of Non-Local Fields
J e r z y  B a y sk i

P h y sica l In s titu te , N icholas Copernicus U n iversity . Torun
A p r i l  3 0 ,  1 9 5 0

R ecently Y u k aw a1 in itiated  a relativ istic theory of particles w ith  fin ite radius 
based on Born’s ideas of non-localizability and reciprocity. The non-local field  
operator U  satisfies the follow ing com m utation relations

[d/ i , [ ^ ,U ] ]  =  «s l7, [*/«,[:«>,U]] =  A* U, [df, , [*/t , U]] =  0, (1)

where dfl is the displacem ent operator

[Xp,dv]=6f tp. (2)

In  the representation where xft are diagonal U  is a m atrix <a/|i7|a;"> which 
m ay be regarded also as a  function U (X ,r)  w ith

X fi= lf2 (X ft+  x-fi), rft — (Xft Xjj). (3)

U {X ,r)  satisfies the equations

[(r-r)— V ]U (X ,r )  =  0, ( r . 3̂ j  =  0. (4")

E quations (4") m ay be treated as supplem entary conditions. The general
solution of (4) is

U (X ,r)  = £ ( u A{r)elV '-V+ w l ( r ) e - ‘(k-V )3 { (k .r ) )d ( ( r - r )— V )  (5)
k

w ith  (k-k) = — x1.
I f  the scalar TJ(X,r) shall describe spinless particles, then no direction can be 

priviledged except kh so that uk {r), w k [r) m ay depend only on (r-r) and (r-k),  which 
m eans th at th ey  do not depend on r„ at all, due to  the supplem entary conditions. 
Thus, for spin zero we m ay w rite in (5) «*, w* instead of v *(r), w*(r).

W e m ay establish a correspondence between a local quantity a  and a non
local A  in the follow ing w ay

a(X) —>■ J d lr <X'\A\x"y. (6)
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If A  itself is local, then it  is of the form

<x' IA Iæ"> =  a(x') Ô (x'— x") =  a(X) 6 (r)

and the correspondence becom es an iden tity . From (6), there is a correspondence 
between th e  traditional local field function ip[X) and the non-local U(X.r):

t l > ( X ) - ^ f d i rU (X ,r )  (7)
or

^ ( a b e ^ ^ + h î e - ^ ) ^ ( u he‘̂ ^ + u - t e ~ ^ ^ ) S k , (V)
k k

where S k is the surface of the ellipsoid

Sk = f  d * r ô ( ( k - r ) ) i ( ( r . r ) - V .  (8)

(7') enables us to  write im m ediately the com m utation relations for U (X ,r).  W e 
see th at uk Sk m ust satisfy the sam e com m utation relations as a¡¡. Hence, w e m ay put

U ( X , r ) =  V l  (ahe«*-x)+ b ï< - ' (* ‘V )  ¿((k-r)) ¿ ((r-r)— # ) ,  (9)
jL J  ¿>/f 

k
where «¿,6* are the well-known m atrices satisfying the com m utation relations

[flA,a?J=[6*,&î] = — (10) 
2 \'k* +  je F

w hile all other com m utators vanish.
In order to  have a com plete theory we m ust find the im portant bilinear expres

sions for the H am iltonian energy density, charge density etc. To do so w e have to  
replace the products of y ,  i¡>* and their derivatives by  corresponding expressions 
in term s of U and U*. The correspondence rule (6) yields

y * ( X ) y ( X ) - > f d * r < x ' \ U * U \ x " > = j d * r  Jd*x"'<x’\U*\x'"'> <x"'\U\x">. (11)

W ith the aid of the notations

„  x ' + x "  x '+ x " '  x ' + x "
X  — , X  _ ,  X  2

r —x — x
(11) becomes

xp*(X) y ( X ) - + f  d*rJd *x '" U *{X ',r ' )U (X ",t" )  

= f  d * r 'J d ir" JJ*(X +  r" ¡2 ,r ') l ’( X +  r'/2,r").

( 12)

(13)

B y rew ritting the traditional H am iltonian for a scalar local field by means 
of (13) and using (9) and (10), we easily find th at the new Ham iltonian has the same 
eigenvalues as the former and y ields the correct field  equations (4) in  th e  operator 
form. The traditional expression for the charge density, rew ritten w ith  the aid  
of (13), yields also, if integrated, the correct eigenvalues for the total charge. Thus, 
the theory of spinless non-local fields in vacuo yields the sam e results as the local 
field form alism.
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Interaction b etw een  tw o sp in less fie ld s. L et us consider the sim plest 
possible typ e of interaction between a com plex and a real scalar field:

H'(x) =  gy*(x) <p{x) g>(x). (14)

This interaction energy density is  subject to  th e  well-known inconsistencies 
inherent in any local field theory. To take into account the non-localizability we have  
again to  apply the rule (6). W e lim it ourselves to  tw o special cases:

(1) <p local, ip non-local. In th is case th e  correspondence rule (6) yields

H '(X) =  g j d ' r ' f  d*r" U * (X + r" /2 ,r ' )  <p I x —  U (X + r ' /2 ,r" ) .  (15)

(2) local, (p non-local. In th is case w e find

W ( X )  =  g J  d* r y * ( X — r/2) V( X,  r ) i p ( X +  r/2),  (16)

where V ( X , r ) is the non-local neutral field . The interaction appears suitably spread 
out over the ellipsoids representing th e  non-local particles.

L es us calculate from (16) th e  self-energy of a neutral non-local particle a t rest:

p
Here, the in itia l state, denoted by  0, represents one neutral particle a t rest

and the interm ediate state, denoted by  p, represents a pair of charged particles

w ith  m om enta p and — p. The m atrix elem ent 11-̂  differs from th e  usual one by  
a factor a:

« =  A - ^ r e — (̂ ' ^ /2 <J(«r0) d((r-r)— X2) (18)o„
w ith

p ft= ( p \ b 2+ - ^ .  ?,,=(—p  I |'p2+-ins).

S 0 is now sim ply the surface of a sphere w ith radius X. Performing the integration, 
w e get

_  sin Xp
Xp

(19)

Thus, instead of a  divergent integral over dp  we get a convergent one w ith  th e  
„damping factor“ a2 in the integrand.

W e have shown th at the non-local field m ay be treated by  the usual H am il
tonian m ethod. Contrary to the opinion expressed by  Y u kaw a1 it  is neither 
necessary to  reject th e Schrödinger equation not to  replace the Ham iltonian form a
lism  b y  the S-m atrix scheme. W e hope th at the well-known convergence difficulties 
m ay w ell be overcom e in term s of th is now form alism . Moreover, th is theory m ay  
be able to  put the problem of elem entary particles w ith  higher spin in an entirely  
new light.

1 Y u k a w a  H ., P liys. R ev ., 77, 219 (1950).
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