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JAN BLATON
1907-1948

Obituary notice by A. RUBINOWICZ, Warsaw.

The tragic death of Professor Jan Bla-
ton on 17th May 1948 as the result of an
accident in the Tatra Mountains was a severe
blow to all of us. We have lost in him,
a physicist, devoted heart and soul to scien-
tific research, a teacher who carried away
his students and who kindled in them the
flame of desire for independent scientific
thought, a man with a character like rock
crystal. The knowledge that this cruel blow
need never have fallen and that a little'
more presence of mind might have sufficed
to prevent the terrible catastrophe has
alarmed us and has, if possible, plunged
us all into even greater sorrow.

Jan Blaton was born on 17th May 1907 in Sporysz in the beautiful
hills near the locality of Zywiec. He was.the fifth and youngest child
of a worker’s family. Presumably it never entered his head that the
mountains in which he had spent his childhood, those mountains
which he loved so dearly and which in his young days he so passionately
explored, were plotting his untimely death.

After his having graduated, with honours, at the gymnasium
at Bielsko, we find Blaton enrolled in 1925 at the Faculty of Civil
Engineering at the Lwow Institute of Technology. He was, however,
more interested in theoretical problems than in technical questions
and therefore he passed to the General Faculty of this Institute in order
to study physics. It was here, in 1928, that | made his acquaintance.
He was an uncommonly capable student, and his progress in the study
of theoretical physics was astonishing. Even so, | was quite taken
aback when this young enthusiast for theoretical physics came before
the summer holidays after barely one year of studies to ask me for
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a subject for this magister examination thesis. | was, however, more
astounded still when, after the holidays, he showed me the thesis
almost completed. This work, on the intensities of the quadrupole
lines in the Balmer series, was the first of a series of his publications
concerning multipole radiation, among which we find his most valuable
scientific achievements.

In 1929 he became my assistant. He held this position only for
a few weeks, however, since he was at that time under court sentence
for two weeks detention —the sentence remaining suspended —for
the distribution of communist leaflets. Devoted, to the point of self-
sacrifice, to the cause of the progress of humanity, Blaton had entered
directly after he had passed his matriculation into contact with
a group of students belonging to the students’ union ,Zycie* (Life)
and in spite of intense scientific work he continued to be politically
active. Considerable efforts were needed to make it possible for him
to remain at the Institute, if only in the character of a student.

In March 1931 Blaton took his magister degree and less than two
months later he submitted a second paper for publication. Its purpose
was to investigate the problem of whether, in the scattering of light
quanta by atoms, two photons can be turned into one photon.

Blaton’s third paper was presented to the Polish Academy of
Sciences and Letters in July of the same year. In it the author en-
deavoured to prove that the electric field of a wave of light, despite
its periodicity, causes a Stark effect.

In 1932, Blaton was awarded a National Culture Fund Scholarship
and, on the basis of his thesis on the dispersion of light in the vinicity
of quadrupole lines, he took his doctor’s degree at the Lwow Institute
of Technology. Together, in this same year, he and | wrote a report
on quadrupole radiation for the ,Ergebnisse der exakten Natur-
wissenschaften*.

Continuing to benefit from the National Culture Fund Scholarship,
Blaton proceeded to Munich where, under the direction of Professor
Sommerfeld, he continued his studies until the advent of Hitlerism
forced him to leave Germany. He then went to Zurich.

From 1933 to 1935, after his return to his native land, Blaton
occupied the post of an assistant in the Department of Theoretical
Physics at the University of Wilno. One of his best scientific achieve-
ments, that is his participation in the discovery of magnetic dipole
lines, dates from this period. In 1933 H. Niewodniczanski discovered
that in mixtures of lead vapour with helium and argon there appear
in the spectrum of high frequency electric discharges forbidden lines
of non-io'nized lead. In a letter dated November 1933, addressed to
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the Editors of the Physical Review, Blaton together with Niewodni-
czanski came to the conclusion that one of these lines must be a magnetic
dipole line not containing any admixture of electric quadrupole radi-
ation. Niewodniczanski, by investigating its Zeeman effect, confirmed this
result later and thus finally discovered the magnetic dipole radiation.

The year 1934 saw Blaton submitting his thesis for admission
as lecturer of Theoretical Physics at the Wilno University. In it the
author shows how to calculate the intensities of magnetic dipole lines in
case of any coupling.

In 1935 Blaton published a paper on quaternions, semivectors
and spinors, investigating the relations between these quantities.

Blaton was appointed, in 1936, Head of the National Meteorol-
ogical Institute. He occupied this post until the outbreak of the war
A proof to the versatility of his intellect is the rapidity with which
he mastered meteorology, a sphere of science at that time quite unknown
to him. Two papers of his, quoted in meteorological textbooks, provide
evidence of this. In one, the author investigates the dependence of
the wave lengths of the gravitational waves on depth, employing
methods used in wave mechanics. In the other, he gives for any plane
fluid motion a simple kinematic relation between the rate of change
of the velocity direction of the fluid motion and the radii of curvatures
of the path of the fluid particles and of the stream line. Applying
this formula to the dynamics of the atmosphere, he demonstrates
how it is possible to calculate changes in the direction of winds with
a horizontal movement in the atmosphere with a knowledge only
of the coefficient of friction and the data derived from synoptic maps.

Since the post he then held involved a considerable degree of
responsibility, it was necessary for Blaton to concentrate his whole
mind and attention on meteorology; yet he found the time, in 1937, to
write the last of his multipole papers. In it he explains how to split
the radiation created by any periodic electric currents into electric
and magnetic multipole radiations. Unfortunately, this paper appeared
only in the Acta Physica Polonica and was overlooked by certain
foreign authors.

During the German occupation of Poland, Blaton lived at the
Jegiel District Forestry House and, in order to lecture on Theoretical
Mechanics and Physics at the clandestine University, journeyed to
Warsaw at regular intervals until July 1944. His enthusiasm in over-
coming difficulties and the spontaneous admiration he aroused in
his students are proved by the fact that amidst the difficult war con-
ditions lie managed to educate several pupils who have have already
become independent scientific workers.
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During the war years Blaton was also occupied with writing
a textbook of mechanics. Judging from what he told me about it, it is
perfectly up to date and answers all our present-day needs. So far,
it has been impossible, unfortunately, to find a publisher willing to
bring it out.

October 1944 found Blaton helping to organize the Marie Curie
Sktodowska University in Lublin. At the outset he accepted the chair
of General Physics there and in 1945 that of Theoretical Physics.
From the Autumn of 1946 he was professor of Theoretical Mechanics
at the Jagellonian University in Cracow.

In May 1947, at the first post-war symposium on physics in
Warsaw, Blaton spoke on the collision of elementary particles in
relativistic mechanics. He further developed this work during his
visit to Copenhagen in the Autumn of the same year and the first
few months of the next. It appeared posthumously in the publications
of the Danish Academy.

In Copenhagen, Blaton also devoted much time and thought to
the problem of the forces causing /;,-mesons to enter into the compo-
sition of ,-r-mesons. He surmised that these forces are caused by the
electron-neutrino field. One week before his death he lectured on
these deliberations at the second Warsaw symposium in May 1948,
emphasizing, however, that his idea was open to criticism. Despite
the fact that he did not publish his considerations we find a mention
of them in a note of Professor O. Klein.

Thus it was that Jan Blaton met his death at the very moment
when, following the forced inactivity of the war years, he was entering
a period of increased scientific activity. He recommenced his scien-
tific work with wonderful energy. Pitiless fate, however, plucked him
from our midst at the very moment when he was entering upon the
path which would possibly have led him to his life’s greatest scientific
achievement. Among Polish physicists his memory will remain alive
for ever, just as | shall keep for ever in my soul the memory of one
who was my good friend as well as a pupil dear to my heart.

In 1949 Jan Blaton was posthumously awarded a National Scien-
tific Prize. He was being the first Polish physicist to receive it.

Papers published by the late Jan Blaton

(1) Uber die Intensitdten der Multipollinien in der Balmerserie, Z. Phys.-, 61,
263 (1930).

(la) 0 natezeniu linij multipolowych w serii Bahnera, Spraw, i Prace Polsk.
Tow. Fiz., 5, 17 (1930).
(2) Gibt es eine Doppelstreung von Lichtquanten? Z. Phys., 69, 835 (1931).
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(3) uber die Richtungsquantelung der Atome durch eine Lichtwelle, Bull.
Int. Acad. Polonaise Sei. Lett.,, Serio A, 599 (1931).

(4) Nhber die Dispersion des Lichtes in der Umgebung von Quadrupollinien,
Z. Phys., 74, 418 (1932); 82, 684 (1935).

(5) Die Quadrupolstrahlung (with A. Rubinowicz), Erg. exakt. Naturwiss.,
11, 176 (1932).

(6) The Nature of the Forbidden Lines in the Pb I Spectrum (with H. Nie-
wodniczanski), Phys. Rev., 45, 64 (1934).

(7) O natezeniach linij dipolowych magnetycznych. Wilno 1934.

(7a) Uber die Intensitdten magnetischer Dipollinien, Z. Phys., 88. 155
(1934).

(8) Quaternionen, Semivektoren und Spinoren, Z. Pliys., 95, 337 (1935).

(9) Versuch einer Anwendung des Ferm nt’sehen Prinzips auf geophysikalische
Wellenprobleme, Biul. Tow. Geofiz. w Warszawie, nr 14 (1937).

(10) Zur Theorie der Multipolstrahlung, Acta Pliys., Polonica, 6, 256 (1937).

(11) Zur Kinematik und Dynamik nichtstationdrer Luftstromungen, Biul.
Tow. Geofiz. w Warszawie, nr 15 (1938).

(12) On a Geometrical Interpretation of Energy and Momentum Conservation
in Atomic Collisions and Disintegration Processes, K. Danske Vidensk. Selsk.
Mat.-fys. Medd., 24, No 20 (1950).
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ON THE THEORY OF SPONTANEOUS AND ,FORCED*“
iT-CAPTURE

By Marian GUNTHER, Institute of Theoretical Mechanics, Univer-
sity of Warsaw, Warsaw

(received November 27, 1948)

The main purpose of this paper is to calculate the probability of electron
If-capture on the basis of the theory of interaction of nucleons with electron-neutrino
fields (1), in such a way as to avoid as far as possible all special assumptions
regarding the magnitude of the nucleon radius and the behaviour of the electron
wave-function inside it. Our final formulas contain only the range of the nuclear
forces, i. e. the meson mass.

We shall establish also the dependence of the probability of a If-capture
process on the atomic number Z of the element which is thus transformed into
another one with the atomic number Z— 1. Finally, we shall be led to draw some
consequences regarding the hypothetical ,forced*“ If-capture probability when
irradiating a suitable material by antineutrinos — this being a consequence of
the neutrino-hole theory.

Hamiltonian of the problem

In order to introduce consistent notations for all the five fields
(electron, neutrino, meson, proton, and neutron fields) it is necessary
to give first a short survey of their basic equations.

(a) Electron field

The differential Hamiltonian of the electron field is

JERl=ip{e<p+a(cp —eA) + Bmc2}y, 1)

where e is the (negative) electron charge. The spinor components of y
obey the following anticommutation relations 1

[v.(*)>ve(® )]+ =" (® —**)e )
Introducing the orthonormal set of functions (c-numbers) un describing
the different states of the electrons and being the eigenfunctions of

1 As argument of a function x stands for ag, a2, x3.
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the time-free wave equation, according to the formulas

Efu(m™eg>+t(cp-cA) + pmc*}u{n 3)

j vnu~dr=anm, (4)

we can expand the ip function (g-number) in the series
y>=Sanu(@ , (5)

with the a’s obeying the commutation relations (2)
[&n"ni]+* . 3)

The total integral Hamiltonian of the electron field becomes thus

Hel= fJleldr=2 & nanE A = N ? = anan. (7
We must further remember that the application of the a,, or ip oper-
ations to the state function means annihilation and the application
of an or ip —creation of electrons.
The operators describe the number of electrons occupying
the w-th state with the eigenvalues o and 1.
When dealing with hole-theory it is also convenient to introduce
the operators
anan=N()=1-N K for z£><o, 9)

i. e. for the states of negative energy accounting for the number of
positrons, the energy of these positrons being

E(p)——E7). (10)

(b) Neutrino field

All the neutrino field quantities obey the same equations as the
quantities of the electron field, the only difference being that we must
put m=o0 and e=o.

We shall use the following notations for the neutrino field quan-
tities

s for the neutrino field, instead of ip for the electron field,

B B 3 03 8 3 n 3
Vv 3 3 3 3 3B B thn 3
i) 5 )
-pEgc’) yy yy yy y> yy yy L1r<np) yy
yw v(e)

N {a) yy yy yy yy yy yy N {p) s’
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Thus, instead of (7) we get

# nno= fH nnadx=J>jbvbvEIn)= ' (11)

We shall deal here consistently with the convention that in processes
like the Jf-capture electron and antineutrino or positron and neutrino
are always created and annihilated together. Therefore, only <py- or yy-
like products will appear in the interaction term.

(¢) Proton and neutron fields

All that has been said about the electron field is also valid, in
principle at least, for the proton and neutron fields, only the wave
equations (analogous to (3)) can be more complicated owing to the
forces of non electromagnetic origin.

We introduce the following notations

W for proton field, o for neutron field, instead of y for electron field,

-Eft s> si A mo B B " »  G*n

Pli. sj U/n , " 5 ) 511N )j » ji

y (ft) 55 55 55 '{:’\y 55 55 >5 55 55 N @) 55 55 55
T?Kﬁ nw

-t 5% 55 55 L*m ss 55 55 5) 55 1 s 50 55

Then we have,instead of (3),

for protons Hpr—jJIwd r = (12)
t H

and for neutrons Hreutr=JHoeutri»'=AmAnE{f?= N*"E"m (13)

(d) Meson field

The meson field we shall deal with here is a certain combination
of the charged vector and pseudosclalar fields. We shall start first
with the Meller-Eosenfeld combination, enabling us to perform the
calculations for the vector and the pseudoscalar parts of the field until
a certain point in a uniform way, owing to the formal invariance of
the equations against five dimensional rotations. To get the other
combinations after the vector pseudoscalar parts have been separated
means simply to ascribe different coupling constants to their inter-
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action terms with the other fields. The equations of the Meller-Rosenfeld
field are(4)

G = b$t-jEV+ SN vV = (14)
4 4
0'*=0,1,2,3,4) (15) 2 j £ =0'" db6)
v=0 v=0
We can get the equations (14) and (15) together with their conjugates
from the following differential Lagrangian

/i=0 -0 h=0/;=0 =0 /<=0 (17)
To have the terms needed in our problem we must put(5)
yM<p + g\&yMW,
(18)

the gf's being the coupling constants. Quantities with the ,,t“-sign are
defined as follows:
it ig>yW=iafi (the same for @
Mp=Mp, Zn=Xt* (//,v—=f0,3,2j3), (19)
<*=-©,4, Slv=-S M, zZl=~x*- (20

The well-known relations between the y’s and the Dirac a and (i opera-
tors are

yW=—¢fav (v=3,2,3), y&= /i, y(°)=y(i)lyQyQR)yp) = {aiaza3. (21)

In order to split the field into its vector and pseudoscalar parts it is
sufficient to observe that the fifth coordinate x0 was introduced from
a purely formal point of view, i. e. all field quantities are independent
of it. In this way we get instead of (14), (35) and (36) two independent
systems of equations:
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the egs. (22) describing the vector (3), and (23) the pseudoscalar part
of the field. According to the remark made before it is sufficient to
change the g’s in (.18) into SOuand MO to get other combinations of
these field than the Meller-Rosenfeld mixture.

Introducing the canonical variables jt, by means of the Lagran-
gian (17)

TH=YN{~~iG" & Tr=s8lp~~ic
from which it follows that
M= «1= 0, n\,=nv, (v—0,1,2,3) (25)

and eliminating and y\ as having vanishing dynamical conjugates
with the help of the equations (15) and (24), as follows:

3 3

V—1 V—\

we get the differential Hamiltonian of the meson field and the inter-
action in the form

JTmei= Hiti+ H*?+ //« ct+ Jfps. (27)

These four terms correspond to the vector and pseudoscalar parts
of the field and to the interaction of the vector and pseudoscalar parts
with other fields respectively, and are

j?iect=rot yrot x+ c2n,ji) + ~div n- di\ n+fj2-/x, (28)
grad Xo'Srad Zo+ "o + fAXoXoi (29)
> ->u-> > >-> o 0 — 1 —

rotx+ Sjrotx+ SIS —2MAdiv + ¢ div

> > > ->-> n

—%,M—%M—icn, St.+ icnS.0,

> >
J7pa=S.,, gradjo+ 5.0, grad Xo+ S.0S.0 N
yfo-~o0 *CNO'S40+iC710 m

Ordinary threedimensional notations have been used in these formulas,
the threedimensional vectors occuring there, having the components:

Z= @#xfo? Ni=  A2/mp A 93)

-a

> _ -> (32)
S—(S23S3),512, St.—(¢41,S42,843), 'SQ—($10'~20) s 30)-
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Finally, to quantize the Hamiltonian according to Bose statistics,
we postulate the usual commutation relations:

9%,(x )= \n(x), %i{%)]— X ) (33)

all other pairs of meson field quantities commuting.

(d) Total Hamiltonian

In order to get the total Hamiltonian of all the fields, we must
add the integral hamiltonians of these fields and those of the inter-
action terms (space integrals of egs. (30) and (31)) and — strictly
speaking —the terms due to electromagnetic interactions also (the
one, at least, which corresponds to the interaction between protons
and electrons). But, as we shall see later, we need only know the form
of the zero Hamiltonian for the meson field and the ,,meson® inter-
action terms given by the equations (28), (29), (30) and (31).

Canonical transformation of the Hamiltonian

The ,source* quantities in the interaction terms (30) and (31)
of the meson field Hamiltonian can be divided into two groups with
respect to their magnitude in the case of slow ,source“ particles

(electrons, protons, etc.). Hamely, there are quantities as ill, M0, , Si0
the expectation values of which vanish for slow particles with vanishing

velocity, and others as AT, 8, S.0 with non-vanishing expectation
values.

As we shall limit ourselves to nonrelativistic velocities for protons
and neutrons contained in the nucleus (and even for the electrons
in the Ji-shell), we can eliminate, in this approximation, the meson

guantities x, %9, n, n0from the interaction terms by a procedure equi-
valent to the introduction of the static Yukawa potential instead of
them. We can do this by means of a suitable canonical transformation
of the Hamiltonian. We proceed as follows: first of all, we divide the
sum of and Jfp3into three parts:

the ,,big“ one

£[(>>=s rot x+ S rot / —% Mi div rc-f* Mtdiv n
r fal (34)
>»

+ &80, grad Xo+S-o, &ad Xo,
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the ,,small* one

w4 ‘474 o
jH2)=——xXxM —xM —ic7iS4.+ icnSi.— XoMo—XoMO— icji0S 40-\-iC7z0Sio (35)
and finally

JI"=S8S +\ Afsi¥s+ £ .0S.0, (30)
11
the last one not containing meson field quantities at all. We write
down the transformation matrix in the form elK and have for every
operator Q
Q= elKQe~IK, 37)

where Q means the operator in the ,new" coordinates. We have thus

= elK(H{ t+ Hfa + H'wu + H;S)e~tk=
=(I+iK-"K2+...)(H"+HA "+ HA+Hm+H")

X (I-iK—=\K*+...)= (38)
= Bi°,xt+ Hfl + ilK, et+ Bfg]_+ H()+ i[K,HO)JL
-*[T, [K,H™ct+ H"+ ..
If we choose now K to satisfy
[K,HGt+H$]_=iH {i), (39)
we get
Smz=H% +H~+r,[K,HO]_ + H". (10)

How, introducing the Yukawa potential function (7)
e~fr
V(r)=TZ5" )
which satisfies the ,static* meson field equation
{d-V}7(r)=0 for r+o (42)
and remembering the formula

f M) {A-" (N dT.=IMHA-DCp-<pf{A- 1< 2F (n1dr= -2 (0) (@3)

valid for arbitrary functions 9 we get for K satisfying (39)theexpres-
sion _
KJJV (x-Xx") Ewmar) div' x(x)- + Mi{x) div' J®")
—S(x) rot' n\x)~S(x) rot n(x) (a4)

—§>.O{x) grad' mo(a:)—S.0{x) grad' 7o (a;)}dT<ZT.
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To verify it, we must use the commutation relations (33) and the
formula (43). In order to show how the calculation runs, we shall cal-
culeje for instance the following commutator

MAX)V{x—x") div' %{x")dxdx’
=c2lyj 'MAX)V{x-x") div'*{x")dxdx"',Jt(x"),n(x")dx" (45)
-j- J'MI{X)V(x—x") div' x{x")dxdx’,J" div" n{x") div” 7t{x")dx"

Taking into account the commutation relations (33) and performing
some partial integrations, we have

[/IMi{X)V(x—x") div' x("")drdr', In(x")n{x")dr"» —
=ihff f M(X)V{x-x")n(x")V'd(x—x")dxdx'dx:"= (46)

- thd J MOV (x—=x) div' n{x")dxdx\
similarly

[yIMAx)V(x—x") div' x(x")dxdx', J div" n(x") div" n(x")dx"J =

} + 13 m
——ihjJ V(x-x") AY{M{x) div' n(x")}dxdx’,
and finally, with the help of (43),
\WMIJ'MAX)V {x—x") div' %{x")dxdx' ,H{ d
= ——xrJ'J'v(x-x"){A'—ft2} {M(x) div’n(x")}dxdx’ (48)

= ms(-?J[*M(:c) div 7i(x")dx,

where the Yukawa potential has disappeared. Calculations with
other commutators are similar. While performing the partial integra-
tions mentioned above, we must jjay special attention never to introduce
second derivatives of V into volume integrals or first derivatives
into surface integrals.

The only term we have to calculate in our problem is now

H="[K,Hd)]_+H", (49)

this being valid also if we perform the transformation taking into
account other parts of the total Hamiltonian corresponding to other
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fields. Indeed, we can easily verify that the commutators of K with
the zero Hamiltonians of those fields (electron, neutrino, proton and
neutron fields) and the electrostatical interaction terms between them,
have their zero matrix element corresponding to the A-capture process.
The other terms, for which this element does not vanish, are either
small for non-relativistic velocities of the particles, or can be neglected
because of their being proportional to higher powers of the coupling
constants.

After somewhat lengthy calculations, but proceeding along the
same lines as in the example given above, we get

[KHJT=J" I VOAXDAN -A M i()MIEL)—2 M AM(E)

—iS.0(x)8.0(x")—iS.0(x)S.0(x")—iS{x)S(x")—iS(x)S(x")idrdr’

o> . (50)
—2? [ | S(x) div' S(x') V'V(x—x")drdr'
Finally, owing to the eqgs. (36), (43) and (49), we get
H=ff V(x-x"){M~*x)312x") + F2S.0(x)t0(x") + £=5(x)S{x")}drdr’
(51)

ff S.ox),{V V[x—x") xrot' S.0{x")}drdr'+ {mms

where the terms marked (...) appear due to non-commutativity of the
»source” quantities (as a consequence of the anticommutation rules
of the form (2)), but have no matrix elements corresponding to our
problem. It is convenient to express the quantities Mit S, S.0 with
the help of Dirac’s g and a matrices, getting thus

(52)

where
a——fala2«3aj Q= fte (53)
We must bear in mind that we may also change the coupling constants

g2 (2 for 8.0in order to get a more general field than the Meller-Eo-
senfeld mixture.
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The transition matrix element

The matrix element H corresponding to the IT-capture process
is easily seen to be

Hk=J j'vix—x") {(g\U{X)V{x)v(x")u{x")
+ Szd'ii U(x)oV{x), v(x")au(x") -- U(x) g;)?/(x), v(x')ggu{x'))}drd,T'

[ - > >
+ 1y 9302U{x) gV (x) div’ {v{x')gFu[x')}VV (x—x") (hdr’ (51)

—-prd J g2g2U(x)oV(x), (VV (x-x") xrot" {v{x")*ou(x")}) drdx".

The functions u and v describe the neutron and proton states, respec-
tively, the latter superseding the former in our process, u is the electron
function in the ii-shell, v that of the neutrino plane wave. In our
further calculations we shall neglect the last two terms in (54). We
can do this —as shown in the appendix —by assuming the ratio of
the nuclearradius a(being defined, e. g., as the meanextension of
the u andvfunctions) andthe range of nuclear forces I//t to be great
in comparison with the fine structure constant multiplied by the atomic
number:

Za <X«/i. (55)

It might also be shown that when dealing with these terms one would
be forced to make special assumptions about the behaviour of the
electron function inside of the nucleus which we shall avoid.

On the other hand, in order to be able to perform the further
calculation without special knowledge about the behaviour of the u
and v functions, we must assume the range of the meson forces 3/< to
be great in comparison to the nuclear radius a, so that we must complete
the inequality (55) to

« al(« 1e (56)

If the last condition can be fulfilled we may write
H k—3"V{r){glgT)v(x)v{x)+g2g2({QB0),v(a:)e3<ju{x)+(0).V()ou(x))}dT, (57)

where the radius vector r is to be taken from the electric centre of
the nucleus, and

(== fU(x)V(x)dx1 (cr)=f U{x)av{x)dr, (g30)=J U{x)g3aV(x)dr. (5S)
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For the more general meson field than the Meller-Bosenfeld field we
should have

Hk=1J WOUX)+(j, (M (n3),v[x)n3au(a: Hisgi(a),v{x)au(x)}dT. (57"

It is understood also that the approximation (57) or (57" is valid if
the neutrino wave length is great in comparison with the range of the
meson forces I//j, i. e. if the neutrino energy is small in comparison
with the meson rest energy.

We must insert now for u the solutions of the Dirac equations
for the Jf-shell, for v the neutrino plane wave, and then average the
square of the absolute value of Il with respect to:

1) two different orientations of the spins of the electrons in
the /{"-shell,

2) two different orientations of the neutrino spin with respect
to its motion,

3) all possible directions of the rejected neutrino,
as the transition probability depends only on this mean value.

The Dirac equation of an electron in the central electrostatic
field of the nucleus of charge —Ze is

{(f + + lk«v® Pmc)«= o0e° (59)

If we use the customary representation for the a- and f) matrices:

/00 0 1\ /0 0 0 —
0010\ (00 i 0
0100 "2~10—40O0
100 () \i 00 O,
(60)
o o 10
0 0 0—1
10 00
vo—Il o0 o0/ \0 0 0—1,

we get the following form of the two solutionsfor the K -electrons

0 =179,q9_L LQ:”
bl

1 fibt’ - 1
=o, -'k 11U VTt
A»[(rfolL cosO, or »% =f(r)rL sin
|14 71 7
= f{r)>y')%_ﬁ1 sin drj'f, u:_\/'*,z ~/n(r‘))./7r:7’l cos

Acta Pbysica Polonica
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These solutions belong to the common lowest energy value -«

EK=mc-\I—Z-a:\ n= k¢

(02)

and correspond to the two possible orientations of the spin of the
electron, so that if we introduce the angular momentum operator

m = —¢h(r XVj-f- -Lher,
we will have for its 2-component:

amzuna— 10, - 2M-v

The functions f(r) and f'(r) satisfy the equations

(ire , ,.Za Al o, -LIU

and are

with the normalization factor

/,.Zamc\VI- 7la,+\t 1
h j \2r{2\l—zw + 1'

The neutrino function r satisfies the equation
(Ir<n>  >om) > .
apfi’=0, (p= —iiiV)
I ¢

the plane wave solution of which is given by

v="r=etk?",
yn

(03)

(04)

(65)

(60)

(68)

(09)

where D is the periodicity volume in which we normalize it, k the

wave vector, e the unit spinor satisfying the equations

E (ne=heo”e (70) or 7i(ne= hcl|E |(«, AD)e (ee= 1)

(707

where Ao is the unit vector in the direction of wave propagation. The

operator (a,k0) has two eigenvalues equal to 1, belonging to positive
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neutrino energy, and two eigenvalues equal to —1, belonging to negative
energy. We have thus

—+# (-)=helfc, K@H)=-~>=heil, (71)
and

e(+)=(a,k0)e¢+\ —E<~>=(a,k0)eS-\ (72)

where E (0 and E*n) mean the neutrino and antineutrino energies respec-
tively, the subscripts ,,+ “ and “ being easily understood to refer
to positive and negative energies. It is useful for the sequel to write
the eqs. (71) in the form

WIT («io)}*(*)=0, |{l1x(a,fcO}<>=£(+ (72"
Inserting (01) and (69) into (54), we get
HK=Y=1}9i9i('i) + g2Si{{e3a)7Qa”+(a)ia)lJV(r)e~I1**udr. (73)

If, as mentioned above,

p»\K\, i.e. hwe»/?<">, (74)
we can write
A
/ ' 1 re-pr-ikx q fe/<r
Vir) e i *xudx= —m/ ----mmm- udrr-—/ -udr. (75)
4nl r anj r

If we further assume, as may safely be done, that the meson mass
ms great in comparison with the mass of the electron

h/ucyymo2 (76)

we get finally after elementary calculations with the help of egs. (61),
(66), (67)

—j udr~Ny}+'> where

<17)

\ K2/b2h—W + 1)

and where (cf. (60))
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are the unit ,eigenspinors* of the /3-operator, belonging to the eigen
value 1. If we introduce formally the two other ,eigenspinors“ of this
operator, namely

we shall have
(1 YN (+)=2(3), (79)

two equations which are similar to (72.
Instead of (73), we get
ist _
AK=Y~NEJgig i{~)Ir(J2(JI{{Qza),Qza+{a),a}y}+). (80)

Sow, we are able to perform the above mentioned averaging of the
square of the absolute value of the expression (80). We denote by

Q=y={91{I"I(~) + 92A{(S3<),e3(J+ {a)>a)} (81)

the most important operator in (80), which is of the type of Dirac’s
a and /? operators, and average with respect to the neutrino spin orien-
tations first. This average value is (owing to (72")

-kSs(®) \HK\* = iSsit) W+)Qe 1 QyW)
=M= -»0- (8 2)

Se(x) denoting the summation over positive or negative energies only,
while St over both of them (we reserve the summation over si-) for the
case of ,,forced“ ~-capture). How we can easily average over all possible

¢.e-directions, by simply dropping out (ci,kO0).
Denoting the angular mean value by <...... > we get thus

<hSet£)\HK\*\x M Q Q 7M. (83)

Finally, we perform the summation over both possible orientations
of the electron spin in the Jf-orbit, and get in a similar way as before
thanks to (79)

WHk-= Sx<H)<I-Se(£)\HK\*>=Tr{QQ(l + 03)} (84)

but without the factor » before Sx(+), OAving to the fact that there are
two electrons on the it-orbit. Inserting the expression (81) and cal-
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diluting according to well-known rules the ,trace“ of the expression
{£}<2(1+ B)}> we fet

[ff/r|2= {(i/.90)2d )2+ (ifefifiFKft") + M *} (2~ [~

XrIr(YTA*+ N\ )rtyT=zw + 2) (80)
2/’2|/1—22a2+ 1)

To deal with more general combinations of the vector and pseudo-
scalar meson fields we must replace the bracket expression by

{("ifiri2i(T) b+ likin(ea) + 2} (85')

Transition probabilities

In order to get a suitable survey of the possible phenomena it
is convenient to deal shortly with the perturbation method for the
case of resonance absorption. The basic equations in our case are (8)

[P>*=£ |/>W i0 exp (ffe-H /)),

ikjt\iy =\Py<P{H\I>exv  (Hr-ffr)} +

+ 2 |[F,>\F,\H\iy exp ]I'it(Hj-Hr,)}\, (M)
ik | 1?2/>*= |[I>*</H|Ff>exp (UF-H,)j,
where we have used Dirac’s bracket notation (thus, < . does not

mean angular average, as in the preceding section), the suffixes P, I, P/
refer to primary, intermediate, and final states respectively, the sum E
means summation over all Fi with fixed 1. )

The |P>* state corresponds in our case to an atom of atomic
number Z with 2 electrons in the Jt-shell, and to no neutrino in the
positive energy range. We may postulate further in this |P>* state
the existence of antineutrino radiation in space, corresponding in the
neutrino-hole formalism to some unoccupied states of the neutrino
negative energy range. In this way we shall be led to the aforesaid
»forced* 7f-capture in case of a suitable (negative) energy difference
between the initial and the final energy of the atomic system.

The jiy* states correspond to the atomic system after the P-capture
process and one additional neutrino more than in the [P>* state. We
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call this state ,intermediate* only from a somewhat formal point
of view, owing to a possible ,reabsorption® of the neutrino (,re-
emission“ of an antineutrino).

The |Fjy* states correspond to this ,reabsorption”, with the
atomic system back again in the primary configuration. It is neces-
sary to ascribe to these states two indices, F and I, the first indicat-
ing the neutrino which has been absorbed, the second the emitted one.

The approximate solutions .of the equations (se) for |P>* and
\iy* are

r
\py* = e~2t

_ : (87)
\iy=<p\H\iy

where

(88)
and where g{HR) is the final state density per energy interval, while

1—exp g(lip—Hj--ih\ —F))

Hp—Hi4-ih ((y—J) (89)

which gives:

(a) (89"
where q(Hi) IS the density of intermediate states, if the energy con-
servation condition Hi=1IP demands the emission of a neutrino
of positive energy, or if the ,width* of the antineutrino line is great
in comparison to that given by y when dealing with negative neutrino

energy; or by

(b) R(r)= 0Fp (89”)

if we deal with a very ,narrow’™ antineutrino line,

(90)

being the total number of antineutrinos contained in it.
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We can now see that:

(1) In the positive energy range of the neutrinos the density of
the intermediate |I>* states is the maximum possible one, owing to
Pauli’s exclusion principle:

£2(E<»>)2 12F 412

e(Ht)-ep "~.¢3 nhc JiCy ( *
where il is the periodicity volume, whereas the final-state density
(i(HFj) vanishes:

a(HF/)= 0, (91)

corresponding to the fact that only one neutrino can he reabsorbed,
namely this one which has been emitted first, and this leads exactly
to the restitution of the primary state [P>*only.

(2) Inthenegative energy range of the neutrinos the interme-
diatestate density o(7//) is determined by the intensity of the assumed
antineutrino radiation, so that if we designate by I(E”) the number
of the antineutrinos of energy between E (@& and JEQ+ilE<) passing
in unit time perpendicularly through unit area, we will have

a{Hi) * \ a 1{H"). (92)

The final state density g(HF) is now at its maximum, because of the
presence of neutrinos occupying the negative states of energy. Thus

a(HRF) = pp. (92)
In order to know with which of these two cases we have to do, we
must realize that

HP-Hj=(E{P+E"*)-(EwW+E(M) or = (E{p+E"+E{@)-Em, (93)
where E$ is given by (62). The condition II1P—E j=0 leads thus to

EM=-Eid= (EA- E(M)+ Ef=AQ (94)
AQ meaning the mass difference measured in energy units between the
atomic weights of the Z and the Z—1 isobars (nucleus+ electron shell).

In the following formulas we may insert \UkRfrom the preceding
section instead of j<ljI7|.F/>12and |[<P|//|I>|2and introduce an important
new quantity, namely the transition probability corresponding to
maximum density of states:

i'p=2-W e,= {(».jil'lffllI'+1j,/.(s.?)le+» silil 1}
N mo YW A+t r(\i-Zic?+4)r(\\ -Z*a2+ 2) (90)
a
2P (2|/1-W +1)
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Thus, we are led to the following conclusions:

(1) ,Spontaneous“ K-captvre. In this case we have AQ=>0,
i. e. the energy of the atom with atomic number Z is greater than that
of its isobar of atomic number Z—I in which it is transmuted. It is
quite obvious that it is only this that we observe in all the natural
/N-emitters. As AQ—E”n\ we have to do with real emission of the
(positive energy) neutrino and may write

y—o, I'—Ep. (96)
The mean lifetime of such a A'-emitter is given by
to= 11Ep. (97

(2) ,Forced” K-capture. The energy condition would now demand
d$<0, i.e the isobar Z—I1 to possess greater energy than that of
atomic number Z, and the gap to be filled up by the absorbed anti-
neutrino. We have now

y:i'p, (98)

but for r we must still distinguish between the two cases of ,wide“
and ,narrow“ antineutrino lines: (a) ,,wide* line

(99)
a2+ 2)

where 1(E) is the number of antineutrinos of energy in the interval
{EUE dE) passing in unit of time unit of area perpendicular to the
direction of their motion. We get as before for the mean lifetime

c0=1/71 (977

(b) ,narrow* line. According to (89"), (95) and (98) the transition
probability per unit time is

(100)

Taking into account that the total number of antineutrinos passing
in unit time unit perpendicular area is sh!Q, we get thanks to (91)
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and (93) the following expression for the total cross-section for a single
antineutrino

oKe * 1 L2 , (101)
(EW+AQ)*+ 1 P

where X is the wave-length of the antineutrino, and TP is still given
by (95).

Discussion of the orders of magnitude (0).

We shall compare first the order of magnitude of the ~'-coeffi-
cients, which we get by inserting the known experimental data for several
A-emitters into the eqgs. (95) and (97), with those given by Yukawa.

We assume (1), (gsa), (a) to be of order one, but this order can be
smaller when the transition is forbidden by nuclear selection rules,
so that we may compare the short life A-emitters only and establish
the upper limit for the (/j/'-estimations, as they will be underestimated
in general. We must further pay special attention to those short life
A-emitters which possess small A’s, because, owing to (95) and (97),
the mean lifetime should then have the tendency to decrease with
increasing Z. While performing these estimations, we assume that
the meson mass is 2(10 times that of the electron.

As a first example we choose the A-reaction

(10 ysL1

The half lifetime r is in this case 53 days, so that the energy difference
AQ between \Bc and iLi, as calculated from their mass defects, is

MD=tZh2=6,61 x 10s6s.

and we have for the bracket expression in (95), with sufficient approxi-
mation,

{(GiyD)\2ngzeE)aaaEgx - -k B

= (2.t4X 8 X 10~5.

The g and g' coefficients estimated by Yukawa are given approxi-

mately by
(«/2tt)2 1 .
he ~~To’> ?2/2¥-4x1° >
so that
(gg'f =(2.t)4x 5X 10~5]
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-which gives the same order of magnitude as our estimation. Because
AQ has not been measured for oilier A-emitters, we will only give
one more example, namely that of the reaction

31 @.—5\ 30 m.

In this case we can be sure that A< 2mc2 as there is no ft radioactivity

accompanying the A-capture. The half lifetime r of is the shortest
one among all ,pure'1 A-emitters and equals 35 min. Thus

i0= t/?«2= 1,29 x 303s.

If we carry out the estimation in the same way as before, putting
simply AQ—'2mc2, we get

{AI})210)[2+1(i/2i/2) (c~) + (i/3i73) (u)]2} * (27r)<X 27 x 10-«,

which gives the same order of magnitude as for \Be.

The probability of ,forced“ A-capfure — if such a A-capture
exists —would be in general many orders of magnitude smaller than
the probability of ,spontaneous”™ A-capture.

If the formula (99) applies —this would be the case, e. g., when
irradiating a suitable element by the broad spectral line of antineu-
trinos produced together whith electrons by a ft emitter —the ratio
of probabilities of ,forced“ and ,spontaneous“ A-captures will be
of the order of magnitude of the ratio between the radiation density
owing to the presence of these emitters to the maximum state density
provided by Pauli’s principle. We shall estimate the order of magnitude
of this ratio in the centre of a sphere of radius A containing the uni-
formly distributed emitter, which we can choose to be radium C pos-
sessing the half lifetime

7-*= 39,5 min., tR~r Kjln 2
and the maximum /3-ray energy

>330 Me\ .

After elementary calculations we get for the intensity in the sphere
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where L is the Loschmidt number and v the number of gram molecules
of lia contained in the sphere. If we calculate now the maximum
energy density (91), assuming for instance 2mc2, we get

I rilmu= <X 10~23Vv/R2

where / mexis the radiation density corresponding to the states density gp.

If we assume two elements —one of which is a natural ¢-em itter
and the other the hypothetical ,,forced” K -emitter —to have equal \Hk\2
and equal absolute values \AQ\='Imcl and place v’ moles of the latter
in the centre of our sphere, we get for the number of these ,forced*
if-processes in unit time

V being the mean lifetime of the natural ¢'-emitter.

I wish to express my deepest thanks to Prof. A. Rubinowicz,
to whom | owe the idea of this paper, for his suggestions and constant
interest during the. work.

Appendix.

We have still to discuss the order of magnitude of the last two
terms in (51) which we have neglected.

Using the same approximation as in (54) (based on the assump-
tion (55)), we get for these two terms

—12{|2A(<23a),Jr v r di\ {v(ni>3au(r)}(h
and (a)

i rv t)

_ ——(rx rot {v(r)o-u(r)}dr,

respectively, where Vr(r)=(I1V(r),'dr.
We can easily see that

div {U(»)esu«(i-)}= i;(i-)i3(CT)VH(r)-f U{r)g3(-;V)v{r)-. (b)
= iv(r)g2a Vu(r) —iu(r) gZZVv(r).

Thanks to (56) and (69), this is equal to
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which, strictly speaking, would even lead to divergent integrals, owing
to the term Zajr, if we assumed a too small nuclear radius. In order
that the last expression be small, for every r, in comparison with

fuv(r)v(r) and like terms (c)

we must put Zuja «/<, thus giving us the condition (55).
Performing the integration in (a) shows that when div {v(r)n3ov(r)}
is small in comparison with the (c) —terms the first term in (a) is
small in comparison with the other terms in (54) and can thus be
neglected.
In a similar way, we get the same condition (55) when the second
term in (a) has to be neglected.
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A NOTE ON THE INVARIANT FORMULATION OF THE
QUANTUM FIELD THEORY

By Jerzy BAYSKI, Nicholas Copernicus University, Toruh
(rece ved June 18, 1949)

The Schrédinger equation is written in a relativistically invariant form in
the general case where the interaction-energy density is not. a scalar. The invariance
may be exhibited without introducing a generalization called ,infinitely-many-time
formalism*“. The autonomy of the formulation of Tomonaga, i. e., its independence
of the Lagrangean and Hamiltonian formalisms, is emphasized.

The famous relativistically invariant formulation of the theory
of quantized fields developed by Tomonaga (1946) consists of two
decisive steps: (a) The transition to the interaction representation
where the field variables obey interaction-free field equations and
covariant commutation relations, (b) The rewritting of the Schro-
dinger equation in an invariant form:

(1)

(1) isnot yet sufficiently general as it applies only to the case of a scalar
Hamiltonian density of interaction. In general, the operator H is not
a scalar but may be represented as the four-four component of
a tensor 1fW. The special case of a scalar E is contained in the more
general one if I/tvis of the form —Hduv.

An interesting feature of the Tomonaga theory is that it permits
to forget the Lagrangean and Hamiltonian formalisms: The field
equations and the commutation relations in the interaction repre-
sentation are sufficiently simple to be regarded as primary concepts.
They are understandable by someone who has never heard, e. g., about
the canonically conjugated momenta. The tensor IhV may be postu-
lated (similarly as there was always postulated a Lagrangean) and
we are not obliged to remember that its four-four component is identical
with (the interaction part of) a Hamiltonian. This statement seems
to the author not quite trivial since there exist possibilities of theories



30 mlerzy liayski

which are not derivable from a Hamiltonian formalism but which
might be expressed in terms of the Tomonaga formulation I.

The replacement of the planes f=const, by more general space-
like surfaces (i. e. the so called infinitely-many-time formalism) has
been introduced in order to give the Schrdodinger equation an invariant
form. However, it is evident that in the frame of the restricted relativity,
it is not necessary to use this last generalization in order to write the
Schrédinger equation in an invariant form. In the theory of special
relativity a space-like plane 2 is also an invariant concept so that
we do not need to introduce arbitrary surfaces.

We consider a functional !F[Z] and define a ,normal derivative
of R[E] in the plane EO“. We take a set of planes 2, parallel to 20
and form the differential quotient

where | means the four-dimensional distance between the hyperplanes
I'i and 2°0. If the limes exists for Et-+EO it will be denoted by

and called ,the normal derivative in the plane EO0*.
Given is a tensor Inv, then we may write the equation

denotes the surface integral over the plane E and nvis

a unit vector normal to the plane E {nvnv= —1). For definitness, we
may also assume that nvpoints to the future, (no> 0). (2) is an invariant
equation since it makes use only of geometrical concepts independent
of any special frame of reference.

If the system may be expressed in terms of the Hamiltonian
formalism then Zoo will be identical with the interaction part of a Ha-
miltonian and (2) will be equivalent to the Schrédinger equation in
the interaction representation. To see this, it is sufficient to write (2)
in a special Lorentz frame in which the planes t—const, are parallel

1 As examples of non-Hamiltonian systems we mention the theories where
the interaction is cutt off (spread out) by means of integral (Peierls ¢ Me Manus)
or differential operators (J. Kayski, 1947).
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to the plane EO. In this system of reference the functional 21 may
be replaced by a function of t, while the normal derivative, becomes
the usual derivative with respect to t. MoreoA'er, Ilpvnv=100=H so

that we get from (2) the traditional Schrédinger equation
i 2"

By comparing (2) Avith (2') avc recognize the double meaning
of the Aariable t in the Schrddinger equation. In H[xyzt) it appears
as a space-time variable, Avhile in W(t) it is only a substitute for the
four-dimensional distance, between two parallel space-like planes.

Of course, the restriction to planes may be as Aell abandoned.
It is easily seen hoAv (2) should be generalized for arbitrary space-like
surfaces S:

i = nfl(P) 1/M{P)nv(P) *!P[SL. 3)

In case |flv= —H®6fiv the equation (3) becomes the equation (1) of Tomo-
naga. Let us denote by C that part of S+06Sp0Avliich does not over-
lap S. The points on C will be denoted by P cmFor reasons of consistency
it isrequired that (a) Ccontracts to the point Po (Pc—Po0->-0) and (b) the
angle between any normal to the surface C and the normal n,,{P0)
tends to zero: n/t(Pc)—nf,{P0)->0 for 6S->0. Due to these conditions
the variations are weak and the functional deriArative ¢>I6S00 refers
to and only to the properties of the surface S in the vicinity of the
point PO.

A formulation equivalent to our (3) has been given by Matthews
(1949) by means of a generalization of the Hamiltonian: H =nf,Iflmv.

(2) is a special case of (3), namely, Awe may replace in (3) the
surface S by a plane E and, by means of a set of successive local varia-
tions 6S, Ave may perform a transition to another plane E-\-dE parallel
to E. By summing up the local variations avc obtain in limes the equa-

tion (2)2
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- By taking (2) as basic equation of the theory, we are released from the con-
dition of integrability Avhich was necessary in case of (3). This is of importance for
the formalisms with a spread out interaction —energy density.
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INFLUENCE OF TORSIONAL VIBRATIONS OF LUMINES-
CENT MOLECULES ON THE FUNDAMENTAL POLARI-
ZATION OF PHOTOLUMINESCENCE OF SOLUTIONS

By Alexander JABLONSKI, Physics Department, Nicholas Copernicus
University, Torun.

(received June 19, 1949)

The observed values of fundamental polarization are always smaller than
those to be expected on the ground of theoretical considerations. This fact can bo
explained (at least partially) by the influence of torsional vibrations of fluorescent
molecules on the rate of polarization of photoluminescence. Some conclusions can
be drawn from the difference between theoretical and experimental values of the
polarization. This note contains some provisional results of theoretical investigation.
A fuller report is intended to be published shortly.

According to Pauling (1930) and Stern (.1931) the molecules (and
parts of molecules) in many crystals can rotate if the temperature
of the crystal is sufficiently high. At low temperatures the molecules
carry out small oscillations (torsional vibrations) about their equi-
librium orientations. The energy levels and the corresponding eigen-
functions approach in the case of diatomic molecules to those of a two
dimensional oscillator. The case of polyatomic molecules (three finite
principal moments of inertia) was studied by Mrs W. Hanus (to be
published shortly). In the last case the levels and eigenfunctions of
the lowest torsional vibration states are very nearly those of a three-
dimensional harmonic oscillator. Thus molecules in crystals must
possess an amount of torsional vibration energy even in their lowest
state (,,zero point energy"®).

There is no doubt that similar torsional vibrations are carried
out by luminescent molecules in solid (vitreous) or very viscous solutions.
These vibrations (and sometimes also some of the normal internal
vibrations of molecules) must cause a partial depolarization of photo-
luminescence. Since this cause persists down to the lowest temperatures
(zero point energy!) it cannot be thoroughly eliminated by choosing
suitable experimental conditions h Hence, the explanation of the fact

1 In contradistinction to the two other thus far known causes, i. e. to the

Brownian rotation of luminescent molecules and the transference of the excitation
energy from one molecule to another.

Acta Pbysica Polonica 3
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that the observed values of the fundamental polarization 2 are always
smaller than those to be expected on the ground of theoretical con-
siderations.

A theory of the fundamental polarization for molecules at absolute
rest (not executing torsional vibrations) was given by the present
writer (1935, 193G). According to it, the fundamental polarization for
the case in which the same virtual electronic oscillator is responsible
for the absorption as well as for the emission of light is given by 3

3¢ rf-drjf
= - *l— > (D

where P; denote the relative principal transition probabilities along
the three mutually perpendicular (principal) axes of the virtual electronic
oscillator.

From (1) one obtains Po= 1/2 for a linear oscillator (A\==0,
r2=F3—o0), P0= 1/7 for a symmetrical flat oscillator (P1= P 2=b0O, P3= 0)
and PO= o for a spherical oscillator (P1=P 2=P 34=0).

Let us now take into consideration the influence of the torsional
vibrations of luminescent molecules on the rate of polarization. In this
note we restrict ourselves to two simplest cases. Let y denote the
angle of deviation of one of the principal axes from its equilibrium orien-
tation and let the average value of cos2y be cos2y—1—sin2y—1—e.
Provided the distribution of y be axially symmetrical, a linear virtual
oscillator becomes (owing to the torsional vibrations) equivalent
to an axially symmetrical spatial (three dimensional) oscillator with
relative transition probabilities P2= 1 —e, P2=P 3= es2 (instead
of Pi=Il) F2=F 3= o0; the common factor is ommited as irrelevant).
Putting these values into (1) we obtaina

p’..92 12e+4
Fe--3?7is+8 »
Thus Pg< 1/2 for £>0.

3 The limiting value of the polarization of luminescence of an isotropic solution
observed at right angle to the electric vector of plane polarized primary light when
depolarizing factors (footnote (-)) are eliminated.

3 This formula is given in a different but equivalent form in papers Jabton-
ski (1935) and (1936).

4 This formula is equivalent to a formula derived by F. Perrin (1929) for
alinear oscillator carrying out quick irregular oscillations about its mean orientation.
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For an axially symmetrical flat oscillator the transition proba-
bilities become (provided the distribution of y for the symmetry axis
perpendicular to the plane of the oscillator be axially symmetrical)

F3= sincy=e, A=A =1 —| (instead of ri=r2=1, F3= 0) and hence
by means of (1)
92 J2e+ 4
0 .3e2—4£+28° 1

which shows that Po<I/7 for £>o0.

We should like to postpone the publication of more general for-
mulae to a later paper. For the time being we admit an approximate
validity of (2) and (3) for particular cases discussed below and draw
some conclusions from experimental data published by Perrin (1929)
and by Feofilov (1947).

Assuming the virtual oscillator to be linear in the case of fluores-
ceine and resorufine and using the experimental value Po= 0,44 of
Perrin, Ave calculate e by means of (2) We obtain £=0,048. Provided
the whole ,polarization deficiency* Po—PJ= 0,5—0,44= 0,06 is due
to the torsional vibrations of the aboAre molecules, there results a stan-
dard deviation of the direction of the virtual oscillator from its equilib-
rium orientation equal to 10° for fluoresceine and resorufine solutions
in glycerine at room temperature.

Using Feofilov’s value Po= 1/14 for the fluorescence of benzene
solution in glycerine and assuming the oscillator in this case to be flat
and symmetrical (the transition moment is known to be parallel to
the plane of the benzene molecule for the band under consideration),
Ave obtain by means of (3) £=0,2, Avhich corresponds to a standard
deviation of the sixfold symmetry axis of the benzene molecule equal
to 26°. This value seems to be somewhat to large. Possibly there Avere
additional depolarising factors in Feofilov’s experiments.

In general the distribution of y depends on the principal moments
o0 inertia, on intermolecular forces, and on temperature. The polari-
zation deficiency depends apart from the above factors also on the
anisotropy of the virtual oscillator and on its orientation with respect
to the principal axes of inertia of the fluorescent molecule. Postponing
the discussion of the general case to a later paper, Aw confine ourselves
to a rough treatement of a simple case of a flat molecule having an at
least threefold symmetry axis and a transition moment lying in the
plane of the molecule, i. e. to the fluorescence of the benzene molecule
in glycerine solution. In this case two of the three principal moments of
inertia are equal. The third moment of inertia is irrelevant. We assume

3*



36 Aleksander Jabtoriski

also the two relevant torsional eigenfrequencies to be equal. Then
the angular frequency of this vibration is w=\-tj1, where r is the mo-
ment of torsion and | the moment of inertia. Assuming the eigen-
functions to be those of a two-dimensional symmetrical harmonic
oscillator, we obtain the following formula for the mean square of y

for Iciyykco

Since £= sin2y and sin2yp«y? for y « 1, we can easily calculate o on
ground of the wvalues of e deduced from experiment by means
of (3), provided the moment of inertia of the molecule is known. Put-
ting 1=1-4-10_3p-cm2and T=263°K, we obtain v=a>I2nc=26cm-1
as order of magnitude of the frequency of torsional vibrations about
axes lying in the plane of the benzene molecule for benzene solution
in glycerine. Thus the frequency appears to be of the same order of
magnitude as that deduced from the Eaman spectra produced by
torsional vibrations of different molecules in crystals (Rousset, 1947).

As can be easily seen e does not vanish tvhen the temperature
of the luminescent solution tends to 0° K. At 0° K

k k
£ lo \ Vi

It seems probable that the investigation of the fundamental
polarization and of its dependence on temperature can provide us in
some cases with informations concerning intermolecular forces.

A fuller report is intended to be published shortly.
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THE PHENOMENA OF MOLECULAR ORIENTATION
IN POLAR LIQUIDS AND THEIR SOLUTIONS. PART I
EXTENTION OF ONSAGER’'S THEORY

By A. PIEKARA, Institute of Technology, Gdansk.

(received July 8, 1949)

§ 1. The assumptions of Onsager’s theory are summarized; the view that
all molecules surrounding a given molecule may he considered as a continuous medium
is rejected as inadmissible. § 2. Onsager’s theory is generalized by treating the
nearest molecules in the neighbourhood of the given molecule individually, whereas
all those further away are considered as a continuous medium. The Onsager sphere
separating the nearest neighbourhood of the molecule from the continuous medium
has to be increased in size. 8§ 3. Formula (36) is deduced and by means of this the

molecular dipole polarization of a given polar substance, pure or dissolved,
ma}j be calculated. The ratio of this qHantity to Pg!igz 9KT is called the re-
duction factor P. The dependence of P dlp and JRon the concentration of nitrobenzene
dissolved in benzene is shown graphically (fig. 1). It is evident from Onsager’s curves
that for greater concentrations a new kind of coupling appears increasing the polari-
zation. It consists probably in the coupling of molecules into ensembles greater than
pairs. It is possible that antiparallel pairs are coupled in parallel (fig. 2c). § 4. For-

mulae (43) and (64) for the modified Kerr constant K m* are deduced and applied

to solutions of substances in non-polar solvents. Hence, the molar constant K™ of
the dissolved substance may be calculated. The results for nitrobenzene are pre-
sented graphically (fig. 4). Here also Onsager’s curve in contrast to Lorentz’s curve
rises for greater concentrations which seems to suggest, as in the case of polarization,
a multiple coupling. § 5. The increase of the dielectric constant Ae under the influence

of an external electric field is expressed by formula (84). The molar constant 8 m of
electric saturation is defined in (86). For dipolar substances dissolved in a non-polar
solvent they may be determined from formula (85). Experimental data for the same
nitrobenzene solutions are illustrated graphically in fig. 5. § 6. In the Cotton-Mouton
effect the orientation of molecules is due to an external magnetic field. Owing to the
extremely small magnetic permeability of organic liquids the external and the local
fields are identical. For this reason Onsager’s idea cannot produce any different
results in this case. The Cotton-Mouton molar constant Cm as defined by (92)
is expressed by (93) and (94). For liquids formula (96), expressing the additivity of
the constant Cm, is applied. The molar constant C™ for nitrobenzene calculated by
means of the latter formula is presented graphically in fig. 6. Its increase with in-
creasing concentration suggests coupling of molecules in aggregates of two or more.
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8 1. The fields of Lorentz and Onsager. When in a dielectric
medium there exists an electric field of intensity E, then each molecule
is under the action of a field F, which is a little stronger than E, and
is called molecular field. This is due to the fact that the field E is
ex definitione a field acting inside a long and narrow tubular cavity
cut in the medium along the lines of forces, while the molecules of
this medium are subjected to an additional field due to the surrounding
polarized molecules.

Lorentz has calculated the molecular field in a well-known way.
He surrounds the molecule under consideration with a sphere from
which all other molecules are removed, assuming that this does not
alter the field F, nor the distribution of force lines inside the sphere.
The field is given by the equation

F=E+~"1J, (1
inJ/3 (J —the electric moment of 1 0. c. of the medium) is the addi-
tional field due to the electric charges of the polarized surface of the
sphere. Since <7=(e—I)Ej%n

(1a)

On the other hand J —N'aF, where 2F is the number of molecules
per c. c. of the medium, and « —their polarizability. This leads to the
famous Lorentz formula:

Since N'=N-"jr (N — Avogadro’s number, M —molecular weight,

d —density of the medium),

(2 a)

The expression
(2 b)

is called molar or molecular polarization.
If the molecules are polar (dipole moment /j) then, according to
Debye’s theory, we have instead of a the expression



Molecular Orientation in Polar Liquids 39

and for the molar polarization the expression

©)
The part of polarization due to dipoles
@3 a)

is called ,dipole polarization".

is much smaller than that for the vapour of the same substance at
the same temperature. This fact is explained as a result of association
or coupling of the molecules. Onsager (1936) tries to explain this fact
in a different way. He supposes the existence of a cavity field different
from the Lorentz field, and so he obtains for the polarization P a for-
mula which is different from (2 a).

Onsager imagines the molecule to be a spherical cavity of radius a
equal to the radius of a molecule in a uniform and continuous medium.

In the center of this sphere he localises the molecular momemt m
(permanent plus induced). Inside this sphere there is a rather weak
field

(4)
The moment rh», inducing on the surface of the sphere an electric charge,
forms an additional ,reaction field“

t, 2(t-1) m
2e+1 a3’ ®)

so that the total internal field is

F=G + R. (6)
If we consider still that

> >

m~ aF-j~//,
where

®)

(Hoo_ refractive index of the medium for infinite wave-length), then
we have cited all Onsager’s assumptions leading to his equations.
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I do not quote these formulae here, as they will he given in a more
general form in the next paragraph. Further, Onsager’s formula has
a rather inconvenient form which makes it impossible to recognize
the role of the parameters G, R and ain the phenomenon of dielectric
polarization.

The rather serious defect of Lorentz’s theory, namely that it does
not take into account the action of the nearest molecules, is not re-
moved by Onsager’s theory, which treats the neighbourhood of each
given molecule as a continuous.medium, a procedure which, according
to my opinion, is inadmissible. This is proved by many facts, especially
by the behaviour of the electric saturation and the Cotton-Mouton
phenomenon in liquids which will be considered in later parts of this
work. Therefore, in a generalized Onsager’s theory, the author sur-
rounds the molecule under consideration with a larger sphere, containing
several of the molecules in the immediate neighbourghood; the mole-
cules outside this sphere are treated in Onsager’s way but the few ones
inside the sphere keep their individuality; they can be coupled in
their own way causing an alteration in the observed phenomena.

8§ 2. Foundation of Onsager’s extended theory. Accor-
ding to Onsager’s theory a polar molecule is placed in the center of
a hollow sphere of radius a, equal to the radius of the molecule. This
sphere is contained in the medium which is considered to be contin-
uous; its surface is to be ,smooth*, which seems rather unreasonable
if we consider that it is built up of molecules as large as the sphere
itself. According to Onsager the given molecule induces charges on the
surface of the sphere, producing a ,reaction field“ R. In consequence
of this ,,smoothness* of the surface, the reaction field does not exert
any directing action on the molecule, but only increases its permanent
moment by an additional induced moment. We can say that the re-
action field merely ,stretches” the dipole, without rotating it. The
dipole in its rotation would not have any position of minimum potential
energy. Such a supposition seems to be very improbable and, as will
be seen later, cannot be reconciled with several facts, especially with
the behaviour of the Cotton-Mouton molecular constant in liquids.

Generalizing Onsager’s theory, | assume that the sphere sur-
rounding the molecule considered has a radius larger than a, and thus
several molecules can now be found inside this sphere. If the radius
of the sphere grows, the reaction field due to a centrally located molecule
becomes weaker. But, since the molecules are distributed throughout
the sphere, the average reaction field per molecule will be stronger
than that of the central one, and will depend upon the properties of
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the molecules, and especially upon the position of the moment inside
the molecule. In equation (5) there appears a factor ¢ which can be
slightly larger, equal to or smaller than 1; its value will be chosen to
satisfy the experimental data. Thus we shall write the equation (5)
in the form

* = ©)
where

r-*2£=1i. (9a)
On the other hand formula (4) will remain unchanged. In order

to giveto the calculations and to the finalformulae aclearer form,
we shallwrite theformulae (4) and (8) in the following way

G=gE, (10)
where
3e (10 a)
2e+
and
a = p a (11)
where
va
p= S (Ilta)

In the first part of this work we omit purposely the forces that
couple together the molecule considered with its nearest neighbours
inside Onsager’s cavity, as well as the forces that couple it with the
discontinuities of its walls. We shall introduce both couplings in the
second part of this work. In this paper we deduce some equations
disregarding the coupling; when comparing them with experiments
we can find some information as to the kind of coupling forces charac-
teristic of the investigated liquid.

According to these assumptions the total field acting on a mo-
lecule, expressed by the formula (s), is

x> rf)rT
F=gE+~", (12)

Thus, using the formula (7), we obtain for the total moment of the
molecule the expression

m=aF* + ju*, (13)
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where F* and ju* differ from E and i only by numerical coefficients,
namely

> >
Fr=—2 E (13 a)
1—rp
and .
->
1—rp{LI (13 b)
Combining (13) with (12), we obtain a more convenient equation for F:
d >
Nz 4+ (14)

Now we are able to calculate the moment of the forces acting on the dipole1

M=Fxp*, (15)

or
M —//*F* sin 0, (15a)
where 0 is the angle between the directions E and jj. Therefore, the
potential energy of a dipole MdO will be expressed by the formula
W — —u*F* cos 0. (16)

8§ 3. Dielectric polarization, (a) Pure liquids. In order to
calculate the polarization, we must know the component of the moment
of the molecules in the direction of the external field:

mE=aF* + p* cos 0. (17)

The polarization of 1 c. c. of the medium is then
J=N~'mn—N'[aF*-} p* cos 0], (18)
where the double line indicates the statistical mean and N' — the

number of molecules in 1 c.c. cos Ois to be calculated in the well
known way -from the Maxwell-Boltzmann theorem:
1
fco& o e~wlkT2ji sin o dd
cos 0=‘]—4 =L(x) =
/ e~wlkT2n sin 0dO

1 1
6X—4—5 .pp - (19)

1 Onsager calculates this moment in a different way; he puts namely

= > "{‘
M—Gxni

and obtains different equations. This method is not correct, because the directing field

is not G but F, and the dipole, rotating together with the molecule, is not m but /<*.
W e have called attention to these facts with Prof. K. Zakrzewski in Nature (1939, b).
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where L(.c)= eoth x —~ is Langevin’s function of the variable
ure>
X==*jjre (19 a)

Takinginto accountonly the first term of the development,i. e. neglect-
ing thesaturation effect, which appears in very strong fields, we
obtain

J=N'{a + ~V * | (20)

Since J= (e—1)El4n we obtain the relation

1
39 3 I 13kT) 1—rp ! (21)

If we apply this formula to non-polar liquids (<= o0, «£,= «) and
suppose that k—\, we obtain the well-known equation of Lorentz.

For polar gases and vapours, where e and ?i2 are very nearly
equal to unity, r and p are very nearly equal to o and gx 1; the equa-
tion (21) turns into Debye’s formula:

153 473'1«'de]' (22)
Thus we see that both theories: of Onsager and Debye (eq. (21)) and
of Lorentz and Debye (eq. (22)) lead to identical results for gases and
vapours. Both theories agree therefore upon the point that the moment
determined by the method of measuring the dielectric constant of
gas o) vapour is the ,real“ moment of the molecule.
On the other hand, if we apply the Lorentz-Debye equation
to dipole liquids we obtain generally a smaller value for ji. This dimi-
nution is attributed to association or coupling. Onsager’s theory,
however, suggests that it can also be applied to liquids without any
further restrictions, and that equation (21), applied to liquids, should
also give the real value of the dipole moment of the molecule. Prof.
K. Zakrzewski and the author (1939, a) have already shown that
this is not so.

(b) Solutions. We shall consider here solutions of a polar solute
in a non-polar solvent. The equation (21) applied to such solutions
changes into

—1 &0 {y 1 , 47*\I , FI%2\ 1
ja, — <t 'N PL + '£- . 123
3il,, 3] a i— 12Pi 3 \' PAX/ 1 ;‘12]Pz )
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The indices 1, 2 and 12 refer, as usual, to the solvent, the solute and
the solution. Attention must be called to the fact that the value of
the moment u* depends not only on the properties of the molecule
but also on those of the solution, namely on its dielectric constant,
since

1 ri2p2 (24)
where

(24a)

Ai and N'2indicate the corresponding numbers of molecules of both
components per 1 c. c. of the solution. If g and c2indicate the weight
concentrations of both components and M% their molecular
weights, iZ2 the density of the solution and N —Avogadro’s number,
then

Aj= ct(72, N2 — c2di12 (25)
Sometimes instead of weight concentrations c¢x and c2, it is

more convenient to use the ,molar fractions'™ of both components
determined by the equations

~ NI+ N il + W ( >
then
UHI s _ um2
--if, m
where
+ (27a)

Using these equations, we obtain instead of (23)

& : : .
= j'4£ Y oo, n + J§,YQ(]2+ E%Tg - A — (28)

(In ~12 1 —112Pi 1—ri2p2

But Lorentz’s equation applies to nonpolar liquids, and we may
write it in the form

—1Mx 4
e * "MaNa1=P 1. (29)

Besides this we introduce in (28) the expression (3) for molecular pola-
rization of the solute:

P=T-Y ® + 3Vf)" 30>
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For this purpose the polarization P2 must be divided in two parts:
the non-polar part

PE~ N a 2 (31)

and the polar part
pdiP_ 4 nNjP
2~ MT m (32

The first one is usually determined in the opticalway from Lorentz’s
relation by extrapolating n2 to infinite wavelengths

(33)

W 200+2 =

It can also be determined by measuring the dielectric constant eo in
condition in which the dipoles are immobilized, for instance in soli-

dified substances
p" £o 1

T¢34>

This method was applied by the author in his previous work (1933).
The polar part of the polarization, P ", is determined either in
gases, according to a formula analogous to (22):

dip_e—1 -If 4ttt wr¢ , /(2

<35 >

or, more frequently, in solutions. According to Onsager’s theory the
formula (28) should be used for this purpose.

By using the equations (29), (31) and (32), we can simplify this
formula and write

g2 | -Ifz_ p n I_L(p ntp diP [ | fa (36)
32 A2 mPi 11 2 (I—mV-ift 1~ rvAh

This form will serve to determine the molecular polarization P2p
of the solute. The quantities p: and p2 can be determined from the
formulae (29) and (33):

Pl= P Pi=P3-A, (36 a)

If we assume the molecular field to be the Lorentz field F — (6+2)22/3,
then we must insert in the equation (36) the values <i2=(£i2+ 1)/3 and
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rJ2= 0. It is then transformed into the formula derived from the Lo-
rentz-Debye theory expressing the additivity of polarization:

I\,=1\h + P, (37)
where:
1M\ (37 a)
T2 fI2

Thus we see that in the Onsager-Debye theory the molar polari-
zation does not fulfil the additivity relation.

(c) Interpretation oj experimental results. The theories considered
lead to different ways of calculating the molecular dipole polarization
Pt'p, but the theory of Onsager supplies different values for P2V
according to the choice of the reaction-field coefficient I We shall
make the calculations for mixtui’es of nitrobenzene and benzene, for
which the dielectric constant, as well as the other effects of molecular
orientation, have been carefully investigated. Thus we shall be able
to apply the same mixture for the calculation of different molar constants
of nitrobenzene, such as Kerr’s constant and others.

For calculating P%p the author has used the measurement of
L. Koztowski (1938). In table I are compiled the values of el2 and dl2,
interpolated for molar concentrations in round numbers, and P2lp
calculated according to the theory of Lorentz (equation (37)) and
Onsager (equation (36)) for ft=0,5, 1, 1,5. For the non-polar part of
the molecular polarization P 2the author lias accepted the value 41 c. c.
resulting from his measurements of the dielectric constant of soli-
dified nitrobenzene (1933).

Table 1. Dipole part oj molecular polarization of nitrobenzene as a function o
concentration (solution nitrobenzene — benzene, temp. 20° G).

Pg'P according to the theory of B according to the

i theory of

ft £12 «12 JV'x 10*2 Onsager Onsager

Lorentz Lorentz
&=10,5 k=1 Je=15 1

0 2,282 0,8791 0 (c. 330) (c. 520) (c. 240) (c. 20) (c.0,9) (c 0.66)
0,01 251 0,883 0,0678 300 472 214 37,7 0,820 0.584
0,02 2,75 0,887 0,130 2945 412 212 82,4 0,804 0.579
0,05 3,40 0,899 0,338 247,4 325 180 82,6 0,676 0,492
0,10 4,56 0,9174 0,673 207,9 300 159 71,0 0,568 0,434
0,20 7,05 0,954 1,32 157,5 292 143 58,7 0,430 0,390
0,30 9,82 0,991 1,95 126,5 293 140 52,6 0,345 0,382
0,40 12,80 1,025 2,57 105,8 300 138 48,0 0,289 0,376
0,60 18,80 1,087 3,73 79,0 317 143 47,9 0,216 0,390
0,80 25,80 1,1467 4,85 63,2 343 151 49,1 0,173 0,412

1 34,33 11,2032 5,88 52,8 379 164 51,2 0,144 0,448
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These results are illustrated by the curves in fig. 1. Contrary to
the previsions of Onsager’s theory, the polarization and also the value
of the polar moment are not constant, and for a pure liquid the former
is not equal to the polarization in the gaseous state (gas P2ip=366 c. c.
at i=20°C). The value of p, determined for the liquid state, will not
be the true value (see C. J. Bdttcher, 1938).

We see that both in Onsager’s theory and in that of Lorentz
we are obliged to assume a certain factor which alters the polar orien-

Fig. 1. Dependence of dipole polarization on concentration by the assumption of
a Lorentz or of an Onsager field.

tation. According to previous workers this factor was the association,
i. e. the formation of a certain number of double molecules with a re-
sultant moment equal to zero. According to Debye (1935) this factor
is a quasi-crystalline coupling; we shall call it the type | coupling.
But many facts have compelled the author (1937 a; 1939) to intro-
duce a coupling of a second kind (type Il coupling), differing
from the association proper and consisting of a stronger or weaker
coupling of each molecule with one of its nearest neighbours. Exper-
imental facts convince us, that the type Il coupling is very important,
though the type | coupling is irreplaceable in some ways (see part |1
of this work).
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According to these opinions the interpretation of the results shown
in fig. 1 would be approximately as follows:

Lorentz curve. This curve extrapolated for infinitely great di-
lution (/2= 0) gives the value oof2ipequal to about 330 c. c. It is smaller
than the value PMZ and indicates the existence of a coupling of nitro-
benzene molecules with the solvent. The corresponding values of the
reducing factor:

pdip

pdip
X gas

can be read on the right hand scale of the diagram. From this value
the curve begins to fall. The reducing factor

pdip
N=NATP (38)
X gas
decreases. It proves increasing coupling of nitrobenzene molecules
among themselves. We pass over the question of the nature of this
coupling; in every case it diminishes apparent molecular moment.
Results to be discussed later, especially the double refraction in a ma-
gnetic field, show that both kinds of coupling are present. Anticipating
the results of the second part of this work, we can mention that if we
adhere to Lorentz’s theory, we shall meet with insurmountable diffi-
culties. We shall be compelled to reject that theory and to adopt an
extended Onsager’s theory.

Onsager's curves. (1) For k= 0,5, ooP” is equal to about 500 c. c.,
which proves that the coupling with the solvent raises the average
molecular moment above its real value; this increase grows as k gets
smaller. As such a behaviour seems to be deprived of physical meaning,
we exclude k equal to 0,5 without further consideration of the curve.

(2) For k=1 the coupling with the solvent is a little stronge
than according to the curve of Lorentz. The coupling grows with con-
centration and the curve drops to a minimum at / equal to 0,4. It
rises again for higher concentrations, but quite slowly. This seems to
indicate the existence of an additional coupling of a third kind (type I11),
depending on the formation of aggregates with increased moments.
It is not supposed that they are quasi-parallel pairs (fig. 2 a), since
nitrobenzene molecules show inclination to quasi-antiparallel coupling
(fig. 2 b). We should rather suppose that they form a combination
of two quasi-antiparallel pairs, coupled quasi-parallelly (fig. 2c).
Again, it should be mentioned that this opinion is strongly supported
by the Cotton-Mouton effect in nitrobenzene solutions. We may
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add that the above mentioned aggregates loose and transitory rather
than rigid, and as such they will be considered in the theory of coup-
ling in the second part of this work.

Pig. 2. Coupling of two dipoles:

(@) nearly parallel, (b) nearly antiparallel, and
(c) nearly parallel coupling between two nearly
antiparallel pairs.

3) For 1c=1,5 the coupling is very strong, as the curve
runs very low. In particular, as the dilution becomes infinitely great
(/2~>0), the coupling grows immensely, which again seenjs to be without
physical meaning: we exclude therefore the value Jc=1,5 in Onsager’s
theory.

In consequence of the above discussion, the most suitable value
for the reaction field coefficient is 7c=1 or a value very little different
from it. In the sequel we shall admit T&— 1. In Onsager’s original theory
it means that the radius of the spherical cavity is equal to the radius
of the molecule. But let us remember that in the extended theory
the sphere must have a larger radius, as it must contain several mole-
cules. This circumstance reduces the reaction-field coefficient X but
on the other hand another factor tends to increase it as the polar mo-
ments cannot be considered as small elementary moments acting
from a great distance; they are not placed exactly in the center of the
sphere and may approach closely to the surface of Onsager’s cavity,
and thus produce a much stronger reaction field.

8 4. Kerr Effect, (a) Pure liquids. Kerr’s constant is given by
the formula

K = 39
n EP (39)

where n is the refractive index of light and n% and nx are the refractive
indices for light vibrations in the direction of the vector of external
electric field E, and in the direction X normal to the latter respectively.

It prooved to be convenient to introduce in connection with the Kerr
4

Acta Pbysica Polonica

Pt'p
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effectin particular in solutions, the so called ,molar Kerr constant* Km.
Several authors give various formulae for this constant, differing
by a numerical coefficient. The following definition seems to be most

suitable
T RE—Rx

K™= Jp ° (40)

where RE and Rx are the molecular refractions in the directions of E

and X,
ft2—1 M n\—I M

and F is the intensity of the local field.
Taking into account that nE and nx differ only slightly from n,
we come to the following formula connecting Km and K

6n2 M fE\2

KM=K fior 272 d \F)" (42)

If we assume that the Lorentz formula for the internal field (la)
is true, we get the well-known formula

r eft M [ 3 \2
1(fo+ 2)2 d (I+ 2/ (42 a)

On the other hand, in the case of Onshger’s field we define the molar
Kerr constant Km* by replacing F by the local field which acts mainly
in orientating the molecules, i. e. by putting 6 =g E m(cf. the formulae
(10) and (10a)). Thus, we have

K-n*= fig- Rx=K 6»2 K 1 (43)
G2 (fe+ 2)2 d g2’

The Kerr constant may be also expressed by means of con-
stants characterizing the molecule itself (and not the medium, as the
constants e, ft, K). For this purpose we make use of the Lorentz —
Lorenz function well known in optics:

RE=/"-XyE and RX=~N "X, (41a)

where yE and yx are statistical averages of the optical susceptibility
of the molecule. Thus, for Onsager’s field we get

= (44)

It remains now to calculate the susceptibilities and their statistical
averages.
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We shall denote by bu b2,b3, the components of the optical suscepti-
bility of the molecule, referred to its main axes x,y,z. Let the external
electric field E act in the direction of the Z-axis of another coordinate
system X, Y, Z fixed in space (fig. 3). The angles between the molecule

Fig. 3. Explanatory diagram for Kerr effect. X and Z — directions of vibrations

of tbe light vector, K — direction of the beam, Z — direction of the electric field,

X,y,z — coordinate system connected with the molecule (z— axis of symmetry
and of the electric moment), eq>, ip— Euler’s angles.

axes and the field E are ava2a3, and those between the molecule axes
and the direction X are ai,012,03. We may consider two cases in which
the electric field of the light wave EOQis respectively parallel and per-
pendicular to E. In both cases an induced electric moment will arise
in the molecule. The components of this moment along E and X respec-
tively are (1)

for EO\E:
nit ®W"EOxQO5 ai+b2EQucos a2+ b3EQi cos a3=yEEQ (45)
where
yE= b2cos2 al+ b 2cos2 a2+ b3 cosz2a3s; (45 a)
(2) for EOQJ_E:
mx~ bxE QkC0S «;+ b2E Oy cos a;+ b3E 0z cos a3= yxEO, (46)
where
yx= bxcosz a[ + b2 c0S2 a2+ b3C0S2a3. (46 a)

Let O, ip, be Euler’s angles determining the position of the mole-
cule in reference to the system XY Z (as shown in fig. 3); 0 and gcor-
respond to geographical longitude and latitude, ipis the angle of rotation
around the z axis. We have

cos 0'= —sin o cos”, c0s08=sin osinip, c0sas=co0so,
cos a{= cos 0 cos @cos ip—sin @sin ip, 47)

C0S 02= —CO0S 0 COS @Sin ip—sin Ppcos ip, €0S 03= sin 0 COS CP.
4*
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We shall assume that the molecules are rotationally symmetrical
and that z is their axis of symmetry. Thus, the rotation of the molecule
around the z axis is completely free in spite of the external field E,
and all possible values of ip are equally probable. We may therefore
by inserting the direction cosines (47) into (45a) and (46a) calculate
the geometric mean over all positions around the axis z:

Zt 2r
+ fy Edip and ~ jy xdip.
0 0
However, all positions of the z axis relative to the direction of the
electric field E also have the same probability. Thus, we calculate
the mean value for all values of the azimuth $ by means of similar
integrals, but in reference to (p. Putting b*"b” we get

VE=bi+ (b3 ~bi) cos2 > yx=z?(bi+ b3)— ?(b3—bl) cos2Q  (48)
Finally, the statistical means of yE and yx should be calculated by

calculating the statistical means of cos2 6 over all possible positions
of the axis of symmetry z, which now are obviously not equally probable,

yE= bi+ (bs ~ bi>cos2 S)— i (b3—bi) cos2 0. (49)
Hence, thanks to (44), we have

K m*= 2siN (ebsM)—j). (50)

Thus, we have reduced the problem to the calculation of cos2 0. The
Maxwell and Boltzmann theorem vyields

n
J cos2 6 me—wlkT sin OdO
cos2 0=- . (51)
f e-wlkTsin OdO
0
To calculate this expression the potential energy W of the molecule
must be calculated.

Let the components of the polarizability of the molecule in an
external field be ava2a3; the molecule being symmetrical around
the z axis, we have ax=ai, (1=/i2=0 and /uB—/x If the field F
acts on the molecule, the moment of the molecule will have the com-
ponents

mx= alFx, my=alFy, mz=a3F2+ fi. (52)

According to Onsager’s theory, the molecule should be treated as if
enclosed in an empty ellipsoidal space of identical dimensions with
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those of the molecule. In the modified form of this theory, however,
we assume that several molecules are found in a spherical volume the
radius of which greatly exceed that of the molecule. The internal field
is expressed as before by (12):

Fx=gEx+ ~3mx, Fy=gEg+ -@’;my, Fz=gEz+ ’(}5mz. (53)

The solution of the equations (52) and (53) may be presented in vector
form, where the vectors F and m will be composed of two components:

one parallel to E, and another parallel to //. We shall use the following
symbols

e - 1=7n ’ (55)
where

Ai=-", 13— .2 (a==3 (ai+ a2+ ad)j . (56)

and give a measure of molecular anisotropy.
Further let us put

with

1—rpX3 (57)
. -> . g . .

Finally, let u stand for a unit vector parallel to ji. The solution is as

follows

- .
F=F*+ — (y—I)F* cos 0 u, (58)
m =aiF*+ [i*+ (a3—a"F* cos O]w. (59)

For isotropic molecules (ai=a2=a3= a) the above formulae become
identical with our previous formulae (14) and (13).
The moment acting on the molecule is

M =F x [/jtr+ (aS—al)F* cos 0]», (60)
therefore
M = fi*F* sin 0+ (a3—az1)F~*2cos 0sin O. (60 a)

Hence the energy

W=—IMdO — - fu*F*cos 0o —fls~ —F *2cos2 0. (61)
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For isotropic molecules this expression goes over into (16). The form
of (61) is such that without the asterisks we obtain the same expression
as with the Lorentz field; in this case 3P means of course (e+2)E/3.
We may now calculate cos2 6 from (51). Expanding the exponential
into a series and integrating term by term, we obtain

m (62)

where
(63)

From the above and from (50) the final expression for Kerr’s molar
constant is obtained. We give it here in symbols which are connected
with the theory of the Kerr effect based on the Lorentz field:

(64)
where
2 . .
45kT (aJ_aJ (&_Ma
2 (65)
45WT2

In the case of a Lorentz field, i. e. if we put g=(e+2)/3 and r=0,
the asterisks in the above expressions should be omitted and we obtain
the well known formula

K m— 2nN(61-\- 02), (66)
in which the expressions
o 45T k§—a) (h—h)

and

2
e2=45jpp M h —h) (67)

are a particular case of the expressions known from the theory of the
Kerr effect, namely

(67 a)

02= 4 (b—b2)+{/il—nl) (b -b 3+ (*i—i*]) (b3— bt)].
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(b) Solutions. Kerr’s molar constant IIm* is calculated in the
.previous paragraphs on the one hand, by means of quantities characte-
ristic of the medium (formula (43)) and on the other, by means of
quantities characteristic of the molecule (formula (64)). In the latter
formula, however, there appears the quantity r which is characteristic
of the medium, that is the reason why the constant K m*is not additive
for solutions, in opposition to Km which is based on the assumption
of a Lorentz field. Nevertheless, we shall calculate K m* for solutions.
When taking the solution to be a continuous medium, we shall use
formula (43) but, regarding it as a mixture of two kinds of molecules,
we shall use formula (64).

We shall limit our reasoning to the case of a polar substance
in a non-polar solvent, the anisotropic term dx of the polar substance
being so small in relation to the term d2as to be negligible. A similar
reasoning to that of §3 (b) leads to the application of the formulae
for Km* to the case of one gram molecule of the mixture (ifw for-
mula (27a)). We obtain

6n\2 | Mn 2nNQI  » 2tzN02
Ki2(n*2+ 2fJn = @-ruPiAxfl+ (I- rap")*(I-rp2%)*h "' (°8)
As the first term on the right-hand side is a small fraction of the second

for both big and small concentrations, we may put in its place the
expression

2nN61
O-~"PiFUT
Regarding
2nNO1=KT (69)
and
2nNd2=K?, (69 b)

as Kerr’s molar constants of the dissolved substance and the solvent
respectively, for a Lorentz field, the formula (68) may be written in
a simplified form as follows

(70)

where
6n\2 1 Mn
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By means of this formula we may calculate K or 2nNd2. Accor-
ding to Onsager’s idea this quantity (as well as the dipole moment)
should be invariant for all concentrations and for vapour. We shall
see that this is not so.

We notice that in the case of a Lorentz field, i. e. if we put r12=0
and «2=(£i2+ 2)/3, formula (70) assumes the well-known form

(71)
by which the additivity of Kerr’s molar constant is expressed.

(c) Interpretation of experimental results. We shall apply the above
results to the case of a mixture of nitrobenzene and benzene. Nitro-
benzene actually fulfils the condition assumed in (b), namely 2 0* " o*
Thus the formula (64) takes the form

1 —rpA)2 (1 —rpA3)2  (1—rpA)2 1 —rpX3f

Hence, we may calculate Kerr’s molar constant Km for pure nitro-
benzene. However, Kerr’s molar constant of nitrobenzene determined
from solutions is to be calculated (as K2) from (70). In the case where
/2= 1 this formula obviously takes the form (72).

We shall take numerical data from experiments of H. Friedrich
(1937) performed at 23° C. Friedrich measured Kerr’s constant K12
of nitrobenzene-benzene solutions and calculated the molar constant
of the solution ,51,2“ from a formula which differs from our formula (42 a)

only by a factor of 9, namely 5 Accordingly, the constant Kfl*
appearing in (70) is calculated as follows: -A™#*=5]1p(£12+2)2"2; its
value is tabulated in the sixth column of Table Il. Kerr’s molar con-

stant for pure benzene Ki is 95l for /2= 0 and amounts to 48,33 X 10-12;
pland p2are calculated from (36a). For P2 we have assumed the polar-
isation of solid nitrobenzene, i.e. 41 c. c. Finally, we have evaluated
Xi and A on the basis of bv b2and b3taken from Stuart’s book quoted
previously3. Table Il contains the results of calculations of Kerr’s

2 According to data from investigations of the Kerr effect in nitrobenzene
vapour at 235,5° C, we have $J02=K JK 2—7/139=0,050 (see H. Stuart Molekiil-
struklur, Berlin 1934, table 55, p. 211). At 23° C this ratio is 0,029. The ratio e*/e* is
still smaller.

3 Intable 59, p. 222 we find 6,=132,5x 10“*“,6,=77,5x 10“*“ and 63=177,6x 10*“ “ -
These are polarizabilities of the nitrobenzene molecule for visible light determined by
means of the Kerr effect and the depolarization of light in nitrobenzene vapour. As-
suming an approximate proportionality between al,a2,a3 and blt b2, b3, we calculate

A6, -f- b2)
Xr— 7 = 0,813 and A
1 | (&+Dbt+ 63)
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molar constant of nitrobenzene according to both the generalised
theory of Onsager (for %c—1) and to the theory of Lorentz. In the
first place we see that the ,constant® K™ is not constant as it should
be according to Onsager’s theory but depends in a rather queer way
on the concentration. This dependence is represented by the diagram,
fig. 4.

Fig. 4. Kerr’s molar constant of nitrobenzene as a function of concentration.

Table Il. Kerr's molar constant K™ of nitrobenzene for different concentrations (from
nitrobenzene — benzene solutions at 23° C).

Onsager Lorentz
h g thxio- Qoo KifXI09 . ou b kwxioc R
*

0 2,26 0,8748 0 5,37 0,0646 (ca. 4,5) (ca.0,4) (ca. 10) (ca. 0,85)
0,0930 4,42 0,9097 0,62 61,5 1,395 3,27 0,28 5,48 0,47
0,1957 7,01 0,9468 1,29 77,0 3,190 2,75 0,24 3,34 0,29
0,2618 8,80 0,9701 1,70 80,7 4,687 2,73 0,23 2,64 0,23
0,3532 11,3 11,0014 2,27 84,2 7,210 2,83 0,24 2,06 0,18
0,4659 14,6 1,0387 2,95 78,5 10,28 2,82 0,24 1,46 0,12
0,5769 18,3 11,0743 3,59 72,7 14,05 2,93 0,25 1,10 0,094
0,6872 22,5 11,1083 4,21 65,0 18,12 3,07 0,26 0,83 0,071
0,7829 25,6 11,1369 4,73 65,8 23,15 3,32 0,28 0,74 0,063
0,8805 29,6 1,1654 5,25 67,1 30,80 3,84 0,33 0,68 0,058
1 34,5 1,1992 5,87 70,9 43,20 4,64 0,40 0,64 0,054

* Friedrich’s data multiplied by 9.
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The reducing factor E is a measure of the diminution of the
molar constantin comparison with the value for vapour. E iscalculated as
the ratio of the constant K™ determined from the solution or from
the pure liquid to the molar constant of the same substance

in gas or vapour form:
7-rin

R=zm- (73)

gas

For nitrobenzene vapour 4 at 23° CK "= 11,736 x 10. The calculated
values of E may be found in Table Il; the same diagrams on fig. |
represent the dependence of E on /2.

The Lorentz curve, the form of which is well known, shows that
the molar constant of nitrobenzene falls abruptly with increasing
concentration, so that for pure liquid the reduction factor is only 0,054.
It might be noticed that the decrease of the value of K™ is not connected
with the decrease of any quantity directly observable by the experi-
menter. Rather the opposite occurs; the experimenter when measuring
the ordinary Kerr constant states that it increases remarkably with
increasing concentration. Only when he calculates the molecular con-
stant Rz by means of a formula analogous to (42a) does he divide
by the term (e-f-2)2 which increases strongly with increasing concen-
tration. This effect is still greater in the calculation of electric satura-
tion (85), where the divisor is (e+ 2)4

It might be said that this remarkable fall of KM is due to the use of
the Lorentz field, which is expressed in the formula (42a) in the form
of a very large divisor. One is inclined to arrive at the conclusion that,
instead of explaining the fall of K™ by a very strong coupling of mo-
lecules 5 it would be more natural to revise the method of calculating
the internal field. In fact, assuming the field of Onsager, one obtains
a fall of the cuiwe K% which is much less steep, and though some degree
of coupling must be accepted as an explanation the coupling may be
much weaker.

nevertheless the Onsager curve has a very remarkable form;
it corresponds exactly to the variation of the molecular polarisation
(fig. 1). At first the curve falls down, which is an argument for an
increasing antiparallel coupling of the dipole molecules of nitrobenzene.
For stronger concentrations there is an overwhelming influence of
another type of coupling which, I am inclined to suppose, consists
in a parallel coupling of antiparallel pairs (fig. 2).

4 According to Friedrich, this value is one ninth as large, i.e. 1,301x10 9.
s As has been done by Debye (1935), Friedrich (1937) and the author (1939).
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An interesting irregularity appears in the neighbourhood of
/= 0,3—0,4, which is connected with the attaining of a maximum
by it12, found experimentally.

8 5. Electric Saturation, (a) Pure Liquids. The component
of the moment of the molecule along E is given by the formula derived
directly from (59):

Toe= [% + («*—«i) cos2 O]F*-\- fi* cos O. (74)

Our problem consists in calculating the statistic mean value of
% retaining the terms with F"™. For this purpose ave shall calculate
cos 0 and cos20. The latter value has been calculated already and
is given by (62) and (63). We shall calculate noAv cos 6 using formula (61)
for the energy of the molecule. With the same meaning of the symbols
as in (63), A% haA'e

1
cos 0=- 7

0

By substituting the expressions for cos 0 and cos2 6 into (74)
we get

A= (at+ig ijF*+ (0T+ 202*-03*)~*3 (76)
where
a“ 3 o1 45 KT °
o (77)
- 2/|u 2Aa*—a.) N~ [r=4
I~ 45k2T2 °* 3 45k3T3

The dielectric constant is expressed by the formula
(78)

Differentiating (76) with regard to E and substituting into (78),
Ave obtain an expression for the dielectric constant in a strong

electric field:
e=-1-f-law
(79)
+ 127 (fif+ 2672- i) E\
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whereas in a very weak electric field we have

. h2
fO= 1+ 44N .
" h + BKT (1 —ropx3) 1.,%“ (80)
(the index o refering to the dielectric constant in a weak field). Under
the influence of a strong applied field the dielectric constant is changed
by Ae=e—eQ Using the definition

h2
3kT (1—rpk32 1—rpj’ (81)

we obtain by subtracting (80) from (79)

dE=/(£2...)-/(£0;..)+127riY'(d?+202 - 3)(T_fM )3U2-

For extremely small Ae (and only such are to be taken into account)
we may write

f(e,...)-f(e0,...)= MAe,
hence

Ae= 120N (0t+ 207-0]) ¢ (82)

ey 1Yok B

%e

In the case of a Lorentz field (¢r=( 2)/3, r=0), the above formula
takes the well-known form

N=12AM+207203) (njr)r2 (83)

where OIf 02 and 03 stand for expressions identical with (77) but with-
out asterisks.

Formula (82) assumes a much simpler form for substances with
a relatively big moment p, for which a is small in comparison to the
dipole part of the polarizability. For these substances the terms
and o2may be neglected in comparison with o3 (in a still greater degree
this applies to the expression with the asterisk). E. g., for nitrobenzene
at 20°C we have O0X 0,013x 10-22 and 02= 0,14 x 10“"2 whereas
03= 10,76 x 10-+

In these conditions

12~'03 f ™
of {l-rpW {l-rpw=*> "~ (84)
2e

where df/de is the derivative of (81).
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If according to our assumption a is neglected, the formula
for Sf/9e becomes

6v

St_e-1 4 J—h—n 23,)
de 2e+1 e \1—rpAl 1—rpXj 27+1" B4an
(b) Solutions. We shall apply (84) together with (84a) to the

solutions of nitrobenzene in benzene. The error introduced by the
previously mentioned simplification does not exceed 10% for diluted
solutions and decreases almost to 1% for concentrated solutions.
More exact calculations are not needed as measurements of electric
saturation are unusually difficult and their precision is limited. In
the literature we find only few investigations concerning electric sat-
uration. Besides Herweg’s fundamental work we have the paper of
Kautsch (1928) who measured Ae with great care and precision;
his investigations, however, concern ether and chloroform only. More
dipole liquids were investigated by Malsh (1928, 8) and Gundermann
(1930) butthese authorsdid not take all the necessary precautions and their
method gives only qualitative and relative results. Measurements
of Ae for solutions of nitrobenzene in benzene and also in other solvents
were made by the author together with B. Piekara (1936)G The
results of these measurements will be discussed here in connection
with theory.

Formula (84) may be used here in a remarkably simple way,
Ae for the pure solvent (benzene) being so small as to remain within
the limits of experimental error; therefore we may write Ae= 0. Con-
sequently, it is sufficient to replace N' by N'i from (25) to obtain the
formula for mixtures:

A M Sm

85
Cd 12 ~rizVAi)3 (1 G2?2%)4 (©)

where M, p, + and A refer to the nitrobenzene molecule and dfjde is
expressed by the same formula (84a) with the only difference that el2
and r12should take the place of e and r respectively. The new symbol Sm
appearing here is defined by the formula

Sm= —4nNd3 (8s)

8 Tliese investigations were continued in the following yearsand partly published
(1937). The remaining notes were lost during the war. The measurements with
pure nitrobenzene were repeated in 1939 by the author and A. tempicki by means
of a method different from that hitherto applied and using a cathode-ray oscillograph.
The outbreak of the war interrupted this work and the apparatus has been destroyed.
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and plays the same part as K m= 2nNfJ, in the theory of the Kerr effect.
We shall refer to it as ,the molar constant of electric saturation®.

It is easy to prove that if a Lorentz field is assumed and électro-
striction is neglected Smis the increase of molecular polarization per
unit of external field F:

(87)
PE is the polarization in the field, FO—without a field:
e—1 M s0—1 M
E~7+2~d’ °~7h+2~d’ (88)

Assuming Ae= e—e0to he small in comparison with e and applying (83),
we get
Sm= inN(61Jr'20z— 03), (89)

which for a particular case yields (ss).

We shall calculate Sm for nitrobenzene. Putting jx—4,23 X 10-18,
we obtain 03—/x*45k3T 3— 10,76 X 10-22, hence Sm= —81,4 x 10-10- This
value is obtained on the assumption of an absolute mutual independence
of the molecules. It may be therefore applied only to gas or vapour,;
we shall use the symbol for it:

—81l,4x 10~10

If we insert this value into (85) and calculate Aen, we get a result
largely differing from the experimental values of Ael2. This shows
directly that Onsager’s theory cannot even approximately deal with
the electric saturation in liquids (no more than with the dielectric
polarization and the Kerr effect). This, however, is no reason to condemn
Onsager’s theory as false. We shall consider it as insufficient and we
shall try to explain the discrepancies between theory and expe-
rimental results by the same coupling of molecules as in the case of the
polarization and the Kerr effect.

We shall not calculate the values of Ael2based on but starting
from experimental values of Ael2we shall calculate the value of Smby
means of (85), and hence the reduction factor Rs of saturation:

Sm
= (90)

The more the latter differs from unity, the greater is the part played
by the coupling.
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(c) Interpretation of experimental results. Table Ill contains the
following experimental data: the weight concentration c2 of nitroben-
zene, the number of nitrobenzene molecules N'2per c. ¢. of the solution,
the density and the dielectric constant of the solution, and the variation
of the dielectric constant Ael2 under the influence of an electric field
of 70 W fecm. The last four columns contain the molar constant Sm of
electric saturation of nitrobenzene and the reduction factor i?s calcu-
lated on the assumption of a Lorentz field

as well as of an Onsager field (formula (85)).

The dependence of Sm and JRS on N'2 based on the assumption
of a Lorentz or an Onsager field is represented by diagrams in fig. 5.
The Lorentz curve shows that the decrease of the molar constant
of saturation with increasing concentration is here still more strongly

Fig. 5. Molar constant of electric saturation of nitrobenzene as a function of con-
centration. A part of the Lorentz curve is presented on a larger scale; the positive
effect of saturation may be seen.
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Table Ill. Molar constant of eleotric éaturation as a function of concentration (from
solutions of nitrobenzene — benzene at 2100 and E=70kVfcm)

. Lorent-z Onsager
o A'xlo-2 ilp ., 4e12X 104
Smx 10 10 1?s &mx 10 10 Rs
0,0499 0,217 0,891 3,00 — 1,89 —41,6 + 0,51 —7,48 + 0,092
0,0984 0,435 0,904 3,75 — 271 — 17,0 +0,21 —3,65 + 0,045
0,1307 0,582 0,913 421 — 4,06 — 141 + 0,17 —3,36 + 0,041
0,2874 1,343 0,955 7,20 — 9,47 —2,93 + 0,036 —2,11 + 0,026
0,522 2,63 1,028 13,05 —20,3 —0,45 + 0,0055 — 1,67 + 0,0205
0,802 4,41 1,125 23,0 —32,7 —0,057 + 0,00070 — 1,35 + 0,0165
0,902 5,14 1,164 28,3 — 15,7 —0,0108 + 0,00013 —0,53 + 0,0065
0,972 5,57 1,192 32,5 + 32,7 + 0,0124 —0,00015 + 0,99 —0,012
1 5,88 i,203 34,33 + 754 + 0,0220 —0,00027 +212 —0,026

marked than in the case of the Kerr effect (fig. 4). The decrease is
so abrupt that the section corresponding to higher concentrations
had to be drawn on a bigger scale. As has been previously mentioned
in 84 (c), this is caused by the fact that the ratio F/E=(e + 2)/3 entprs
to the fourth power. If we assume an Onsager field, there appears
another, much smaller, factor (see (85)); hence the decrease of 8m
and Es with increasing concentration is here much less accentuated
and in general the reduction factor is greater as shown by the curve
of Onsager. Thus the coupling of the nitrobenzene molecules is not
so strong as was supposed on the basis of a Lorentz field. This agrees
with our conclusion drawn from the plots of Kerr’s molar constant
and of the molecular polarization. However, the final course of the
curve of the electric saturation is different, S changing its sign from
negative to positive. In the second part of this work we shall discuss
this effect which is very characteristic of the second-kind coupling

86 The Cotton — Mouton Effect, (a) Pure liquids. The
Cotton-Mouton effect is the magnetic counterpart of the electric
Kerr effect. Plane polarized light passes through the liquid placed
in a magnetic field, the lines of force running in a direction perpendic-
ular to the light beam, and at 45° to the plane of the vibrations of the
light wave. The effect consists in the change of the plane polarized
beam into an elliptically polarized one. The Cotton-Mouton constant
is given by the formula

r nH—x 1

m #2 oD

in"which n means the ordinary refractive index for the given wave-
lenght, nH and nx are the refractive indices for vibrations parallel
and perpendicular to the magnetic field respectively.
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We shall define Cotton-Mouton molar constant, according to
Kénig (1938), as the difference between molecular refraction for
parallel vibrations and that for vibrations perpendicular to a magnetic
field of 1 oersted:

(92)

where RH and Rx are expressed by formulae similar to (41). In this
case we do not make any distinction between the external and the
internal field, as the magnetic permeability of most liquids is practically
the same as that of the vacuum. The formula for Cm may be deduced
from (42) directly, yielding

62 M
Cm= G
(»*+ 2)2 d

(93)

We see that in this case we are not concerned with the Lorentz
or Onsager method of calculating the local field, nevertheless, we shall
consider the magnetic birefringence, as it will supply us with important
information concerning molecular coupling in polar liquids (cf. part 11
of this work). The exceptional character of the Cotton-Mouton
effect in contrast to the other effects discussed is connected with the
fact that in this case the dipoles play no other part than that involved
in the mutual coupling of molecules. There is no dipole orientation
in an external field. Further, from the point of view of experimental
methods, this effect is much more convenient than the preceding one,
especially because electric conductivity does not intervene.

We shall express the constant Cm yet in another way, namely
by means of parameters characterizing the molecule itself. We have
a ready formula for it in § 4, formula (66), where in the case of magnetic
dipoles we have to put 02—o, as the dipole liquids are diamagnetic.
Thus, we get

Cm=2nNO01, (94)
where
®—45/72" ("3 N)-
c3 and g are here the magnetic polarizabilities for directions parallel
and perpendiculat to the axis od symmetry of the molecule respec-
tively.
Formula (94) is based on the assumption of complete freedom

of the molecules and is therefore applicable only .to gases and those
liquids in which there is no limitation of freedom of the molecules.

Acta Physica Polonica 5
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As we shall see, remarkable discrepancies will appear in eases in which
coupling takes place.

(b) Solutions. As before, we shall limit ourselves to solutions
of polar liquids (index 2) in a non-polar solvent (index 1).
From §4 (b) we shall take the formula

Cn~Cl'h + C?U, (96)
where
2)2' de
and
nm_ r* 6n9i€ M'i
n\+2f QI{

C2 should be determined from the equation (96) and compared with
the value of the same constant for gas (Cgl,). Therefore, we shall cal-
culate the ,reducing factor* B CM:

pm
RcM=-Rr- (91)

ygas
(c) The interpretation of experimental results. As far as we know,
Koénig (1938) was the first to calculate the Cotton-Mouton molar
constant. His calculations were based on measurements with solutions
of nitrobenzene in carbon tetrachloride performed by A. Goldet and
the author with the large electromagnet at Bellevue in 1934. The
results are presented in Table IV. The first column contains the weight
concentrations, the second —the densities of the solutions extrapolated
from measurements of N. N. Pal7 the third —the number of nitro-
benzene molecules N'2 per c.c., calculated from the preceding, the
fourth —the Cotton-Mouton molar constant as given by Kdnigs
and the fifth —the reducing factor lieu- In order to calculate the
latter, the value of the. Cotton-Mouton molar constant for vapour
is needed. KOonig made an attempt to measure it, but found that the
magnitude of the effect is within the range of experimental errors.

For 20° C and 670 mm Hg he obtained

< 550 x 10~17,

whereas for an infinitely diluted solution of nitrobenzene we obtain
by extrapolation to c2= o

= ca. 400 x 10-17

7 Prom Landolt,Bornstein Tables, vol. Ill, part 3, p. 1947 (1936).
8 There is only a diagram in Konig’s paper. The numerical values of the fourth
column were obtained by careful measurement of the co-ordinates.
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We shall use this value instead of 0”afor calculating R em, the obvious
result being that Rem= "~for c2= o, which is equivalent to the assump-
tion that the coupling of the nitrobenzene molecules with the solvent
does not influence the constant C™ In fact, as will be shown in Part 11
of this work, this influence is negligible.

Table 1V. Golton-Mouton molar constant C™ as a function of concentration (from
nitrobenzene — CCI,, solutions at 20° C)

0
0,1217
0,3084
0,5461
1

12

1,5940
1,5365
1,4530
1,3550
1,2035

0

0,914
2.191
3,619
5,885

A'xIO -24

c;nxiol7

(ca. 400)
426
490
572
700

C™M

1
1,065
1,225
1,43
1,75

As may be seen from (94) the Cotton-Mouton molar constant
should really be independent of the concentration of the molecules,
whereas, as shown in Table IV and graphically in fig. 6, C" increases

fc

3

&IOOO

200

100

0

2

3

0

5 n,lg2

Pig. 6. Cotton-Mouton molar constant as a function of concentration.

rapidly with the concentration. The ,reducing factor® RGn is in this
case greater than unity, in contrast to the preceding effects. This
unusual behaviour is caused by the type Il coupling, and the effect

5*
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is readily understood from the following exaggerated example. Let
us suppose- that the nitrobenezene molecules are so strongly coupled
two by two that one may consider one gram molecule of the liquid
as composed of N/2 associated pairs. The magnetic and optical polari-
zabilitics of each pair are doubled (if we neglect mutual inductance
influence). In consequence the expression d1(95) is increased by a factor
of four and therefore the molar constant Gmis doubled, hence R EM—2.
In reality for nitrobenzene Rou= 1,75, which means that the mole-
cules are not associated in rigid pairs. The theory of the coupling (see
Part Il) gives for a value slightly smaller than 1,75 if we admit
a coupling energy required by the three preceding effects on the assump-
tion of a Lorentz field. To obtain the value Ra«= 1,75 we must either
admit a greater coupling energy, which would disagree with the trend
of the preceding effects, or admit the possibility of a coupling of mole-
cules in larger aggregates than in pairs. The latter possibility is in
accord with the variation of the dielectric polarization and the Kerr
effect, but only if the Onsager field is assumed. We see that although
the local field does not appear directly in the Cotton-Mouton effect,
the latter may supply us with valuable information on this subject.
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The problem of great depths

As concerns the problem of cosmic radiation reaching great
depths (some hundred metres water equivalent) it is assumed by most
physicists that this radiation is a meson radiation (perhaps with some
admixture of protons) accompanied by knock-on electrons and cas-
cade showers started by these (Wilson 1943). Quite different views on
this subject are given by Barndthy and Forr6 (1948) who assume
that at depths greater than 500 m w. e. it is mainly non-ionizing radia-
tion produced by the decay of mesons which penetrates there. They
consider that our instruments at those depths are operated by second-
aries of that non-ionizing radiation.

These differences in views are derived from some anomalies
observed by measurements of cosmic radiation at great depths. The
best known anomaly is that giving the relation between the intensity
of cosmic radiation and the depth. If we take the integral spectrum
of mesons as given by the relation

I=cE~v

and we also take the losses of energy of mesons to be proportional
to the depth E which they have traversed we obtain the relation

I = c'H~y,

in which y is equal to about 1,8. In a diagram logJ vs. log H we should
get a straight line with a slope y, whereas if we take into account the
experimental results, we get a line broken at about 300 m w. e. (Clay
1939). Up to 300 m w. e. we have a line with a slope of 1,8 and beyond
this depth the slope changes from the value 1,8 to 2,8. Because of the
fact that only mesons with energies higher than 10n eV can penetrate
to this depth, we might conclude that besides the normal loss of energy
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through ionization the particles concerned suffer an additional loss
through some other mechanism. The other explanation might be that
the spectrum of energy of mesons above energies of 10u eV drops
quicker than may be expected from the form E~18

Lyons (1941) considers an additional loss of energy of very
energetic mesons by radiation as a cause of this change of the dependence
of intensity on depth. The mesons of high energies might radiate most
of their energy in one collision and therefore we should getin the depend-
ence of the intensity of cosmic rays vs. depth an additional exponential
factor giving a quicker drop of the intensity with the depth. A closer
analysis of this process proves that the losses of energy by radiation
suffered by mesons of energies sufficient to penetrate such depths
(1ou eV) are too small to explain this phenomenon.

There are now in the literature of the subject two opinions on
this problem, based on similar assumptions of meson decay, given
by J. Barnotliy and M. Forro (1948) and K. Greisen (1948). Bar-
nothy had already considered this question in 1940.

The mean range of a meson in vacuum (because of the decay)
is given by the formula

where ro is the mean proper lifetime of the meson, P its momentum
and /jits rest mass. In the spectrum of mesons we have a lack of particles
of low energies, but in the spectrum of decay products we have a lack
of particles of very high energies. This last phenomenon will be observed
for those energies of mesons for which the mean range is equal to the
height of production of mesons in the atmosphere. In the spectrum
of decay products of mesons we have to add to the form E~18 the
factor E~I for energies corresponding to the decay range equal to the
height of the meson production layer. If we assume that at great depths
we register the products of meson decay and that the losses of their
energies are proportional to the depth they traverse, we get for suffi-
ciently high energies a dependence of the intensity on the depth in the
form E~28.

The main difference between Barnothy and Forrd and Greisen
is that Barnothy and Forrd assume that at great depths we observe
neutral products of decay of normal mesons (m,fw200); Greisen on
the contrary introduces the decay of mesons of mass 300 with a much
lower lifetime (6,20 8sec) and obtains in this way for the spectrum
of energy a change of the form E~18to E~28for energies greater than
10u eV. This is the energy necessary for a meson to traverse some
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hundred metres water equivalent. Thus, at great depths we observe
normal mesons which themselves are already decay products.

For the evaluation of this critical energy, Greisen assumed
to long a lifetime for the meson of mass 300, viz. 6.10-8 sec instead
of about 8.10-9 sec, as it is now known. For the latter value for ro the
change of the exponent in the energy spectrum should occur at about
1012 eV rather than at 10u eV. We might thus take the explanation
of Greisen as quite satisfactory, because of the great inaccuracies in
the data we have here at our disposal, and because of the neglect of
the losses of energy due to radiation X).

Thus, we can assume that in cosmic rays at great depths we
have to do with secondary particles produced by the same processes
which are known from experiments at sea level.

But Barnothy and Forré in the paper mentioned (1948)
report among many interesting results also a phenomenon which they
inerpret as an argument for the opinion that at great depths we have
to do especially with neutral meson-decay products. This phenomenon
mentioned already in 1939, was also communicated at the Cracow
Cosmic-Bay Conference in Oct. 1947. They observed at the depth
of 1000 m w. e. that the radiation there measured was able to give
many times more double than threefold coincidences in the same
telescope. The ratio of threefold to double coincidences in their measure-
ments was 0,05. Barndthy and Forr6 express the opinion that this
phenomenon proves the existence at great depths of a scarcely ionizing
component of cosmic radiation. For this component the probability
of threefold coincidences ought to be decidedly smaller than that of
double ones.

The aim of this work, of which we are giving provisional results
in this paper, was to check this interesting phenomenon and inve-
stigate more closely the properties of the radiation which produces it.

Description of the aparatus

Our measurements were performed in the salt mine at Wieliczka
near Cracow. The deepest level at our disposal was 282 m below ground.
The layers above the telescope consisted of rock-salt, sandstone, gray

1 Since this paper was submitted for publication, we came across a paper
of Satio Hayakawa and Sin-Itiro Tomonaga, Pbys. Rev., 75 1958 (1949),
in which these authors, considering the decay of mesons of mass from 287 to 217
with a lifetime of 1+10~8sec and taking into account the losses of energy due to
radiation, have obtained a curve of the dependence of intensity vs. depth in accord-
ance with experimental data.
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silt and silt with grains of rock-salt, gypsum and anhydrite. The water
equivalent was estimated from samples taken from different layers
at different levels. The measurements were carried out in horizontal
passages (about 2 m high) in the salt layers at two levels 660 and .
540 m w. e. The work in the salt mine requires the apparatus to be
built very thoroughly. Salt powder and moisture are deposited during
the work and therefore the whole apparatus must be tightly closed.
These difficulties may be easier overcome if we use all-metal counters
with earthed cathodes. Because of the very large fluctuations of voltage
in the mine, the apparatus had to be supplied with a stabilizer stabilizing
the voltage within wide limits. The magnetic stabilizer2) which has
been used was very helpful in this matter. The special conditions of
Avork also needed some additional arrangements to make work con-
tinuous and safe (such as an automatic switch tor too low voltage,
a delayed switch for switching on the high tension for the register
circuits, an electric clock set going by this delayed switch, etc.).
The measurements of the ratio of threefold to double coincidences
were performed with an apparatus much improved in comparison
with that of Barnothy and Forrd. The telescope consisted of three
GM-counters 1, 2, 3 (Fig. 1). The middle counter 2 was of larger di-

Fig. 1|

mensions than the two others. The telescope was protected against
side showers by 6 anticoincidence counters. The double coincidences D
of the counters 1, 3, and the threefold coincidences T of the counters
1, 2, 3 were registered simultaneously by two separate P. O. registers.
In this way we got a fairly small statistical error of the ratio T/JD
even for a not very great number of D coincidences. This is very impor-
tant here because of the very low intensity of the cosmic radiation at
the depths at which we have worked (the number of T coincidences
at the lowest level is at the rate of about 1 per hour). In order to measure
the double coincidences D the resolving time of our apparatus had

2 The authors are greatly indebted for the design and the construction of
this stabilizer to Mr. T. Czayka of the Cracow Mining Academy.



Gosmio Bays at Great Depths 73

to be rather small. It was 2,6 /;sec, which we achieved in such a way
that the rectangular, pulse coming from the counter amplifier was
differentiated with a small time constant in the circuit of the grid
of the Bossi valves (Mi®sowicz 1947). The GM-counters we used were
of the all-metal type lilled with the wusual argon-alcohol mixture.
The dimensions of the counters were

Counters 1 and 2. . . . 43X65cm2

N
Brasstubes 1 mm fthick,
Counter 3 and antacounters 5,2 x 70 cmZ.\Y}

The number of pulses per min. of these counters in the laboratory
were about 650 for smaller and 900 for larger counters. The number
of pulses per min. at the lowest level in the mine were about 70 and
100 respectively. The low background rates of the counters were very
convenient for our measurements. After protecting the counters 1 and 2
by 5cm Pb at the lowest level, the background dropped to 16 per min.

Measurements of the ratio of threefold to double and
fourfold to threefold coincidences

In our preliminary measurements performed at two depths
(660 m w.e. and 540 m w. e.) we found more double than threefold
coincidences, proving in this way qualitatively even for those depths
the existence of the effect found by Bam d thy and Forré at 1000 m w.e.
We did not find however any difference between the number of three-
fold and fourfold coincidences. The results of the measurements are
given in Tables I, Il, and Ill. In all tables the numbers of D-coinci-
dences are given after subtracting the accidental coincidences.

TABLE |

Vertical telescope at a depth of 660 m e. w.

number of coin - average rate per

cidenees and time hour
Threefold coine. T 321 1,34+0,05
Double coinc. D 443 1,86+ 0,06
Time (in hours) 239,46

Ratio of threefold to

. (725+£2,7) %
double coinc.
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TABLE 11

Vertical telescope at a depth of 540 m w. e.

number of coin- average rate per

cidences and time hour
Therefold coiuc. T 454 2,08+0,07
Double coinc. D 660 3,01+0,08
Time (in hours) 218,6

Ratio of threefold to

= )
*double coinc. | (69.0+2,2) %

TABLE Il

Vertical telescope at a depth of 540 m w. e.

number of coinc. average rate per

and time hour
Fourfold coinc. F 354 2,09+0,07
Threefold coinc. T 356 2,10+ 0,08
Time (in hours) 169,3
Ratio of fourfold to F
= 0,995+ 0,04

threefold coinc.

Investigation of the properties of the radiation causing the
excess of double over threefold coincidences

Let us write the number of double, threefold and fourfold coinci-
dences in the form (Clay 1942)

D= AV +],

E=AW-j-J,

where J is the intensity of the ionizing component of the radiation
going through the telescope for which we assume the efficiency of
the GM-counter to be 1,0, N the intensity of the non-ionizing com-
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ponent and A the efficiency of the GM-counter for this component.
From our measurements of the ratio of FjT it follows that
in other words the number of threefold coincidences produced by the
non-ionizing component is negligible in comparison with the number
of threefold coincidences produced by the ionizing component. Then,
we may consider T as the intensity J of the ionizing component and
write

T T T

D~PN+T~A+T"’

where A gives the number of double coincidences due to the non-
ionizing component. Table IV gives a comparison of the values of
A and T for two depths.

TABLE 1V

coincidences due coincidences due

Depth to non-ionizing to ionizing com-
component A ponent T
540 m w. c. 0,93/hour 2,08/hour
660 m w. e. 0,52 1,34

If A is considered as a measure of the intensity of the non-
ionizing component of cosmic radiation, we should have a strong
dependence on the depth and a high relative intensity. The ionizing
component, however, shows that the intensity decreases with depth —
in accordance with the measurements of other authors. For the expo-
nent in the absorption formula we get from our figures the value 2,1,
which taking into account our rather poor evaluation of the water
equivalent, is quite consistent, within the limits of experimental errors,
with the values given by other authors.

The other characteristics of the component A correspond in
general to those found by Barnotliy and Forro for radiation recorded
by double coincidences. For the investigation of the angular depend-
ence of the component A, measurements of threefold and double
coincidences in a horizontal position of the telescope have been carried
out. The results are given in Table V.

From the figures given in it we can see that for a horizontal
position of the telescope the number of threefold coincidences is
negligible and the number of double coincidences has, within the
limits of experimental errors, the same value as A. This is an evidence
for the isotropic character of the component A.
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TABLE V

The telescope in a horizontal position at 540 m w. e.

number of coinci-

X rate per hour
dences and time

Threefold coincid. T 1
Double coincid. D 109 0,90
Time (in hours) 120,5

We have investigated also the influence of lead put between the
counters on the ratio of TjD. The figures are given in Table YI.

TABLE VI

The telescope in a vertical position at 540 m w. e.

Thiclfness of lead T/D A A
in mm A (ocm Pb)

0 0,690 0,93 1,00

5 0,795 0,49 0,53

10 0,906 0,19 0,20

15 0,930 0,13 0,14

50 0,989 0,02 0,02

From these figures we can see that the component A is absorbed
with an absorption coefficient of about 1,4 cm-1 Pb.

Efficiency of the counters for the component A

Barnothy and Forro who evaluated the ratio TjD at 1000 m w. e.
and found the value 0,05 interpret this figure as the efficiency of the
counters for the radiation giving the coincidences. We think that
this would be correct only if the telescope had not registered also
a number of ionizing particles for which the efficiency of the GM-coun-
ters is equal to 1,0, and for which the numbers of double and threefold
coincidences are the same. For the efficiency A of the counter for
radiation causing the excess of the double coincidences, we have X<TjD.
On the other hand, in these circumstances we cannot at all evaluate
the specific ionization as it was done by Barnothy and Forrd, who
gave the value of 0,04 ions/cm ST. T. P. air for this radiation. It is
not known a priori whether this radiation reacts on the counter by
producing ions in the gas of the counter, or whether it gives secondaries
in the walls of the counter which initiate the discharge. In the first
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case, the efficiency of the counter would depend on the specific
ionization of the gas contained in it, but in the second case it would
depend on the probability of emitting secondaries in the walls of the
counter.

For getting at least a rough evaluation of the efficiency of the
GM-counters for the radiation A, we compared the number of counts
of a single counter caused by the radiation which is absorbed by 5 cm Pb
with the number of double coincidences A. At 660 m w. e., for a counter
of a length of 1=65cm and a diameter of a= 4,3 cm, the number
of counts without .screening was 80/min., with a screen of 5cm Pb
from all sides it was 16/min., thus the number of counts due to the
radiation absorbed in 5cm Pb was 64/min. If we assume that this
radiation is isotropic, we have a dependence between the number N
of counts, the flux j of the radiation and the efficiency X of the counters
for this radiation of the form

We get from it Xj= 0,022/sterad. cm2 min.

Let us now evaluate the probability oi double coincidences due
to this radiation, without any .discussion of the particulars of the
mechanism of this process. Let X be the efficiency of the telescope
for double coincidences for this radiation, i. e., X is the probability
that the particle or photon which discharges the first counter enters
the second one and discharges it also. Assuming the radiation to be
isotropic and paying due regard to the solid angle determined by the
telescope, we get by simple integration for the number of double
coincidences

where 1—18 cm is the mutual distance of the counters in the double
coincidence telescope. From this equation, we get

A'= 0,002,

a value 20 times smaller than that given by Barnothy and Forro.

Conclusions

The resiilts of this work therefore show the following properties
of the radiation giving the excess of double over threefold coincidences:

1. It is scarcely ionizing.

2. It is isotropic.

3. It is absorbed by about 0,5 cm Pb to 50 °/0.
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All these properties seem to prove the fact that this radiation
is of photon character, and the absorption coefficient as well as the
efficiency of the counters for this radiation also suggest that we may
have here to do with some y-radiation of about 1 MeV energy, originating
perhaps from natural radioactive substances.

It remains to explain the mechanism of the coincidences given
by such a radiation. It is not improbable that we are confronted here
with an example of some compound Compton-effect. As a matter
of fact, it might be possible that a photon entering the first counter
and discharging it might enter afterwards the second counter and
give off there another electron which discharges this second counter.

It may be seen from our evaluation of the efficiency of the counters
for that radiation —assuming that the discharge in the counter is
started by photons —that we get thus quite a reasonable figure for
the efficiency for the double coincidences. Of course, in this case X'<X,
because the loss of energy of the photons in the first counter causes
a drop in the efficiency and the photons are dispersed producing in
this way also an additional inefficiency.
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PROPAGATION OF A CUT-OFF TRAIN OF DE
BROGLIE WAVES

By A. RUBINOWICZ, Institute of Theoretical Mechanics, University
of Warsaw, Warsaw

(received July 17, 1949)

The propagation of a cut-off train of monochromatic de Broglie waves has
been investigated.Formulae have been developed describing completely the arrival
of the wave front, the forerunner, and the main wave.

In the present paper we deal with the following problem of the
propagation of a cut-off train of plane de Broglie waves. At the time
t= 0 we have at the negative a:-axis a train of-monochromatic de Broglie
waves of frequency vO, that is

la —2mvoj<—A]

e e Uy (1)

with a phase velocity u0 given by

wo ~ 7 /.. \2\v n

where vl—mOQc2li is the frequency corresponding to the de Broglie
wave length of a particle of rest mass mO; a is an arbitrary phase
constant. Our problem is to determine the propagation of these waves
for t>0 and #>o0.

This problem is formally a special case of Sommerfeld’s (1914,
cf. also L. Brillouin 1914) problem of the propagation of an electro-
magnetic cut-off wave train in a dispersive medium, namely the one
dealing with free electrons vhthout damping. This specialization enables
us to obtain convergent series developments of the exact solution,
whereas in Sommerfeld’s general case it was only possible to discuss
it approximately.

8 1. Solution of the problem and its series develop-

ments. The integral
ela r dv

v(i, = 55(3']) e
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taken in the upper half of the complex v-plane along the path (17),
fig. 1, from -h°° to —oo of the real axis defines the function

m_/° for i<0’

n ' \elae~2nw* for i>o.
For t<o we can namely deform the path (U) into the infinity of the
upper half of the v-plane where exp (—2nivt) for t< o vanishes exponen-
tially. For i>0, however, we can deform (U) into the infinity of the

lower half of the complex v-plane, but in doing so, we must pass the
pole at v=v0, which gives a residue.

To a corpuscular wave of frequency v corresponds a phase
velocity u given by

We expect, therefore, the solution of our problem to be

V)
where

W——2niv[t— = —2ni(vt— (v2— (5)

Owing to the fact that u in (3) is positive, we must give to the
square root in (5) a positive sign for real v-values v>v1. The points
v=xvx in (5) are branch points. In order to have to do with a definite
branch of w, we place a branch cut on the real axis of the v-plane
between these two points.

. . . © .
Fiist of all, we can show that /(i,x) vanishes for f< o that is

for B> 1, if
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This means that the velocity of the wave front cannot be greater than
the velocity of light. In the case /S>1 we can indeed deform the path
of integration (U) into the infinity of the upper half-plane, because

for large r-values the function w, eq. (5), is given by w—

Hence,
j(t,x) =0 for [?>1.

For /?<!, however, we can deform (U) into the infinity of the
lower half-plane, where, in this case, w vanishes. But then there remains
still a path of integration (Z7) surrounding the branch cut between
—vland -I-r, and the pole at v—Vv0. For /?< 1 we can therefore use instead
of (U) the path of integration (i7x).

The meaning of (i is as follows: according to (s), the value
of cff=xft determines the velocity of a particle which would reach
the point x at the time t starting from a— o at the time i=o.

In order to obtain convergent developments for f(t,x) in the case
of /?7<!, we deform (17,) into a path of integration (E), fig. 2, on which

Fig. 2.

the real part of w, eq. (5), vanishes. {E) is an ellipsewith its centre
at v=0 and with the principal semi-axes

a= jf==—m and b= ‘" =m @)

a and b aresituated on the real and imaginary axes ofthecomplex
r-plane respectively. (E) can therefore be represented by

] (cos y) -)-iff sin x) (o< y<2n).
ytr-p

Acta Physica Polonica
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Because on (E)
X VI-P

w= Wg——izcosip where z=2n—=vl—-—, 8)
we have
fia in in-f-ip cos |
oWk min ip-f-ip cos ip dip. ©)
cos y>+ip sin ip—— )/1—(P
Putting
i=re» r=ygf, 0= N+ [[(N) -1, (10)
we obtain
min ip-\-ip cos ip Q—1
cos ip‘}-ip sin ip—A\ —p2 t2—2—C +1
(11)
—i XAV
G Yoo
Yo,
so that finally
A
eia . .
ik A i dip+ (residue). (12)
J TE N e L

70

» t (residue)” means here that the residue of the integral (4) which
is given by the egs. (1) and (2) must be added to the integral in (12)
in the case of the pole at v=v0 being situated outside the path (E).

As the frequencies vO and vx are determined by hvO—rnc2 and
hvx—m0Qc- respectively, where mOis the rest mass and m the mass of
the moving particle, v0 is always greater than vIf so that the pole
at v=v0 lies outside of the branch cut. For /?-»ml, according to (7), the
semiaxes of (E) become infinite, and for /2->0 the path (E) approaches
the branch cut. If vO0is equal to the greater semiaxis a the path of
integration (E) passes through the pole at v=v0. Denoting the corre-
sponding value of p by p0, we get, according to (7),

(13)
o K wii
Inserting this into the eq. (10) for y0, we get
yo,_l/|TfO (14)

1 _ IV
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Using (12), we can now obtain representations for j(t,x) by means
of convergent series of Bessel functions

21 2it

f Gizecssye-infe-"'"P e+ ~dy). (15)
J 2nj
0

We deal with the case 1> 2> /3 first. According to (10) and (14),
we have then + oo>y>y0, so that owing to y=|£|

Jn(z) = £ -
(2 £

+ 00> |C| > yO0.

The path of intergration (E) contains in this case the pole at v=v0in
its inside, so that there does not appear any residue in (12). According
to vO>vland (10) we have yo>1- Under the supposition that [i|>y 0>
we gethave also |[f|> —, so that the bracket expressionunder the

Vo
sign of integration in (12) can be expanded into the power-series

00

1+2 ~ < yo+yon)-
n=I
Hence, -with the help of (12) and (15) we get for the function f(t,x)
the expression

/(«,x) = eia{JO(z)+71‘=l (—)"J ,,(2)v~n{vo+ y;rn)} (1en

The moment iogiven by fi0= x/ctOdefines the velocity vO= xjt0— cp0.

As, according to (13) there is flo= (I — J , we have

"ezc(i-fe )T
and hence, using (2),
uvO=c2.

vOis therefore the group velocity corresponding to the phase velocity u0.
At the time tOthere arrives at the point x that part of the wave train
which travels with the group velocity vQ i. e. with the velocity of the
incident particles.

This means that the development (16) describes the events for
a given point x from the arrival of the wave front to the arrival of
the waves travelling with the particle velocity v0. This development
can be used also for times t greater than t0, that is for /2> /2> 0. But
in this case the convergence is very slow.
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For these /i-values we get, however, a good convergent series
by developing in (12) the expressions — and — -------- — into
C—yo0 roC— (i/y0)
power-series in Clyo and 1/Cyo respectively. Taking into account
that now the pole at v=vO0 lies outside of the path of integration (E)
and therefore the residue must be added, we obtain

gfl \ crfern), _ A (_ Hndn{z)Y-n(yn_ y-nl‘ @7
n=1
(17) also can be used for all ~-values in the interval (0,1). From

the equality of (16) and (.17) we obtain a development of the incident
wave given by (1) and (2) in a series of Bessel functions

¢ WHHaTI =IW+ I miv.m((*)"+E)").

This expansion follows also directly from the generating function
of Bessel functions (Watson 1944)

X ‘)= J0{<<)+nlii'n(z)(tn+{—t)-n)
if we put here t= —iyOly.

For large values of z we need an asymptotic expression for the
wave function f(t,x). We can get it' by applying to (9) the principle of
stationary phase. For large z-values the oscillations of ew are very
rapid in comparison with the changes of the remaining part of the
integrand in (9). The phase tv0 has stationary values for y>—0 and y>=Tt.

w2 ®2
Using the approximations cosyi=Il— and cos (n-\-P= —1+-5-

in the neighbourhood of these points, we get in the usual way

LK«

f(tx) = S Ve HovroeM )b o (residue).  (18)
P 2 YW \r[=p TV TZjE] |

Formula (18) can be used only if the path of integration (E) does
not pass through the neighbourhood of the pole at vO, independently of
the fact whether ro lies inside or outside of (E). In the second case,
that is for /> /S>0, we must, however, take into account the
residue at v=v0.

Asymptotic expansions containing descendig powers of z and the
expression (18) as the first term can be obtained by developing the
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product of exp —iz|(cos ip—"L—"-)j or exp —iz"cos(7r+9>)+|—

and the expression (11)in a series of ascending powers of y>and & re-
spectively (an der Corput 1939). We can also get the expression (18) by
the method of steepest descent.

§ 2. Discussion of the solution. In order to have an idea
about the order of magnitude of z we introduce in (8) by

A= (19)

ma vl

the Compton wave length A of the incident particles. Thus we get

z=2njnrn, (20)

For electrons, for example, is A= 2,4 10-10 cm, and therefore is z
a large number for tc+ o and o<1.

First of all, we consider the arrival of the wave front at a given
point x. It comes at the instant determined by 0=1, and hence
by z=0 and y—oo0. As J([z) is the only Bessel function which does not
disappear for z= o, it follows from (16) that for o~ 1

f(t,x)=e>*J 0(2). (21)

The intensity \f(t,x)\2 of the arriving w'ave front is therefore of the
order of magnitude of 1, that is of that of the incident wave. More-
over, (21) is independent of the frequency of the incident wave. We are
hence compelled to assume that the events at the wave front are deter-
mined only by the process of the cutting off of the incident wave.

We ask now whether it is possible to assign a wave lenght Aand
a frequency n to the front wave (21). The distances of two consecutive
zero points of the Bessel functions J,,(z) are of the order of magnitude
of re The variable z can therefore play the role of a phase. If z would

be equal to — jj, then the wave length Aand the frequency
n=1/T would be given by

1 1dz - 1 1 dz _ 22)
A 2n dx T 27 dt

But following L. Brillouin (1914) we can use (22) as a formal defi-
nition of A and n respectively. Using ff=x/ct we get then from
(20) and (22)
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Xis the de Broglie wave length of particles moving -with the velocity eft,
n is the frequency associated with Xby the de Broglie phase-velocity c//3.
Owing to (19), we have Xn=Avjp=cip indeed. At the moment of
the arrival of the wave front (/?=1) are 1=0 and n—oo; afterwards X
increases and n decreases.

The moment the wave front has passed the point x (that is for
/?7< 1) the value of 2 increases so much that we can use the asymptotic
expression (38), first for fi0<p<! without the residue. This part
of the wave f(t,x) is called the forerunner or precursor. Owing to \z
in the denominator the function f(t,x) decreases until /2 comes into
the neighbourhood of /?,. Then, according to (13), the resonance denomi-
nator of the first term in brackets becomes very small, so that f(t,x)
increases again. But at the same time the asymptotic expression (18)
ceases to be applicable, because the path of integration (E) passes
through the neighbourhood of the pole at v=v0. In this moment the
»main wave" given by the residue aiTives. Subsequently, the contribution
of the first term in the brackets, which at v=v0 has changed its sign,
becomes less important. With the advance of time (/9->-0) the value
of Yz approaches infinity, so that practically only the main wave
remains.

The expressions (23) for X and n are valid also for the first term
in the asymptotic approximation (18). With decreasing /?, the.wave
length X increases, until at the moment (/S=/30) of the arrival of the
main wave it becomes equal to the de Broglie wave length of the
main wave. After this moment X increases further.
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COMPARISON METHOD OF MEASURING THE ANGU-
LAR CORRELATION OF GAMMA-RAYS

By Jerzy GIERULA, Physical Laboratory of the Mining Academy,
Krakow

(received October 30, 1949)

From theoretical considerations (Hamilton 1940, Goertzel 1946)
it follows that when two y-quanta are emitted in cascade in the
process of nuclear de-excitation the relative probability that the
second quantum will be emitted at an angle 0 with the first is

i
W(O)=I+/i£iAi0032iO,

where 21 is the highest multipole order occuring.

Up to now, the investigations of the angular correlation of y-rays
(Beringer 1943, Boehm 1949, Brady 1947, Good 1946, Kikuchi
1942) were carried out by observing the coincidences between a coun-
ter A, fixed with respect to the sample P, and a movable counter B
(Fig. 1). As these measurements extend as a rule over
long periods of time, they require a far reaching stability
of the working conditions of the counters and an exact
reproducibility of the geometrical configuration. If the i
effects of the angular correlation are small (as is to \ Bj
be expected in the majority of cases) a very slight
instability of the experimental conditions may spoil the ,
measurements to such an extent as to make them wholly Fig. 1
unreliable.

In this note a comparison method of determining the angular
correlation is suggested which is more or less insensitive to the insta-
bility of the working conditions of the counters and of their spatial
disposition. During the whole course of a series of measurements two
countersA and B (Fig. 2) are fixed, while a third one G is placed in
position 1 during the first part of the series and afterwards in position 2.
The first part of the measurements consists in the simultaneous counting
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of the (AjCJ- and (B, OJ-coincidences (counter G in position 1). The
numbers of these coincidences are given by

where is the number of decays during the measurements, m are
the respective solid angles, s the efficiencies of the respective counters,
V are the respective losses of coincidences, and W(0) is the relative
probability of emission of two successive quanta at an angle 6. The
ratio of the above numbers is given by

“>AeAV AC W (90°)
(~"A) w (iso°r 1
Similarly, the second part of the measurements with counter G
in position 2 gives

and their ratio
(A’°>) " ~ ¢ W(180°) )
(B,C2) a@BeBVBC W(90°) 2)

From (1) and (2) we get
©)

a quantity which is independent in a high degree of the fortuitously
changing working conditions of the whole coincidence apparatus.

In Pig. 2, the counters are shown in position
for a measurement of the ratio of the probabilities
at 90° and 180°, but it is easily seen that this ratio
may be measured for any other two angles by an

k 1 appropriate change in the angular setting of the
counters A, B, and C.
% Of course, the same method may be also used
Fig- 2 for angular correlation measurements of (ft,y)- and
(ft, /S)-processes. The errors introduced by the absorption of the /3-particles
in the sample may be avoided by a steady rotation of the sample
around its axis.
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DIPOLE MOMENT OF CARBONYL CYANIDE

By M. PUCHALIK, Institute of Physics of the L. Warynski Silesian
Academy of Medicine, Rokitnica

(Received March 16, 1950)

The dipole moment of carbonyl cyanide has been investigated. This com-
pound, for the first time obtained by Prof. Matachowski and collaborators (1937)
has an analogous structure to phosgene. It has been ascertained that in carbonyl
cyanide, just as in phosgene, there appears a compensation of dipole moments of
two strongly polar groups.

The investigations of the polar properties of phosgene by Smyth
and Me Alpine (1934) and Le Fevre and Le Fevre (1935) led to
the following conclusions: (1) The molecule of phosgene forms a dipole
with an electric moment= 1,18 D (1934) or 1,099 D (1935). (2) The
dipole moment of COCI2 may be calculated from the values of the
moments of the two groups = CO and -C-Cl. (3) The relatively low
dipole moment of phosgene in spite of the presence of strongly polar
groups is due to mutual compensation of both their moments.

It seemed interesting to investigate the polar properties of car-
bonyl cyanide, as this compound has an analogous chemical structure
to phosgene. Carbonyl cyanide was synthesized for the first time by
Prof. E. Matachowski and coll. (1937). This remarkable substance
shows great chemical activity, e. g., it reacts violently with water
giving C02and HCK. As hydrogen cyanide shows a rather high dipole
moment ("= 2,5 D) all precautions were to be taken to avoid humidity
of the substance as well as of- the apparatus. Even small amounts of
water would strongly influence the results of the dipole-moment
measurements. A special capacitor was used which made it possible
to protect the examined substance from any influence of humidity.
The construction of this capacitor is shown schematically in fig. 1.
In principle, it is a capacitor with two dielectrics: glass and the in-
vestigated substance. Before use the capacitor was always carefully
dried with a current of air passing through H2504, CaCl2 and P25
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The capacity of such a capacitor when connected to the measuring
circuit is given by the formula

where A, B and 1) are constants (A=BD), CO isthecapacity of the
connecting wires, and e the dielectric constant of the examined sub-
stance. CO is very small in comparison with C. From (1) we get

A —B(C —C0Q) v’
Let et and el2 denote the dielectric constants of the solvent and
the dilute solution respectively. As the difference AGof thecapacities
for £=e12 and e=el is small, we may write
Be*
12 (0,-Cgf AC
or, neglecting higher powers of COC,
Be*
«w N oc2(1-2c0GcMC

The dielectric constants of the two non-polar solvents used
(CCidand CcHG £250= 2,245 and 2,278 respectively) differed only.slightly

and, therefore, the bracketed expressions in the denominator may
be considered as a constant, say H/B, yielding finally
*2

" or ©)

where H is a constant to be determined by experiment. This was done by
calibrating the capacitor with benzene, carbon tetrachloride, and hexane.
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The determination of the dipole moment of CO(CISi)2was performed
by the method of dilute solutions; those of the dielectric constant
by means of the bridge method at audio frequency. A general scheme
of the experimental arrangement may be seen from fig. 2.

The results of the measurements are shown in the following
tablesl), where /2 is the molecular concentration of the carbonyl
cyanide, en and d12are respectively the dielectric constant and the density
of the solution, and P, is the molecular polarization of carbonyl cyanide.

Table |
CO(CX)2 in CeH6 T= 25°C, R= 16,93 cm3

/. 12 fitg/cm* Pjcm3
0,1149 2,444 0,8927 45
0,0548 2,391 0,8823 50
0,0276 2,339 0,8768 60
0,0184 2,320 0,8756 61

P£°= 64 cm3, ft— 15D x5°/o

1 Preliminary results were communicated at the 1X Meeting of Polish Phys-
icists at Wilno, October 1938.
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Table 11
CO(CN), in CCl4, T= 25°C

/s £12 dil2g/cm3 P2cm3
0,0490 2,306 1,5638 45
0,0323 2,291 1,5727 50
0,0216 2.2S83 1,5775 55
0,0108 2,263 1,5819 60

P“=64o0m3, Kkt=1,5D%5»/,,

Thus, the analogy of the chemical structure of COCI2and CO(CN)z
reveals itself also in the similarity of their polar properties. Like
phosgene, carbonyl cyanide shows in spite of the presence of two
strongly polar groups a comparatively low value of its dipole moment.
An approximate calculation for carbonyl cyanide based on the known
group-moments for= CO and = C-CN gives a value between 1D
and 2 D.

The only difference in the polar character of these substances
consists in the fact that the moment of the carbonyl group is greater
in the case of phosgene and smaller in the case of carbonyl cyanide
than the geometrical sum of the moments of the C-CI snd the C-CIli
groups respectively.

These investigations were carried out in the Institute of Experi-
mental Physics of the University, Lwow, in 1938—1939. By comparison
of their results with modern littérature the author has got the impression
that their value remains unchanged.

The author wishes to express his gratitude to Professor S. Loria
for his most valuable advice in the course of this work.

References
Le Fevre C. G. and Le Févre R. J., J. Cliem. Soc., London, 1696 (1935).
M atachowski L., Jurkiewicz L. and W ojtowicz J., Ber. Deutsch. Chem.

Ges., 70, 1012 (1937).
Smyth C. P. and Me Alpine K. B., J. Amer. Chem. Soc., 56, 1697 (1934).



Yol. X (1950) Acta Physica Polonica Pase. 1—2

DIPOLE MOMENTS AND FREE ROTATION IN
MOLECULES

By M. PUCHALIK, Institute of Physics of the L. Warynski Silesian
Academy of Medicine, Rokitnica

(Received March 16, 1950).

To test some consequences of the concept of free inner rotation in molecules
(@) the mean square dipole-momeuts of some members of the homologous series
CB6H8(CH2),,C1, C6H5(CHj),,Cland C6HU(CH?2),C1, and (D) the temperature dependence
of the mean square dipole-moment of benzyl chloride have been investigated. The
results seem to confirm the theoretical predictions of Zahn (1932) and the results
of some, not numerous, experiments of other authors.

The concept of free rotation in molecules is based on the fact
that in many cases where the structure formulas provide for the
existence of geometrical isomerism, such an isomerism does not appear.
It is obvious that in polar molecules the freedom of rotation cannot
be complete; the mutual repulsion of the polar groups makes the trans
configuration of the molecule the most probable one, as this config-
uration is connected with a minimum of potential energy. According
to known chemical facts one must assume that the difference between
the minimum and the maximum potential energy is small and the
energy of the molecular motion is sufficient to be able to change the
trans configuration into the cis configuration and vice versa.

It may be inferred on theoretical grounds that the mean square
dipole-moment of molecules which form a stable system with an
axis of completely free rotation is given by the following simple
formula (Zahn 1932)

7=t*l+2Zvl i
: (M

where //,, is the geometrical sum of the rigid group-moments and the
components of the rotating group-moments in the direction of the
axis of free rotation. It is evident that during the rotation these compo-
nents keep their magnitude and their direction constant. jk are the
components of the rotating polar groups perpendicular to the axis
of rotation.
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In the general case in which the single axis of rotation can rotate
freely, the value of ,u2 may be calculated by successive application of
formula (1).

The determination of the degree of the freedom of rotation may
be of great assistance in solving different problems connected with
the chemical structure of molecules. It may be performed by means
of the following considerations: The values of the mean square dipole-
moment of a chemical compound with an incompletely free inner
rotation depends on the temperature as well as on the mutual distance
of the rotating polar groups. The increase of both these factors makes
the freedom of rotation more and more complete and at the same
time the mean square dipole-moment tends towards a limiting value
given by formula (1). For rigid molecules and for molecules with
a complete freedom of rotation the mean square dipole-moment is
independent of the temperature.

In the case of a homologous series having polar groups at both
ends of a carbon chain the lengthening of the carbon chain increases
the distance of the polar groups, so that the higher members of such
a series ought to show nearly constant values of their dipole moments,
which corresponds to a practically completely free rotation. This was
confirmed by the investigation of Biedinger (1938) on the members
of the homologous series Br(CH2),,Br and C6HSCH2),,CéH 5.

More extensive systematic researches on this matter seemed to
be advisable, and so the author decided to verify the validity of the
above mentioned considerations on the inner rotations in molecules
by experimental investigation of some members of other homologous
series. The determination of jj? were carried out by the method of
dilute solutions, benzene and carbon tetrachloride being used as non-
polar solvents. The dielectric constant was measured by means of
a bridge method described in a previous paper (Puchalik 1950).

The members of the following homologous series were investi-
gated: (1) C8H9OH2,C1, (n=0,1,2), (2) CH5CH2,C1 (n -0,1,2),
(3) CaHuU(CH2),CL (n= 0).

The mean square dipole-moments of the following chemical
compounds belonging to the above series were determined for the
first time: (1) Cycio-penthyl chloride, cyclopenthyl-methyl chloride,
cyclopenthyl-ethyl chloride, (2) /3-plienyl-ethyl chloride; for chloro-
benzene and benzyl chloride the results obtained are in good agreement
with previous determinations of other authors, (3) Cyclohexyl chloride;
the mean square dipole-moment of 2-p-cymenomethyl chloride has
also been measured.
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The results of the measurements are shown in the following four
tables, where /2is the molecular concentration of the dissolved polar
substance and R is the molecular refraction.

Table |

Homologous series CSHYCH?2),C1
A. Cyclopenthyl chloride in CCl4

20° C, nD= 1,4488 < 0,99458 g/cm3 P = 28,15ci

u £12 12 P2cm3
0,1454 3,079 1,4977 109
0,0850 2,726 1,5289 115
0,5574 2,526 1,5499 110
0,0324 2,393 1,5635 107

IV=198D=%5°/,

B. Cyclopentliyl-methyl chloride in CCI,
t= 25°C, R= 32,78 cm3

fz £ (12 glcm3 P2cm3
0,0683 2,749 1,5297 148
0,0493 2,627 1,5502 154
0,0323 2,438 1,5585 142
0,0192 2,377 1,5718 147

|V=2,35D+5°/o

C. Cyclopentliyl-ethyl chloride in CCl4
f=25°C, R= 37,39 cm3

U Gj2 12 Pacm3
0,0780 2,823 1,5223 150
0,0473 2,567 1,5469 157
0,0285 2,453 1,5611 157

0,0179 2,363 1,5672 156
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Table 11
Homologous series C6H5CH2)nCl

A. Benzene chloride in benzene

i=25°C, nD= 15219, d= 1,0952 g/cm3, 22=31,26 cm3

12 dn g/cm3 P2cm3
0,2601 3,163 0,9295 65
0,1593 2,838 0,9138 77
0,1021 2,649 0,8993 82
0,0647 2,363 0,8875 84

P” =84cm3, [%Ni3= 1,58 D+5°/0

B. Benzyl chloride in benzene
t—25°C, nD= 1,5362, d= 1,09259 g/cm3, 22= 36,12 cm3

h £12 f2g/cm3 P2cm3
0,2506 3,374 0,9408 85
0,1455 2,852 0,9118 89
0,0826 2,606 0,8961 91
0,0436 2,482 0,8857 105

fv2~ 1,86 D+ 5°/0

C. /?-phenyl-ethyl chloride in CCl4
C e=5,43 nD= 15280 d= 1,0655g/cm3 P = 37

tension <= 42,7 dyn/cm Viscosity ft= 0,0192 cm1

U t12 fl2g/cm3 P2cm3
0,2310 3,530 1,4492 108
0,1345 2,988 1,4997 115
0,0742 2,636 1,5559 121
0,0449 2,456 1,5537. 111

N.2= 1,92 D+5»/,,
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Table 111
Cyclohexyl chloride CCI*

f=25°C, nD~ 1,4606, d=0,9910g/cm3 B - 32,80 cm3

ft el2 d12g/cm3 1\ cm3
0,0973 2,888 1,5170 130
0,0847 2,810 1,5155 136
0,0509 2,560 1,5463 128
0,0289 2,440 1,5618 130

K"=2,2D+5»/0

Table IV

Karvakryl chloride in CCl14
t—25° C, nD=1,5233, d= 1,0104 g/cm3 1?= 51,29 cm3

ft £12 dn g/cm3 Pxcm3
0,0861 2,690 1,4905 145
0,0325 2,364 1,5097 142
0,0138 2,260 1,5309 134

fV = 2,l D50

These experimental results show that: (a) In good agreement
with the above mentioned theoretical considerations, the change of
the mean square dipole-moment for the two first homologous series
becomes small with increasing n, which means that the freedom of
rotation becomes soon practically complete. For the second series
the limiting value of the mean square dipole-moment can be calculated
and one gets the value 1,9 D, possessed already by /3-phenyl-ethyl-
chloride. (b) The mean square dipole-moment of benzyl chloride is
less than of cyclohexyl chloride and cyclopenthyl chloride. The change
of the benzene ring to an alicyclic ring produces thus an increase of
the mean square dipole-moment. Unfortunately, the number of the
investigated members of each series was rather small.

These investigations were performed in the Institute of Experi-
mental Physics of the University, Lwoéw, but were interrupted in 1941

7
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by the outbreak of war between the Soviet Union and Germany. By
comparing their results with modern literature, it has been ascertained
that they have retained their value up to now, as the state of the
experimental knowledge of the dependence of the mean square dipole-
moments on the freedom of rotation seems to have advanced but
little during these last years.

It would be interesting to be able to verify the above mentioned
conclusions by means of measurements of further members of the
homologous series investigated in Lwow; unfortunately, it is now
very difficult to obtain the catalyzers needed for the synthesis of
these compounds.

As the increase of the temperature has a similar effect upon
the mean square dipole-moment of the molecules with an incomplete
freedom of rotation as the increase of the carbon-chain length, the
author has decided to investigate the dependence on temperature
of the mean square dipole-moment of benzyl chloride. These researches
have been carried out in the Institute of Medical Physics of the Silesian
Medical Academy. The determination of the mean square dipole-
moment in the temperature intervall from 20° C to 80° C have been
performed by the method of dilute solutions, refined petroleum being
used as non-polar solvent. The polarization of benzyl chloride has
been calculated by means of the formula (Mdller 1933)

where n2 is the number of gram molecules of the dissolved polar
substance, and V12 are respectively the dielectric constant and the
volume of the solution, and V1are the same quantities for the non-
polar solvent.

The dielectric constant has been measured by means of the
bridge method, a measuring capacitor being used as in the previous
work of the author (Puchalik 1950). The measuring apparatus pro-
duced by the establishments ,,Duo* at Gliwice is similar to the one
previously used. Its schematic diagram is shown in Pig. 1. Modern
vacuum tubes and feeding from alternating current network has been
used. The accuracy of the determination of the mean square dipole-
moment was about 3 per cent. The whole arrangement was tested
by means of a solution of benzyl chloride in benzene.

The results of the measurements are shown in the following
tables.
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*2
0,1920
0,1478
0,1114
0,0901

0,0290

*2
0,1920
0,1478
0,1114
0,0901

0,0290

Table V. i=20°0
Tjiem3 £12 | t2FA
77,83 2,310 13,02
79,05 2,632 16,15
62,30 2,740 11,51
71,40 2,342 13,55
71,11 2,053 15,73
[/"=1,69D
Table VI. i=40°C
Vncm3 ei2 g+5vIT T
79,32 2,446 13,02
80,60 2,585 16,15
63,52 2,650 11,51
72,90 2,230 13,55
72,52 2,020 15,73

Pj [cm3]
55,36
79

102
94

93

P2[cm3]

66
78
99
85

92

99
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Table VII. i= 60°C

nz Vu cm! ER . P2[cm3
tr-27iCcm3] [cm3]
0,1920 81,15 2,444 13,02 69
0,1478 82,50 2,556 16,15 81
0,1114 65,08 2,640 11,51 103
0,0901 74,49 2,200 13,55 86
0,0290 74,04 2,006 15,73 95
\J?—1,79 D
Table VIII. <=80°C
Vn cm3 £12 P2[cm3]
0,1920 82,86 2,360 13,02 62
0,1478 84,10 2,526 16,15 82
0,1114 66,34 2,583 11,51 102
0,0901 76,01 2,114 13,55 9S
0,0290 75,68 1,994 15,73 104
135D

These experimental results show that:

(1) In the case of petroleum as non-polar solvent one obtains
for the mean square dipole-moment of benzyl chloride a somewhat
smaller value than by using benzene as solvent.

(2) The mean square dipole-moment of benzyl chloride varies
very little with temperature.

(3) Thus, one is drawn to the conclusion that the freedom of rota-
tion in the benzyl chloride molecule is not yet complete.

The author wishes to express his gratitude to Professor S. Loria,
Head of the Department of Experimental Physics of the University,
Lwow, for his valuable advice during.the first part of thi§ work, and
to the late Professor S. Pilat, Head of the Institute of Petroleum
Technology at Lwow for his valuable suggestions and for supplying
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him with all the needed substances. He takes also pleasure in thanking
Professor W. Le”nianski, Head of the Department of Organic Technol-
ogy of the Silesian Institute of Technology, Gliwice, and Dr. W. Ma-
rohski for supplying him with benzyl chloride.
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LETTERS TO THE EDITOR

The Board of Editors does not hold itself responsible for the opinions expressed by
the correspondents

On the Theory of Non-Local Fields
Jerzy B ayski

Physical Institute, Nicholas Copernicus University. Torun

April 30, 1950

Recently Yukawal initiated a relativistic theory of particles with finite radius
based on Born’s ideas of non-localizability and reciprocity. The non-local field
operator U satisfies the following commutation relations

[dii, [~ U]l = «sl7, [*I«[:«>,U]]= A*U, [df,,[*/t,U]]= 0, 1)
where dfl is the displacement operator
[Xp,dv]=6ftp. @

In the representation where xft are diagonal U is a matrix <a/|i7|a;"> which
may be regarded also as a function U(X,r) with

Xfizlf2(Xft+ xfi), rft—(Xft  Xjj). 3)

U{X,r) satisfies the equations

[(r-rn—V]U(X,r)=0, (r.3j=0. (4"

Equations (4")may be treated as supplementary conditions. The general
solution of (4) is

UX,r) = £ (u Alnelv'-V+w I(r)e-‘k-V)3{(k.r))d((r-r)—V) (5)

with (k-k) = —x1

If the scalar TJ(X,r) shall describe spinless particles, then no direction can be
priviledged except kh so that uk{r), wk[r) may depend only on (r-r) and (r-k), which
means that they do not depend on r, at all, due to the supplementary conditions.
Thus, for spin zero we may write in (5) «*, w* instead of v*(r), w*(r).

We may establish a correspondence between a local quantity a and a non-
local A in the following way

a(X) —m1d Ir <X"\A\X"y. (6)
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If A itself is local, then it is of the form
<x' 1A l&@"> = a(x") O(x'— x") = a(X) 6(r)

and the correspondence becomes an identity. From (6), there is a correspondence
between the traditional local field function ip[X) and the non-local U(X.r):

tI>(X)-~fdiru(X,r) @)
or
N(aber””™+ hie-~ )" (u he”" +u-te~"")Sk, V)
k k

where Sk is the surface of the ellipsoid
Sk= f d*ro((k-r))i((r.r)-V. 8)

(7') enables us to write immediately the commutation relations for U(X,r). We
see that ukSk must satisfy the same commutation relations as ajj. Hence, we may put

U(X,r)= VvV I (ahe«*-x)+bi<-"(**V) ¢((k-r)) ¢ ((r-r)—#), 9)
ijJ i

where «¢,6* are the well-known matrices satisfying the commutation relations

[flAa2)=[6*&i] = — (10

2\Vk*+ je  F
while all other commutators vanish.

In order to have a complete theory we must find the important bilinear expres-
sions for the Hamiltonian energy density, charge density etc. To do so we have to
replace the products of y, i and their derivatives by corresponding expressions
in terms of U and U*. The correspondence rule (6) yields

y*(X)y(X)->Fd*r<x \U*U\x">=jd*r Jd*x" < \USX™'> < \WU\*>. (1)

With the aid of the notations

¥ x'+_x ’ x'+_x": X x'+2x"
(12)
r—x —Xx
(11) becomes
Xp*(X) y (X ) -+ fd*rdd*x""U*{X" r)u(x",t")
(13)

= £d*rddirtIIF(X+ U2, )X+ e,

By rewritting the traditional Hamiltonian for a scalar local field by means
of (13) and using (9) and (10), we easily find that the new Hamiltonian has the same
eigenvalues as the former and yields the correct field equations (4) in the operator
form. The traditional expression for the charge density, rewritten with the aid
of (13), yields also, if integrated, the correct eigenvalues for the total charge. Thus,
the theory of spinless non-local fields in vacuo yields the same results as the local
field formalism.
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Interaction between two spinless fields. Let us consider the simplest
possible type of interaction between a complex and a real scalar field:

H' () = gy*(x) <p{¥) g>(x). (14

This interaction energy density is subject to the well-known inconsistencies
inherent in any local field theory. To take into account the non-localizability we have
again to apply the rule (6). We limit ourselves to two special cases:

(1) < local, ip non-local. In this case the correspondence rule (6) yields

H'(X)=gjd 'r fd*r" U*(X+r"/2,r') pIx— U(X+r'/2,r). (15)
2) local, (p non-local. In this case we find
W(X)=gJddry*(X—r/2) V(X, r)ip(X+ r/2), (16)

where V(X,r) is the non-local neutral field. The interaction appears suitably spread
out over the ellipsoids representing the non-local particles.
Les us calculate from (16) the self-energy of a neutral non-local particle at rest:

p

Here, the initial state, denoted by 0, represents one neutral particle at rest
and the intermediate state, denoted by p, represents a pair of charged particles

with momenta p and —p. The matrix element 11 differs from the usual one by
a factor a:
«= A-"re— A2 <I(«r0) d((r-r)— X2) (18)

with
pft=(p\b 2+ -~ . ?,,=(—p I['p2+-ins).

S0 is now simply the surface of a sphere with radius X. Performing the integration,
we get
_ sin Xp

Xp (19)

Thus, instead of a divergent integral over dp we get a convergent one with the
»damping factor* a2in the integrand.

We have shown that the non-local field may be treated by the usual Hamil-
tonian method. Contrary to the opinion expressed by Yukawal it is neither
necessary to reject the Schrddinger equation not to replace the Hamiltonian forma-
lism by the S-matrix scheme. We hope that the well-known convergence difficulties
may well be overcome in terms of this now formalism. Moreover, this theory may
be able to put the problem of elementary particles with higher spin in an entirely
new light.

1 Yukawa H., Pliys. Rev., 77, 219 (1950).
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