Seria: MATEMATYKA-FIZYKA z. 82

O. Yu. DASHKOVA

ON GROUPS OF FINITE NORMAL RANK

Summary. In the article the definition of a normal rank of a group is introduced. A theorem on a normal rank of the nonabelian metabelian p-group with some restrictions is proved.

O GRUPACH SKOŃCZONJ NORMALNEJ RANGI

Streszczenie. W pracy wprowadza się definicję normalnej rangi grupy oraz dowodzi się twierdzenia o skończoności normalnej rangi dla nieabelowej metabelowej *p*-grupy.

A number of authors studied the groups in which finiteness conditions were laid on some systems of their subgroups [1]. Earlier the author investigated the groups of finite \mathcal{F} -rank [2], where \mathcal{F} was some system of nonabelian finitely generated subgroups of a group.

In this article an investigation of the groups of finite normal rank is begun.

Definition 1. We shall say that a group G has finite normal rank r, if r is a minimal number with the property that for any finite set of elements $g_1, g_2, ..., g_n$ of a group G there are the elements $h_1, h_2, ..., h_m$ of G such that $m \leq r$ and

 $\langle g_1, g_2, ..., g_n \rangle^G = \langle h_1, h_2, ..., h_m \rangle^G$.

In the case when there is no such a number r, the normal rank of a group G is considered to be infinite.

We shall use the notation $r_n(G)$ for the normal rank of a group G. The principal result of this article is the theorem. **Theorem 1.** Let G be a nonabelian p-group, where p is a prime number. Let A be a normal subgroup of G which is an elementary abelian p-group. The quotient group G/Ais isomorphic to the quasicyclic p-group. If the subgroup A can be generated as a normal subgroup by n elements, i.e.

$$A = \langle a_1, a_2, ..., a_n \rangle^G$$

then the normal rank of a group G is finite and $r_n(G) \leq n+1$.

This result was announced in [3] earlier.

We shall need the following lemma to prove the theorem.

Lemma 1. The normal rank of the wreath product of a group of prime order p and quasicyclic p-group is equal to 2.

Proof. Let A be the basis of the wreath product $W, W = \langle a \rangle wrP$, where P is a quasicyclic p-group. We shall prove at first that for any $b_1, b_2, ..., b_n$ from A there is such an element $b \in A$, for which

$$< b_1, b_2, ..., b_n >^G = < b >^G$$
.

Since $P = \bigcup_{i=1}^{\infty} \langle g_i \rangle$, $|g_i| = p^i$, then $W = \bigcup_{i=1}^{\infty} \langle a \rangle wr \langle g_i \rangle$, and the elements $b_1, b_2, ..., b_n$ are contained in a subgroup $V = \langle a \rangle wr \langle g_i \rangle$ for some number *i*. The upper central series of the subgroup V is

$$E = Z_0 < Z_1 < \dots < Z_{p^i - 1} < Z_{p^i} < V,$$

where Z_{p^i} is the basis of the wreath product V, factors $Z_{k+1}/Z_k, k = 0, 1, ..., p^i - 1$ have the orders p, the factor V/Z_{p^i} is cyclic group of order p^i [4].

The subgroups $B_k = \langle b_k \rangle^{\langle g_i \rangle}$, k = 1, 2, ..., n are normal in the group V, therefore the intersections $B_k \cap Z_j$, $j = 1, 2, ..., p^i$ are nontrivial. Since the factors Z_{k+1}/Z_k , $k = 0, 1, ..., p^i - 1$ are cyclic of prime order p then the equalities $B_k \cap Z_j = Z_j$, $j = 0, 1, ..., t_k$, are valid, where $t_k \leq p^i$. From this it follows that $B_k = Z_{t_k}$, therefore for any $l, m \leq n$ one of the subgroups B_l, B_m is embedded in another. Consequently the subgroups $B_k, k = 1, 2, ..., n$ form the series of embedded subgroups

$$B_{k_1} < B_{k_2} < \dots < B_{k_n} = B,$$

where $B = \langle b_1, b_2, ..., b_n \rangle^{g_i}$. Therefore $B = \langle b \rangle^{\langle g_i \rangle}$, where $b = b_{k_n}$. The equality follows

$$< b_1, b_2, ..., b_n >^G = < b >^G$$
.

Now we shall prove that for any $c_1, c_2, ..., c_r \in W$, the subgroup $C = \langle c_1, c_2, ..., c_r \rangle^G$ can be generated as a G-subgroup by no more than 2 elements. It is sufficient to consider the case $C_1 \leq A$, where $C_1 = \langle c_1, c_2, ..., c_r \rangle$. Since $C_1 A/A \simeq C_1/C_1 \cap A$, the subgroup C_1 is finite and the quotient group $C_1 A/A$ is cyclic, then we can choose the elements $d_1, d_2, ..., d_s$ such that

$$C = \langle d_1, d_2, \dots, d_{s-1}, d_s \rangle^G$$

and $d_i \in A, i = 1, 2, ..., s - 1, d_s \notin A$. As we proved, there is an element $d \in A$ for which

$$< d_1, d_2, ..., d_{s-1} >^G = < d >^G,$$

therefore $C = \langle d, d_s \rangle^G$. Consequently the normal rank of the wreath product W is no more than 2.

For proving the equality $r_n(W) = 2$ we numerate the elements of the subgroup P as h_1, h_2, \ldots and assume that $a^{h_i} = a_i$. According to the structure of the subgroup W the subgroup $A_0 = \langle a_i a_j^{-1}, i, j = 1, 2, \ldots \rangle$ is normal in W and the quotient group W/A_0 is isomorphic to the direct product of a group of the prime order p and a quasicyclic p-group. Since the normal rank of the quotient group W/A_0 is equal to 2 and $r_n(W/A_0) \leq r_n(W)$, where $r_n(W) \leq 2$, then we have the equality $r_n(W) = 2$. Lemma is proved.

Proof of the theorem. At first we shall prove that for any finite set of elements $b_1, b_2, ..., b_k$ of A there are such elements $c_1, c_2, ..., c_t$ of A that $t \leq n$ and

$$< b_1, b_2, ..., b_k >^G = < c_1, c_2, ..., c_t >^G$$
.

We shall prove this statement by the induction on the number l of elements $a_1, a_2, ..., a_l$, where

$$A = \langle a_1, a_2, ..., a_l \rangle^G$$
.

If l = 1 then $A = \langle a_1 \rangle^G$, therefore the group G is isomorphic to some quotient group of the wreath product of a group of prime order p and a quasicyclic p-group. From the proof of the lemma it follows that there is an element $b \in A$ for which

$$< b_1, b_2, ..., b_k >^G = < b >^G$$
.

Let our statement be valid for l = n - 1. Let l = n and

$$B = \langle b_1, b_2, ..., b_k \rangle^G, A_1 = \langle a_1, a_2, ..., a_{n-1} \rangle^G$$
.

If the subgroup B is contained in A_1 then according to the inductive assumption there exist such elements $c_1, c_2, ..., c_t, t \leq n$ that $B = \langle c_1, c_2, ..., c_t \rangle^G$. Let now $B \not\leq A_1$. The quotient group G/A_1 is isomorphic to some quotient group of the wreath product of a group of prime order p and a quasicyclic p-group. From this fact and the isomorphism

$$BA_1/A_1 \simeq B/B \bigcap A_1$$

it follows by the lemma that there is an element $b \in B$ for which

$$B/B \bigcap A_1 = \langle b(B \bigcap A_1) \rangle^G$$
.

Consequently for every b_i , i = 1, 2, ..., k, there are such integers $n_1, n_2, ..., n_{r_i}$ and elements $g_1, g_2, ..., g_{r_i}$ of G that the equalities

$$b_i = (b^{n_1})^{g_1} (b^{n_2})^{g_2} \dots (b^{n_{r_i}})^{g_{r_i}} h_i,$$

are valid where $h_i \in B \cap A_1$. Since the element b belongs to the subgroup B then

$$B = \langle b, h_1, \ldots, h_k \rangle^G,$$

therefore

$$B = \langle b \rangle^G \langle h_1, h_2, ..., h_k \rangle^G .$$
(1)

According to the inductive assumption and the inclusion

$$< h_1, h_2, ..., h_k >^G \le A_1$$

there are such elements $d_1, d_2, ..., d_m$ of A, that $m \leq n-1$ and

$$< h_1, h_2, ..., h_k >^G = < d_1, d_2, ..., d_m >^G$$
.

From this equality and (1) it follows that $B = \langle b, d_1, ..., d_m \rangle^G, m \leq n - 1$. Our statement is proved.

Let now $B = \langle b_1, b_2, ..., b_k \rangle^G$, where even if one of the elements $b_i, i = 1, 2, ..., k$ does not belong to the subgroup A. Since the subgroup D generated by the elements $b_1, b_2, ..., b_k$ is finite then the intersection $D \cap A$ is finite too. Therefore there are the elements $c_1, c_2, ..., c_j, j \leq n$, for which

$$< D \bigcap A >^{G} = < c_1, c_2, ..., c_j >^{G}$$
.

Since the quotient group G/A is locally cyclic and $DA/A \simeq D/D \cap A$, there is such an element c_{j+1} of D that

$$< D >^{G} = < c_1, c_2, ..., c_j, c_{j+1} >^{G}$$

Consequently the equality $B = \langle c_1, c_2, ..., c_{j+1} \rangle^G$ is valid where $j + 1 \leq n + 1$. The theorem is proved.

References

- S. N. Chernikov, Groups with the defined properties of subgroups system, Moscow Nauka 1980.
- [2] O. Yu. Dashkova, Soluble groups of finite nonabelian rank. Ukrain. Mat. Z. (42) 2 (1990), 159-164.
- [3] O. Yu. Dashkova, On the one class of groups of finite normal rank, International Conf. on Algebra, Krasnoyarsk 23-28 August 1993, Theses of reports, Krasnoyarsk 1993, 105-106.
- [4] H. Liebeck, Concerning nilpotent wreath products, Proc. Cambridge Phil. Soc. 58 (1962), 443-451.

Recenzent: Witalij Suszczański

Dniepropetrovsk State University Dniepropetrovsk Ukraine

Abstract

In the article the definition of a normal rank of a group is introduced.

Definition. We shall say that a group G has finite normal rank r if r is a minimal number with the property that for any finite set of elements $g_1, g_2, ..., g_n$ of a group G there are the elements $h_1, h_2, ..., h_m$ of G such that $m \leq r$ and

$$\langle g_1, g_2, ..., g_n \rangle^G = \langle h_1, h_2, ..., h_m \rangle^G$$
.

In the case when there is no such a number r, the normal rank of a group G is considered to be infinite.

The principal result of this article is the theorem.

Theorem. Let G be a nonabelian p-group where p is a prime number. Let A be a normal subgroup of G which is an elementary abelian p-group. Quotient group G/A is isomorphic to the quasicyclic p-group. If the subgroup A can be generated as a normal subgroup by n elements, i.e.

$$A = \langle a_1, a_2, ..., a_n \rangle^G$$

then the normal rank of a group G is finite and $r_n(G) \leq n+1$.

The following lemma plays an important role in the proof of the theorem.

Lemma. The normal rank of a wreath product of a group of prime order p and a quasicyclic p-group is equal to 2.