Seria: MATEMATYKA-FIZYKA z. 82

Nr kol. 1360

Brian FISHER, Andrzej KAMIŃSKI, Adem KILIÇMAN

THE NEUTRIX CONVOLUTION PRODUCT

 $(X_-^{\lambda} \ln^R X_-) \circledast (X_+^{\mu} \ln^S X_+)$

Summary. The existence of the neutrix convolution product $f \circledast g$ as well as the explicit formulae are proved for the distributions $f(x) = x_-^{\lambda} \ln^r x_-$ and $g(x) = x_+^{\mu} \ln^s x_+$, where $r, s \in \{0\} \cup \mathbb{N}$ and λ, μ are real numbers such that $\lambda, \mu \not\in -\mathbb{N}$ and $\lambda + \mu \not\in \mathbb{Z}$, and for some related pairs of distributions. The theorems of the paper generalize earlier results proved in the case r = s = 0 and $\lambda, \mu, \lambda + \mu \not\in \mathbb{Z}$.

SPLOT $(X_{-}^{\lambda} \ln^{R} X_{-}) \circledast (X_{+}^{\mu} \ln^{S} X_{+})$ W SENSIE NEUTRIKSU

Streszczenie. W pracy dowodzi się istnienia splotu $f \circledast g$ w sensie neutriksu i znajduje jego wartość dla dystrybucji $f(x) = x_-^{\lambda} \ln^r x_-$ i $g(x) = x_+^{\mu} \ln^s x_+$, gdzie $r,s \in \{0\} \cup \mathbf{N}$, a λ,μ są liczbami rzeczywistymi, takimi że $\lambda,\mu \notin -\mathbf{N}$ i $\lambda + \mu \notin \mathbf{Z}$, a także dla pewnych innych par dystrybucji. Twierdzenia podane w pracy uogólniają wcześniejsze wyniki otrzymane w przypadku, gdy r=s=0 oraz $\lambda,\mu,\lambda + \mu \notin \mathbf{Z}$.

In the following we denote by Z the set of all integers, by N the set of all positive integers, by -N the set of all negative integers, by N_0 the set of all nonnegative integers, by $-N_0$ the set of all nonpositive integers and by R the set of all reals.

Moreover, we let \mathcal{D} be the space of infinitely differentiable functions on \mathbf{R} with compact support and \mathcal{D}' be the space of distributions on \mathbf{R} , i.e. linear continuous functionals defined on \mathcal{D} endowed with an appropriate topology (see e.g. [7]).

The research of the second named author was partially supported by the Royal Society, Great Britain

Definition 1. Suppose that f and g are distributions in \mathcal{D}' whose supports A and B satisfy the following condition of compatibility: for every compact set $K \subset \mathbf{R}$, the set $(K - A) \cap B$ is compact in \mathbf{R} . Then the convolution product f * g in \mathcal{D}' is defined by the formula:

$$\langle (f * g)(x), \phi \rangle = \langle f(x), \langle g(y), \phi(x+y) \rangle \rangle$$

for arbitrary ϕ in \mathcal{D} (cf. [7]).

Obviously, the above definition embraces the two following particular cases of compatible supports:

- (a) either A or B is bounded;
- (b) A and B are bounded on the same side.

It follows from Definition 1 that if the convolution product f * g exists, then also the convolution products g * f, f * g', f' * g and $f^{\vee} * g^{\vee}$ exist and

$$f * g = g * f, \tag{1}$$

$$(f * g)' = f * g' = f' * g,$$
 (2)

$$(f \circledast g)^{\vee} = f^{\vee} \circledast g^{\vee}, \tag{3}$$

where $^{\vee}$ is the operation of replacing variable x by -x, defined formally as follows: $\phi^{\vee}(x) := \phi(-x)$ for $\phi \in \mathcal{D}, x \in \mathbf{R}$ and $\langle f^{\vee}, \phi \rangle := \langle f, \phi^{\vee} \rangle$ for $f \in \mathcal{D}', \phi \in \mathcal{D}$ (see [6]).

There exist in the literature various general, without any restrictions on the supports, definitions of the convolution product of distributions (cf. [6]), but for many pairs of distributions such convolution products do not exist.

In [2] the neutrix convolution product was defined so that it exists for a considerably larger class of pairs of distributions. In order to recall the definition of the neutrix convolution product we first of all let τ be a fixed function in \mathcal{D} satisfying the following properties:

- (i) $\tau(x) = \tau(-x)$,
- (ii) $0 \le \tau(x) \le 1$,
- (iii) $\tau(x) = 1$ for $|x| \le \frac{1}{2}$,
- (iv) $\tau(x) = 0$ for $|x| \ge 1$.

Next we define the sequence $\{\tau_n\}$ of functions setting

$$\tau_n(x) = \begin{cases} 1 & \text{if } |x| \le n \\ \tau(n^n x - n^{n+1}) & \text{if } x > n \\ \tau(n^n x + n^{n+1}) & \text{if } x < -n, \end{cases}$$

Throughout the paper, given a distribution f, by f_n we denote the distributions of the form

$$f_n := f \tau_n$$

for $n \in \mathbb{N}$.

The notion of a neutrix which allows the extension of limits of numerical sequences was introduced by van der Corput in [1] and is based on a suitably chosen set of negligible functions.

As in [2], we adopt in this paper the following definition of negligible functions:

Definition 2. The set of negligible functions of the neutrix N with the domain N' = N and the range N'' = R consists of all finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n$$
, $\ln^r n$ $(\lambda > 0, r \in \mathbb{N})$

and all functions which converge to zero in the usual sense as n tends to infinity.

Recall now the definition of the neutrix convolution product given in [2].

Definition 3. The neutrix convolution product $f \circledast g$ of two distributions f and g in \mathcal{D}' is defined as the neutrix limit of the sequence $\{f_n * g\}$, provided that the limit $h \in \mathcal{D}'$ exists in the sense that

$$N - \lim \langle f_n * g, \phi \rangle = \langle h, \phi \rangle$$

for all ϕ in \mathcal{D} , where N is the neutrix described in Definition 2.

Note that in this definition the convolution product $f_n * g$ is meant in the sense of Definition I (the distributions f_n have bounded support since the support of τ_n is contained in the interval $[-n-n^{-n}, n+n^{-n}]$) and that the distribution h in Definition 3 is unique.

The following theorem was proved in [6] and shows that Definition 3 is an extension of Definition 1.

Theorem 1. Let f and g be distributions with compatible supports. Then the neutrix convolution product $f \circledast g$ exists and

$$f \circledast g = f * g.$$

The neutrix convolution product has the following important properties, analogous to the first of equations in (2) and to (3) (see [2] and [6]):

Theorem 2. Let f and g be distributions in \mathcal{D}' and suppose that the neutrix convolution product $f \circledast g$ exists. Then the neutrix convolution products $f \circledast g'$ and $f^{\vee} \circledast g^{\vee}$ exist and

$$(f \circledast g)' = f \circledast g';$$

$$(f \circledast g)^{\vee} = f^{\vee} \circledast g^{\vee}.$$

Note however that equation (1) does not necessarily hold for the neutrix convolution product and that $(f \circledast g)'$ is not necessarily equal to $f' \circledast g$.

In [2] the following result was obtained:

Theorem 3. The neutrix convolution product x_{-}^{λ} (*) x_{+}^{s} exists and

$$x_{-}^{\lambda} \circledast x_{+}^{s} = (-1)^{s+1} B(\lambda + 1, s + 1) x_{-}^{\lambda + s + 1}$$
 (4)

for $\lambda \in (-1, \infty)$ and $s \in \mathbb{N}_0$, where B denotes the beta function.

Later, the following two theorems were proved in [3] and [4], respectively:

Theorem 4. The neutrix convolution product $x_{-}^{\lambda} \circledast x_{+}^{s}$ exists and satisfies equation (4) for $\lambda \in (-\infty, -1] \setminus (-N)$ and $s \in N_0$.

Theorem 5. The neutrix convolution product $x_{-}^{s} \circledast x_{+}^{\lambda}$ exists and

$$x_-^s \circledast x_+^\lambda = (-1)^{s+1} B(\lambda+1,s+1) \, x_+^{\lambda+s+1}$$

for $\lambda \in \mathbf{R} \setminus \mathbf{Z}$ and $s \in \mathbf{N}_0$.

The next theorem was proved in [5].

Theorem 6. The neutrix convolution product $x_{-}^{\lambda} \circledast x_{+}^{\mu}$ exists and

$$x_{-}^{\lambda} \circledast x_{+}^{\mu} = B(-\lambda - \mu - 1, \mu + 1) x_{-}^{\lambda + \mu + 1} + B(-\lambda - \mu - 1, \lambda + 1) x_{+}^{\lambda + \mu + 1}, \tag{5}$$

for $\lambda, \mu \in \mathbf{R}$ such that $\lambda, \mu, \lambda + \mu \notin \mathbf{Z}$.

In the following, we are going to generalize the last theorem by proving the existence of the convolution products of the form $(x_-^{\lambda} \ln^r x_-) \circledast (x_+^{\mu} \ln^s x_+)$ for all $r, s \in \mathbb{N}_0$ and λ, μ such that $\lambda, \mu \notin -\mathbb{N}$ and $\lambda + \mu \notin \mathbb{Z}$. It appears that these convolution products may be expressed in a concise form as the respective distributional derivatives with respect to λ and μ of the right hand side of (5). For this aim we need some auxiliary results on the beta function.

It was proved in [9] that

$$B_{r,s}(\lambda,\mu) := D_{\lambda}^{r} D_{\mu}^{s} B(\lambda,\mu) = N - \lim_{n \to \infty} \int_{1/n}^{1-1/n} t^{\lambda-1} \ln^{r} t \ (1-t)^{\mu-1} \ln^{s} (1-t) dt$$

for $r, s \in \mathbb{N}_0$ and $\lambda, \mu \notin -\mathbb{N}_0$, where

$$D_{\lambda}^{r}:=\frac{\partial^{r}}{\partial\lambda^{r}},\quad D_{\mu}^{s}:=\frac{\partial^{s}}{\partial\mu^{s}}.$$

In particular, if $\mu > 0$ and $\lambda \notin -N_0$, the above expression can be replaced by

$$B_{r,s}(\lambda,\mu) = N - \lim_{n \to \infty} \int_{1/n}^{1} t^{\lambda-1} \ln^{r} t \, (1-t)^{\mu-1} \ln^{s} (1-t) \, dt. \tag{6}$$

In the lemma below (α_n) is the sequence of positive numbers tending to 0, given by one of the formulae:

- (a) $\alpha_n = 1/n$ for $n \in \mathbb{N}$;
- (b) $\alpha_n = x/n$ for $n \in \mathbb{N}$;
- (c) $\alpha_n = x/(x+n)$ for $n \in \mathbb{N}$.

Lemma. If x > 0, then

$$B_{r,s}(\lambda,\mu) = N - \lim_{n \to \infty} \int_{\alpha_n}^1 t^{\lambda-1} \ln^r t \ (1-t)^{\mu-1} \ln^s (1-t) \, dt \tag{7}$$

for $r, s \in \mathbb{N}_0$, $\mu \in (0, \infty)$ and $\lambda \in \mathbb{R} \setminus (-\mathbb{N}_0)$, where (α_n) is any of the three numerical sequences given by formulas (a) - (c) above.

Proof. Choose a positive integer p such that $p + \lambda > 0$ and let $\sum_{i=0}^{p-1} a_i t^i$ be the sum of the first p terms in the Taylor expansion of $(1-t)^{\mu-1} \ln^s (1-t)$.

We shall prove first that

$$N - \lim_{n \to \infty} \int_{\alpha_n}^1 t^{\lambda + i - 1} \ln^r t \, dt = \frac{(-1)^r r!}{(\lambda + i)^{r + 1}} \tag{8}$$

for $r \in \mathbb{N}_0$ in all cases (a) - (c), defined above.

Since $\lambda + i \neq 0$, we have

$$\int_{\alpha}^{1} t^{\lambda+i-1} dt = \frac{1-\alpha^{\lambda+i}}{\lambda+i} \tag{9}$$

and further, if $r \in \mathbb{N}$,

$$\int_{\alpha}^{1} t^{\lambda+i-1} \ln^{r} t \, dt = -\frac{\alpha^{\lambda+i} \ln^{r+1} \alpha}{\lambda+i} - \frac{r}{\lambda+i} \int_{\alpha}^{1} t^{\lambda+i-1} \ln^{r-1} t \, dt. \tag{10}$$

Replacing α in (9) and (10) by $\alpha_n = x/(x+n)$, we have

$$\int_{a_n}^{1} t^{\lambda + i - 1} dt = \frac{1 - n^{-\lambda - i} x^{\lambda + i} (1 + x/n)^{-\lambda - i}}{\lambda + i}$$

and

$$\int_{\alpha_n}^1 t^{\lambda+i-1} \ln^r t \, dt = -\frac{1}{(\lambda+i)} \left[\alpha_n^{\lambda+i} \left(\ln x - \ln(x+n) \right)^r + r \int_{\alpha_n}^1 t^{\lambda+i-1} \ln^{r-1} t \, dt \right],$$

since λ is not an integer. It follows by induction that

$$N - \lim_{n \to \infty} \int_{x/(x+n)}^{1} t^{\lambda + i - 1} \ln^{r+1} t \, dt = \frac{(-1)^r r!}{(\lambda + i)^{r+1}}$$

for $r \in \mathbb{N}$, i.e. (8) follows in case (c).

In a similar way, one can check that (8) holds true in cases (a) and (b). Since $p + \lambda > 0$, the integral

$$I := \int_0^1 t^{\lambda - 1} \ln^r t \left[(1 - t)^{\mu - 1} \ln^s (1 - t) - \sum_{i = 0}^{p - 1} a_i t^i \right] dt$$

exists. Hence, in view of (6) and (8),

for the sequences (α_n) of the form (b) and (c).

Consequently, equation (7) follows. \Box

Theorem 7. The neutrix convolution product $(x_-^{\lambda} \ln^r x_-) \circledast (x_+^{\mu} \ln^s x_+)$ exists and

$$(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (x_{+}^{\mu} \ln^{s} x_{+})$$

$$= D_{\lambda}^{r} D_{\mu}^{s} [B(-\lambda - \mu - 1, \mu + 1) x_{-}^{\lambda + \mu + 1} + B(-\lambda - \mu - 1, \lambda + 1) x_{+}^{\lambda + \mu + 1}]$$
(11)

for $r, s \in \mathbb{N}_0$ and $\lambda, \mu \in \mathbb{R} \setminus (-\mathbb{N})$ such that $\lambda + \mu \notin \mathbb{Z}$.

Proof. The proof will consist of three parts, depending on the values of λ and μ . In all three parts we assume that $r, s \in \mathbb{N}_0$.

Part I:
$$\lambda, \mu > -1$$
; $\lambda + \mu \notin \{-1\} \cup \mathbb{N}_0$.

First notice that in our case $x_-^{\lambda} \ln^r x_-$ and $x_+^{\mu} \ln^s x_+$ are locally integrable functions. Put

$$(x_{-}^{\lambda} \ln^{r} x_{-})_{n} := (x_{-}^{\lambda} \ln^{r} x_{-}) \tau_{n}(x).$$

Then the convolution product $(x_-^{\lambda} \ln^r x_-)_n * (x_+^{\mu} \ln^s x_+)$ exists both in the sense of Definition 1 and in the classical sense and we have

$$(x_{-}^{\lambda} \ln^{r} x_{-})_{n} * (x_{+}^{\mu} \ln^{s} x_{+})$$

$$= \int_{-\infty}^{\infty} y_{-}^{\lambda} \ln^{r} y_{-} \tau_{n}(y) (x - y)_{+}^{\mu} \ln^{s} (x - y)_{+} dy = I_{1}^{n} + I_{2}^{n},$$
(12)

where

$$I_1^n := \int_{-\pi}^0 (-y)^{\lambda} \ln^r(-y) (x-y)_+^{\mu} \ln^s(x-y)_+ dy;$$
 (13)

$$I_2^n := \int_{-\pi - \pi^{-n}}^{-\pi} (-y)^{\lambda} \ln^r(-y) \tau_n(y) (x - y)_+^{\mu} \ln^s(x - y)_+ dy.$$
 (14)

In the case x < 0, we substitute in the integral in (13) $y = xt^{-1}$ and obtain

$$I_{1}^{n} = \int_{-n}^{x} (-y)^{\lambda} \ln^{r}(-y)(x-y)^{\mu} \ln^{s}(x-y) dy$$

$$= (-x)^{\lambda+\mu+1} \int_{-x/n}^{1} t^{-\lambda-\mu-2} [\ln(-x) - \ln t]^{r} (1-t)^{\mu} [\ln(-x) + \ln(1-t) - \ln t]^{s} dt$$

$$= \sum_{i=0}^{r} \sum_{k=0}^{s} \sum_{j=0}^{k} c_{i,j,k} I_{i,j,k}^{n} (-x)^{\lambda+\mu+1} \ln^{r+s-i-k}(-x),$$
(15)

where

$$c_{i,j,k} := (-1)^{i+j} \binom{r}{i} \binom{s}{k} \binom{k}{j}; \quad I_{i,j,k}^n := \int_{-x/n}^1 t^{-\lambda - \mu - 2} \ln^{i+j} t \ (1-t)^{\mu} \ln^{k-j} (1-t) dt$$

for the respective integers i, j, k.

Since -x > 0, it follows from the lemma that

$$N - \lim_{n \to \infty} I_{i,j,k}^n = B_{i+j,k-j}(-\lambda - \mu - 1, \mu + 1)$$
(16)

for the respective i, j, k.

On the other hand, using the formula $x_+^{\lambda} \ln^p x_+ = D_{\lambda}^p x_+^{\lambda}$ for $p \in \mathbb{N}$ (see [8]) and the equations:

$$D_{\lambda}B_{l,m}(-\lambda - \mu - 1, \mu + 1) = -B_{l+1,m}(-\lambda - \mu - 1, \mu + 1);$$

$$D_{\mu}B_{l,m}(-\lambda - \mu - 1, \mu + 1) =$$

$$= -B_{l+1,m}(-\lambda - \mu - 1, \mu + 1) + B_{l,m+1}(-\lambda - \mu - 1, \mu + 1),$$

valid for any $l, m \in \mathbb{N}$, one can prove by induction with respect to r + s that

$$D_{\lambda}^{s}D_{\mu}^{s}[B(-\lambda - \mu - 1, \mu + 1) x_{-}^{\lambda + \mu + 1}] =$$

$$= \sum_{i=0}^{r} \sum_{k=0}^{s} \sum_{i=0}^{k} c_{i,j,k} B_{i+j,k-j}(-\lambda - \mu - 1, \mu + 1) x_{-}^{\lambda + \mu + 1} \ln^{r+s-i-k} x_{-}.$$
(17)

Combining (15), (16) and (17), we get

$$N - \lim_{n \to \infty} I_1^n = D_{\lambda}^r D_{\mu}^s [B(-\lambda - \mu - 1, \mu + 1) x_-^{\lambda + \mu + 1}]$$
 (18)

in the case x < 0.

If x > 0, we use the substitution $y = x(1 - t^{-1})$ in the integral in (13) and then

$$I_{1}^{n} = \int_{-n}^{0} (-y)^{\lambda} \ln^{r}(-y)(x-y)^{\mu} \ln^{s}(x-y) dy$$

$$= x^{\lambda+\mu+1} \int_{x/(x+n)}^{1} t^{-\lambda-\mu-2} [\ln x + \ln(1-t) - \ln t]^{r} (1-t)^{\lambda} [\ln x - \ln t]^{s} dt$$

$$= \sum_{i=0}^{s} \sum_{k=0}^{r} \sum_{i=0}^{k} c_{i,j,k} J_{i,j,k}^{n} x^{\lambda+\mu+1} \ln^{r+s-i-k} x$$
(19)

where

$$J_{i,j,k}^n := \int_{x/(x+n)}^1 t^{-\lambda-\mu-2} \ln^{i+j} t \ (1-t)^{\lambda} \ln^{k-j} (1-t) \ dt.$$

By the lemma,

$$N - \lim_{n \to \infty} J_{i,j,k}^n = B_{i+j,k-j}(-\lambda - \mu - 1, \lambda + 1)$$
(20)

for the respective integers i, j, k.

On the other hand, replacing -x by x and interchanging λ and μ as well as r and s in (17), we get

$$D_{\lambda}^{r}D_{\mu}^{s}[B(-\lambda - \mu - 1, \lambda + 1) x_{-}^{\lambda + \mu + 1}] =$$

$$= \sum_{i=0}^{s} \sum_{k=0}^{r} \sum_{i=0}^{k} c_{i,j,k} B_{i+j,k-j}(-\lambda - \mu - 1, \lambda + 1) x_{+}^{\lambda + \mu + 1} \ln^{r+s-i-k} x_{+}.$$
(21)

Combining (19), (20) and (21), we obtain

$$N - \lim_{n \to \infty} I_1^n = D_{\lambda}^r D_{\mu}^s [B(-\lambda - \mu - 1, \lambda + 1) x_+^{\lambda + \mu + 1}]$$
 (22)

in the case x > 0.

Further, it is easily seen that

$$I_2^n = O(n^{-n+\lambda+\mu} \ln^{r+s} n),$$

SO

$$N - \lim_{n \to \infty} I_2^n = 0.$$
(23)

It now follows from equations (12), (18), (22) and (23) that

$$\begin{split} & \underset{n \to \infty}{\text{N-}\lim} (x_{-}^{\lambda} \ln^{r} x_{-})_{n} * (x_{+}^{\mu} \ln^{s} x_{+}) = \\ & = D_{\lambda}^{r} D_{\mu}^{s} [B(-\lambda - \mu - 1, \mu + 1) x_{-}^{\lambda + \mu + 1} + B(-\lambda - \mu - 1, \lambda + 1) x_{+}^{\lambda + \mu + 1}], \end{split}$$

which completes the proof of Part I.

Part II:
$$\lambda > -1$$
; $\mu \notin -\mathbb{N}$; $\lambda + \mu \notin \mathbb{Z}$.

Denote $N_0^- := \emptyset, N_i^- := \{-1, -2, \dots, -i\}$ and

$$X_i := \{(\lambda, \mu) : \lambda > -1, \ \mu > -i, \ \mu \notin \mathbf{N}_{i-1}^-, \ \lambda + \mu \notin \mathbf{N}_i^- \cup \mathbf{N}_0, \}.$$

for $i \in \mathbb{N}$.

To prove the assertion of the theorem under the conditions of this part we will show the existence of $(x_-^{\lambda} \ln^r x_-) \circledast (x_+^{\mu} \ln^s x_+)$ and equation (11) for arbitrary $i \in \mathbb{N}$ and $(\lambda, \mu) \in X_i$ by induction with respect to i.

For i=1 our assertion is valid, in view of Part I. Fix $k\in\mathbb{N}$ and suppose that the assertion holds true for i=k. Now take $(\lambda,\mu)\in X_{k+1}$ and put $\bar{\mu}:=\mu+1$. Since $(\lambda,\bar{\mu})\in X_k$ and $\bar{\mu}\neq 0$, the neutrix convolution product $(x_-^\lambda\ln^r x_-)\circledast (x_+^{\bar{\mu}}\ln^s x_+)$ exists for arbitrary $r,s\in\mathbb{N}_0$. Moreover, by Theorem 2 and induction hypothesis, the neutrix convolution product $(x_-^\lambda\ln^r x_-)\circledast (x_+^{\bar{\mu}}\ln^s x_+)'$ exists and

$$(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (x_{+}^{\bar{\mu}} \ln^{s} x_{+})' = (x_{-}^{\lambda} \ln^{r} x_{-}) \circledast [\bar{\mu} x_{+}^{\mu} \ln^{s} x_{+} + s x_{+}^{\mu} \ln^{s-1} x_{+}] =$$

$$= [(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (x_{+}^{\bar{\mu}} \ln^{s} x_{+})]' = D_{\lambda}^{r} D_{\mu}^{s} [(\lambda + \mu + 2) f_{\lambda,\mu}(x)], \tag{24}$$

for $r, s \in \mathbb{N}_0$, where

$$f_{\lambda,\mu}(x) := B(\lambda - \mu - 2, \mu + 2) x_{-}^{\lambda + \mu + 1} + B(\lambda - \mu - 2, \lambda + 1) x_{+}^{\lambda + \mu + 1}.$$

Notice that

$$-(\lambda + \mu + 2)B(-\lambda - \mu - 2, \mu + 2) = \bar{\mu}B(-\lambda - \mu - 1, \mu + 1); \tag{25}$$

$$(\lambda + \mu + 2)B(-\lambda - \mu - 2, \lambda + 1) = \bar{\mu}B(-\lambda - \mu - 1, \lambda + 1), \tag{26}$$

due to the known property of the gamma function and its relation to the beta function. It follows from (25) and (26) that

$$(\lambda + \mu + 2) f_{\lambda,\mu}(x) = \bar{\mu} g_{\lambda,\mu}(x), \tag{27}$$

where

$$g_{\lambda,\mu}(x) := B(-\lambda - \mu - 1, \mu + 1) x_{-}^{\lambda + \mu + 1} + B(-\lambda - \mu - 1, \lambda + 1) x_{+}^{\lambda + \mu + 1}.$$

By (27),

$$\begin{split} &D_{\lambda}^{r}D_{\mu}^{s}[(\lambda+\mu+2)f_{\lambda,\mu}(x)] = D_{\lambda}^{r}D_{\mu}^{s-1}D_{\mu}^{1}[(\mu+1)g_{\lambda,\mu}(x)] = \\ &= D_{\lambda}^{r}D_{\mu}^{s-1}[(\mu+1)D_{\mu}^{1}g_{\lambda,\mu}(x)] + D_{\lambda}^{r}D_{\mu}^{s-1}g_{\lambda,\mu}(x) = \\ &= D_{\lambda}^{r}D_{\mu}^{s-2}[(\mu+1)D_{\mu}^{2}g_{\lambda,\mu}(x)] + 2D_{\lambda}^{r}D_{\mu}^{s-1}g_{\lambda,\mu}(x). \end{split}$$

and, by induction,

$$\begin{split} &D_{\lambda}^{\mathbf{r}}D_{\mu}^{\mathbf{s}}[(\lambda+\mu+2)f_{\lambda,\mu}(x)] = \\ &= D_{\lambda}^{\mathbf{r}}[(\mu+1)D_{\mu}^{\mathbf{s}}g_{\lambda,\mu}(x)] + sD_{\lambda}^{\mathbf{r}}D_{\mu}^{\mathbf{s}-1}g_{\lambda,\mu}(x). \end{split}$$

Consequently, by (24),

$$(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast [\bar{\mu} x_{+}^{\mu} \ln^{s} x_{+} + s x_{+}^{\mu} \ln^{s-1} x_{+}]$$

$$= \bar{\mu} D_{\lambda}^{r} D_{\mu}^{s} g_{\lambda,\mu}(x) + s D_{\lambda}^{r} D_{\mu}^{s-1} g_{\lambda,\mu}(x)$$
(28)

for $r, s \in \mathbb{N}_0$.

Taking s=0, we see that $(x_-^{\lambda} \ln^r x_-) \circledast x_+^{\mu}$ exists and, since $\bar{\mu} \neq 0$,

$$(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast x_{+}^{\mu} = D_{\lambda}^{r} g_{\lambda,\mu}(x),$$

i.e. (11) holds for s = 0.

Assume that $(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (x_{+}^{\mu} \ln^{s-1} x_{+})$ exists and

$$(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (x_{+}^{\mu} \ln^{s-1} x_{+}) = D_{\lambda}^{r} D_{\mu}^{s-1} g_{\lambda,\mu}(x)$$
 (29)

for some $s \in \mathbb{N}_0$. Since the neutrix convolution products in (28) and (29) exist, it follows that also $(x_-^{\lambda} \ln^r x_-)$ \circledast $(x_+^{\mu} \ln^s x_+)$ exists and

$$\begin{split} &\bar{\mu}(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (x_{+}^{\mu} \ln^{s} x_{+}) = \\ &= (x_{-}^{\lambda} \ln^{r} x_{-}) \circledast [\bar{\mu} x_{+}^{\mu} \ln^{s} x_{+} + s x_{+}^{\mu} \ln^{s-1} x_{+}] - s (x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (x_{+}^{\mu} \ln^{s-1} x_{+}) = \\ &= D_{\lambda}^{r} D_{\mu}^{s} [(\lambda + \mu + 2) f_{\lambda,\mu}(x)] - s D_{\lambda}^{r} D_{\mu}^{s-1} g_{\lambda,\mu}(x) = \bar{\mu} D_{\lambda}^{r} D_{\mu}^{s} g_{\lambda,\mu}(x). \end{split}$$

Since $\bar{\mu} \neq 0$, it follows by induction with respect to s that our assertion holds for $(\lambda, \mu) \in X_{k+1}$ and this completes the proof of Part II.

Part III: the general case.

Denote

$$Y_i := \{(\lambda, \mu) : \lambda > -i, \lambda \notin \mathbf{N}_{i-1}^-, \mu \notin -\mathbf{N}; \lambda + \mu \notin \mathbf{Z}\}.$$

We have to prove the assertion of the theorem for $(\lambda, \mu) \in Y_i$ and all $i \in \mathbb{N}$.

Evidently, the assertion is true for $(\lambda, \mu) \in Y_1$, due to Part II. Assume that the assertion holds for all pairs in Y_k , $k \in \mathbb{N}$ and let $(\lambda, \mu) \in Y_{k+1}$. Clearly, $(\bar{\lambda}, \mu) \in X_k$ and $\bar{\lambda} \neq 0$, where $\bar{\lambda} := \lambda + 1$.

Since the convolution product $(x_-^{\lambda+1} \ln^r x_-)_n * (x_+^{\mu} \ln^s x_+)$ exists in the sense of Definition 1 for $n \in \mathbb{N}$, equations (2) can be used. Given an arbitrary $\phi \in \mathcal{D}$ (let the support of ϕ be contained in the interval [a, b]), we have

$$\langle [(x_{-}^{\bar{\lambda}} \ln^{r} x_{-})_{n} * (x_{+}^{\mu} \ln^{s} x_{+})]', \phi(x) \rangle = -\langle (x_{-}^{\bar{\lambda}} \ln^{r} x_{-})_{n} * (x_{+}^{\mu} \ln^{s} x_{+}), \phi'(x) \rangle =
= \langle [(\bar{\lambda})(x_{-}^{\lambda} \ln^{r} x_{-} + r(x_{-}^{\lambda} \ln^{r-1} x_{-}]_{n} * (x_{+}^{\mu} \ln^{s} x_{+}), \phi(x) \rangle +
+ \langle [x_{-}^{\bar{\lambda}} \ln^{r} x_{-} \tau'_{n}(x)] * (x_{+}^{\mu} \ln^{s} x_{+}), \phi(x) \rangle.$$
(30)

The support of $\tau'_n(x)$ is contained in the interval $[-n-n^{-n},-n]$. Therefore, for n>-a,

$$\langle (x_{-}^{\bar{\lambda}} \ln^{r} x_{-} \tau_{n}'(x)) * (x_{+}^{\mu} \ln^{s} x_{+}), \phi(x) \rangle = \int_{a}^{b} \phi(x) I_{n}(x) dx, \tag{31}$$

where

$$I_n(x) := \int_{-n-n^{-n}}^{-n} (-y)^{\bar{\lambda}} \ln^r(-y) \tau'_n(y) (x-y)^{\mu} \ln^s(x-y) \, dy \, dx,$$

with the functions $(-y)^{\bar{\lambda}} \ln^r(-y)$ and $(x-y)^{\mu} \ln^s(x-y)$ integrable on the domain of integration. Integration by parts yields

$$I_n(x) = h_n(x) + \int_{-n-n-n}^{-n} [(-y)^{\bar{\lambda}} \ln^r (-y)(x-y)^{\mu} \ln^s (x-y)]' \tau_n(y) \, dy, \tag{32}$$

where

$$h_n(x) := n^{\bar{\lambda}} \ln^r n \ (x+n)^{\mu} \ln^s (x+n).$$

Choosing a positive integer p greater than $\lambda + \mu$, we can put

$$h_n(x) = n^{\lambda + \mu + 1} \sum_{i=0}^{p-1} \sum_{j=0}^{s} \frac{a_{ij} x^i \ln^j n}{n^i} + O(n^{\lambda + \mu + 1 - p} \ln^{r+s} n).$$

Since $\lambda + \mu$ is not an integer, we conclude that

$$N - \lim_{n \to \infty} h_n(x) = 0.$$
(33)

It is easily seen that

$$\lim_{n \to \infty} \int_{-n-n-n}^{-n} [(-y)^{\bar{\lambda}} \ln^r (-y) (x-y)^{\mu} \ln^s (x-y)]' \tau_n(y) \, dy = 0$$
 (34)

and thus, by (31), (32), (33) and (34),

$$N - \lim_{n \to \infty} \langle (x_{-}^{\bar{\lambda}} \ln^r x_{-} \tau'_{n}(x)) * (x_{+}^{\mu} \ln^s x_{+}), \phi(x) \rangle = 0.$$
 (35)

Now, using (30), (35), the induction hypothesis and the fact that $\bar{\lambda} \neq 0$, it can be proved by induction with respect to r that the assertion of the theorem is true for $(\lambda, \mu) \in Y_{k+1}$, in much the same way as in Part II (the role of μ in Part II is now played by λ).

By induction, the assertion in the general case follows. \Box

Corollary. The neutrix convolution product $(x_+^{\lambda} \ln^r x_+) \circledast (x_-^{\mu} \ln^s x_-)$ exists and

$$\begin{array}{l} (x_+^{\lambda} \ln^r x_+) \circledast (x_-^{\mu} \ln^s x_-) = \\ = D_{\lambda}^r D_{\mu}^s [B(-\lambda - \mu - 1, \mu + 1) \, x_+^{\lambda + \mu + 1} + B(-\lambda - \mu - 1, \lambda + 1) \, x_-^{\lambda + \mu + 1}] \end{array}$$

for $r, s \in \mathbb{N}_0$ and $\lambda, \mu \in \mathbb{R} \setminus (-\mathbb{N})$ such that $\lambda + \mu \notin \mathbb{Z}$.

Proof. The assertion of the corollary follows immediately by the second part of Theorem 2, i.e. on replacing x by -x in equation (11).

The distributions $|x|^{\lambda} \ln^{r} |x|$ and $\operatorname{sgn} x. |x|^{\lambda} \ln^{r} |x|$ are defined by

$$|x|^{\lambda} \ln^{r} |x| = x_{+}^{\lambda} \ln^{r} x_{+} + x_{-}^{\lambda} \ln^{r} x_{-}, \quad \operatorname{sgn} x. |x|^{\lambda} \ln^{r} |x| = x_{+}^{\lambda} \ln^{r} x_{+} - x_{-}^{\lambda} \ln^{r} x_{-}.$$

We finally note that since the convolution products $(x_+^{\lambda} \ln^r x_+) * (x_+^{\mu} \ln^s x_+)$ and $(x_-^{\lambda} \ln^r x_-) * (x_-^{\mu} \ln^s x_-)$ exist by Definition 1 and since the neutrix convolution product is clearly distributive with respect to addition, it follows that further neutrix convolution products such as

$$(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (|x|^{\mu} \ln^{s} |x|), \quad (x_{+}^{\lambda} \ln^{r} x_{+}) \circledast (|x|^{\mu} \ln^{s} |x|),$$
$$(x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (\operatorname{sgn} x.|x|^{\mu} \ln^{s} |x|), \quad (|x|^{\lambda} \ln^{r} |x|) \circledast (x_{-}^{\mu} \ln^{s} x_{-})$$

exist for $r, s \in \mathbb{N}_0$, $\lambda, \mu \in \mathbb{R} \setminus (-\mathbb{N})$ with $\lambda + \mu \notin \mathbb{Z}$.

References

- [1] J.G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math. 7 (1959-60), 291-398.
- [2] B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 17 (1987), 119-135.
- [3] B. Fisher, A result on the neutrix convolution product of distributions, Publ. Math. Debrecen 37 (1990), 267-271.
- [4] B. Fisher, On the neutrix convolution product x^s ⊕ x^h₊, in: Generalized Functions and Convergence (ed.: P. Antosik, A. Kamiński), World Scientific, Singapore 1990, 105-116.
- [5] B. Fisher, The neutrix convolution product $x_{-}^{\lambda} \circledast x_{+}^{\mu}$, Dem. Math. 25 (1992), 525-532.
- [6] B. Fisher, A. Kamiński, The neutrix convolution product $\ln x_- \circledast x_+^r$, Proc. of the Steklov Institute (in print).
- [7] I.M. Gel'fand and G.E. Shilov, Generalized Functions, Vol. I, Academic Press 1964.
- [8] E. Özça-g, B. Fisher, On defining the distribution $x_+^{-r} \ln^s x_+$, Rostock. Math. Kolloq. **42** (1990), 25-30.
- [9] E. Özça-g and B. Fisher, On partial derivatives of the beta function, Rostock. Math. Kolloq. 45 (1991), 43-56.

Recenzent: Władysław Kierat

B. Fisher and A. Kiliçman Department of Mathematics University of Leicester Leicester, LE1 7RH, England

A. Kamiński Instytut Matematyki Politechnika Ślaska ul. Kaszubska 23 44-100 Gliwice

Streszczenie

Splot f * g dystrybucji Schwartza $f, g \in \mathcal{D}'$ definiuje się wzorem

$$\langle f * g, \phi \rangle = \langle f \tau_n * g, \phi \rangle,$$

postulując, by granica istniała w przestrzeni \mathcal{D}' dla dowolnych funkcji $\phi \in \mathcal{D}$ oraz ciągów (τ_n) elementów przestrzeni \mathcal{D} aproksymujących funkcję 1 i należących do określonej klasy.

Splot dystrybucji f i g, oznaczany symbolem $f \circledast g$, rozumiany jest w tej pracy w ogólniejszym sensie, bowiem zakłada się, że granica po prawej stronie powyższej równości istnieje w sensie neutriksu (van der Corput [1]), wyznaczonego przez przestrzeń liniową funkcji zaniedbywalnych $f \colon \mathbb{N} \to \mathbb{R}$, generowaną przez wszystkie funkcje f zbieżne do 0 oraz funkcje f postaci:

$$n^{\lambda} \ln^{r-1} n$$
, $\ln^r n$ $(\lambda > 0, r \in \mathbb{N})$.

Dowodzi się, że splot $f \circledast g$ istnieje w sensie neutriksu dla dystrybucji $f(x) = x_-^{\lambda} \ln^r x_-$ i $g(x) = x_+^{\mu} \ln^s x_+$ oraz zachodzi równość:

$$f \circledast g = D_{\lambda}^{r} D_{\mu}^{s} [B(-\lambda - \mu - 1, \mu + 1) x_{-}^{\lambda + \mu + 1} + B(-\lambda - \mu - 1, \lambda + 1) x_{+}^{\lambda + \mu + 1}]$$

dla $r,s\in\{0\}\cup \mathbf{N}$ oraz $\lambda,\mu\in\mathbf{R}\setminus(-\mathbf{N})$, takich że $\lambda+\mu\not\in\mathbf{Z}$, gdzie

$$D_{\lambda}^{r} = \frac{\partial^{r}}{\partial \lambda^{r}}, \quad D_{\mu}^{s} = \frac{\partial^{s}}{\partial \mu^{s}},$$

a B oznacza funkcję beta Eulera.

Stad wynika także istnienie następujących splotów:

$$\begin{array}{l} (x_{+}^{\lambda} \ln^{r} x_{+}) \circledast (x_{-}^{\mu} \ln^{s} x_{-}); & (x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (|x|^{\mu} \ln^{s} |x|) \\ (x_{+}^{\lambda} \ln^{r} x_{+}) \circledast (|x|^{\mu} \ln^{s} |x|); & (x_{-}^{\lambda} \ln^{r} x_{-}) \circledast (\operatorname{sgn} x.|x|^{\mu} \ln^{s} |x|); \\ (|x|^{\lambda} \ln^{r} |x|) \circledast (x_{-}^{\mu} \ln^{s} x_{-}) \end{array}$$

przy tych samych warunkach na r, s, λ, μ , co poprzednio.