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THE NEUTRIX CONVOLUTION PRODUCT
(X* In*X_)@ {XttIn5X+)

Summary. The existence of the neutrix convolution product / ® g as well as
the explicit formulae are proved for the distributions f(x) = x* Inrx_ and g(x) =

In3x+, where r,s £ {0} UN and A p are real numbers such that A/i »~ —N and
A+ fi 0 Z, and for some related pairs of distributions. The theorems of the paper
generalize earlier results proved in the case r = s = 0and Ap,A+p 0 Z

SPLOT {XtInRX.) © (YEInsA+) W SENSIE NEUTRIKSU

Streszczenie. W pracy dowodzi sie istnienia splotu / © g w sensie neutriksu
i znajduje jego warto$¢ dla dystrybucji f(x) = Inri. ig(x) = x+\nsx+, gdzie
r,s € {0} UN, a A g sg liczbami rzeczywistymi, takimi ze A,/i » —N i A+ g £ Z,
a takze dla pewnych innych par dystrybucji. Twierdzenia podane w pracy uogoélniaja
wczesniejsze wyniki otrzymane w przypadku, gdy r = s = 0 oraz A, A+ /r 0 Z.

In the following we denote by Z the set of all integers, by N the set of all positive
integers, by —N the set of all negative integers, by No the set of all nonnegative integers,
by —No the set of all nonpositive integers and by R the set of all reals.

Moreover, we let V be the space of infinitely differentiable functions on R with compact
support and TX be the space of distributions on R, i.e. linear continuous functionals defined
on V endowed with an appropriate topology (see e.g. [7]).
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Definition 1. Suppose that f and g are distributions in V whose supports A and
B satisfy the following condition of compatibility: for every compact set K ¢ R, the set

for arbitrary §=in T> (cf. [7]).

Obviously, the above definition embraces the two following particular cases of com-
patible supports:

(a) either A or B is bounded;

(b) A and B are bounded on the same side.

It follows from Definition 1 that if the convolution product f *g exists, then also the
convolution products g *f,f*g"',f'*g and /v *gv exist and

frg = g*f, (1)
if*g=/*g=5"g (2)
d®gr =r® g\ (3)

where v is the operation of replacing variable x by —x, defined formally as follows: </(x) :=
4>(-x) for &e V,x e R and (/v,® := ([</>v) for / e V,G>£ V (see [6]).

There exist in the literature various general, without any restrictions on the supports,
definitions of the convolution product of distributions (cf. [6]), but for many pairs of
distributions such convolution products do not exist.

In [2] the neutrix convolution product was defined so that it exists for a consider-
ably larger class of pairs of distributions. In order to recall the definition of the neutrix
convolution product we first of all let r be a fixed function in V satisfying the following
properties:

(i) r(x) = «(-x),

(i) o< r(x) <1,

(iii) r(x) = 1 for |x] < 1,

(iv) «(x) =0 for |x|] > L.

Next we define the sequence {t,} of functions setting

1 if x| <n
m(x) = m r(nnx-nn+l) ifx >n
r(nnx + nh+l) ifx < —,

forn € N
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Throughout the paper, given a distribution /, by /,, we denote the distributions of
the form

In = fr,,

for n € N.

The notion of a neutrix which allows the extension of limits of numerical sequences
was introduced by van der Corput in [1] and is based on a suitably chosen set of negligible
functions.

As in [2], we adopt in this paper the following definition of negligible functions:

Definition 2. The set of negligible functions of the neutrix N with the domain N' =
N and the range N" = R consists of all finite linear sums of the functions

nAlnr_in, Inrn (A>0, r € N)

and all functions which converge to zero in the usual sense as n tends to infinity.

Recall now the definition of the neutrix convolution product given in [2].

Definition 3. The neutrix convolution product f © g of two distributions f and g in
V is defined as the neutrix limit of the sequence {fn *g}, provided that the limit h 6 V
exists in the sense that

Nim{/. *0.4>) = {h4>)

for all €in V, where N is the neutrix described in Definition 2.

Note that in this definition the convolution product fn * g is meant in the sense
of Definition 1 (the distributions /,, have bounded support since the support of rn is
contained in the interval [n —n~n,n + n~n]) and that the distribution h in Definition 3
is unique.

The following theorem was proved in [6] and shows that Definition 3 is an extension
of Definition 1

Theorem 1. Letf and g be distributions with compatible supports. Then the neutrix
convolution product f © g exists and

f® g =f*g-
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The neutrix convolution product has the following important properties, analogous to
the first of equations in (2) and to (3) (see [2] and [6]):

Theorem 2. Let f and g be distributions in V and suppose that the neutrix convo-
lution product f © g exists. Then the neutrix convolution products f © ¢' and /v © gv
exist and

(feg)' = f ®g’;
(/l©s)v = IVOI9V-

Note however that equation (1) does not necessarily hold forthe neutrix convolution
product and that (/ © g)' is not necessarily equal to /' © g.
In [2] the following result was obtained:
Theorem 3. The neutrix convolution product xx © x¢ existsand
XX®Xx% = (—1)IHI5A + 1,5 + 1) Xx™+3+1 4)

for A£ (—,00) and s £ No, where B denotes the beta function.

Later, the following two theorems were proved in [3] and [4], respectively:

Theorem 4. The neutrix convolution product xx © x\ exists and satisfies equation
(4) for A€ (—o0,—1]\ (—N) and s € NO .

Theorem 5. The neutrix convolution product xf © x\ exists and
X1® x = ()3+1fI(A + 1,5 + 1)4 +i+1

for AE R\ Z ands £ NO.

The next theorem was proved in [5].

Theorem 6. The neutrix convolution product xx © x+ exists and
xi © < - B{-A-11-1,11 + I)x™"HL+ B{-A-p - 1,A+ Dxr +1, ®)

for X,p £ R such that X,p,A+p £ Z.
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In the following, we are going to generalize the last theorem by proving the existence
of the convolution products of the form (xAlnrx_) © (x+ In*x+) for all r,s € Noand Ap
such that A,p ~ —N and A+ p 7 Z. It appears that these convolution products may be
expressed in a concise form as the respective distributional derivatives with respect to A
and p. of the right hand side of (5). For this aim we need some auxiliary results on the
beta function.

It was proved in [9] that

Sr,>(A,p) := D\D’B{A,p) = N-lim [ iAllnrt (1 - i)™ 1lns(l - t)dt
n->0° Ji/n

forr,s € Noand A,/r # —No, where

In particular, if p > 0 and A0 —No, the above expression can be replaced by

Brs{X,n) = N-lim . iA-lInrt (1 —tY~IIn’il —t) dt. (6)
n

n-+00
In the lemma below (c*n) is the sequence of positive numbers tending to 0, given by
one of the formulae:
(@) an= 1/n for n € N;
(b) a,,

(c) a,,

x/n forn 6 N;

x/(x + n) forn £ N.

Lemma. Ifx >0, then
Brz{A,p) = Nn:‘[(lxry JfanlA_lln i (1- i)“-1lns(l - i)dt (@)

forr,s £ NO, p £ (0,00) and A£ R \ (—No), where («,) is any of the three numerical
sequences given by formulas (a) —(c) above.

Proof. Choose a positive integer p such that p+ A > 0 and let a,i' be the sum of
the first p terms in the Taylor expansion of (1 —i)*-1 In3(1 —f).
We shall prove first that
ri 1-Tri

N-lim/ tx+-Hnrtdt= ,
Je,n (A+ i)r+l

—
<
-~

forr 6 No in all cases (a) —(c), defined above.
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Since A4-i ~ 0, we have

and further, ifr e N,

aAejnr+la r

Fltx+i-I\nrtdt = - a 'Ifr, n t tx+'-1\nr- | tdt.
ic. A+ A+ JlJa

Replacing a in (9) and (10) by an = x/{x + n), we have

. 1- n-AXA+(l + x/n)~x~'
iA+L_1dt
n A+ 1

and

fltx+i~IWtdt = ———- [aA+,(Inx-In(X + n))r+r tx+i~lIn~i dt
JQn (A+ 1) Join

since Ais not an integer. It follows by induction that

Nedim f1 iAr_1inedide= OO
im iA+,_1lInr+lidt= S
N jx/(x+n) - (A + i+l

for r £ N, i.e. (8) follows in case (c).
In a similar way, one can check that (8) holds true in cases (a) and (6).

Since p + A> 0, the integral

= r iA“Inrt[(1- i)"-lIins(l - 9“ E aA dt
u° i=0

exists. Hence, in view of (6) and (8),

BrsAp) = Nnﬁlo!)mJi/an—l Inrt (1 —ty~1In5(1 —t)
p-1
N-lim ./' tx+i~l\nrtdt
nL< INEHE v ]
p-1

LNnjlh;)mu/ tx+-1Wtdt\
= Nn:l&r)n J[Q1|A~Ilnr| @T-i)"-Mns(l -t)dt

for the sequences (an) of the form (b) and (c).
Consequently, equation (7) follows, g
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©)

(10)
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Theorem 7. The neutrix convolution product (xx Inrx_) © (xi(In’x+) exists and

(XAlnrx_) © (x+ In’x+)
= D\ [B(A- p- I,p + 1) XA+l + B(-X - p- 1 A+ [)x A+1] (11)

forr,s € No and Ap. € R\ (—N) such that A+ p (f Z.

Proof. The proof will consist of three parts, depending onthe values ofAand p. In all
three parts we assume that r,s € NO.

Part I: A,p > —1;, A+ p ~ {—1} UNO.

First notice that in our case xi Inrx_ and x+ In’ x+ are locally integrablefunctions.
Put
(xAlnrx_)n (XAlnrx_)r,(x).

Then the convolution product (xi Inrx_)7* (x+ In” x+) exists both inthe sense of Defi-
nition 1 and in the classical sense and we have

(xiInrx_)n* (x+In” x+)

= r yxInry-rn(y)(x - yftIn’(x - y)+dy = I[ + 1?2, (12)
where

A'— J/ (—=NAInr(—y) (x — Ins(a; —y)+dy; (13)

2 =0 CY)ANr(y)my)(x -y)+InT(x -y ) +dy. (14)

In the case x < 0, we substitute in the integral in (13) y = xt~I and obtain

ri = Ji_H(-y)Alnr(-Y)(X-y)i‘ln’(X-y)dy

= (—X)A+i+1 f M2[In(—x) —Int]r(l —F)MIn(-x) + In(l —t) - Ini] dt
J—xfn

=¢ £ £ Inr+’-'-*(-r), (15)
i=0 k=0j=0

where

... . (030 T

for the respective integers i,j, k.
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Since —x > 0, it follows from the lemma that
N -1™ 1?jk = Bi+jtk-j(-A-n-1I,n+1) (16)

for the respective
On the other hand, using the formula x+ Inpx+ = DXx+ for p £ N (see [8]) and the
equations:

-n- 1/4+1) =-B/+im(-A - jl- 1Jj. +1);
DABini-X - p- 1/x+1) =

= ~Bl+I,m(~A—H—1,/i + 1) + Sim+I(—A —/i —1,/i + 1),

valid for any I,m € N, one can prove by induction with respect to r + s that

=E E E cu* [i-1,/1 + 1) x~+HI+L Inr+— X _. a7)

1=0 ¢=0j'=0

Combining (15), (16) and (17), we get
Nn;lgom/r = "AE)[B(-A -/x - |,p + D)x"+"+1] (18)

in the case x < 0.
If x > 0, we use the substitution y = x( 1 —i-1) in the integral in (13) and then

A= ] (-y)AIr(-2)(x - yT In*(x - y) dy

= xaHm+l fl N-A-»i-2[inx  in(I —i) —Int]r(l —i)AInx —Ini]sdt

IX/{X+n)
= E E E JiM ~ + Inr+1“" €©* (19)
1=0 A:=0;=0
where
= [1 rN-M -2 Inv+it (1 _ A dt
Ix/(x+n)
By the lemma,
Nﬁ&mJ" k= Bi+t),*_j(—A—p —L A+ ) (20)

for the respective integers i,j,k.

On the other hand, replacing —x by x and interchanging A and /i as well as r and s
in (17), we get

AD B (-A -/r-1,A + [)x A"+1] =

=E E ii-M +1) 4 +"H Inr+i- kx+. (21)
1=0 k=013=0
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Combining (19), (20) and (21), we obtain
N-Thn/"™ = jDJ27?2;[flI(-A-p-1,A + Dx++"+1] (22)

in the case x > 0.
Further, it is easily seen that

/" = 0{n-n+x+*“Inr+3n),

SO
Nn- im/a=0. (23)
It now follows from equations (12), (18), (22) and (23) that
N —im(xAlnr x_)n* (x+ In3x+) =
n—co
=D\D:iB(-A - p- |I,p + DxAr“+1 + B(-A - /l- 1, A+ [)xA++1],

which completes the proof of Part I.

Part Il: A> —1;, p0—N; AfpgZ
Denote Ng := 0, N” := {-1,-2,...,-?} and

={(Ap) :A> —1, p>—, p~N'j, A+p ~ Nj UNo, }

fori € N.

To prove the assertion of the theorem under the conditions of this part we will show
the existence of (xMnrx_) © (x+In3x+) and equation (11) for arbitrary i £ N and
(A,p) £ X{ by induction with respect to i.

For ¢ = 1 our assertion is valid, in view of Part I. Fix k £ N and suppose that
the assertion holds true for i = k. Now take (A,p) £ Xk+\ and-put p := p + 1. Since
(A,p) £ Xk and p * 0, the neutrix convolution product (xMnrx_) © (x".Insx+) exists
for arbitrary r,s £ No- Moreover, by Theorem 2 and induction hypothesis, the neutrix
convolution product (x*. Inrx_) © (x+ In3x+)" exists and

(XAInrx_) © (x+ In5x+)' = (XAInrx_) © [px+ In1x+ -f sx+ In3- 1x+] =

= [(XAIn- x_) © (x| In3x+)]' = (?E£LE[(A + p + 2)/A,.(¥)], (24)
for r,s £ No, where
Amx) ;= B(X —p - 2,p + 2) XA+ji+1 + B{A- p - 2, A+ 1) xA++1.
Notice that

-(A+p+2)B(-A-p-2p+2=pB(-A-p- l,p+ 1) (25)
A+p+ 2)fI(-A -p-2,A+1)=pB(-A - p- 1,A+ 1), (26)
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due to the known property of the gamma function and its relation to the beta function.
It follows from (25) and (26) that

(\ +fj.+ 2)EXI{x) = jjgXili(x), 27)
where
gxjx) = B(-A —g —1,g + 1) x*+ii+l + fI(-A - g - 1, A+ 1) Xi+,i+l.
By (27),

D\DI[{\ + g +2)fu*)} = D'-'DIHn + 1)saiM*)] =
D\D’'~"[(,, + 1)DIgxJx)\ + D'xD’-'gxJx) =

= DilT-'Kn +1)DIgUx)} + 2D\D’-"gxA x\

and, by induction,

DrDII[(\ + g + 2)fxAXx)\ =
= D\[(g + 1)D°figxJx)} + sD\D'~"gx"x).

Consequently, by (24),

x* Inrx_) ® [px+ In5x+ 4-sx+ Ins_1x+]

= xDlgx”~x) + sD\D ’~lgx,"{x) (28)

for r,sE NO.
Taking s = 0, we see that (x*. Inrx_) ® xif. exists and, since g * 0,

(XMnrx_) ® x+ = DxgxAx),

i.e. (11) holds for s = 0.
Assume that (xiInrx_) ® (x+ In’-1 x+) exists and

(xx In”x_) ® (xitlIn- 1x+) = W *) (29)

for some s 6 NO. Since the neutrix convolution products in (28) and (29) exist, it follows
that also (x* Inrx_) ® (xif. In” x+) exists and

gx*_Inrx_) ® (x+In’x+) =

= (x* Inrx_) ® [gx* In’ x+ + sx+ In"_1x+] - s(x* Inrx_) ® (x+ In’-1 x+) =

DxDI[(X +g + 2)fUX)) - sDkDi-1gxJx) = gD\D”" gxjx).

Since g ~ 0, it follows by induction with respect to s that our assertion holds for (\,g) G
Xk+i and this completes the proof of Part II.
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Part 111: the general case.
Denote
Y o {(A) X> -, A? p —N; A+p " Z}

We have to prove the assertion of the theorem for (A,p) GY, and all i GN.

Evidently, the assertion is true for (A, p) GYi, due to Part Il. Assume that the assertion
holds for all pairs in Yk, k G N and let (X,p) G Y*+1. Clearly, (\,p) G Xk and A 0,
where A := A+ 1

Since the convolution product (a™+1Inrx_)n* (x+ In" x+) exists in the sense of Defi-
nition 1 for n G N, equations (2) can be used. Given an arbitrary $G D (let the support
of 4>be contained in the interval [a, 6]), we have

{[(xi Inr x_)n* (x+ In3x+)]", 4>(X)) = - ((iJInpx_)n* (Xif In3x+), cf>'(x)) =
—([("X1- In"x- + r(xt Inr_1x_]n * (x+ In' x+), 4>(x)) +
+([*- inf o In* R4, < )- (30)

The support of r'(x) is contained in the interval [-n - n~n,-n]. Therefore, forn > -a,

({x- Inrx_ rn(x)) * (xp In5x+), 4>{x)) — i 0(x) 7,,(x) dx, (31)

where

7,,(X) -:Jf_n_n_n(-y)AInr(~y)Tn(y){x - yY Ins(x - y) dydx,

with the functions (-y)AlInr(-y) and (x - yY In*(x - y) integrable on the domain of
integration. Integration by parts yields

7,x) = h + 0 -y)Alnr(- - y)ilni(x - y)IV,.(y)dy, 32
()= hnG) + T [CYIAINFGy)(x - y)ilni(x - y)IV.(y)dy (32)
where
hn{x) := nxInrn (x + nY In*(x -f n).

Choosing a positive integer p greater than A+ y, we can put

p~I s n mHrPn

hn(x) = nA+p+1 £ E 1  + 0 (nA¥J+1 plnp+*n).

i=0j=0 n'

Since A + p is not an integer, we conclude that

N-lim /i, (x) = . (33)

It is easily seen that

Jim § o [Cy)AN(-y) (x-y)pins(x-y)]V n(y)dy = 0 (34)
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and thus, by (31), (32), (33) and (34),
N —Jim ((x* In"x_ t7(x)) * (x+ In5x+),<p(x)) = 0. (35)

Now, using (30), (35), the induction hypothesis and the fact that A 40, it can be
proved by induction with respect to r that the assertion of the theorem is true for (A/r) £
YfcH, in much the same way as in Part Il (the role of p in Part Il is now played by A).

By induction, the assertion in the general case follows. Q

Corollary. The neutrix convolution product (x+Inrx+) ® (xf Insx_) exists and

(X™. In"x+) © (xtInsx_) =

= D\DIN\B{-A-p-1l,p +\)x~ +1+B(-A - p- 1,A+ 1)xA++1]
forr,s £ Noand X,p £ R\ (—N) such that A+p $ Z.
Proof. The assertion of the corollary follows immediately by the second part of Theo-
rem 2, i.e. on replacing x by —x in equation (11). q
The distributions |x|Alnr |x| and sgn x.|x|AIn™|x| are defined by
[X|AInr |x] = x+ Inr x+ + xAIn"x_, sgnx.|x|AInr x| = x" In" x+ —xAIn*x_.

We finally note that since the convolution products (x+Inrx+) * (xij.In’ x+) and
(xAlnrx_) * (xf Insx_) exist by Definition 1 and since the neutrix convolution product
is clearly distributive with respect to addition, it follows that further neutrix convolution
products such as

(XAInrx_) © (x]"In* |x]), (XAlnrx+)© (Ix*In* |x]),

(XAIn" x_) © (sgnx.|x|Mns|x]), (|x]AIn"]x]) © (xf In5x_)

exist forr,s £ NO, Ap £ R\ (—N) with A+p $ Z.
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Streszczenie

Splot f *g dystrybucji Schwartza f,g €.V definiuje sie wzorem

(/ <) = {fTn*g,<t3,

postulujac, by granica istniata w przestrzeni V dla dowolnych funkcji 4€ V oraz ciggéw
(rn) elementéw przestrzeni V aproksymujacych funkcje 1 i nalezacych do okreslonej klasy.

Splot dystrybucji / ig, oznaczany symbolem / © 9, rozumiany jest w tej pracy w ogol-
niejszym sensie, bowiem zaktada sig, ze granica po prawej stronie powyzszej rownosci
istnieje w sensie neutriksu (van der Corput [L]), wyznaczonego przez przestrzen liniowa
funkcji zaniedbywalnych /: N — R, generowang przez wszystkie funkcje / zbiezne do 0
oraz funkcje / postaci:

nAlnr-1n, Inrn (A >0, r € N).

Dowodzi sie, ze splot f® g istnieje w sensie neutriksu dla dystrybucji /(z) —xx Inrx_
i g(x) —x+ In3x+ oraz zachodzi réwnosc:

/| © g=DKD]B (-A-"~-1 7 + 1)xXi+fi+1 + B(-A - - 1, A+ 1) xAHi+]
dlar,s € {0} UN oraz Ag 6 R\ (—N), takich ze A+ g £ Z, gdzie

D

r = D’'= —
A d\r’ “oodlive
a B oznacza funkcje beta Eulera.

Stad wynika takze istnienie nastepujacych splotow:

(x+Inrz+)© (z" Insz_); (xxInrz_) © (|z]'iIns|x])
(x+ Inrz+) © (I*1*1In" |x]); (zilnrz_) © (sgnz.|z|Mns|z|);
(|z]Alnr |x]) © (zitInsz_ )

przy tych samych warunkach na r,s, Ag, co poprzednio.



