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Traveling-Wave Tubes
By J. R. PIERCE

Copyright, 1950, D. Van Nostrand Company, Inc.

The following material on traveling-wave tubes is taken from  a book which 
w ill be published by Van Nostrand in  September, 1950. Substantially the 
entire contents of the book will be published in this and the three succeeding 
issues of the Bell System Technical Journal.

This material w ill cover in  detail the theory of traveling-wave amplifiers. In  
addition, brief discussions of magnetron amplifiers and double-stream amplifiers 
are included. Experimental material is drawn on in a general way only, as in 
dicating the range of validity of the theoretical treatments.

The material deals only with the high-frequency electronic and circuit be
havior of lubes. Such matters as matching into circuits are not considered; 
neither are problems of beam formation and electron focusing, which have been 
dealt with elsewhere}

The material opens with the presentation of a simplified theory of the travel
ing-wave tube. A discussion of circuits follows, including helix calculations, a 
treatment of filler-type circuits, some general circuit considerations which show 
that gain w ill be highest for low group velocities and low stored energies, and a 
justification of a sim ple transmission line treatment of circuits by means of an 
expansion in  terms of the normal modes of propagation of a circuit. Then a de
tailed analysis of overall electronic and circuit behavior is made, including a 
discussion of various electronic and circuit waves, the fitting of boundary con
ditions to obtain overall gain, noise figure calculations, transverse motions of 
electrons ami. field solutions appropriate to broad electron streams. Short treat
ments of the magnetron amplifier and the double-stream amplifier follow.

1 For instance, “Theory and Design of Electron Beams,” J. R. Pierce, Van Nostrand, 
1949.
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CH APTER I

INTRODUCTION
■iTRONOMERS are interested in stars and galaxies, physicists in

atoms and crystals, and biologists in cells and tissues because these 
are natural objects which are always with us and which we m ust under
stand. The traveling-wave tube is a constructed complication, and it can 
be of interest only when and as long as it successfully competes with older 
and newer microwave devices. In this relative sense, it is successful and 
hence important.

This does not mean that the traveling-wave tube is better than other 
microwave tubes in all respects. As yet it is som ewhat inefficient compared 
with most magnetrons and even with some klystrons, although efficiencies 
of over 10 per cent have been attained. It seems reasonable that the effi
ciency of traveling-wave tubes will improve with time, and a related device, 
the magnetron amplifier, promises high efficiencies. Still, efficiency is not the 
chief merit of the traveling-wave tube.

Nor is gain, although the traveling-wave tubes have been built with gains 
of over 30 db, gains which are rivaled only by the newer double-stream  
amplifier and perhaps by multi-resonator klystrons.

In noise figure the traveling-wave tube appears to be superior to other 
microwave devices, and noise figures of around 1 2  db have been reported. 
This is certainly a very important point in its favor.

Structurally, the traveling-wave tube is simple, and this too is impor
tant. Simplicity of structure has made it possible to build successful am pli
fiers for frequencies as high as 48,000 megacycles (6.25 mm). W hen we con
sider that successful traveling-wave tubes have been built for 2 0 0  me, we 
realize that the traveling-wave amplifier covers an enormous range of fre
quencies.

The really v ita l feature of the traveling-wave tube, however, the new 
feature which makes it different from and superior to earlier devices, is its 
tremendous bandwidth.

I t  is com paratively easy to build tubes with a 20 per cent bandwidth at 
4,000 me, that is, w ith a bandwidth of 800 me, and L. M. Field has reported 
a bandwidth of 3 to  1 extending from 350 m e to 1,050 me. There seems no 
reason w hy even broader bandwidths should not be attained.

As it happens, there is a current need for more bandwidth in the general 
field of communication. For one thing, the rate of transmission of intelli
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gence by telegraph, by telephone or by facsimile is directly proportional 
to bandwidth; and, with an increase in communication in all of these fields, 
more bandwidth is needed.

Further, new services require much more bandwidth than old services. 
A bandwidth of 4,000 cycles suffices for a telephone conversation. A band
width of 15,000 cycles is required for a very-high-fidelity program circuit. 
A single black-and-white television channel occupies a bandwidth of about 
4 me, or approximately a thousand times the bandwidth required for te
lephony.

Beyond these requirements for greater bandwidth to transmit greater 
am ounts of intelligence and to provide new types of service, there is cur
rently a third need for more bandwidth. In FM  broadcasting, a radio fre
quency bandwidth of 150 kc is used in transm itting a 15 kc audio channel. 
This ten-fold increase in bandwidth does not represent a waste of frequency 
space, because by using the extra bandwidth a considerable im munity to 
noise and interference is achieved. Other attractive types of modulation, 
such as PCM  (pulse code modulation) also make use of wide bandwidths 
in overcoming distortion, noise and interference.

At present, the media of communication which have been used in the past 
are becoming increasingly crowded. With a bandwidth of about 3 me, 
approximately 600 telephone channels can be transmitted on a single coaxial 
cable. It is very hard to make amplifiers which have the high quality neces
sary for single sideband transmission with bandwidths more than a few times 
broader than this. In television there are a number of channels suitable for 
local broadcasting in the range around 1 0 0  me, and amplifiers sufficiently 
broad and of sufficiently good quality to amplify a single television channel 
for a small number of times are available. It is clear, however, that at these 
lower frequencies it would be very difficult to provide a number of long-haul 
television channels and to increase telephone and other services substan
tially.

Fortunately, the microwave spectrum, which has been exploited increas
ingly since the war, provides a great deal of new frequency space. For in
stance, the entire broadcast band, which is about 1 me wide, is not sufficient 
for one television signal. The small part of the microwave spectrum in the 
wavelength range from 6  to 7|- cm has a frequency range of 1,000 me, which 
is sufficient to transmit many simultaneous television channels, even when 
broad-band m ethods such as FM  or PCM  are used.

In order fully to exploit the microwave spectrum, it is desirable to have 
amplifiers with bandwidths commensurate with the frequency space avail
able. This is partly because one wishes to send a great deal of information 
in the microwave range: a great many telephone channels and a substan
tial number of television channels. There is another reason why very broad
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bands are needed in the microwave range. In providing an integrated nation
wide communication service, it is necessary for the signals to be amplified 
by many repeaters. Amplification of the single-sideband type of signal used 
in coaxial system s, or even amplification of amplitude modulated signals, 
requires a freedom from distortion in amplifiers which it seems alm ost 
impossible to attain at microwave frequencies, and a freedom from inter
fering signals which it will be very difficult to attain. For these reasons, it 
seems almbst essential to rely on m ethods of modulation which use a large 
bandwidth in order to overcome both amplifier distortion and also inter
ference.

M any microwave amplifiers are inferior in bandwidth to amplifiers avail
able at lower frequencies. Klystrons give perhaps a little less bandwidth than 
good low-frequency pentodes. The type 416A triode, recently developed at 
Bell Telephone Laboratories, gives bandwidths in the 4,000 me range some
what larger than those attainable at lower frequencies. Both the klystron  
and the triocle have, however, the same fundam ental lim itation as do other 
conventional tubes. As the band is broadened at any frequency, the gain is 
necessarily decreased, and for a given tube there is a bandwidth beyond  
which no gain is available. This is so because the signal m ust be applied by  
means of some sort of resonant circuit across a capacitance at the input of 
the tube.

In the traveling-wave tube, this lim itation is overcome com pletely. There 
is no input capacitance nor any resonant circuit. The tube is a smooth trans
mission line with a negative attenuation in the forward direction and a 
positive attenuation in the backward direction. The bandwidth can be 
limited by transducers connecting the circuit of the tube to the source and 
the load, but the bandwidth of such transducers can be made very great. 
The tube itself has a gradual change of gain with frequency, and we have seen  
that this allows a bandwidth of three times and perhaps more. This means 
that bandwidths of more than 1 ,0 0 0  me are available in the microwave 
range. Such bandwidths are indeed so great that a t present we have no means 
for fully exploiting them.

In all, the traveling-wave tube compares favorably with other microwave 
devices in gain, in noise figure, in sim plicity of construction and in fre
quency range. While it is not as good as the magnetron in efficiency, reason
able efficiencies can be attained and greater efficiencies are to be expected. 
Finally, it does provide amplification over a bandwidth commensurate with  
the frequency space available at microwaves.

The purpose of this book is to collect and present theoretical material 
which will be useful to those who want to know about, to design or to do 
research on traveling-wave tubes. Some of this material has appeared in 
print. Other parts of the material are new. The old material and the new 
material have been given a common notation.
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The material covers the radio-frequency aspects of the electronic behavior 
of the tube and its internal circuit behavior. M atters such as matching into  
and out of the slow-wave structures which are described are not considered. 
Neither are problems of producing and focusing electron beams, which 
have been discussed elsewhere,1 nor are those of mechanical structure nor of 
heat dissipation.

In the field covered, an effort has been made to select material of practical 
value, and to present it as understandably as possible. References to vari
ous publications cover some of the finer points. The book refers to experi
mental data only incidentally in making general evaluations of theoretical 
results.

To try to present the theory of the traveling-wave tube is difficult with
out some reference to the overall picture which the theory is supposed to 
give. One feels in the position of lifting himself by his bootstraps. For this 
reason the following chapter gives a brief general description of the travel
ing-wave tube and a brief and specialized analysis of its operation. This 
chapter is intended to give the reader some insight into the nature of the 
problems which are to be m et. In Chapters III  through VI, slow-wave cir
cuits are discussed to give a qualitative and quantitative idea of their na
ture and limitations. Then, simplified equations for the overall behavior of 
the tube are introduced and solved, and matters such as overall gain, inser
tion of loss, a-c space-charge effects, noise figure, field analysis of operation 
and transverse field operation are considered. A brief discussion of power 
output is given.

Two final chapters discuss briefly two closely related types of tube; the 
traveling-wave magnetron amplifier and the double-stream amplifier.

1 loc. cit.
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C H APTER II

SIMPLE THEORY OF 
TRAVELING-WAVE TUBE GAIN

S y n o p s is  o f  C h a p t e r

IT  IS difficult to describe general circuit or electronic features of traveling- 
wave tubes without some picture of a traveling-wave tube and traveling- 

wave gain. In this chapter a typical tube is described, and a simple theoret
ical treatment is carried far enough to describe traveling-wave gain in terms 
of an increasing electromagnetic and space-charge wave and to express the 
rate of increase in terms of electronic and circuit parameters.

In particular, Fig. 2.1 shows a typical traveling-wave tube. The parts of 
this (or of any other traveling-wave tube) which are discussed are the elec
tron beam and the slow-wave circuit, represented in Fig. 2.2 by an electron 
beam and a helix.

In  order to derive equations covering this portion of the tube, the proper
ties of the helix are simulated by the simple delay line or network of Fig. 2.3, 
and ordinary network equations are applied. The electrons are assumed to 
flow very close to the line, so that all displacement current due to the pres
ence of electrons flows directly into the line as an impressed current

For small signals a wave-type solution of the equations is known to exist, 
in which all a-c electronic and circuit quantities vary with time and dis
tance as exp (ju t — Ts). Thus, it  is possible to assume this from the start.

On this basis the excitation of the circuit by a beam current of this form is 
evaluated (equation (2.10)). Conversely, the beam current due to a circuit 
voltage of this form is calculated (equation (2.22)). If these are to be con
sistent, the propagation constant T m ust satisfy a combined equation (2.23).

The equation for the propagation constant is of the fourth degree in F, 
so that any disturbance of the circuit and electron stream m ay be expressed 
as a sum of four waves.

Because some quantities are in practical cases small compared with others, 
it is possible to obtain good values of the roots by making an approximation. 
This reduces the equation to the third degree. The solutions are expressed 
in the form

- r  =  - j ß t +  pjcb
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Here is a phase constant corresponding to the electron velocity (2.16) 
and C  is a gain parameter depending on circuit and beam impedance (2.43). 
A solution of the equation for the case of an electron speed equal to the 
speed of the undisturbed wave yields 3 values of S which are shown in Fig. 
2.4. These represent an increasing, a decreasing and an unattenuated 
wave. The increasing wave is of course responsible for the gain of the tube. 
A different approximation yields the missing backward unattenuated wave 
(2.32).

The characteristic impedance of the forward waves is expressed in terms 
of f3e, C, and <5 (2.36) and is found to differ little from the impedance in the 
absence of electrons.

The gain of the increasing wave is expressed in terms of C and the length  
of the tube in wavelengths, N

G =  47.3 C N  db (2.37)

It will be shown later that the gain of the tube can be expressed approxi
m ately as the sum of the gain of the increasing wave plus a constant to take 
into account the setting up of the increasing wave, or the boundary condi
tions (2.39).

Finally, the important gain parameter C  is discussed. The circuit part of 
this parameter is measured by the cube root of an impedance, (E2//32P )1/i, 
which relates the peak field E  acting on the electrons, the phase constant 

' /3 =  co/ d , and the power flow. is a measure of circuit goodness
as far as gain is concerned.

We should note also that a desirable circuit property is constancy of 
phase velocity with frequency, for the electron velocity  m ust be near to the 
circuit phase velocity to produce gain.

Evaluation of the effects of attenuation, of varying the electron velocity  
and m any other m atters are treated in later chapters.

2.1 D e s c r ip t io n  o f  a  T r a v e l in g -W a v e  T u b e

Figure 2.1 shows a typical traveling-wave tube such as m ay be used at 
frequencies around 4,000 megacycles. Such a tube m ay operate with a 
cathode current of around 10 ma and a beam voltage of around 1500 volts. 
There are two essential parts of a traveling-wave amplifier; one is the helix, 
which merely serves as a means for producing a slow electromagnetic wave 
with a longitudinal electric field; and the other is the electron flow. A t the 
input the wave is transferred from a wave guide to the helix by means of a 
short antenna and similarly at the output the wave is transferred from the 
helix to a short antenna from which it is radiated into the output wave 
guide. The wave travels along the wire of the helix with approximately the 
speed of light. For operation at 1500 volts, corresponding to about x’ir the
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speed of light, the wire in the helix will be about thirteen times as long as the 
axial length of the helix, giving a wave velocity of about -rV the speed of 
light along the axis of the helix. A longitudinal m agnetic focusing field of a 
few hundred gauss m ay be used to confine the electron beam and enable it 
to pass com pletely through the helix, which for 4000 m egacycle operation 
m ay be around a foot long.

Fig. 2.1—Schematic of the traveling-wave amplifier.

E L E C T R O N •
B EA M

I w w v
ELEC T R O M AG N ET IC  W AVE T R A V E L S  

I | FR O M  L E F T  TO RIGHT ALO N G  H E L IX

Fig. 2.2—Portion of the traveling-wave amplifier pertaining to electronic interaction 
with radio-frequency fields and radio-frequency gain.

In analyzing the operation of the traveling-wave tube, it is necessary to 
focus our attention merely on the two essential parts shown in Fig. 2.2, the 
circuit (helix) and the electron stream.

2 .2  T h e  T y p e  o p  A n a l y s is  U s e d

A mathem atical treatment of the traveling-wave tube is very important, 
not so much to give an exact numerical prediction of operation as to give a 
picture of the operation and to enable one to predict a t least qualitatively  
the effect of various physical variations or features. I t  is unlikely that all of
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the phenomena in a traveling-wave tube can be satisfactorily described in 
a theory which is simple enough to yield useful results. M ost analyses, for 
instance, deal only with the small-signal or linear theory of the traveling- 
wave tube. The distribution of current in the electron beam can have an 
important influence on operation, and yet in an experimental tube it is often  
difficult to tell just what this distribution is. Even the more elaborate analy
ses of linear behavior assume a constant current density across the beam. 
Similarly, in most practical traveling-wave tubes, a certain fraction of the 
current is lost on the helix and yet this is not taken into account in the 
usual theories.

I t  has been suggested that an absolutely complete theory of the traveling- 
wave tube is alm ost out of the question. The attack which seems likely to 
yield the best numerical results is that of writing the appropriate partial 
differential equations for the disturbance in the electron stream inside the 
helix and outside of the helix. This attack has been used by Chu and Jackson2 

and by Rydbeck .3 While it enables one to evaluate certain quantities which 
can only be estimated in a simpler theory, the general results do not differ 
qualitatively and are in fair quantitative agreement with those which are 
derived here by a simpler theory.

In the analysis chosen here, a number of approximations are made at the 
very beginning. This not only simplifies the m athem atics but it cuts down 
the number of parameters involved and gives to these parameters a simple 
physical meaning. In terms of the parameters of this simple theory, a great 
many interesting problems concerning noise, attenuation and various bound
ary conditions can be worked out. W ith a more complicated theory, the work
ing out of each of these problems would constitute essentially a new problem  
rather than a mere application of various formulae.

There are certain consequences of a more general treatm ent of a traveling- 
wave tube which are not apparent in the simple theory presented here. 
Some of these m atters will be discussed in Chapters X II , X III  and X IV .

The theory presented here is a small signal theory. This means that the 
equations governing electron flow have been linearized by neglecting certain 
quantities which become negligible when the signals are small. This results 
in a wave-type solution. Besides the small signal lim itation of the analyses 
presented here, the chief simplifying assumption which has been made is 
that all the electrons in the electron flow are acted on by the same a-c field, 
or at least by known fields. The electrons will be acted on by essentially the 
same field when the diameter of the electron beam is small enough or when

2 L.J. Chu and J. D. Jackson, “Field Theory of Traveling-Wave Tubes,” Proc. I. R. E., 
Vol. 36, pp. 853-863, July 1948.

301of E. H. Rydbeck, “The Theory of the Traveling-Wave Tube,” Ericsson Technics, 
No. 46, 1948.
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the electrons form a hollow cylindrical beam in an axially symmetrical cir
cuit, a case of some practical importance.

Besides these assumptions, it is assumed in this section that the electrons 
are displaced by the a-c field in the axial direction only. This m ay be ap
proximately true in m any cases and is essentially so when a strong magnetic 
focusing field is used. The effects of transverse m otion will be discussed in 
Chapter X III .

In this chapter an approximate relation suitable for electron speeds small 
compared to the velocity of light is used in computing interaction between  
electrons and the circuit.

A more general relation between impressed current and circuit field, valid 
for faster waves, will be given in Chapter V I. N on-relativistic equations of 
m otion will, however, be used throughout the book. W ith whatever speed 
the waves travel, it will be assumed that the electron speed is always small 
compared with the speed of light.

We consider here the interaction between an electric circuit capable of 
propagating a slow electromagnetic wave and a stream of electrons. W e can 
consider that the signal current in the circuit is the result of the disturbed 
electron stream acting on the circuit and we can consider that the disturbance 
on the electron stream is the result of the fields of the circuit acting on the 
electrons. Thus the problem naturally divides itself into two parts.

2 .3  T i i e  F ie l d  C a u s e d  b y  a n  I m p r e s s e d  C u r r e n t

We will first consider the problem of the disturbance produced in the 
circuit by a bunched electron stream. In considering this problem in this sec
tion in a manner valid for slow waves and small electron velocities, we will 
use the picture in Fig. 2.3. Here we have a circuit or network with uniformly

ł H  ł I I H  I \J=-dé

y T  T  T  T  T  T  T

Fig. 2.3—Equivalent circuit of a traveling-wave tube. The distributed inductance 
and capacitance are chosen to match the phase velocity and field strength of the field act
ing on the electrons. The impressed current due to the electrons is — di/dz,  where i is the 
electron convection current.

distributed series inductance and shunt capacitance and with current I  and 
voltage V. The circuit extends infinitely in the s direction. An electron con
vection current i  flows along very close to the circuit. The sum of the dis
placement and convection current into any little volum e of the electron  
beam m ust be zero. Because the convection current varies with distance in
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the direction of flow, there will be a displacement current J  amperes per 
meter impressed on the transmission circuit. We will assume that the elec
tron beam is very narrow and very close to the circuit, so that the displace
ment current along the stream is negligible compared with that from the 
stream to the circuit. In this case the displacement current to the circuit will 
be given by the rate of change of the convection current with distance.

If the convection current i  and the impressed current /  are sinusoidal 
with time, the equations for the network shown in Fig. 2.3 are

Here I  and V  are the current and the voltage in the line, B  and X  are the 
shunt susceptance and series reactance per unit length and J  is the im
pressed current per unit length.

I t  m ay be objected that these “network” equations are not valid for a 
transmission circuit operating at high frequencies. Certainly, the electric 
field in such a circuit cannot be described by a scalar electric potential. 
We can, however, choose B X  so that the phase velocity of the circuit of 
Fig. 2.3 is the same as that for a particular traveling-wave tube. We can 
further choose X / B  so that, for unit power flow, the longitudinal field acting 
on the electrons according to Fig. 2.3, that is, — d V /d z , is equal to the true 
field for a particular circuit. This lends a plausibility to the use of (2.1) and
(2.2). The fact that results based on these equations are actually a good ap
proximation for phase velocities small compared with the velocity of light 
is established in Chapter VI.

W e will be interested in cases in which all quantities vary with distance 
as exp (—Ts). Under these circumstances, we can replace differentiation 
with respect to s by multiplication by —1\ The impressed current per unit 
length is given by

f  =  —jB V  +  J 
oz

(2.1)

(2.2)

J  = (2.3)

Equations (2.1) and (2.2) become

- r /  =  - j B V  +  i t  

— TV  =  - j X I

(2.4)

(2.5)

If we eliminate I , we obtain

F (r 2 +  B X )  =  - j V X i (2.6)
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Now, if there were no impressed current, the righthand side of (2 .6 )  would 
be zero and (2 .6 )  would be the usual transmission-line equation. In  this case, 
F assumes a value I \  , the natural propagation constant of the line, which 
is given by

F i  =  jV B X  (2 .7 )

The forward wave on the line varies with distance as exp(—Fis) and the 
backward wave as e x p ( + r i3 ).

Another important property of the line itself is the characteristic im
pedance K ,  which is given by

K  =  y / x j B  (2 .8 )

We can express the series reactance X  in terms of Fj and K

X  =  - j K l \  (2 .9 )

Here the sign has been chosen to assure that X  is positive with the sign
given in (2 .7 ) .  In terms of Fj and K ,  (2 .6 )  m ay be written

— lT i  AT
(r* -  r?) (2 .10)

In (2 .1 0 ) , the convection current i is assumed to vary sinusoidally with 
time and as exp (—Fs) with distance. This current will produce the voltage 
V  in the line. The voltage of the line given by (2 .1 0 ) also varies sinusoidally 
with time and as cxp (— Fs) with distance.

2 .4  C o n v e c t io n  C u r r e n t  P r o d u c e d  b y  t h e  F ie l d

The other part of the problem is to find the disturbance produced on the 
electron stream by the fields of the line. In this analysis we will use the 
quantities listed below, all expressed in M .K .S. units .4

ri—charge-to-mass ratio of electrons 
t) =  1 .759  X  1011 coulom b/kg  

«o— average velocity of electrons
Vo—voltage by which electrons are accelerated to give them the velocity  

«o. M0 =  V 2 j)F0 

I 0—average electron convection current 
Po— average charge per unit length  

Po =  — 7 o/«o  
v— a-c component of velocity  
p—a-c component of linear charge density
i—a-c component of electron convection current

1 Various physical constants are listed in Appendix I.
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The quantities v, p, and i  are assumed to vary with time and distance as 
cxp(ju l — Tz).

One equation we have concerning the motion of the electrons is that the 
time rate of change of velocity is equal to the charge-to-mass ratio times 
the electric gradient.

d(«o +  v) dV  ,  ^
— —  ( 2 ' n )

In (2.11) the derivative represents the change of velocity observed in fol
lowing an individual electron. There is, of course, no change in the average 
velocity « 0 . The change in the a-c component of velocity m ay be expressed

dv
in terms of partial derivatives, — , which is the rate of change with time of

dt

the velocity of electrons passing a given point, and — , which is variation of
dz

electron velocity with distance at a fixed time.

dv dv dv dz dV
dl =  d l +  d z d ,  = V T z  (112)

Equation (2.12) may be rewritten

dv dv , , dV  . .
+  — (uo - f  ti) =  i? —  (2.13)

dl dz dz

Now it will be assumed that the a-c velocity v is very small compared with 
the average velocity u0, and v will be neglected in the parentheses. The reason 
for doing this is to obtain differential equations which are linear, that is, 
in which products of a-c terms do not appear. Such linear equations neces
sarily give a wave type of variation with time and distance, such as we 
have assumed. The justification for neglecting products of a-c terms is that 
we are interested in the behavior of traveling-wave tubes at small signal 
levels, and that it is very difficult to handle the non-linear equations. When 
we have linearized (2.13) we m ay replace the differentiation with a respect 
to time by multiplication by jco and differentiation with respect to distance 
by m ultiplication by — T and obtain

(ju  -  u0V)v =  - r jT V  (2.14)

We can solve (2.14) for the a-c velocity and obtain

• -
Where

d. =  w/ hq (2.16)
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W e m ay think of $,■ as the phase constant of a disturbance traveling with  
the electron velocity.

W e have another equation to work with, a relation which is som etim es 
called the equation of continuity and som etim es the equation of conserva
tion of charge. If the convection current changes with distance, charge 
m ust accumulate or decrease in any small elem entary distance, and we see 
that in one dimension the relation obeyed m ust be

-  =  (2.17)
dz dl

Again we may proceed as before and solve for the a-c charge density p

- —Vi =  — jwp

- j T i  (2.18)
p =  --------

CO

The total convection current is the total velocity times the total charge 
density

— Jo +  i  =  («o +  v)(p0 +  p) (2 .19)

Again we will linearize this equation by neglecting products of a-c quanti
ties in comparison with products of a-c quantities and a d-c quantity. This 
gives us

i  =  pov uop (2.20)

We can now substitute the value p obtained from (2.18) into (2.20) and solve 
for the convection current in terms of the velocity, obtaining

-• -  jP ‘ P*v (2 .2 1 )-  r)
Using (2.15) which gives the velocity in terms of the voltage, we obtain  
the convection current in terms of the voltage

i =  ft* 1 h (2 22)
2 F„(i&  -  r ) 2 '

2 .5  O v e r a l l  C ir c u it  a n d  E l e c t r o n ic  E q u a t io n

In (2.22) we have the convection current in terms of the voltage. In  (2.10) 
we have the voltage in terms of the convection current. Any value of I' for 
which both of these equations are satisfied represents a natural mode of
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propagation along the circuit and the electron stream. When we combine
(2 .2 2 ) and (2 .1 0 ) we obtain as the equation which F must satisfy:

wave velocity and attenuation, specified by the imaginary and real parts of 
the circuit propagation constant F i . Equation (2.23) is of the fourth degree. 
This means that it w ill yield four values of F which represent four natural 
modes of propagation along the electron stream and the circuit. The circuit 
alone would have two modes of propagation, and this is consistent with the 
fact that the voltages at the two ends can be specified independently, and 
hence two boundary conditions m ust be satisfied. Four boundary conditions 
m ust be satisfied with the combination of circuit and electron stream. These 
m ay be taken as the voltages at the two ends of the helix and the a-c velocity  
and a-c convection current of the electron stream at the point where the 
electrons are injected. The four modes of propagation or the waves given by
(2.23) enable us to satisfy these boundary conditions.

W e are particularly interested in a wave in the direction of electron flow 
which has about the electron speed and which will account for the observed 
gain of the traveling-wave tube. Let us assume that the electron speed is 
made equal to the speed of the wave in the absence of electrons, so that

As we are looking for a wave with about the electron speed, we will assume 
that the propagation constant differs from @e by a small amount £, so that

Now we will find that, for typical traveling-wave tubes, £ is much smaller 
than (3e ; hence we will neglect the terms involving j3e£ and £ 2 in the numera
tor in comparison with /3<r and we will neglect the term £2 in the denominator 
in comparison with the term involving /3<£. This gives us

(2.23)

Equation (2.23) applies for any electron velocity, specified by and any

- F i  =  - jp „ (2.24)

- r  = -# .+  £ 
= - r , + £

Using (2.24) and (2.25) we will rewrite (2.23) as

(2.25)

- K I 0p l ( - p ]  -  2 f f .£  +  £2)
2Eo(2yft £ -  £*)(£*)

(2.26)

(2.27)

While (2.27) m ay seem simple enough, it will later be found very convenient



to rewrite it in terms of other parameters, and we will introduce them  
now. Let

K I 0/ 4 F 0 =  C3 (2.28)

C  is usually quite small and is typically often around .02. Instead of £ we 
will use a quantity or a parameter 5

£ =  peC8 (2.29)

In terms of 8 and C, (2.27) becomes
5 =  ( ~ j ) m  =  (¿U n -im ry it (2_30)

This has three roots which will be called 8i , 82 and 83 , and these represent 
three forward waves. T hey are

Sl =  <TW 6  =  V 3 / 2  -  j /2

82 =  e~MI* =  - V 3 / 2  — j / 2  (2.31)

8 3 =  e =  J

Figure 2.4 shows the three values of 8. Equation (2.23) was of the fourth 
degree, and we see that a wave is missing. The missing root was eliminated
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j

Fig. 2.4—There are three forward waves, with fields which vary with distance as 
exp(—j'/3e +  p,CS)z. The three values of 5 for the case discussed, in which the circuit is 
lossless and the electrons move with the phase velocity of the unperturbed circuit wave, 
are shown in the figure.

by the approximations made above, which are valid for forward waves only. 
The other wave is a backward wave and its propagation constant is found 
to be

- T  =  j/3. ^1 -  Q  (2.32)

As C is a small quantity, C3 is even smaller, and indeed the backward wave 
given by (2.32) is practically the same as the backward wave in the absence 
of electrons. This is to be expected. In the forward direction, there is a cumu
lative interaction between wave and the electrons because both are moving
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at about the same speed. In the backward direction there is no cumulative 
action, because the wave and the electrons are moving in the opposite 
directions.

The variation in the z direction for three forward waves is as

exp — Ts =  exp —jficZ exp oCf3€z (2.33)

We see that the first wave is an increasing wave which travels a little more 
slowly than the electrons. The second wave is a decreasing wave which 
travels a little more slowly than the electrons. The third wave is an un
attenuated wave which travels faster than the electrons. I t  can be shown 
generally that when a stream of electrons interacts with a wave, the electrons 
m ust go faster than the wave in order to give energy to it.

It is interesting to know the ratio of line voltage to line current, or the 
characteristic impedance, for the three forward waves. This m ay be obtained 
from (2.5). We see that the characteristic impedance K n for the nth wave is 
given in terms for the propagation constant for the nth wave, F„, by

K n =  V /I  =  j X / T n (2.34)

In terms of 5n this becomes

Kn =  K ( j  -  p,C8n/ r o  (2.35)

K n =  K (  1 -  jC dn) (2.36)

We see that the characteristic impedance for the forward waves differs from 
the characteristic impedance in the absence of electrons by a small amount 
proportional to C, and that the characteristic impedance has a small reactive 
component.

We are particularly interested in the rate at which the increasing wave
increases. In a number of wave lengths N , the total increase in db is given by

2 0  logio exp [(\/3 /2 )(C )(27n V )] db 

=  47.3 C N  db (2'37)

We will see later that the overall gain of the traveling-wave tube with a 
uniform helix can be expressed in the form

G =  A +  B C N  db (2.38)

Here A  is a loss relating voltage associated with the increasing wave to 
the-total applied voltage. This loss m ay be evaluated and will be evaluated  
later by a proper examination of the boundary conditions at the input of 
the tube. I t  turns out that for the case we have considered

G =  - 9 .5 4  +  47.3 C N  db (2.39)
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In considering circuits for traveling-wave tubes, and in reformulating 
the theory in more general terms later on, it is valuable to express C in terms 
of parameters other than the characteristic impedance. Two physically sig
nificant parameters are the power flow in the circuit and the electric field 
associated with it which acts on the electron stream. The ratio of the square 
of the electric field to the power can be evaluated by physical measurement 
even when it  cannot be calculated. For instance, Cutler5 did this by allowing 
the power from a wave guide to flow into a terminated helix, so that the 
power in the helix was the same as the power in the wave guide. H e then  
compared the field in the helix with the field in the wave guide by probe 
measurements. The field strength in the wave guide could be calculated in 
terms of the power flow, and hence Cutler’s measurements enabled him to 
evaluate the field in the helix for a given power flow.

The magnitude of the field is given in terms of the magnitude of the 
voltage by

E  =  | I T  | (2.40)

Here E  is taken as the magnitude of the field. The power flow in the circuit 
is given in terms of the circuit voltage by

P  =  | V \-/2 K  (2.41)

A quantity which we will use as a circuit parameter is

E * /p p  =  2 K  (2.42)

Here it has been assumed that we are concerned with low-loss circuits, so 
that rj’ can be replaced by the phase constant /32. Usually, ¡3 can be taken 
as equal to /3„ the electron phase constant, with small error, and in the 
preceding work this has been assumed to be exactly true in (2.23).

In terms of this new quantity, C  is given by

C3 =  (2 A )( /0/8F o) =  (£V /3vP)(/o /8F 0) (2.43)

If we call V0/ 1  a the beam impedance, C3 is \  the circuit impedance divided 
by the beam impedance. It would have been more sensible to use E 1/2fP P  
instead of E /firP .  Unfortunately the writer feels stuck with his benighted 
first choice because of the number of curves and published equations which 
make use of it.

Besides the circuit impedance, another im portant circuit parameter is 
the phase velocity. As the electron velocity is made to deviate from the 
phase velocity of the circuit, the gain falls off. An analysis to be given later

5 C. C. Cutler, “Experimental Determination of Helical-Wave Properties,” Proc. IRE, 
Vol. 36, pp. 230-233, February 1948.
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d isc lo se s  t h a t  th e  a llo w a b le  r a n g e  of v e lo c i ty  A d is o f th e  o r d e r  of

Ad ±  Clio  (2 .4 4 )

Thus, the allowable difference between the phase velocity of the circuit and 
the velocity of the electrons increases as circuit impedance and beam current 
are increased and decreases as voltage is increased.

We have illustrated the general method of attack to be used and have 
introduced some of the important parameters concerned with the circuit 
and with the overall behavior of the tube. In later chapters, the properties 
of various circuits suitable for traveling-wave tubes will be discussed in 
terms of impedance and phase velocity and various cases of interest will be 
worked out by the methods presented.
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CH A PTER  III  

THE HELIX

S y n o p s is  o f  C h a p t e r

AN Y  circuit capable of propagating a slow electromagnetic wave can be 
used in a traveling-wave tube. The circuit m ost often used is the helix. 

The helLx is easy to construct. In  addition, it  is a very good circuit. It has a 
high impedance and a phase velocity that is alm ost constant over a wide 
frequency range.

In this chapter various properties of helices are discussed. An approximate 
expression for helix properties can be obtained b y  calculating the properties, 
not of a helix, but of a helically conducting cylindrical sheet of the same 
radius and pitch as the helix. An analysis of such a sheet is carried out in 
Appendix II  and the results are discussed in the text.

Parameters which enter into the expressions are the free-space phase con
stant /3o =  w/c, the axial phase constant ¡3 =  u /v , where v is the phase 
velocity of the wave, and the radial phase constant 7 . The arguments of 
various Bessel functions are, for instance, 7 r and 7 a, where r is the radial 
coordinate and a is radius of the helix. The parameters do, d and 7  are 
related by

d2 =  do +  7 2

For tightly wound helices in which the phase velocity v is small compared 
with the velocity of light, 7  is very nearly equal to d- For instance, at a 
velocity corresponding to that of 1 ,0 0 0  vo lt electrons, 7  and d differ by 
only 0.4% .

Figure 3.1 illustrates two parameters of the helically conducting sheet, 
the radius a and pitch angle <p. For an actual helix, a will be taken to mean 
the mean radius, the radius to the center of the wire.

Figure 3.2 shows a single curve which enables one to obtain 7 , and hence 
d, for any value of the parameter

wa cot \(/ 
do a cot y  — ----------- .

This parameter is proportional to frequency. The curve is an approximate 
representation of velocity vs. frequency. At high frequencies 7  approaches
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/So cot \p and /3 thus approaches /30/s in  i/q this means that the wave travels 
with the velocity of light around the sheet in the direction of conduction. 
In the case of an actual helix, the wave travels along the wire with the 
velocity of light.

The gain parameter C is given by

C =  (7o/8F 0 ) w (E2/e r P )m

Values of (E P /^ P ) 113 on the axis m ay be obtained through the use of Fig. 3.4, 
where an impedance parameter F (ya) is plotted vs. ya , and by use of (3.9). 
For a given helix, (I?//S2P ) I/3 is approximately proportional to F (ya). F{ya) 
falls as frequency increases. This is partly because at high frequencies and 
short wavelengths, for which the sign of the field alternates rapidly with 
distance, the field is strong near the helix but falls off rapidly away from the 
helix and so the field is weak near the axis. At very high frequencies the field 
falls off away from the helix approximately as exp(—yAr), where Ar is dis
tance from the helix, and we remember that y  is very nearly proportional to 
frequency. (Er/(]2P )U:> measured at the helix also falls with increasing 
frequency.

In m any cases, a hollow beam of radius r (the dashed lines of Fig. 3.5 
refer to such a beam) or a solid beam of radius r (the solid lines of Fig. 3.5 
refer to such a beam) is used. For a hollow beam we should evaluate E 2 in 
(EP/fPP)113 at the beam radius, and for a solid beam we should use the mean 
square value of E  averaged over the beam.

The ordinate in Fig. 3.5 is a factor by which (E P /^ P )113 as obtained from 
Fig. 3.4 and (3.9) should be multiplied to give (E?//32P )113 for a hollow or 
solid beam.

The gain of the increasing wave is proportional to F(ya) times a factor 
from Fig. 3.5, and times the length of the tube in wavelengths, N . N  is very  
nearly proportional to frequency. Also y ,  and hence ya , are nearly propor
tional to frequency. Thus, F(ya) from Fig. 3.4 times the appropriate factor 
from Fig. 3.5 times y a  gives approximately the gain vs. frequency, (if we 
assume that the electron speed matches the phase velocity over the fre
quency range). This product is plotted in Fig. 3.6. We see that for a given  
helix size the maximum gain occurs at a higher frequency and the band
width is broader as r /a , the ratio of the beam radius to the helix radius, 
is made larger.

It  is usually desirable, especially at very short wavelengths, to make the 
helix as large as possible. If we wish to design the tube so that gain is a maxi
mum at the operating frequency, we will choose a so that the appropriate 
curve of Fig. 3.6 has its maximum at the value of ya  corresponding to the 
operating frequency. We see that this value of a will be larger the larger is 
r/a . In an actual helix, the maximum possible value of r /a  is less than unity,
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since the inside diameter of the helix is less than a by the radius of the wire. 
Further, focusing difficulties preclude attaining a beam radius equal even to 
the inside radius of the helix.

Experience indicates that at very short wavelengths (around 6  milli
meters, say) it is extremely important to have a well-focused electron beam  
with as large a value of r /a  as is attainable.

A characteristic impedance K t m ay be defined in terms of a “ transverse” 
voltage Vt, obtained by integrating the peak radial field from a to <», and 
from the power flow. In Fig. 3.7, (v/c) K t is plotted vs. ya . A “longitudinal” 
characteristic impedance K t  is related to K t (3.13). For slow waves K t  
is nearly equal to K t. The impedance parameter Er/f}2P  evaluated at the 
surface of the cylinder is twice K t.  We see that K t  falls with increasing 
frequency.

A simplified approach in analysis of the helically conducting sheet is that 
of “developing” the sheet; that is, slitting it normal to the direction of con
duction and flattening it out as in Fig. 3.8. The field equations for such a 
flattened sheet are then solved. For large values of ya  the field is concentrated 
near the helically conducting sheet, and the fields near the developed sheet 
are similar to the fields near the cylindrical sheet. Thus the dashed line 
in Fig. 3.7 is for the developed sheet and the solid line is for a cylindrical 
sheet.

For the developed sheet, the wave always propagates with the speed of 
light in the direction of conduction. In a plane normal to the direction of 
conduction, the field m ay be specified by a potential satisfying Laplace’s 
equation, as in the case, for instance, of a two-wire or coaxial line. Thus, 
the fields can be obtained by the solution of an electrostatic problem.

One can develop not only a helically conducting sheet, but an actual 
helix, giving a series of straight wires, shown in cross-section in Fig. 3.9. 
In Case I, corresponding to approximately two turns per wavelength, suc
cessive wires are —, + ,  —, +  etc.; in case II, corresponding to approxi
m ately four turns per wavelength, successive wires are + ,  0 , —, 0 , + ,  0  etc.

Figures 3.10 and 3.11 illustrate voltages along a developed sheet and a 
developed helix.

Figure 3.13 shows the ratio, R 113, of (E r/p-P ) 1/3 on the axis to that for a 
developed helically conducting sheet, plotted vs. d /p .  We see that, for a 
large wire diameter d, (Er/fi2P )113 may be larger on the axis than for a heli
cally conducting sheet w ith the same mean radius and hence the same pitch  
angle and phase velocity. This is merely because the thick wires extend nearer 
to the axis than does the sheet. The actual helix is really inferior to the 
sheet.

We see this by noting that the highest value of (E2/|32P ) 1/3 for a helically 
conducting sheet is that a t the sheet (r =  a). W ith a finite wire size, the
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largest value r can have is the mean helix radius a minus the wire radius. 
In Fig. 3.14, the ratio of (E?/P2P y 13 for this largest allowable radius to 
(El/(r~Pyn at the surface of the developed sheet is plotted vs. d /p .  W e see 
that, in terms of maximum available field, (E?/f32P y 13 is no more than 0.83 as 
high as for the sheet for four turns per wavelength and 0.67 as high as for the 
sheet for two turns per wavelength. We further see that there is an optimum  
ratio of wire diameter to pitch; about 0.175 for four turns per wavelength  
and about 0.125 for two turns per wavelength. Because the maxima are so 
broad, it is probably better in practice to use larger wire, and in m ost tubes 
which have been built, d /p  has been around 0.5.

In designing tubes it is perhaps best to do so in terms of field on the axis 
(Fig. 3.13), the allowable value of r /a  and the curves of Fig. 3.6.

Figure 3.15 compares the impedance of the developed helix with that of 
the developed sheet as given by the straight line of Fig. 3.7.

There are factors other than wire size which can cause the value of E l/ $ lP  
for an actual helix to be less than the value for the helically conducting 
sheet. An important cause of impedance reduction is the influence of di
electric supporting members. Even small ceramic or glass supporting rods 
can cause some reduction in helix impedance. In some tubes the helix is 
supported inside a glass tube, and this can cause a considerable reduction 
in helix impedance.

When a field analysis seems too involved, it m ay be possible to obtain 
some information by considering the behavior of transmission lines having 
parameters adjusted to make the phase constant and the characteristic im
pedance equal to those of the helix. For instance, suppose that the presence 
of dielectric material results in an actual phase constant fid as opposed to a 
computed phase constant /3. Equation (3.64) gives an estim ate of the con
sequent reduction of (E ?/(PPy13 on the axis.

This method is of use in studying the behavior of coupled helices. For 
instance, concentric helices may be useful in producing radial fields in tubes 
in which transverse fields predominate in the region of electron flow (see 
Chapter X III). A concentric helix structure might be investigated by means 
of a field analysis, but some interesting properties can be deduced more 
simply by considering two transmission lines with uniformly distributed self 
and mutual capacitances and inductances, or susceptance and reactances. 
The modes of propagation on such lines are affected by coupling in a manner 
similar to that in which the modes of two resonant circuits are affected by 
coupling.

If two lines are coupled, their two independent modes of propagation are 
mixed up to form two modes of propagation in which both lines participate. 
If the original phase velocities differ greatly, or if the coupling between the 
lines is weak, the fields and velocity of one of these modes will be almost
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like the original fields and velocity of one line, and the fields and velocity  of 
the other mode will be alm ost like the original fields and velocity of the other 
line. However, if the coupling is strong enough compared with the original 
separation of phase velocities, both lines will participate alm ost equally in 
each mode. One mode will be a “longitudinal m ode” for which the excitations 
on the two lines are substantially equal, and the other mode will be a “ trans
verse” mode for which the excitations are substantially equal and opposite.

The ratios of the voltages on the lines for the two modes are given by
(3.75). Here it is assumed that the series reactances Ar and shunt susceptances 
B  of the lines are alm ost equal, differing only enough to make a difference 
A r 0 in the propagation constants. B n  and X n  are the m utual susceptance 
and reactance. W e see that to make the voltages on the two lines nearly 
equal or equal and opposite, B i2 and X n  should have the same sign, so that 
capacitive and inductive couplings add.

Fig. 3.1—A helically conducting sheet of radius a. The sheet is conducting along helical 
paths making an angle with a plane normal to the axis.

Increasing the coupling increases the velocity separation between the two 
modes, and this is desirable. W hen there is a substantial difference in ve
locity, operation in the desired mode can be secured by making the electron 
velocity equal to the phase velocity of the desired mode.

T o make the capacitive and inductive couplings add in the case of con
centric helices (Fig. 3 .1 7 ) , the helices should be wound in opposite directions.

3.1 T h e  H e l ic a l l y  C o n d u c t in g  Sh e e t

In computing the properties of a helix, the actual helix is usually replaced 
by a helically conducting cylindrical sheet of the same mean radius. Such a 
sheet is illustrated in Fig. 3 .1 . T his sheet is perfectly conducting in a helical 
direction making an angle \p, the pitch angle, with a plane normal to the 
axis (the direction of propagation), and is non-conducting in a helical direction 
normal to this ip direction, the direction of conduction. Appropriate solutions 
of M axwell’s equations are chosen inside and outside of the cylindrical sheet. 
At the sheet, the components of the electric field in the \p direction are made 
zero, and those normal to the \p direction are made equal inside and outside. 
Since there can be no current in the sheet normal to the \p direction, the
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components of magnetic field in the \p direction m ust be the same inside and 
outside of the sheet. When these boundary conditions are imposed, one can 
solve for the propagation constant and E 1/0*P  can then be obtained by 
integrating the Poynting vector.

The helically conducting sheet is treated m athem atically in Appendix II. 
The results of this analysis will be presented here.

Fig. 3.2—The radial propagation constant is 72 =  (p2 — pl)lli. Here (po/y) cot ip is 
plotted vs p0a cot <j/, a quantity proportional to frequency. For slow waves the ordinate is 
roughly the ratio of the wave velocity to the velocity the wave would have if it traveled 
along the helically conducting sheet with the speed of light in the direction of conduction.

3.1a The Phase Velocity

The results for the helically conducting sheet are expressed in terms of 
three phase or propagation constants. These are

0o =  oj/c, 0  =  oi/v (3.1)

7 =  v V  -  /3o (3.2)

7 =  d V l  -  ( v /Cy- (3.3)

Here c is the velocity of light and v is the phase velocity of the wave. 0 a is 
the phase constant of a wave traveling with the speed of light, which would 
vary with distance in the z direction as exp (—j0oz). The actual axial phase 
constant is 0 , and the fields vary with distance as exp(—j 0 z).

7  is the radial propagation constant. Various field components vary as 
modified Bessel functions of argument yr, where r is the radius. Particularly,
the longitudinal electric field, which interacts with the electrons, varies
as I 0(yr).

For the phase velocities usually used, y  is very nearly equal to 0, as may 
be seen from the following table of accelerating voltages V 0 (to give an elec
tron the velocity v), v/c  and y / 0 .
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V v/c y/ß
1 0 0 .0198 1 . 0 0 0

1 , 0 0 0 .0625 .998
1 0 , 0 0 0 .1980 .980

Figure 3.2 gives information concerning the phase velocity of the wave 
in the form of a plot of (fio/y) cot as a function of /30 a  cot t(/.

The ratio of the phase velocity  v to the velocity  of light c m ay be expressed

v/c  =  0 O/P  =  (y /0 )(P o /y )  cot 4/ tan i/  (3.4)

v /c  =  (t//3) tan [(pa/y) cot 4  ]

( i 0  a  c o t  \/j

Fig. 3.3—From these curves one can obtain v/c, the ratio of the phase velocity of the 
wave to the velocity of light, for various values of tan ^ and 0 cot //.

From Fig. 3.2 we see that, for large values of /30a cot (fio/y) cot \p ap
proaches unity. For slow waves -y//3 approaches unity. Under these circum
stances, very nearly

v/c  =  tan ip (3.5)

If the wave traveled in the direction of conduction with the speed of light
we would have

v/c  =  sin \p
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This is essentially the same as (3.5) for small pitch angles \p. Thus, for large 
values of the abscissa in Fig. 3.2, the phase velocity is just about that corre
sponding to propagation along the sheet in the direction of conduction with 
the speed of light and hence in the axial direction at a much reduced speed. 
For helices of smaller radius compared with the wavelength, the speed is 
greater.

The bandwidth of a traveling-wave tube is in part determined by the 
range over which the electrons keep in step with the wave. The abscissa of 
Fig. 3.2 is proportional to frequency, but the ordinate is not strictly propor
tional to phase velocity. Hence, it seems desirable to have a plot which does 
show velocity directly. To obtain this we can assign various values to cot

7a

Fig. 3.4—A curve giving the impedance function F(ya) vs. ya. On the axis, (£ 2//327>)1/3 =  
W M u\ y / P ) m F{ya).

The ordinate (do/7 ) cot \p then gives us 7 /do and from (3.2) we see that

v /c  =  do/d =  (1 +  (7/do ) 2) " 1' 2 (3.6)

We have seen that, for large values of doff cot \p, (do/7 ) cot i> approaches 
unity, and v/c  approaches a value

v/c  =  (1 +  cot2 =  s‘n 'P (3.7)

T o emphasize the change in velocity with frequency it seems best to plot the
difference between the actual velocity ratio and this asym ptotic velocity  
ratio on a semi-log scale. Accordingly, Fig. 3.3 shows (v/c) — sin 1p vs. do« 
cot 7  for tan \p =  .05, .075, .1, .15, .2.

For large values of the abscissa the velocities are those corresponding to



about 640 volts (tan \p =  .05), 1,400 volts (.075), 2,500 volts (.1), 5,600 volts  
(.15), 9,800 volts (.2).

3.1b The Impedance Parameter (E2/ ß 2P)

Figure 3.4 shows a plot of a quantity F (ya)  vs. ya . This quantity is com
puted from a very complicated expression (Appendix II), but it is accurately  
given over the range shown by the empirical relation

F(ya) =  7.154 <T'6664l'a (3.8)
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ra
Fig. 3.5—Factors by which {E ’-fi/'lP ) in on the axis should be multiplied to give the cor

rect value for hollow and solid beams of radius r.

For the field on the axis of the helix,

(E-/F-P)m  =  (d/do ) l/3(7 /d )4/3F (7 a) (3.9)

We should remember that d/do =  c /v  and that 7 /d  is nearly unity for veloci
ties small compared with the velocity of light.

In the expression for the gain parameter C, the square of the field E  is 
multiplied by the current I 0 (2.28). If we were to assume that two electron
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streams of different currents, E  and / 2 , were coupled to the circuit through 
transformers, so as to be acted on by fields E i and E 2, but that the streams 
did not interact directly with one another, we would find the effective value 
of C3 to be given by

C3 =  (E l/f}2P )  ( / i / 8  F  0) +  ( E \ /e r P ) (h /8 F 0)

Thus, if we neglect the direct interaction of electron streams through fields 
due to local space charge, we can obtain an effective value of C3 by integrat
ing E 2dlu over the beam. If we assume a constant current density, we can 
m erely use the mean square value of E  over the area occupied by electron 
flow.

The axial component of electric field at a distance r from the axis is Ia(yr) 
times the field on the axis. Hence, if we used a tubular beam of radius r, we 
should m ultiply (E?/02P )113 as obtained from Fig. 3.4 by [ /o(yc)]2/3. The quan
tity  [/o(7 r) ] 2/3 is plotted vs. 7 a for several values of r /a  as the dashed lines 
in Fig. 3.5.

Suppose the current density is uniform out to a radius r and zero beyond 
this radius. The average value of E 1 is greater than the value on the axis by 
a factor \I l(yr)  — /i’(7 r)J and (Er/^2P ) 1/3 from Fig. 3.4 should in this case 
be multiplied by this factor to the § power. The appropriate factor is plotted  
vs. ya  as the solid lines of Fig. 3.5.

We note from (2.39) that the gain contains a term proportional to CN, 
where N  is the number of wavelengths. For slow waves and usual values of 
7 a, very nearly, N  will be proportional to the frequency and hence to 7 , 
while C is proportional to (E r/fP P y13. We can obtain (E?/fi2P )113 from Figs. 
3.4 and 3.5. The gain of the increasing wave as a function of frequency will 
thus be very nearly proportional to this value of (732/ / 3 1/3 times 7 , or, 
times 7 a if we prefer.

In Fig. 3.6, yaF (ya )  is plotted vs. 7 a for hollow beams of radius r for 
various values of r /a  (dashed lines) and for uniform density beams of 
radius r for various values of r /a  (solid lines). If we assume that the electron 
speed is adjusted to equal the phase velocity of the wave, we can take the 
ordinate as proportional to gain and the abscissa as proportional to 
frequency.

We see that the larger is r /a , the larger is the value of 7 a for maximum  
gain. For one typical 7.5 cm wavelength traveling-wave tube, 7 a was about 
2.8. For this tube, the ratio of the inside radius of the helix to the mean radius 
of the helix was 0.87. W e see from Fig. 3.6 that, if a solid beam just filled 
this helix, the maximum gain should occur at about the operating wave
length. As a m atter of fact, the beam was somewhat smaller than the inside 
diameter of the helix, and there was an observed increase of gain with an 
increase in wavelength (a higher gain at a lower frequency). In a particular
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tube for 0.625 cm wavelength, it was felt desirable to use a relatively large 
helix diameter. Accordingly, a value of 7 a of 6.7 was chosen. W e see that, 
unless r /a  is 0.9 or larger, this m ust result in an appreciable increase in gain 
at some frequency lower than operating frequency. It was only by use of 
great care in focusing the beam that gain was attained at 0.625 cm wave
length, and there was a tendency toward oscillation, presumably at longer 
wavelengths. This discussion of course neglects the effect of transmission

r a

Fig. 3.6—-The ordinate is yaF(ya)  times the parameters from Fig. 3.5. For a fixed cur
rent and voltage it is nearly proportional to gain per unit length, and hence the curves 
give roughly the variation of gain with frequency.

loss or gain. Usually the loss decreases when the frequency is decreased, 
and this favors oscillation at low frequencies.

3.1c Impedance of the Helix

N o impedance which can be assigned to the helically conducting sheet 
can give full information for matching a helix to a waveguide or transmission 
line. As in the case of transducers between a coaxial line and a waveguide or 
between waveguides of different cross-section, the impedance is important,
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but discontinuity effects are also important. However, a suitably defined 
helix impedance is of some interest.

Figure 3.7 presents the impedance as defined on a voltage-power basis. 
The peak “ transverse” voltage V t is obtained by integrating the radial elec
tric field from the radius a of the helically conducting sheet to <». The 
“ transverse” characteristic impedance K t is defined by the relation

p  =  m v \ / K t)
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Fig. 3.7—Curves giving the variation of transverse impedance, K t , with ya. 

The impedance is found to be given by

’0 + s f : ) -

M  _  120/5 
A ' ~

+ h
Ko. 1 + tM) {KoK* ~ A‘}]

(3.10)

The / ’s and K ’s are modified Bessel functions of argument ya.
The dashed line on Fig. 3.7 is a plot of 30/y a  vs. ya . I t  m ay be seen that, 

for large values of ya , very nearly

Kt  =  0 ? / d o ) ( 7 / d ) 2(3 O / T a ) (3-11)
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and in the whole range shown the impedance differs from this value b y  a 
factor less than 1.5.

We m ight have defined a “longitudinal” voltage V i  as half of the integral 
of the longitudinal component of electric field at the surface of the helically  
conducting sheet for a half wavelength (between successive points of zero 
field). We find that

Ve =  v T -  (v/cT- V, =  ( y /0 ) V i (3 .1 2 )

and, accordingly, the “longitudinal impedance” K (  will be

K t  =  [1 -  (v /c y ]K t =  ( y / W K t (3 .1 3 )

Our impedance parameter, E1/P lP , is just twice this “ longitudinal
impedance.”

k— - 4 - 2  7ra s i n  ¡¡i
Fig. 3.8—A “developed” helically conducting sheet. The sheet has been slit along a 

line normal to the direction of conduction and flattened out.

The transverse voltage V t is greater than the longitudinal voltage V( 
because of the circumferential m agnetic flux outside of the helix. For slow  
waves V i is nearly equal to V t and the fields are nearly curl-free solutions of 
Laplace’s equation. In this case the circumferential m agnetic flux is small 
compared with the longitudinal flux inside of the helix.

For the circuit of Fig. 2.3 the transverse and longitudinal voltages are 
equal, and it is interesting to note that this is approximately true for slow  
waves on a helix. For very fast waves, the longitudinal voltage becomes small 
compared with the transverse voltage.

For a typical 4,000-megacycle tube, for which 7 a — 2.8, Fig. 5 indicates a 
value of K t of about 150 ohms.

3 .2  T h e  D e v e l o p e d  H e l i x

For large helices, i.e., for large values of 7 a, the fields fall off very rapidly 
away from the wire. Under these circumstances we can obtain quite accurate 
results b y  slitting the helically conducting sheet along a spiral line normal
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to the direction of conduction and flattening it out. This gives us the plane 
conducting sheet shown in Fig. 3.8. The indicated coordinates are z to the 
right and y  upward: x  is positive into the paper. The fields about the de
veloped sheet approximate those about the helically conducting sheet for 
distances always small compared with the original radius of curvature.

The straight dashed line shown on the helix impedance curve of Fig. 3.7 
can be obtained as a solution for the “developed helix.” We see that it is 
within 10% of the true curve for values of ya  greater than 2.8. We might note 
that a 10% error in impedance means only a 3-|% error in the gain 
parameter C.

In solving for the fields around the sheet, the developed surface can be 
extended indefinitely in the plus and minus y  directions. In order that the 
fields may match when the sheet is rolled up, they m ust be the same at 
y  =  0, z =  2ira sin ^ and y  =  2tra cos \f/, z =  0. The appropriate solutions 
are plane electromagnetic waves traveling in the y  direction with the speed 
of light.

For positive values of x, the appropriate electric and magnetic fields are

Ex =  E 0e~yz c - ,y! e~m v

E, =  jE 0e~yx e~iyt e ~ ^ u (3.14)

E„ =  0

We should note that the x  and z components of the field can be obtained  
as gradients of a function

$  =  — (Eo/y)e~yx e~jyi (3.15)

where

E z =  -<34>/dz
(3.16)

E , =  — <3<I>/ 0y

d ^ /d x 2 +  d-<I>/dz- =  0  (3.17)

Thus, in the xz plane, 4> satisfies Laplace’s equation.
The magnetic field is given by the curl6 of the electric field times j/con. 

Its components are:

IIX =  E0e~yx e~iyz
HC

II2 =  —  E oe-yze - jy ie ~ ^ v (3.18)
uc

II y =  0

6 Maxwell’S equations are given in Appendix I.
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The fields in the —x  direction m ay be obtained by substituting exp(7 .r) 
for exp(—yx).

If the sheet is to roll up properly, the points a on the bottom  coinciding 
with the points b on the top, we have

where n is an integer.
The solution corresponding most nearly to the wave on a singly-wound 

helix is that for n =  0. The others lead to a variation of field by n cycles 
along a circumferential line. These can be combined with the n =  0 solu
tion to give a solution for a developed helix of thin tape, for instance. Or, 
appropriate combinations of them can represent modes of helices wound of 
several parallel wires. For instance, we can imagine winding a balanced trans
mission line up helically. One of the modes of propagation will be that in 
which the current in one wire is 180° out of phase with the current in the 
other. This can be approximated by a combination of the n =  + 1  and 
n — —1 solutions. This mode should not be confused with a fast wave, a 
perturbation of a transverse electromagnetic wave, which can exist around 
an unshielded helix.

Usually, we are interested in the slow wave on a singly-wound helix, and 
in this case we take n =  0 in (3.19), giving

Let us evaluate the propagation constant in the axial direction. From Fig. 
3.8 we see that, in advancing unit distance in the axial direction, we pro
ceed a distance cos i/' in the z direction and sin ip in the y  direction. Hence, 
the phase constant ¡3 in the axial direction m ust be

2-irya sin \p — 2nß0a cos \p =  2nir (3.19)

7  sin \p — ß0 cos =  0  

tan \p =  ß o /y
(3.20)

■ / ßo 
~~ {y 2 +  ß l ) 11

(3.21)

(3.22)

ß  =  ßo sin \p +  7  cos \p (3.23)

Using (3.18) and (3.19), we obtain

ß  =  (ßl +  y - )11' 

7 =  -  ß l)m

(3.24)

(3.25)

These are just relations (3.2, 3.3).
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The power flow along the axis is that crossing a circumferential circle, 
represented by lines a-b in Fig. 3.8. As the power flows in the y  direction, 
this is the power associated with a distance 2ira sin \p in z direction. Also, 
the power flow in the + x  region will be equal to the power flow in the — a- 
region. Hence, the power flow in the helix will be twice that in the region 
x  =  0  to x  =  +  , s =  0  to 2 =  2ira sin \p.

/*2jra8inv5- *co
P  =  2 /  ( | ){E ZH *  -  E xl i t )  dx dz (3.26)

This is easily integrated to give

P  = 2lra sin (3.27)
7  tiC

The magnitude E  of the axial component of field is

E =  E 0 cos (3.28)

Using (3.21), (3.22), (3.24) and (3.28) in connection with (3.27) we obtain 

(E?/fPP) =  (y /m P /P °)(n c /2 T y a )  (3.29)

We have

nc =  n /y /u e  =  =  377 ohms

Thus

E ?/P P  =  (7 //3)W /So)(60/7 <7) (3.30)

The longitudinal impedance is half this, and the transverse impedance is 
(/3 /t ) 2 times the longitudinal impedance.

3.3 E f f e c t  o f  W ir e  S iz e

An actual helix of round wire, as used in traveling-wave tubes, will of 
course differ somewhat in properties from the helically conducting sheet 
for which the foregoing material applies.

One might expect a small difference if there were m any turns per wave
length, but actual tubes often have only a few turns per wavelength. For 
instance, a typical 4,000 me tube has about 4.8 turns per wavelength, while 
a tube designed for 6  mm operation has 2.4 turns per wavelength.

If the wire is made very small there will be much electric and magnetic 
energy very close to the wire, which is not associated with the desired field 
component (that which varies as exp(— jj3z) in the z direction). If the wire 
is very large the internal diameter of the helix becomes considerably less 
than the mean diameter, and the space available for electron flow is reduced. 
As the field for the helically conducting sheet is greatest at the sheet, this
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means that the maximum available field is reduced. Too, the impedance 
will depend on wire size.

I t thus seems desirable to compare in some manner an actual helix and the 
helically conducting sheet. It would be very difficult to solve the problem  
of an actual helix. However, we can make an approximate comparison by  
a method suggested by R. S. Julian.

In doing this we will develop the helix of wires just as the helically con-

c a s e  n

Fig. 3.9—The wires of a developed helix with about two turns per wavelength (case I) 
and about four turns per wavelength (case II). In the analysis used, the wires are not 
quite round.

TO P

BO T T O M

Fig. 3.10—Voltages on a developed helically conducting sheet for two turns per wave
length.

ducting sheet was developed, by slitting it along a helical line normal to the 
wires. W e will then consider two special cases, one in which the wires of the 
developed helix are one half wavelength long and the other in which the 
wires are one quarter wavelength long.

The waves propagated on the developed helix are transverse electromag
netic waves propagated in the direction of the wires, and the electric fields 
normal to the direction of propagation can be obtained from a solution of 
Laplace’s equation in two dimensions (as in (3.15)—(3.17)).
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It is easy to make up two-dimensional solutions of Laplace’s equation 
with equipotentials or conductors of approximately circular form, as shown 
in Fig. 3.9. In case I, the conductors are alternately at potentials — V, -f- V, 
— V, e tc .; and in case II, the potentials are — V, 0, +  V, 0, — V, 0, +  V, 
etc. Far away in the x  direction from such a series of conductors, the field 
will vary sinusoidally in the s direction and will vary in the same manner 
with x as in the developed helically conducting sheet. Flence, we can make 
the distant fields of the conductors of cases I and II  of Fig. 3.9 equal to the 
distant fields of developed helically conducting sheets, and compare the 
jEV/SIP and the impedance for the different systems. Case I would correspond 
to a helix of approximately two turns per wavelength and case II  to four 
turns per wavelength.

3.3a Two Turns per Wavelength

Figure 3.10 is intended to illustrate the developed helically conducting 
sheet. The vertical lines indicate the direction of conduction. The dashed 
slanting lines are intersections of the original surface with planes normal to 
the axis. T hat is, on the original cylindrical surface they were circles about 
the surface, and they connect positions along the top and bottom  which 
should be brought together in rolling up the flattened surface to reconsti
tute the helically conducting sheet.

W aves propagate on the developed sheet of Fig. 3.10 vertically with the 
speed of light. The vertical dimension of the sheet is in this case taken as 
X/2, where X is the free-space wavelength .7 The sine waves above and below  
Fig. 3.10 indicate voltages at the top and the bottom  and are, of course, 
180° out of phase. As is necessary, the voltages at the ends of the dashed 
slanting lines, (really, the voltages at the same point before the sheet was 
slit) are equal.

A wave sinusoidal at the bottom  of the sheet, zero half way up and 180° 
out of phase with the bottom at the top would constitute along any horizon
tal line a standing wave,not a traveling wave. Actually, this is only one com
ponent of the field. The other is a wave 90° out of phase in both the horizon
tal and vertical directions. Its maximum voltage is half-way up, and it is 
indicated by the dotted sine wave in Fig. 3.10. The voltage of this com
ponent is zero at top and bottom . I t  m ay be seen that these two compo
nents propagating upward together constitute a wave traveling to the right. 
The two components are orthogonal spatially, and the total power is twice 
the power of either component taken separately.

Figure 3.11 indicates an array of wires obtained by developing an actual

7 Section 3.3a is referred to as “two turns per wavelength.” This is not quite accurate; 
it is in error by the difference between the lengths of the vertical and the slanting lines in 
Fig. 3.10.
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helix which has been slit along a helical line normal to the wire of which the 
helix is wound. The dashed slanting lines again connect points which were 
the same point before the helix was slit and developed. Again we assume a 
height of a half wavelength. Thus, if the polarities are maximum +  , —, +  , 
— etc. as shown at the bottom , they will be maximum — 
etc. as shown at the top, and zero half-way up. In this case the field is a 
standing wave along any horizontal line, and no other component can be 
introduced to make it a traveling wave. H alf of the field strength can be re
garded as constituting a component traveling to the right and half as a 
component traveling to the left.

TO P

BO TTO M  ____
+ - - +  — +

Fig. 3.11—Voltages on a developed helix for two turns per wavelength.

The equipotentials used to represent the field about the wires of Fig. 3.9, 
Case I and Fig. 3.10 belong to the field

V +  j p  =  In tan (z +  jx )  (3.31)

Here V  is potential and p  is n stream function. There are negative equi
potentials about s =  .r =  0  and positive equipotentials about x  =  0 , s =
± w /2 . For an equipotential coinciding with the surface of a wire of z-diam- 
eler, 2  s w>rc, d /p  is thus

d /P  =  (3.32)
7T/4

at x  =  0 , s <  7r/ 4

V  =  In tan z (3.33)
at z =  0

V =  In tanh x  (3.34)

Flence, for an equipotential on the wire with an z-diameter 2s, the ar-diam- 
eter 2;v can be obtained from (3.33) and (3.34) as

2x =  2 tanh-1  tan s (3 ,3 5 )

Of course, the ratio of the »-diameter d\ to the pitch is given by

d i/P  =  (3.36)7T/4

where x  is obtained from (3.35).
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In Fig. 3.12, d i/d  is plotted vs. d /p  by means of (3.35) and (3.36). This 
shows that for wire diameters up to d /p  — .5 (open space equal to wire diam
eter) the equipotentials representing the wire are very nearly round.

The total electric flux from each wire is 2xe and the potential of a wire of 
z-diameter 2z is V  =  —In tan z. Hence, the stored energy IVi per unit length 
per wire, half the product of the charge and the voltage, is

W \ =  —7re In ta n z  (3.37)

d /p

Fig. 3.12—Ratio of the two diameters of the wire of a helix for two turns per wave
length (sec Fig. 3.9) vs. the ratio of one of the diameters to the pitch.

The total distant field and the useful field component are given by ex
panding (3.31) in Fourier series and taking the fundamental component, 
giving

V =  — 2  cos 2 zerXx (3.38)

The — sign applies for x >  0 and the +  sign for x  <  0. Half of this can be 
regarded as belonging to a field moving to the right and half to a field moving 
to the left.

For a field equal to half that specified by (3.38), which m ight be part of 
the field of a developed helically conducting sheet, the stored energy W 2 
per unit depth can be obtained by integrating (E : +  E l) e/2  from * =  
— co to x =  - f  co and from z =  — t / \  to -f-ir/4, and it turns out to be

W 2 =  h «  (3-39)

If we add another field component similar to half of (3.38), but in quadra
ture with respect to z and /, we will have the traveling wave of a helically 
conducting sheet with the same distant traveling field component as given 
by (3.31). Hence, the ratio R  of the stored energy for the developed sheet 
to the stored energy for the developed helix is

R  =  I W t/W i  =  -i—  (3.40)In tan s
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R is the ratio of the stored energies, and hence of the power flows (since 
the waves both propagate with the speed of light) of a developed helically 
conducting sheet and a developed helix with the same distant traveling fun
damental field components. Hence, at a given distance (E^/prP)1'3 for the 
helix is R u 3 times as great as for the helically conducting sheet. In Fig. 
3.1.3, R 1/3 is plotted vs. d /p .

Fig. 3.13—Ratio Iiu3 of {E?/BiI, Y n  for a helix to the value for a helically conducting 
sheet for the distant field.

d /p

Fig. 3.14—Ratio Rin of (E?/fPP)l,i for a helix to the value for a helically conducting 
sheet, field at the inside diameter of the helix or sheet.
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The maximum available field for the developed helically conducting sheet 
(equation (3.38)) is that for $ =  0. The maximum available field for the 
developed helix (equation (3.31)) is that for an electron grazing the helix 
inner or outer diameter, that is, an electron at a value of x  given by (3.35). 
The fundamental sinusoidal component of the field varies as exp(— 2x) 
for both the sheet and the helix, and hence there is a loss in E 2 by a factor 
exp (—4s) because of this. We wish to make a comparison on the basis of 
E 2 and power or energy. Hence, on basis of maximum available field squared 
we would obtain from (3.40)

R  =  — i —  e**  (3.41)
In tan z

where x is obtained from (3.35). Figure 3.14 was obtained from (3.32), 
(3.35) and (3.41).

0.2 0.6  0.7 0.80.3  0.4  0.5

d /p
Fig. 3.15—The transverse impedance of helices with two and four turns per wavelength 

vs. the ratio of wire diameter to pitch.

In a transmission line the characteristic impedance is given by

/ I-vl (3.42)

Here L and C  are the inductance and capacitance per unit length. This im
pedance should be identified with the transverse impedance of the helix. 
We also have for the velocity of propagation, which will be the velocity of 
light, c,
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From (3.42) and (3.43) we obtain

K , =  V m /C  =  V u J t W O  

=  377 e/C

Now  C is the charge Q divided by the voltage V. Hence

K t =  377 tV /Q (3.45)

(3.44)

In th i s  c a se  w e  h a v e

337* In t a n  z

K t =  —60 In tan*
(3.46)

To obtain the impedance of the corresponding helically conducting sheet 
we assume, following (3.30)

If we are to have n turns per wavelength, and the speed of light in the 
direction of conduction, then we m ust have

For ii =  2 (two turns per wavelength), K  =  60. In Fig. 3.15, the charac
teristic impedance K t as obtained from (3.46) divided by 60 (from (3.50)) 
is plotted vs. d /p .

3.3b Four Turns per Wavelength

In this case there are enough wires so that we can add a quadrature com
ponent as in Fig. 3.10 and thus produce a traveling wave rather than a stand
ing wave. Thus, we can make a more direct comparison between the de
veloped sheet and the developed helix.

For the developed helix we have

K t =  (y /P ) (y/Po) (30/y d )  

and assuming a slow wave, let y  =  p, so that

K t =  30/poa (3.48)

(3.47)

Pod =  1 /n (3.49)

whence

K t =  30« (3.50)

V  -F j\p =  In tan (s +  jx )  +
A

(3.15)
cos 2  (s  +  jx )



If we transform this to new coordinates Zy, Xi about an origin at z =  0, 
x =  7r/ 4  we obtain

V + j i  =  In ( } -  (  A  , )  (3.52)
\ 1  — tan (zi +  7 x1) /  \s in  2  (z, +  j x  1) /

We can now adjust /I to give a zero equipotential of diameter 2 zi about * =  
Xi =  0 , Zj =  0  (z =  t / 4) by letting
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A =  (sin 2sj) In A  tan (3.53)
\ 1  — tan z i /

If A is so chosen, there will be roughly circular equipotentials of z-diameter 
2zi about z  = ±  7r/4 , etc. There will also be roughly circular equipotentials 
of the same z-diameter about z =  0, ± x / 2 ,  etc., of potential ± F .  That 
about z =  0  has a potential

V ,  ( L t - t S L i d  (.,.5 4 )
\1  — tan Z\) cos 2zi

where A is taken from (3.53).
The distance between centers of equipotentials is p =  tt/4, so that the 

ratio of z-diameter of the equipotentials to pitch is

d /p  =  2 z i /( t /4 )  =  Z i / ( t /8 ) (3.55)

The .x-diameter of the equipotential about z =  0 (and of those about z  =

etc.) can be obtained as 2.v by letting V have the value given by (3.54)

and setting s =  0 in (3.51), giving

V  =  In tanh x  H -5—̂ - (3.56)
cosh 2 x

The ratio of this x-diameter to the pitch, di/p, is

d i/p  =  y/(?r /8 ), (3.57)

x is obtained from (3.56).
To obtain the .r-diameter of the 0 potential electrodes we take the deriva

tive (3.52) with respect to Zy, giving the gradient in the z direction

d V  , .d p  _ sec2 (zi +  j x  1) . sec2 (zi d~ j x  1)
dzy j  dzy 1 +  tan (zi + j x 1) 1 — tan (z, +  jx  1)

(3.58)
_  2^1 cos 2 (zi +  7 x1) 

sin 2 (zi +  7 x1)



44 BELL SY S T E M  TECIINICAL JOU RNAL

W e then let Z\ =  0 and find the value of .ri for which d V /d z i =  0. W hen Z\ =  
0, (3.58) becomes

A  =  s j ih  2xi tanh 2x1 (3.59)
(1  +  tanh- .Ti)

As A  is given by (3.53), we can obtain x, from (3.57), and the ratio of the 
»¡-diameter </2 to the pitch is

d2/ p  =  Xi/{ir/%) (3.60)

Figure 3.16 shows d \/d  and d2/d  vs. d /p .

d /p

Fig. 3.16— Ratios of the wire diameters for the four turns per wavelength analysis.

The ratios R  and the impedance are obtained merely by comparing the 
power flow for the developed sheet with a single sinusoidally distributed 
component with the power flow for case II for the same distant field. In a 
comparison with the helically conducting sheet, n =  2 is used in (3.50). The 
results are shown in Figs. 3.13, 3.14, 3.15. We see that on the basis of the 
largest available field, the best wire size is d /p  =  .19.

3.4 T r a n s m is s io n  L i n e  E q u a t io n s  a n d  H e l ic e s

It is of course possible at any frequency to construct a transmission line 
with a distributed shunt susceptance B  per unit length and a distributed  
shunt reactance X  per unit length and, by adjusting B  and X  to make the 
phase velocity and EP/fPP the same for the artificial line as for the helix. 
In sim ulating the helix with the line, B  and X  m ust be changed as frequency 
is changed. Indeed, it  m ay be necessary to change B  and X  som ewhat in 
sim ulating a helix with a forced wave on it, as, the wave forced by an elec
tron stream. Nevertheless, a qualitative insight into some problems can be 
obtained by use of this type of circuit analogue.
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3.4a Effect of Dielectric on Helix Impedance Parameter

One possible application of the transmission line equivalent is in estim ating  
the lowering of the helix impedance parameter (E2/(32P y 13.

In the case of a transmission line of susceptance B  and reactance X  per 
unit length, we have for the phase constant /3 and the characteristic imped
ance K

0  =  V B X  (3.61)

K  =  V W b  (3 -62)

Now, suppose that B  is increased by capacitive loading so that 0  has a 
larger value ftn Then we see that K  will have a value K j

K d =  03 /M K  (3.63)

Where should K  be measured? It is reasonable to take the field at the 
surface of the helix or the helically conducting sheet as the point a t which
the field should be evaluated. The field at the axis will, then, be changed
by a different amount, for the field at the surface of the helix is I 0(ya) times 
the field at the axis.

Suppose, then, we design a helix to have a phase constant 0  (a phase 
velocity w/f3) and, in building it, find that the dielectric supports increase 
the phase constant to a value fti giving a smaller phase velocity cy/fti- Sup
pose /3/do is large, so that y  is nearly equal to /8 . How will we estim ate the 
actual axial value of (£ 2//32P )I/3? We make the following estimate:

u i / i w  -  ( i n  £ -« § ))” { m F r  ( ,M)

Here the factor (ff/Bd)113 is concerned with the reduction of impedance 
measured at the helix surface, and the other factor is concerned with the 
greater falling-off of the field toward the center of the helix because of the 
larger value of y  (taken equal to 8 and /3<i in the two cases).

The writer does not know how good this estim ate may be.

3.4b Coupled Helices

Another case in which the equivalent transmission line approach is par
ticularly useful is in considering the problem of concentric helices. Such 
configurations have been particularly suggested for producing slow trans
verse fields. They can be analyzed in terms of helically conducting cylinders 
or in terms of developed cylinders. A certain insight can be gained very 
quickly, however, by the approach indicated above.

We will simulate the helices by two transmission lines of series impedances 
j X i and j X 2, of shunt admittances jB j  and jB 2 coupled by series mutual



impedance and shunt mutual adm ittance j X n and j B v>. If we consider a 
wave which varies as exp (—jT z)  in the z  direction we have

T h  -  jB iV i  -  jB u V t =  0  (3.65)

T V i -  j X J i  -  jX n D  =  0 (3.66)

T h  -  jB tV t -  jB u V i  =  0 (3.67)

FIT -  j X t h  -  j X u h  =  0  (3.68)

If we solve (3.65) and (3.67) for ly and h  and eliminate these, we obtain

IT -  ( r 2 +  AT By -H AT» By*)
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IT Ax B 12 T" Bo Ais

IT -  ( r  +  AT B 2 +  X n  B 12)

(3.69)

(3.70)

(3.71)

IT AT. B n +  By X 12

M ultiplying these together we obtain

r4 +  (AT By +  AT B i +  2X i2 B 12)V- 

+  (AT AT -  AT22) (By Bo -  By]) =  0  

We can solve this for the two values of T- 

r= =  -A(A T By +  AT Bo +  IXyo Byo) 

±  \  [(AT By -  AT Bo)- +  4 (AT By +  AT Bo) (ATs B u) (3.72) 

+  4 (AT AT B y /  +  By Bo ATT)]1/2

Each value of F- represents a normal mode of propagation involving both 
transmission lines. The two square roots of each F2 of course indicate waves 
going in the positive and negative directions.

Suppose we substitute (3.72) into (3.69). We obtain

-  (AT By -  AT Bo) ±  [(AT By -  AT B/)~ 
IT _  +  4(AT By +  AT Bo)(Xyo Byo) +  4(AT AT Byl +  By Bo ATs)]1/:
Vl 2 (AT Byo +  Bo Xyo)

(3.73)

e will be interested in cases in which XyBy is very nearly equal to AT 0 2 - 
Let

A r02 =  XyBy -  AT Bo (3.74)

and in the parts of (3.73) where the difference of (3.74) does not occur use

AT =  AT =  A*
(3.75)

By =  Bo =  B
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Then, approximately

F ,
Vi

—Arj ±  [(Aro)" +  4{XBn  +  /L\T2)‘]I/" 
2 (X B n +  B X n)

(3.76)

Let us assume that AF2 is very small and retains terms up to the first 
power of A f 2

Let us now interpret (3.79). This says that if AIT is zero, that is, if X \B \ =  
XiB-i exactly, there will be two modes of transmission, a longitudinal mode 
in which V i/V \  =  + 1  and a transverse mode in which F 2/ F i  =  —1. If

will be two modes, one for which F» >  Fi and the other for which F 2 <  Fi; 
in other words, as APo is increased, we approach a condition in which one 
mode is nearly propagated on one helix only and the other mode nearly 
propagated on the other helix only. Then if we drive the pair with a trans
verse field we will excite both modes, and they will travel with different 
speeds down the system.

We see that to get a good transverse field we must make

In other words, the stronger the coupling {Bn, X n) the more the helices 
can afford to differ (perhaps accidentally) in propagation constant and the 
pair still give a distinct transverse wave.

Thus, it seems desirable to couple the helices together as tightly as pos
sible and especially to see that Bn  and X n  have the same signs.

Let us consider two concentric helices wound in opposite directions, as in 
Fig. 3.17. A positive voltage Vx will put a positive charge on helix 1 while a 
positive voltage F 2 will put a negative charge on helix 1. Thus, B n/B  is 
negative. It is also clear that the positive current h  will produce flux link
ing helix 1 in the opposite direction from the positive current h ,  thus mak
ing X n/ X  negative. This makes it clear that to get a good transverse field 
between concentric helices, the helices should be wound in opposite direc

2{X B \i -t~ B X n )
A H (3.77)

Let

r 5 =  -  X B (3.78)

A l l / d (3.79)
2 {B n /B  +  X n / X )

we excite the transverse mode it will persist. However, if AFo ^  0, there

AIT
-=T «  2 {B n/B  +  X x, / X )  
i  o

(3.80)
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tions. If the helices were wound in the same direction, the “ transverse” 
and “longitudinal” modes would cease to be clearly transverse and longitu
dinal should the phase velocities of the two helices by accident differ a little. 
Further, even if the phase velocities were the same, the transverse and longi
tudinal modes would have alm ost the same phase velocity, which in itself 
m ay be undesirable.

Field analyses of coupled helices confirm these general conclusions.

+ii +v,

Fig. 3.17— Currents and voltages of concentric helices.

3 .5  A b o u t  L o s s  i n  H f x ic e s

The loss of helices is not calculated in this book. Some matters concern
ing deliberately added loss will be considered, however.

Loss is added to helices so that the backward loss of the tube (loss for a 
wave traveling from output to input) will be greater than the forward gain. 
If the forward gain is greater than the backward loss, the tube m ay oscillate 
if it is not terminated at each end in a good broad-band match.

In some early tubes, loss was added by making the helix out of lossy wire, 
such as nichrome or even iron, which is much lossier at microwave frequen
cies because of its ferromagnetism. M ost substances are in many cases not 
lossy enough. Iron is very lossy, but its presence upsets magnetic focusing.

When the helix is supported by a surrounding glass tube or by parallel 
ceramic or glass rods, loss m ay be added by spraying aquadag on the in
side or outside of the glass tube or on the supporting rods. This is advan
tageous in that the distribution of loss with distance can be controlled.

It is obvious that for lossy material a finite distance from the helix there 
is a resistivity which gives maximum attenuation. A perfect conductor would 
introduce no dissipation and neither would a perfect insulator

If lossy material is placed a little away from the helix, loss can be made 
greater at lower frequencies (at which the field of the helix extends out 
into the lossy material) than at higher frequencies (at which the fields of
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the helix are crowded near the helix and do not give rise to much current in 
the lossy material. This construction m ay be useful in preventing high- 
frequency tubes from oscillating a t low frequencies.

Loss may be added by means of tubes or collars of lossy ceramic which fit 
around the helix.
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A P P E N D IX  I 

MISCELLANEOUS INFORMATION
This appendix presents an assortment of material which m ay be 

to the reader.

C o n s t a n t s

Electronic charge-to-mass ratio:
7) =  e /m  =  1.759 X  10" Coulomb/kilogram  

Electronic charge: e =  1.602 X  10 IJ Coulomb 
Dielectric constant of vacuum : t  =  8.854 X  10~u Coulomb/m eter 

Perm itivity of vacuum: p =  1.257 X  10 6 H enry/m eter  
Boltzm an’s constant: k =  1.380 X  10 ‘3 Joule/degree

C r o ss  P r o d u c t s

{ A '  X A " ) ,  =  A y  A "  -  A z  A y  

( A '  X  A " ) y  =  A z  A "  -  A '  a "  

( A '  X  A " ) z  =  Ax A y  -  A y  A "

M a x w e l l ’s  E q u a t io n s : R e c t a n g u l a r  C o o r d in a t e s

c) E Z d E y  . j ,  d l l z  d l l y  .  , ,  . ---------—1 = - j u p l h  —  — = jweEx +  ix
by dz ay  dz

dE x d E z  . . .  d l l x  d l l z  ■ , ,  , ,
—-  -  —  =  - ju p H , ,  —  — —  =JO>eAy +  J„
dz ox dz dx

d E y  d E x  . T r  d l l y  d l l x  . u  ,
_ - v  —  =  - j w p l h  —  -  —  =  JUiEz +  Jz
dx d y  dx dy

M a x w e l l ’s E q u a t io n s : A x ia l l y  S y m m e t r ic a l

=  - j a i i H .  dIp  =  - 0 W E p +  J„)
dZ dZ

d E p  d E z  ■ r ,  d l l , ,  d l l z  • r  _ i_  /=  — J u p lly ,  — —  — —— =  Jw eEy, +  J t
dz dp dz dp

(pE*) =  —juppHz (pH,)  =  p(jueE z +  J z)
dp dp



TRA VEJJNG-WA VE TUBES 51

M i s c e l l a n e o u s  F o r m u l a e  I n v o l v i n g  / „ ( x )  a n d  K „ (x )

1 . -  L + X Z )  =  j  L {Z ) ,  K , - i (Z )  -  K ^ ( Z )  =  -  |  K X Z )

2. I r- i(Z )  +  I,+i(Z)  =  21'XZ), A V i(Z ) +  A >+1(Z) =  -  2A.'(Z)

3. Zl'XZ) +  vL(Z) =  Z L - i iZ ) ,  ZK'XZ) +  vK ,{Z) =  -  Z K ^ X Z )

4. Zl'XZ) -  vL(Z)  =  Z7,.+1(Z), ZK'XZ) -  vK X Z ) =  -  Z A \+1(Z)

5‘ ( z W z )  "'{ / / l X z ) ]  = ( ¿ z ) m ( W z ) }

=  ( — )"‘Z ’~"‘K , - m(Z)

6  f _ S L  Y " M H  =  7 ‘ + " ‘ ( / )  (  d  \ m i K & ) \  _  ( _ y ,  A , + m ( Z )

' \ Z d Z j  \  Z’ J. Z-+m ’ \ Z d z J  \  Z ’ I K ’ ¿H -

7. 7i(Z) =  ACZ), A'o(Z) =  - K X Z )

8 . I~,(Z)  =  / ,(Z ), K - y(Z)  =  KX Z)

9. -  ( ¿ ) V

10. L{Ze"'T<) =  cmttiJXZ)

11. K X Z enri) =  c~"'vr'K X Z )  -  i  S'-"~ -7r IX Z)
Sin y7T

12. IXZ) Ky+XZ) +  / ^ ( Z )  KX Z) =  1 /Z  

For small values of X :

13. 70(X) =  1 +  .25 X 2 +■ .015625 X 4 - ) - • • •

14. 7 i(X ) =  ,5X +  .0625 X 3 +  .002604 X 5 +  • • •

15. Xo(X) =  - 1 7  +  In ( I ) }  7„(X) +  i  X 2 +  ±  X i +  ■ ■ •

16. K X X )  -  ( T +  In ( - ■ ) }  7 ,(X ) +  I  -  j  X  -  i  X 3 +
I \ - / J  a  4 64

7  =  .5772 . . .  (Euler’s constant)

For large values of .Y:

I ? . « «  ~  / 1 +  i 2j  + - m i E  +  + .
(2 * X )I,! \  A* A' 3 A* ;



10  T i v  ̂ ex j ,  .375 .1171875 .102539
18. I i \ X )  ~  ( 2 t x ) ‘« \  I T  X 2 X 3

w v - a  r j \  -1 2 5  , -0703125 .073242 ,19. U A ) ~  t _  I « 1 -  T  +  -  - ¡ p -  +
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20. A'l(.V) I 2A') C' +  X  X 2 +
Fig. A l . l  shows /„ (X ) (solid line) and the first two terms of 13 and the 

first term of 17 (dashed lines).
Fig. A1.2 shows 7i(X ) (solid line) and the first term of 14 and the first 

term of 18 (dashed lines).

Fig. A1.3 shows A'0(Ar) (solid line) and — j ?  +  In /o (X ) and the

first term of 19 (dashed lines).

Fig. A1.4 shows X i(X ) (solid line) and +  In ^ y ^ | / i ( X )  +  1 /X  and 

the first term of 2 0  (dashed lines).

.375 .1171875 , .102539

x
Fig. A l.l—The correct value of /o(A') (solid line), the first two terms of the series 

expansion 13 (dashed line from origin), and the first term of the asymptotic series 17 
(dashed line to right).
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x.
Fig. A1.2—The correct value of h {X )  (solid line), the first term of the series ex

pansion 14f(lo\ver dashed line), and the first term of the asymptotic series 18 (upper 
dashed line).
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x

Fig. A1.3—The correct value of A'o(A’) (solid line), — j-y +  in A (A-) from the

series expansion 15 (left dashed line), and the first term of the asymptotic series 19 
(right dashed line).
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Fig. A1.4—The correct value of A'i(X) (solid line), j-y +  In A (A') from the

series expansion 16 (upper dashed line), and the first term of the asymptotic series 20 
(lower dashed line).
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/  * - f '

I p° Ur£ a

< l S  YP&y/
A P P E N D IX  II

PROPAGATION ON A 
HELICALLY CONDUCTING CYLINDER

The circuit parameter important in the operation of traveling-wave tubes
is:

( E i / t f p y 13 ( i)

¿3 =  u/v .  (2)

Here E z is the peak electric field in the direction of propagation, P  is the 
power flow along the helix, and v is the phase velocity of the wave. The 
quantity E l / f f P  has the dimensions of impedance.

W hile the problem of propagation along a helix has not been solved, what 
appears to be a very good approximation has been obtained by replacing 
the helix with a cylinder of the same mean radius a  which is conducting 
only in a helical direction making an angle dt with the circumference, and 
nonconducting in the helical direction normal to this.

An appropriate solution of the wave equation in cylindrical co-ordinates 
for a plane wave having circular sym m etry and propagating in the z  direc
tion with velocity

co
’  "  ß ’

less than the speed of light c, is

E z =  [A h (y r )  +  B K ,{ y r ) } e ^ ‘- ^  

where 70 and K 0 are the modified Bessel functions, and

t  -  ( ï ) ’ -  f  -  A .

(3)

(4)

(5 )

The form of the z  (longitudinal) components of an electromagnetic field
varying as eiM  and remaining everywhere finite might therefore be

Hz i =  B J 0(yr)eiM - ßl)

Ez3 =

inside radius a, and

II zi =  B2K 0(yr)ej(ut-ßz)

(6)

(7 )

(8)



E t 4 =  B iK o iy r W ^ -™  (9)

outside radius a.  Omitting the factor the radial and circumferential
components associated with these, obtained by applying the curl equation, 
are, inside radius a,

=  B3j— h ( y r )  ( 1 0 )
7

t i n  =  -  h ( y r )  ( 1 1 )
7

£* i =  —Bi^— h ( y r )  (12)
7

E «  =  h { y r )  (13)
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and outside radius a

=  - b J —  K , {y r )  (14)
7

Bln =  - B t & K i ( y r )  (15)
7

=  B ^ K x i y r )  (16)
7

£ . 4  =  - I i J -  K i(y r ) .  (17)
7

The boundary conditions which must be satisfied at the cylinder of radius
a  are that the tangential electric field must be perpendicular to the helix
direction

Ez3 sin dc +  £<*,i cos d< =  0  (18)

Ez\ sin d' +  E^i cos d> =  0, (19)

the tangential electric field must be continuous across the cylinder

Ez-i =  En  (and E #  =  £ 02), (2 0 )

and the tangential component of magnetic field parallel to the helix direc
tion must be continuous across the cylinder, since there can be no current 
in the surface perpendicular to this direction.

Il,  i sin d' +  II^  cos d' =  I In  sin d'
(2 1 )

-f  I I cos d'.
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These equations serve to determine the ratios of the B 's and to determine 
y  through

/ \ 2  Io (ya)Ko(ya)  , ^2 / 00\
w a > 77—  \ =  W°a  cot • (-22'l i ( y a ) K i ( y a )

We can easily express the various field components listed in (6 ) through 
(17) in terms of a common amplitude factor. As such expressions are useful 
in understanding the nature of the field, it seems desirable to list them in 
an orderly fashion.

I n s id e  t h e  H e i j x :

Ez =  B h {y r )e iiul~fiz) (23)

E r =  i/3 ^ h { y r ) e i M )  (24)
7

E*  =  - B 1— .̂ — h ( y r ) e K“‘~M  (25)
h { y a )  cot i/'

11 z r r k  ~ r i  (26)k /30 I \ ( y a) cot

IIr =  B P  u t o )  1 (27)
k 0o h { y a )  cot \j/

II*  =  j  y  -  I (y r )c iiut~ec). (28)
k 7

O u t s id e  t h e  H e l i x :

E , =  B  Ko{yr)eiM ~ßz) (29)
K(i{ya)

Er =  - j B  -  K i (y r )e ’iu‘~ßz) (30)
7  A o(7a)

E *  =  -  B  - 4 - ,  k \ ( y r ) c i{“‘- ß:) (31)
K i(y a )  cot 1p

1 1 =  j  I T  - T 7  K t (yr)e iM - M  (32)k 0o K i (y a )  cot ÿ

Er  =  f  ^ 4 .  4 7 * i ( 7 » V ("'“* ) (33)k A 1(7 ö) COt \p

II* =  - j  ‘I  £ü lĄ y Ą  K l (yr)e iM ~ßt) (34)
« 7 A 0(7 0 )

¿ =  \ / u / e  =  120 ir ohms (35)
Here
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The power associated with the propagation is given by

P  =  i  Re J  E  X  H* dr

taken over a plane normal to the axis of propagation. This is

P  =  7T Re

or

jT  { E r l l t  -  E* I1*)r dr +  ^  (E r l l t  -  E * H * )r d r ^

P =  ttEK.0) 00-Q
72 co/x

1 +  C

-  E ' M  f .Ik  y-

+

where k =  1 2 0  tr ohms.
Let us now write

( E W P ) m =  (0/0o)U3(y / 0 ) WF{ya)

where

+  [ ÿ - )  (k 0k 2
U o /

-1/3

59

(36)

(37)

i s )  I ] ' M , d r

+  (#) f1 + r4°) f  K l ( y r ) r  dr \ A o /  \  i o A l /  Ja

(> + i t ) </; - i,w
(38)

(39)

(40)

We can rewrite the expression for T'(ya) by using relations, Appendix I:

E (ya) , (
y  a  I  o 

V240 Ao
( b  -  h \  +  (£2 -  b A  +  ± } X ' 13
\/o h j \Ki Ko)  ̂ yct\) ' (41)



Communication in the Presence of N oise—Probability 
of Error for Two Encoding Schem es

By S . O. RICE

Recent work by C. E. Shannon and others has led to an expression for the 
maximum rate at which information can be transmitted in the presence of ran
dom noise. Here two encoding schemes are described in which the ideal rate is 
approached when the signal length is increased. Both schemes are based upon 
drawing random numbers from a normal universe, an idea suggested by 
Shannon’s observation that in an efficient encoding system the typical signal 
will resemble random noise. In choosing these schemes two requirements were 
kept in mind: (1) the ideal rate must be approached, and (2) the problem of 
computing the probability of error must be tractable. Although both schemes 
meet both requirements, considerable work has been required to put the expres
sion for the probability of error into manageable form.

1. I n t r o d u c t io n

In recent work concerning the theory of communication it has been 
shown that the maximum or ideal rate of signaling which m ay be achieved 
in the presence of noise is (1, 2, 3, 4, 5)

Ri — F logo (1  +  W s/W jf)  b its/sec . (1-1)

In this expression F  is the width of the frequency band used for signaling 
(which we suppose to extend from 0 to F cps), W s  is the average signaling 
power and W k the average power of the noise. The noise is assumed to be 
random and to have a constant power spectrum of W g /F  w atts per cps 
over the frequency band (0, F).

This ideal rate is achieved only by the m ost efficient encoding schemes 
in which, as Shannon (1, 2) states, the typical signal has many of the prop
erties of random noise. Here we shall study two different encoding schemes, 
both of them referring to a bandwidth F and a time interval T. By making 
the product F T  large enough the ideal rate of signaling may be approached 
in either case* and we are interested in the probability of error for rates 
of signaling a little below the rate (1-1). The work given here is closely 
associated with Section 7 of Shannon’s second paper (2).

In the first encoding scheme the signal corresponding to a given message 
lasts exactly T  seconds, but (because the signal is zero outside this assigned^ 
interval of duration) the power spectrum of the signal is not exactly zero 
for frequencies exceeding F. In  the second encoding scheme, the signal

* A recent analysis by M. J. E. Golay (Proc. I. R. E., Sept. 1949, p. 1031) indicates 
that the ideal rate of signaling may also be approached by quantized PPM under 
suitable conditions.
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power spectrum is limited to the band (0, F) but the signal, regarded as a 
function of time, is not exactly zero outside its allotted interval of length T.

It turns out that both schemes lead to the same mathematical problem 
which may be stated as follows: Given two universes of random numbers 
both distributed normally about zero with standard deviations a and v, 
respectively. Let the first universe be called the cr (signal) universe and 
the second the v (noise) universe. Draw 2N  +  1 numbers /li'lv, z liy+ i, • • • , 
, l ' 0), • ■ • , A.v0) at random from the <j universe. These 2N  +  1 numbers 
may be regarded as the rectangular coordinates of a point Pa in I N  +  1- 
dimensional space. Draw 2N  +  1 numbers B-.v, • • • , B 0, ■ ■ ■ , B x at 
random from the v universe and imagine a (hyper-) sphere S  of radius x\1' 
=  P 0Q, where

K
xo =  £  B l  =  P aQ \  (1-2)

n— N

centered on the point Q whose coordinates are A +  B„, n =  — N, ■ ■ • , 
0, • • • , N.  Return to the a universe, draw out K  sets of 2iY -f- 1 numbers 
each, denote thekth  set by A - / ,  • • • , A o \  • - - , A x } and the associated 
point by P k.

W hat is the probability that none of the K  points I \ ,  ■ • ■ , P K lie within 
the sphere S ? In other words what is the probability, which will be denoted 
by “Prob. (P\Q,  ■ • • , P kQ >  PoQ),” that the K  distances I \Q ,  • • • , P KQ 
will all exceed the radius Pt,Q? In terms of the A ,,’s and B n’s we ask for
the probability that all K  of the numbers x\, x2, ■ ■ ■ , x K exceed :v0 where

% =  £  ( A V  -  A [0) -  B nf  =  P & 2 (1-3)
n =”—N

Expression (1-2) for x0 is seen to be a special case of (1-3). The relationship 
between the points P 0, Q, P i,  Pi,  • • • , Pk,"• ■ • , P k is indicated in Fig. 1 .

The answer to this problem is given by the rather complicated expression 
(4-12) which, when written out, involves Bessel functions of imaginary 
argument and of order N  — 1/2. When N  and K  become very large the 
work of Section 5 shows that the probability in question is given by

Prob. (P,Q, ■■■ , P rQ >  P oQ)

=  (1 +  erf I I ) /2 +  0(1 / K )  +  0(AM /2  log3' 2 N )  (1-4)

where, with r — v-/a-,

11 =  [ ('v  +1/2) logf (1 + 1/r) ” loge {K + 1}

1 , 27TiV(l +  2r) — I n(r- — --------------- -
2 oe (1 +  r)*

(1-5)
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The symbol 0(iY~172 log372 N )  stands for a term of order iY~172 log372 N ,  i.e., 
a positive constant C and a value N o  can be found such that the absolute 
value of the term in question is less than C N ~ 112 log3/2 N  when N  >  N 0. 
In order to obtain actual numerical values for C  and N o , considerably 
more work than is given here would be required. The term 0 (1 /K )  is of 
the same nature. The “order of” terms have been carried along in the work 
of Section 5 in order to guard against error in the many approximations 
which are made in the derivation of (1-4).

Fig. 1—Diagram indicating relationship between points P 0, Q, and Pk corresponding 
to signal, signal plus noise, and kll‘ signal not sent (k >  0), respectively.

The last term within the bracket in (1-5) has been retained even though 
it gives terms of order N~l,i log N  when (1-5) is put in (1-4) and could 
thus be included in 0(A7-1/2 log372 N ). As shown by the table in the next 
paragraph, inclusion of this term considerably improves the agreement 
between (1-4) and values of Prob. (P iQ , • • • , P KQ >  PoQ) obtained by 
integrating the exact expression (4-12) numerically. This suggests that 
the term 0 (iV~ 172 log372 A7) in (1-4) is unnecessarily large.

Although the “order of” terms in (1-4) give us some idea of the accuracy 
of the approximation expressed by (1-4) and (1-5), a better one is desirable. 
With this in mind the lengthy task of computing the exact expression (4-12) 
for Prob. (PiQ,  • • • , P kQ >  PoQ) by numerical integration was undertaken.
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The values obtained in this way are listed in the second column of the 
following table. The values of Prob. {P\Q, ■ • ■ , P kQ >  PoQ) obtained 
from (1-4) (in which the “order of” terms are ignored) and (1-5) are given  
in the third column. Column IV lists values obtained from (1-4) and a 
simplified form of (1-5) obtained by om itting the last term in (1-5). These 
values are less accurate than those in the third column. The values in 
Column V are computed from (1-5) and a modified form of (1-4) obtained 
by adding the correction term shown in equation (5-53) (with B  =  II). 
The values in Column V are presumably the best that can be done with the 
approximations made in Section V of this paper, although the first entry 
renders this a little doubtful.

Prob. (1\Q,  • • • , P kQ >  PoQ) for N  =  99.5 & r =  1

K +  1
N  umerical 
Integration (1-4) &  (1-5) Col. IV Col. V

o 100 -30
2 e .994 .9995 .9987 1 . 0 0 0 1
o 100 -15
2  c .962 .9650 .9337 .9710
2 100 .603 .621 .5000 .605
o 100 15
2  e .1196 .1159 .0663 .1176
o lC0 30
2 e .0065 .00347 .0013 .00586

It will become apparent later that the value K  +  1 =  2100 corresponds 
to the ideal rate of signaling. The non-integer value of 99.5 for N  is ex
plained by the fact that the calculations were started before the present 
version of the theory was worked out. It will be noticed that for K  -j- 1 =  
2 iooe- 3o a[| 0f q ie approximate values exceed the .994 obtained by numerical 
integration. I am in doubt as to whether the major part of the discrepancy 
is due to errors in numerical integration (due to the considerable difficulty 
encountered) or to errors in the approximations.

In both encoding schemes, the point P o corresponds to the transmitted 
signal, Q to the transmitted signal plus noise, and P i,  P 2, • • • P K to K  
other possible signals. The average signal power turns out to be (V  +  l/2)cr- 
and the average noise power to be (iV +  1 / 2 )V-. Furthermore,

■Vo =  twice the average power in the noise.
Xk =  “ “ “ “ “ “ “ plus the ¿th signal.

Prob. (PiQ, ■ ■ ■ P kQ >  P0Q) — Probability that none of the K  other
signals will be mistaken for the signal sent, 
i.e., the probability of no error.

The random numbers A ) are taken to be distributed normally instead 
of some other way because this choice makes the encoding signals (in our 
two schemes) resemble random noise, a condition which seems to be neces
sary for efficient encoding ( 1 , 2 ).
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Both of the encoding schemes are concerned with sending, in an interval 
of duration T, one of K  +  1 different messages. According to communica
tion theory ( 1 , 2 , 3) this corresponds to sending at the rate of T~l logs 
(K  +  1) bits per second. However, instead of discussing the rate of trans
mission, it is more convenient, from the standpoint of (1-4), to deal with 
the total number of bits of information sent in time T. Thus, selecting and 
sending one of the K  +  1 possible messages is equivalent to sending

M  =  log2(Â" +  1) (1-6)

bits of information. M ,  or one of the adjacent integers if M  is not an integer, 
is the number of “yes or no” questions required to select the sent message 
from the K  +  1 possible messages (divide the K  +  1 messages into two 
equal, or nearly equal, groups; select the group containing the sent message 
by asking the person who knows, “Is the sent message in the first group?” ; 
proceed in this way until the last subgroup consists of only the sent mes
sage). The am ount of information which would be sent in time T  at the 
ideal rate R t defined by ( l - l )  is

M r =  TR,  =  F T  log, (1  +  l / r ) =  (N  +  1/2) log2 (1 +  1/r) (1-7)

where use has been made of W K/ W a =  v1/cr  =  r, and the relation N  <  
F T  <  N  +  1 (which turns out to be common to both encoding schemes) 
has been approximated by N  +  1/2 =  FT.

When (1-6) and (1-7) are used to eliminate N  and K  from (1-5) the 
result is an expression for the actual amount M  of information sent (in 
time T) in terms of (1) the amount M f which is sent by transmitting at 
the ideal rate (1-1) for a time T, (2) the ratio r of the noise power to the 
signal power, and (3) the probability of no error in sending M  bits of in
formation in time T, this probability being given as (1 -j- erf II)¡2:

M  =  M i  -  aM)'~H +  b (1-8)

where

=  2
log2 e

_ ( 1  +  r) logi (1  +  1 /  

b =

r
r) J ’

\  l0g2 [(
27t(1 +  2 r)M j

(1-9)

. ( 1  +  r)- log2 ( 1  +  1/r jJ

Here the “order of” terms in (1-4) have been neglected together with 
similar terms which arise when N  +  1 / 2  is used for N  in computing a and 
b. The term b is usually small compared to aM 'fll .

The more slowly we send, the less chance there is of error. The relation
ship between M , M r  and the probability of no error, as computed from
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(1-8), is shown in the following table. The probability of no error is de
noted by p  and the terms are given in the same order as on the right of 
(1-8) in order to show their relative importance. The ratio i f / i f  ,(= 2? /i? ,)  
for r =  0.1 is shown as a function of i f  in Fig. 2.

For r =  W N/W a  =  0 .1  

M i bits M  for p — .3 M  for p =  .99 M  for p =  .99999

102 i f , — 0 +  3 . 75 M l  -  24 .3  +  3. 75 i f ,  -  4 4 .6  +  3. 75
104 “  “ +  7. 07 “ -  243 +  7.07 “ -  446 +  7.07
106 “  “ +  10.38 “ -  2430 +  10.38 “ -  4460 +  10.38

For r  =  W N/ W s  =  1

102 i f , - 0 +  4 .4 4  i f , -  3 3 .4  +  4 .4 4  i f , - 6 1 . 2 +  4 .44  
104 “ “ +  7. 76 “ -  334 +  7. 76 “ -  6 1 2 +  7. 76
106 “ “ + 1 1 . 0 8  “ -  3340 +  11.08 “ - 6 1 2 0  +  11.08

There may be some question as to the accuracy of the values for p  =  .99999, 
especially for i f ,  =  1 0 0 , since this corresponds to points on the tail of 
the probability distribution where the “order of” terms in (1-4) become 
relatively important.

Of course, for a given bandwidth, the ideal rate of signaling f?, (given by 
( 1- 1 )) for r =  .1 exceeds that for r =  1 in the ratio (log2 l l ) / ( lo g 2 2 ) =  
3.46.

The above results agree with the statement that, by efficient encoding, 
the rate of signaling R  can be made to approach the ideal rate R r =  M r/ T  
given by (1-1). As applied to our two schemes, the term “efficient encoding” 
means using a very large value of F T  or Ar. To see this, divide both sides of 
( 1-8 ) by M i  and rearrange the terms:

1 -  M / M i  =  a l l  M ~ m  +  O iif / 1 log M ,)  (1-10)

When M i  is replaced by R ,T  in i f / i f , ,  the fraction i f ¡ T  occurs. We shall 
set R — M / T  and call R  the rate of signaling corresponding to some fixed 
probability of error (which determines II). Thus, when (1-7) and the defini
tion (1-9) for a are used, (1-10) goes into

‘- T T 3  "  [ (l +  +  W  +  0 ( 0 o s F T W T )  (1- “ >

Equation ( 1- 1 1 ) shows that when r  and II are fixed (i.e. when the noise 
power/signal power and the probability of error are fixed) R / R i  approaches 
unity as F T  —> co. This is shown in Fig. 2 for the case r — 0.1. Since R / R r =  
i f / i f , ,  M / M ,  must approach unity and consequently i f  as well as i f ,  in
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creases linearly with F T.  Thus, for efficient encoding M  is large and, from 
(1-6), so is K .

It should be remembered that equation (1-8) has been established only 
for the two encoding schemes of this article. The question of how much 
faster M / T  approaches R j  for the more efficient encoding schemes mentioned 
at the end of Section 2 still remains unanswered.

Fig. 2—Curves showing the approach of R /R j  (=  M /M i)  to unity as the message 
length increases and the probability of no error remains fixed. R is the rate of signaling 
at which the probability of no error is p  and R i is the ideal rate.

It gives me pleasure to acknowledge the help I have received in the prepa
ration of this memorandum from conversations with Messrs. H. Nyquist, 
John Riordan, C. E. Shannon, and M . K. Zinn. I am also indebted to Miss 
M . Darville for computing the tables shown above and for checking a num
ber of the equations numerically.

2. T h e  F ir s t  E n c o d in g  Sc h em e

Suppose that we have K  +  1 different messages any one of which is to 
be transmitted over a uniform frequency band extending from zero to the 
nominal cut-off frequency F  in a time interval of length T. The adjective 
“nominal” is used because the sudden starting and stopping of the signals 
given by the first encoding scheme produces frequency components higher
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than F. A shortcoming of this nature must be accepted since it is impos
sible to have a signal possessing both finite duration and finite bandwidth.

The first step of the encoding process is to compute the integer N  given  
by

N  <  F T  <  N  +  1 (2-1)

We assume that F T  is not an integer in order to avoid borderline cases. 
Let TTs be the average signal power available for transmission and define 
the standard deviation a of the a universe introduced in Section 1 by 
(iY +  l/2 )a 2 =  W s- To encode the first message, draw 2iY +  1 numbers 
/li°v, • • •, Ao°\ ■ ■ ■ A .v ) at random from the <r universe. The signal correspond
ing to the first message is then taken to be

I 0(t) =  2~mA(00) +  Z  ( Al0) c o s  2tm t / T  + sin hml/T) (2 -2 )
n -1

The remaining K  messages are encoded in the same way, the signal repre
senting the /nli message being

h { t )  =  2 ~mA ^  -f  Z  U » l) c o s 2 t i i I / T  +  A {-1  sin h rn l /T ) .  (2-3)
n -1

It is apparent that each signal consists of a d-c term plus terms corre
sponding to N  discrete frequencies, the highest being N / T  <  F, and that 
the average power (assuming /*(/) to flow through a unit resistance) in the 
¿th signal is

T 1 I * "  / ; ( / )  dl =  2- ' U H *  +  £  2_ 1[ U ' t ) ) 2 +  (A —n)~] (2-4)
J—T/2 n— 1

Since the / l ’s were drawn from a universe of standard deviation cr, the ex
pected value of the right hand side is (2.Y +  l)cr2/2  which is equal to the 
average signal power JFS) as required.

We pick one of the A" +  1 messages at random and send the correspond
ing signal over a transmission system  subject to noise. We choose our nota
tion so that the sent signal is represented by 70(/) as given by (2-2). Let the 
noise be given by

iV
J ( 0  =  2~m Bo +  z  (Bn cos 2irn l /T  +  sin 2ttn t /T )  (2-5)

n - 1

where , B 0) • ■ ■ , B x  are (21V +  1) numbers drawn at random from
the normally distributed v universe mentioned in the introduction. The 
standard deviation v of the universe is given by (¿Y +  \ /2 )v-  =  TF.V, W s  
being the average noise power. We call J{t)  simply “noise” rather than
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“random noise” to emphasize that (2-5) does not represent a random noise 
current unless N  and T  approach infinity.

The input to the receiver is 70(/) +  / ( / ) .  Let the process of reception 
consist of computing the K  +  1 integrals

=  2 T - 1 I "  {h {t)  -  70(0  -  J O )?  dt, k =  0, 1, • • • , K  (2-6)
J-T/ 2

and selecting the smallest one (all of the K  -f- 1 encodings have been carried 
to the receiver beforehand). If the value of k corresponding to the smallest 
integral happens to be 0 , as it will be if the noise J(l)  is small, no error is 
made. In  any other case the receiver picks out the wrong message.

When the representations (2-2), (2-3), and (2-5) are put in (2-6) and the 
integrations performed, it is found that

Xk =  £  { A f  -  / l ' 0, -  B n) \  xa =  £  B l  (2-7)
« JV n N

which have already appeared in equations (1-2) and (1-3). If, as in Section 
1, Pk is interpreted as a point in 2N  +  1 — dimensional Euclidean space with 
coordinates /l^ v , ■ • • , -do*', • • ■ , A ^  and Q  is the point A i°y +  B - .v, • • • , 
A o0) +  B 0, . . . , Affl -j- B N, then Xk is the square of the distance between points 
Pk and Q. Point P 0 corresponds to the signal actually sent, points P i, • • • , 
P k to the remaining signals, and point Q  to the signal plus noise at the 
receiver. The expected distance between the origin and Pk is o-(2iV - f  1) 1/2 

=  (2 IFS)1/2, that between P 0 and Q is i>(2N +  1) W2 =  (2TT,v)l/2, and that 
between the origin and <3 is

(cr2 +  v2)‘/2(2 tY +  1 ) 1/2 =  (2 TT.V +  2IF <,.)1/2

N o error is made when x<> is less than ever}- one of xi, x-z, • • • , xK, i.e., 
when none of the points Pi,  ••• , P K lies within the sphere S  of radius .To/2 

centered on Q and passing through Pt>. Therefore the probability of obtain
ing no error when the first encoding scheme is used is equal to the probability 
denoted by Prob. (P\Q, ■ ■ ■ , P kQ  >  PoQ) ¡n the mathematical problem of 
Section 1.

One might wonder why probability theory has played such a prominent 
part in the encoding scheme just described. It is used because we do not 
know the best method of encoding. In fact, it would not be used if we knew 
how to solve the following problem:* Arrange K  +  1 points P 0, • • • P k on 
the hyper-surface of the 2 N  +  1 — dimensional sphere of radius (2 IPs) 1,2

* C. E. Shannon has commented that although the solution of this problem leads to a 
good code, it may not be the best possible, i.e., it is not obvious that the code obtained 
in this way is the same as the one obtained by choosing a set of points so as to minimize 
the probability of error (calculated from the given set of points and some given TIN) 
averaged over all K  +  1 points.
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in such a way that the sm allestof thei£(/£  -f- l ) / 2  d istancesPkPl, k, I  =  0 , 1 , 
• • • , K ,  k ?*= I, has the largest possible value. This would maximize the dif
ference (as measured by the distance between their representative points) 
between the two (or more) m ost similar encoding signals.f

In this paper we have been forced to rely on the randomness of probability 
theory to secure a more or less uniform scattering of the points P 0, • ■ ■, / V  
In our work they do not lie exactly on a sphere of radius (2IFS) 1/2 but this 
causes us no trouble.

3. T h e  Se c o n d  E n c o d in g  Sc h e m e

The second of the two encoding schemes is suggested by one of Shannon’s
(2) proofs of the fundamental result (1-1). In this scheme the K  -f- 1 mes
sages are to be sent over a transmission system having a frequency band ex
tending from zero to F cycles per second, and are to be sent during a tim e 
interval of nominal length T.

The first few steps in the encoding process are just the same as in the first 
scheme. N  is still given by (2-1) and a by (N +  l/2)<r2 =  W  s . After drawing 
K  +  1 sets of A ’s, with 2N  +  1 in each set, the K  +  1 messages are 
encoded so that the signal corresponding to the Mh message, k =  0 , 1 , • • •, 
K,  is

1,(1) -  (F T )" ' ±  ? > sin x (2 F '  ~  f  (3-1)
n  AT 7T {¿Ft —  11)

From (3-1), the value of h { t )  at I =  n/(2F)  is zero if the integer n exceeds 
N  in absolute value. If the integer n is such that \ n \  <  N,  the corresponding 
value of /*(/) is ( F T y i2An \  The energy in the kth  signal is obtained by 
squaring both sides of (3-1) and integrating with respect to t. Thus

[  l l ( l )  dt =  T ' T  £  A ™ '  (3-2)
  N

which has the expected value (N  +  1 /2 )<j-T. The average power developed 
when this amount of energy is expended during the nominal signal length 
T  is (A7 - f  l/2)cr- which is equal to IFs, as it should be.

The noise introduced by the transmission system  is taken to be

j{t) =  CP T )m  t  (3-3)
„ — ,y iv{Zrt —  n)

t  Possibly if K  -f- 1 discrete unit charges of electricity were allowed to move freely 
on the sphere, their mutual repulsion would separate them in the required manner. In
2.Y +  1 dimensions this leads to the problem of minimizing the mutual potential energy

m K F (r 2K+1
where N  >  1 and the summation extends over k, f  =  0, 1, . . .  K  with k yi (. However, 
this problem also appears to be difficult.
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where the v universe from which the B ’s are drawn has, as before, standard 
deviation v given by (A7 +  l /2 )r 2 =  W y.  When the signal /o(7) is sent, the 
input to the receiver is 70(/) +  / ( / )  and the process of reception consists of 
selecting the smallest of the K  +  1 Xk s

xk =  2 r “  C l h O )  - M O  -  JO)}2 dt  (3 -4 )
•'—on

= E  (-4If1 -  A? -  BS-71—  N

The second expression for at is the same as the one given by (2-7) for the 
first encoding scheme, and the discussion in Section 2 following (2-7) may 
also be applied to the second encoding scheme. In particular, the probability 
of obtaining no error in transmitting a signal through noise is the same in 
both system s of encoding, and is given by the Prob. (PiQ, • • • , P kQ >  P qQ) 
of the mathematical problem of Section 1.

4 . S o l u t io n  o f  t h e  M a t h e m a t ic a l  P r o b l e m

We shall simplify the work of solving the m athematical problem stated 
in Section 1 by taking <r =  1 and v2/cr2 =  r. First regard the 4A7 +  2 numbers 
A r.0), B„, n =  —A7, ■ • * , N  as fixed or given beforehand. Geometrically, this 
corresponds to having the points Po and Q given. Select a typical set of 
random variables \  n =  — N,  • • • , A7, k >  0 and consider the associated 
set of variables

y„ =  A™  -  A i 0) -  B n =  A V  +  y n. (4-1)

y„ is a random variable distributed normally about its average value

y„ =  - E , 0> -  B n (4-2)

with standard deviation cr =  1. The quantity x*, defined by (1-3) and repre
senting the square of the distance between Pi: and Q, m ay be written as

xk =  E  y l  (4-3)
n~-N

Thus Xk is the sum of the squares of 2A7 +  1 independent and normally 
distributed variates, having the same standard deviation but different 
average values. The probability density of such a sum is remarkable in 
that it does not depend upon the y„’s individually but only on the smu of their 
squares which we denote by

« = E  y'n -  E  U»0) + Bnfn-.V  . - « r  ( 44)

_  ^2 ' - 1 Energy in sent signal +  Energ>H 
in noise
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This behavior follows from the fact that the probability density of P k has 
spherical symmetry about the origin (because all the A n hs have the same 
a). For the probability that xk is less than some given value a; is the prob
ability that P k lies within a sphere of radius x112 centered on <2 , and this, 
because of the symmetry, depends only on x and the distance id 12 of Q from 
the origin. Accordingly, we write p(x, u)dx for the probability that 

x <  xk <  x  +  dx when the y„’s (and hence u) are fixed.
The probability density p{x , it) m ay be obtained from its characteristic 

function:

p(x, u) =  ( 2 t )  1 f  e ‘"[ave. e'!Z\ 
J— 00

dz

ave. c zx =  ave. exp iz Z  y 'n (4 -5 )

=  X I ave. exp [izy'n] =  (1  — 2is)  A u" exp [zmz(1  — 2 iz) ']
n—  N

where we have used (4-3) and, since y n is distributed normally about y„,

ave. exp [izyl]  =  (2 1r) “ l/2 dyn
J— 00

=  (1  — 2 is) —1/2 exp [ y \ i z {  1 — 2tz)~']
Hence

p {x ,u )  = ( 2 ir ) _1  f  (1  — 2 is ) - y - 1 / 2  exp [i's«(l — 2iz)~l — isx] dz
J- oc ( 4 - 6 )

= 2- \ x / u Y r- m I N-m  t(«-x-)1/2] e-(“+x,/2
where it is to be understood that x  is never negative. The Bessel function 
of imaginary' argument appears when we change the variable of integra
tion from s to t by m eans of 1 — 2 iz =  2 t /x ,  and bend the path of integra
tion to the left in the I plane (6 ). This expression for the probability density 
of the sum of the squares of a number of normal variates having the same 
standard deviation but different averages has been given by R. A. Fisher
(7 ).

We are now in a position to solve the following problem which is somewhat 
simpler than the one stated in Section 1: Given the 2N  +  1 coordinates 
A n 1 of the point P 0 and the 2N  +  1 numbers 7i„ so that the coordinates 
A),0> +  B n of the point Q are given. W hat is the probability' that none of the 
K  points Pj, Po, • ■ • , p K) whose coordinates A „ } are drawn at random from 
a universe distributed normally about zero with standard deviation a — 1 , 
be inside the sphere centered on the given point Q and passing through the 
other given point Po? In other words, what is the probability' that all K  of the
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independent random variables * 1, x2, ■ ■ ■ , xK will exceed the given value 
.Vo when it has the value defined by (4-4) together with the given values of 
the A !,0)’s and B n’s? The variables :Vi, x2, ••• , xK have the probability 
density p(x, u) shown in (4-6) and x0 is defined by (1-2) and the given values 
of the B n’s. [

The answer to the above problem follows at once when we note that the 
probability of any one of .Ti, • ■ ■ , xK, say xi for example, being less than 
x0 is

P (x 0 , u) =  [  p(x , u) dx. (4-7)
Jo

The probability of xi exceeding x0 is then 1 — P {x o, u) and the probability 
of all K  of .Vi, • • • , xK exceeding Xo is

[1 -  P (xo, «)]* (4-8)

Instead of being assigned quantities, x0 and u  are actually random varia
bles when we consider the problem of Section 1. Now  we take up the problem 
of finding the probability density of u when ,ru is fixed. Thus, from (4-4), 
we wish to find the probability density of

« =  £  U » 0> +  Bn)2 (4-9)n — Ar

in which the 2 N  +  1 numbers A S,0) are drawn at random from a universe 
distributed normally about zero with standard deviation c  =  1 and the 
numbers B - X, • • • , B 0, ■ ■ ■ , B K are given. I t  is seen that u  is the sum of 
the squares of 2 N  +  1 normal variates all having the standard deviation 
cr =  1. The nth variate, A ;,0) +  B„, has the average value B n. This is just
the problem which was encountered at the beginning of this section. Equa
tion (4-9) is of the same form as (4-3) and we have the following correspond
ence:

Equation (4-3) Equation (4-9)

Xk U

y» A\
ÿn B,
U — U f n Xo

CO) +  Bn

=  I X
The probability that u lies in the interval u, u +  du when x0 is given is there
fore p(u, x0) du  where p(u, x0) is obtained by putting u for a- and x0 for « 
in the probability density p(x, u).

U ntil now xo has been fixed. At this stage we regard /U .v, • • • , B 0, ■ • ■, B y  
as random variables drawn from a normal universe of average zero and 
standard deviation v =  <rrI/2 =  A 12. If the standard deviation were unity,
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the probability density of x0 could be obtained directly from p{x, u) by 
letting u —» 0 in (4-6). As it is, the x’s appearing in the resulting expression 
must be divided by r to obtain the correct expression. Thus, the probability 
of finding x0 between :v0 and .r0 +  dx0 is

which is of the x 2 type frequently encountered in statistical theory.
It follows that the probability of finding u  in («, u +  du) and x0 in 

(.v0, -T0 +  dx0) at the same time is p0(u, x0) du dx0 where

The replacement of (.x, u) in (4-6) by (w, .x0) should be noted.
Now that we have the probability density of u and .r0 we m ay combine it 

with the probability (4-8) that all K  of .Xi, • ■ • , Xk exceed x0 when x0 and u 
are fixed. The result is the answer to the problem stated in Section 1 :

and P (x0, u) is obtained by integrating p(x, u) of (4-6) from x =  0 to ,x =  x0 
in accordance with (4-7). The remaining portion of the paper is concerned 
with obtaining an approximation to (4-12) which holds when Ar and K  are 
very large numbers.

5. B e h a v io r  o f  P r o ii . (PiQ, , PkQ >  PoQ) a s  IV and K  B e c o m e  L a r g e

In this section we introduce a number of approximations which lead to a 
manageable expression for Prob. (P\Q, ••• , P kQ >  PoQ) when N  and K  
become large.

Since u  and x0 are sums of independent random variables, namely

the central limit theorem tells us that the probability density po(u, .x0) ap
proaches a two-dimensional normal distribution centered on the average

(4-10)

po(u, Xo) =  P(u, x0)po(x0)

1 l/2i - [ u + i 0(l+I/r))/2
(4-11)

4tT (A 7 +  1 /2 )

Prob. (P,Q, • • • , P kQ > P oQ)

(4-12)

This result is more complicated than it seems, for po(u, .x0) is given by (4-11)

« =  E  U i 0> +  Bn)2

(5-1)
Xo )  . Bn ,
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values

a  =  E  a v e .U f 2 +  £ 2] =  (2/Y +  1)(1 +  r)

=  E  ave. .S2 =  (2/V +  l)r

Here we keep the convention a =  1, i/2/a -2 =  r  used in Section 4. The same 
sort of reasoning as used to establish (5-2) shows that the spread about these 
average values is given by

ave. (« -  w) 2 =  (4N  +  2 ) ( 1  +  r) 2

ave. (x0 -  *o) 2 =  (4/Y +  2> 2 (5-3)

ave. (m — «)(a'o — *o) =  (4/Y +  2)r-

If the parameters N , K ,  and r in the integral (4-12) are such that its value 
is appreciably different from zero, most of the contribution comes from the 
region around ü  and f 0 where p 0{u, x0) is appreciably different from zero. 
However, instead of taking ü and f 0 as reference values, we take the nearby 
values

fd =  Ü - 2 - 2  r =  (2 N  -  1)(1 +  D =  2?(1 +  r)
(5-4)

=  .Vo — 2r =  (2/V — 1 )r =  2 qr

as these turn out to be better representatives of the center of the distribu
tion. We have introduced the number

q =  N  — 1 /2 (5-5)

in order to simplify the writing of later equations. We assume q >  1.
First, we shall show that

Prob. (Pi<2 , • • • , P kQ >  P oQ)
c»i+“ /■*■«+& (5-6)

=  / du / dxo po(u, X o ) [ l  — P(,xo , ?i)]K: +  R\
J U2~<* Jzo—b

where a =  2 ( 1  +  r)(2q log q)u2, b =  2r(2q log q) 1/2 and R i  is of order 1/q 
(denoted by 0 ( l /ç ) ) ,  i.e. a constant C  and a value q0 can be found such that 
| Ri  | <  C/q  when q >  q0. From (4-12) it is seen that Ri  is positive and less 
than

Li
,u «j—a

du( +  I du / dxo po(u, .Vo)
Ju2+a J »'O

(5-7)pi2—b n
/ dx0 +  / dxo /  dupo(a, x0)
JO J X'y+b J O

+
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Since pa(u, .T0) is the joint probability density of u and To, the integration 
with respect to t 0 in the first part of (5-7) yields the probability density of 
u, and the integration with respect to u in the second part gives the prob
ability density />o(t0) (stated in (4-10)) of t 0. Thus (8 )

Setting (5-8) in (5-7) and putting u =  2(1 +  r)y  and..r0 =  2ry  in the two 
parts of (5-7) reduces them to the same form. Thus (5-7) is equal to

with I  =  (2q log q)112. In order to show that (5-9) is 0 ( 1/ 5 ) we use the ex
pansion

—y  +  q log y  =  - g  +  q log q -  (y -  ç)2/ ( 2 ç) +  (y -  ç)3/(3 ç 2)

where 0 ^ 0 ^  1 . Let v represent the sum of the (y — q)3 and (y — qY terms, 
and expand exp v as 1 +  v plus a remainder term. The integral of exp — 
(y ~  l Y / i - l ) ,  taken between the limits q ±  I, can be shown to be of the 
form 1 — 0 (1/ 5 ) by integrating by parts as in obtaining the asymptotic 
expansion for the error function. The term in (y — q)3 vanishes upon integra
tion and the remainder terms may be shown to be of 0 (1/ 5 ). I *1 °f this
work a square root of 5  comes in through the fact that

We have just shown that the error introduced by restricting the region of 
integration as indicated by (5-6) introduces an error of order I/ 5  which 
vanishes as 5 —> co . The normal law approximation to po(u, t 0) predicted by 
the central limit theorem holds over this restricted region. However, instead 
of appealing to the central limit theorem to determine the accuracy of the 
approximation, we prefer to deal directly with the functions involved.

Consideration of (5-4) and the behavior of po{u, t 0) suggests the substitu
tion

(5-8)

(5-9)

-  (y -  5)J5[5 +  (y -  5)0]“4/4

1 >  (2 ir5 )I/25 , e- V r (5  +  1) >  exp [ - 1 / ( 1 2 5 )] (5-10)

T0 =  2r{q - f  a)

ii =  2(1 +  r){q +  /3)
(5-11)



where a  and /3 are new variables whose absolute values never exceed 
(2 q log ? ) I/2 in the restricted region of integration of (5-6). From (4-11)

/>„(«,%>) du dx  o =  ^  Q ^ j n  7 ?(2 ,/2) r ' 1+r)(24+a+w da  d0  (5-12)

in which

2  =  uxo =  4r(l +  r){q +  a)(q  +  /?) (5-13)

In Appendix II it is shown that

/  (,«*) =  g1̂ 1' e~q zql2 exp [ ( ? 2 +  z ) in +  V]
^  ’ r(? + i)(q> + zy»[q + (?’- + zy»Y

where | V [ <  1/ ( 2 q — 1 ) when q >  1. Upon using (5-10) and (5-14) the right
hand side of (5-12) may be written as

da dP(27t)_1/2(1 +  r)(2r) _ , ( ? 2 +  z)~llA exp [ -  (1 +  r)(2? +  a  +  /3) (5-15)

+  /( s )  -  log T(q +  1 ) +  0 ( 1/?)]

with

/ ( 2) =  q log 2  -  q log [q +  ( ? 2 +  2)1'2] +  ( ? 2 +  s)> /2 (5-16)

The value 22 of 2 corresponding to the central point (u2, x2) of p0(u, x0) is 
obtained by putting a  =  /3 =  0 in (5-13):

22 =  4r(l +  r)q2 

2  — 20 =  4r(l +  r)[?(a +  /3) +  a/3].

Since we are interested in the form of po(u, .r0) in the restricted region of
integration of (5-6) we expand / ( s) about 2  =  s 2 in a Taylor’s series plus a 
remainder term.

f { z )  =  q log 2rq +  ?(1 +  2r) +  (2  — s2)/(4 r? )
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(2  -  2 2)2 +  (2  -  22)3
3 2 r V ( l + 2  r) 3!

(£3 +  ?)3(3£3 — ?)"] (5-18)
» S3 s3

In the last term s3 =  2 2 +  (2  — 22)0, 0 ^  0 1, £3 =  ?2 +  23. The work of
obtaining this expansion is simplified if (?2 +  s)1/2 is replaced by £ in (5-16) 
before differentiating. For example, by using 2£'£ =  1, it can be shown that 

f '(z )  is simply (q +  £)/(2s). When the extreme values of a  and /3 are put in 
(5-17), it is seen that z — z2 does not exceed 0(<//2 logI/2 q) in the restricted 
region of integration. In the last term of (5-18) 23 is 0(?2), £3 is 0(?) and con
sequently the last term itself is 0(?~I/2 log2/2 q).
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When the expression (5-17) for (z — z2) is put in (5-18) an expression for 
/(z) is obtained. This expression, together with

log r (q +  1 ) =  (q +  1/ 2 ) log q -  q +  (1 / 2 ) log 2 tt +  0 ( 1  /q),

enables us to write the argument of the exponential function in (5-15) as 
q log 2r — (1 /2) log 2rq — Q(a, (3) +  Of? - 1 ' 2 log3' 2 q) where Q(a, 0) denotes 
the quadratic function

Q(a, 0) =  [(1 +  r)2(a2 +  02) -  2r(l +  r)a0]D
(5-19)

D  =  1/[2?(1 +  2 r)}

Similar considerations show that

(q- +  s) “ 1' 4 =  ?_1/2(1 +  2r)_1'2[l +  0 (9~ 1/2 log1' 2 ?)] (5-20)

When the above results are gathered together it is found that (5-12) 
may be written as

po(u, .r0) du dx0 =  D y exp [ -Q (a ,  0) +  0(q~U2 log3' 2 </)] da d0  (5-21) 

where

D l  =  2 t t 9 ( 1  +  2 r ) 1 /2  ( ° ' 2 2 )

Expression (5-21) is valid as long as | a  | and | /3 | do not exceed

(2  q log q)112.

Expression (5-21) differs from the one predicted by the central limit 
theorem (and (5-2) and (5-3)) in that it is not quite centered on the average 
values So, H, which correspond to a  =  1, 0  =  1, respectively. Also, q enters
in place of q +  1. However, these differences amount to Ofc/ 1' 2 log1' 2 q)
at most, as may be seen by putting a  — 1 and 0  — 1 for a  and 0  in (5-19).

By using relations (5-6) and (5-21), it may be shown that

Prob. (P,Q, , P kQ >  P 0Q)

=  [  da [  d0 Di  e~e(",iJ)[l — P (x 0, u)]K +  0 (q~112 log3/2 q)J—q J _ c

where it is understood that xo and u in P(.r0, u) depend on a  and 0  through 
(5-11). The term 0 (q~112 log3' 2 q) in (5-23) represents the sum of three con
tributions. The first is P i  in (5-6) which is 0(1 /q).  The second arises from 
the fact that when the factor exp [0(</~1/2 log3' 2 5 )] in (5-21) is neglected in 
integrating (5-21) over —t  <  a  <  I, —I  <  0  <  (, where I =
(2q log 9 )1'2, the resulting integral is in error by Off/ “ 1' 2 log3' 2 q). The third
is due to the contributions of the integral from the region | a  \ >  (, \ 0  \ >  I.
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By introducing polar coordinates a  =  p cos 6, P =  p sin 6 it can be shown 
that the region p >  C more than covers the region in question and that

Q{a,p)  ^  (1 +  r)p2D  (5-24)

Upon integrating with respect to p and setting in the lower limit I , it is 
seen that the third contribution is 0

We now assume K  to be large. Since 0 ^ P(xo, «) ^  1 we have

0 ^  e~KP -  (1 -  P ) K ^  KP-e~KP <  1 ¡ K  (5-25)

The last inequality follows from a-2 exp (— x) <  1 for x 0. A proof of the 
remaining portions will be found in “Modern Analysis” by Whittaker and 
W atson, Cambridge University Press, Fourth Edition (1927), page 242. 
When we observe that replacing [1 — P (x0, u))K by 1 /A  in the right hand 
side of (5-23) gives an integral whose value is less than 1/A', we see that

Prob. {PiQ, ■■■ , P kQ >  P qQ) (5-26)

=  [  da  f  dfi +  0 (1 /A )  +  0 ( 9“ 1/2 log3' 2 9)
v—q J—q

We now take up the problem of expressing the cumulative probability 
density P (x0, u) in terms of a  and p. When x0 and u  lie in the restricted re
gion of integration shown in (5-6) they are near their average values Xo =  
(2A  -f- l)r  and u =  (2N  +  1)(1 +  r). On the other hand the average value 
x  of x  and the mean square value a~x of (x — x)-  as computed from (4-6), or 
directly, are 2A  -f- 1 +  u  and 4iV -f- 2 +  Au, respectively. Thus we see that
x — ,v0 is of the same magnitude as 4A  and becomes much larger than <rx as
N  —* oo. The asym ptotic development of Appendix I m ay therefore be used.
In Appendix I  (equations (A l-27) and (A l-29)) it is shown that when
M ( =  2m =  2N  +  1) is a large number and 1 < <  (x — x0) / o x

P (x0„ u) =  (47r/Hi2)“ 1/2 (1 +  0(1/;«)) exp [;«F(?i)] (5-27)

where we have introduced the number m =  N  +  1/2 =  q +  1 to save writ
ing N  +  1/2 or q +  1 repeatedly and where

2b, =  (1 -  l/t 'i)2( l  +  Ast)112 
r’i =  [1 +  (1 +  4s/)1/2]/2x . .

A(t’i) =  (1  +  A s iy 2 -  s -  t -  log Cl
.r0 =  2ms =  (2N  +  1)j, u — 2nd =  (2 N  +  1)/

Comparison of the last line in (5-28) with (5-11) shows that ms  and ml 
are equal to r(q +  a) =  r(m  +  a  — 1 ) and

(1 +  r)(q +  P) =  (1 +  r ) (m  +  P -  1),



COM M UNICATION IN  PRESENCE OF NOISE 79

respectively. It is convenient to introduce the notation  

7  =  a  — 1 , 5 =  (3 — 1
(5-29)

i  =  r (l +  y /m ) ,  t =  (1 +  r )(l +  5/m).

It is seen that for the restricted region in which | a  | and j /3 | are less than

(  =  (2q log q)112, | 7  | and | 5 | are at most

0 (q112 log1/2 q) =  0 (m112 log1/2 m).

Hence s, t, (1 +  4s/)1/2, Vi differ at most from r, 1 -f- r, 1 +  2r, 1 +  1/r, 
respectively, by terms of order n r 1'2 log1/2 m. Similar considerations show 
that

(47rmb2) - i i2 =  (2tt(/)1/2/91[1 +  0 ( » r 1/2 log ' / 2 m)} (5-30)

The argument of the exponential function in (5-27) must be expanded in 
powers of y  and 5. I t turns out that when y  and 5 lie in the restricted region, 
powers above the second may be neglected. For the sake of convenience we 
rewrite (5-13) and introduce Z\\

z =  x0u =  4 m2st =  4r(l +  r)(m  +  y)  (m +  5)

Zi =  4r(l -f- r)m2 (5-31)

s — si =  4r(l +  r)[m(y +  5) +  7 6 ]

so that 3  — si is 0 (m312 log1/2 m). Then

(1 +  4 s t y 2 =  (1 +  z /m 2)1'2

=  (1 +  Zi/m2)112 +  (2  -  *0(1 +  Zi/m2)~U2/(2 m 2) (5-32)

-  (3  -  S l ) 2( l  +  z i /m 2)~312/(8 m 4) +  J? 2

where R 2 is of the same order as (3  — 2 i)3/?«6, or m~3/2 log3/2 m. I t follows 
that

a  +  4  s,r- 1  +  2 > +  kfktd \z± i +  g]
1 +  2 r m

2 /( 1  +  r)~ ( 7  +  h)' 
( 1  +  2  r)3 m-

+  0 ( « r 3/2 log3/2;»)

v =  (1  +  r) / 1  j -  r  I 7  + 5  4 -
1 r ( l  +  y / m )  \  1 +  2 r L m

_ + r)(y + j)_a + Q(m-w lo m m)\
m2( 1 +  2  r)2 ^  J

(5-33)
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Combining these and a similar expression for log ri leads to 

mF(v i) =  — m  log (1  +  1 A ) +  7  — 5

— [(1 +  r)7 — r5]2/[2w (l +  2r)] +  0(/m~1/2 log2/2 m)
(5-34)

=  — (q +  1) log (1 +  1/r) +  a  — 0  — [(1 +  r)a — r0]-D

+  0 ( 9 -> /2 log3/ 2 q) 

Substitution of (5-30) and (5-34) in (5-27) gives the result we seek: 

P {.*„ u) =  (1 +  l / r y ' - ^ q f ' - O y
(5-35)

exp (a — 0  — [(1 +  r)ot. — r0\lD  +  0 (q~112 log372 q))

Since P(xo, u) occurs only in the product K P (x 0, u) in (5-26) we set, in 
view of (5-35),

K P (x 0, u) =  /IX(a, /3) exp S(a, 0) (5-36)

where X(a, /3) stands for the terms denoted by exp [0((y~ 1/2 log372 </)] in (5-35) 
and

A =  K ( l  +  l/r)-<'-'(27r9)1/2£)1
(5-37)

S(.a, P) =  “  ~  /3 — [(1 +  r)oc — r0 fD  

As long as | a  j <  I  and j ft j <  (, X(a, 0) is nearly unity and we write 

Xi <  X(a, f$) <  X2
(5-38)

Xt =  1 — e, Xj =  1 +  «, t =  Cq 1/2 log3/2 q

where C is a positive constant large enough to make e dominate the terms 
of order q~in log3/2 q in (5-35). q is supposed to be so large that e is very small 
in comparison with unity.

Setting (5-36) in (5-26) gives

Prob. ( P &  ■■■ , P kQ >  P oQ) =  /  +  0 ( 1/ A") +  (Kq~112 log3/2 q) (5-39)

where the contribution of the region outside | a  | <  t ,  \ @\ <  I has been 
returned to the terms denoted by 0 (<7~1/2 log3/2 q) (we could have stayed in 
the region | a  \ <  (, \ 0  | <  (  from (5-23) onward, but didn’t do so because 
we wanted to show that the results coming from (5-25) were not restricted 
to this region) and

Let L(X) denote the integral obtained by replacing the function X(a, 0) in 
I  by the positive constant X (which we shall take to be either Xi or X2 defined
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by (5-38)). Then, since A exp S(a, P) is positive, it follows from (5-40) that

L ( \ 0  >  I  >  A(A2) (5-41)

Also since exp [—/IX exp .S'(a, /?)] lies between 0 and 1 for all real values of
a  and ¡3 it may be shown from (5-24) that A (A) is equal to /(A ) +  0 (?-1/2)
where

/ co p co
da  / dp By exp [ -  Q(a, p)  -  AAe5(“’ft] (5-42)

OO co

Here A is a constant and Q(a, /?), A, S(a, 13) are defined by (5-19) and (5-37). 
From (5-39) and (5-41) we obtain

Prob. (PyQ, ■■■ , P kQ >  P oQ) =  / ( l )  +  e[J(A,) -  / ( l ) ]  (5-43)

+  (1 -  0)[/(X2) -  / ( l ) ]  +  0(1 / K )  +  0 {q -w  log*/2 q)

where 0 <  d <  1. It will be shown later that J (Ai) and / ( A2) differ from / ( l )  
by terms which are certainly not larger than 0 (q~112).

The problem now is to evaluate the integral (5-42) for /(A ). It turns out 
that exp [—/1A exp S(a,  /?)] acts somewhat like a discontinuous factor which 
is unity when .S’(a, (3) +  log A A is negative and zero when it is positive. In 
order to investigate this behavior we make the change of variable

a — 13 =  w  a  =  y  — rw

(1 +  r)a — r/3 =  y  j8  =  y  — (1 +  r)w  (5-44)

da dp =  dw dy

From (5-19), (5-37), and (5-42)

Q(a, p) =  [y2 +  (1 +  2r)p-]D =  f D  +  p-/2q

A(a, p) =  w  -  f D  (5-45)

/(A ) =  f dy f dw D\ exp [— f D  — P'/2q  — A \ c w~'J'D\
OO 00

Here and in the following work P is to be regarded as a function of w  and y.
Split the interval of integration with respect to w  into the two subintervals 

( — «>, Wo) and (wo, “ ) where

w0 =  y-D  — log A A (5-46)

and y  is temporarily regarded as constant. In the first interval
flOQ
exp [— P~/2q — e“- “ 0] dw

(5-47)
=  [  _  / (1  _  C Xp  [ _  e^ —^ 0 j )e—^ 1-1 ¿w

~  co co

f ic 

a



Splitting the interval of integration (— °°, w o) into (— oo, — log /IX) and 
( — log /IX, Wo) in the first integral on the right of (5-47) shows that its con
tribution to /(X ) is

/ oo /«— log .4X /»c° rwo
dy dwe~ttD- f i l u +  D i [  d y  dw e~M  liq (5-48)

00 J— oo oo log A \

Integrating with respect to y,  after inverting the order of integration, shows 
that the value of the first integral is
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-l/:
7T f c~‘2 dt =  (1 +  erf B ) / 2  (5-49)

J— an

where, from (5-37) and the definition (5-22) of D u 

B  =  - | ( 1  +  r)ll2q~112 log /IX

=  - è ( l  + r ) 1,V 1' log
w  _ I/2, XiTr(l +  1 / r ) ~ q (5'5°)

[2 irç(l +  2  r)]1«

That the value of J(X) differs from (5-49) by 0(g~1/2) may be seen as 
follows. Since 0 <  exp [—(32/ 2 q\ <  1, the integral over (w0, » )  (mentioned 
just above (5-46) and obtained by taking the limits of integration to be u>o 
and «3 in the left side of (5-47)) is positive and less than

f  exp [ — cw_Wo] dw  =  f  e~x d x /x  =  .219... (5-51)
J WQ

Likewise, the second integral on the right side of (5-47) is less than

(1 — exp [ — e° K°]) dw  =  / (1 — e z) d x /x  — .796... (5-52) 
‘00 J0

Therefore the contribution of the first integral on the right of (5-47) differs 
from J(X) by a quantity less than

f Di e~yiD(.2l9  +  .796) dy  =  0 ( i f 1/2)
*'—00

in absolute value. The contribution of the first integral on the right of (5-47) 
differs from (5-49) by the second integral in (5-48) which is 0 (q~112) because 
it is less than

f D i{y D )c~ t,'D dy 
*'■—00

The factor (y~D) arises from ro0 — (— log /IX) when the mean value theorem 
is applied to the integral in w. Hence /(X ) differs from (5-49) by 0(q~lli). 

Although (5-49) is a sufficiently accurate expression of /(X ) for our pur
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poses, it seems worthwhile to set down approximate expressions for the 
terms which have been dismissed as 0 (<7~1/2). From the above work,

dwJ(X)  =  (1 +  erf B ) / 2  +  A  f  d y  c~y*D I f  exp [ -
co

-  f  V * J/25( 1 -  exp [ -  ew~w°}) dw

(1 +  erf B ) / 2  +  A  [  dy e~y'D { - .5 7 7 ..  +  ÿ D ) c ~ i>\r'v ^
J-  ^ L,° ^

(1 +  erf £ ) /2  +  [ -  .577 • • ■ +

4->(l +  r)~ ‘ {1 +  (2  +  4 r ) A ) ] r fl

where f t  =  y  (1 +  r) log AX and we have made use of the fact that 
02/2q  changes relatively slowly in comparison with w  when q is large.

Since J ( \ )  differs from (1 +  erf B ) /2  by 0 (q~in), and since the three B ’s 
for X equal to Xu 1, and X2 differ by not more than 0 (q~u? log (X2/X i)) =  
0 (<?-1  k>g3/2 5 ), from (5-50) and (5-38), it follows that the terms involving 
J(X 1) and /(X 2) in (5-43) may be included in the term 0 (q~112 log3/2 q). In 
using our result it is more convenient to deal with N  and K  +  1 instead of 
q =  N  ~  1 /2  and K .  Hence instead of B  we deal with II defined by

II -  _  1 (1 +  '')1/2 W  (*  + ! ) ( !  +  lA - r~ ’(l +  r) , ,
2  ( 5  +  1 / 2 ) 1/2 i0g [2 ir(? +  1 / 2 ) ( 1  +  2 r) ] 1/2 * '

The difference B  — H, with X =  1 and II finite, may be shown to be (with 
considerable margin) 0(1 / K )  +  0(?_1/2). From (5-43), as amended by the 
first sentence in this paragraph, it follows that

Prob. (PiQ, ■■■ , P kQ >  P 0Q) =  (1 +  erf II) /2  +  0(1/ K )  +  0(<T1/2 log3' 2 q)
(1-4)

where the difference between erf B  and erf II  has been absorbed by the 
“order of” terms. When q +  1 /2  is replaced by N  in (5-54) the result is ex
pression (1-5) for II.
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A P P E N D IX  I

C u m u l a t iv e  D is t r ib u t io n  F u n c t io n  t o r  a  Su m  o f  Sq u a r e s  o f  N o r m a l

V a r ia t e s

Let x  be a random variable defined by

# =  £  y l  (A l-1)
n—1

where y„ is a random variable distributed normally about its average value 
y n with unit standard deviation. In writing (A 1 — 1) we have been guided 
by (4-3), where M  =  2N  +  1, but here we shall let M  be any positive integer. 
In much of the following work M /2  occurs and for convenience we put

m  =  M /2  (Al-2)

From the work of Section 4 it follows that the probability density p(x, u) 
of x is given by Fisher’s expression

p(x, u) =  2~I(x/ « ) " ‘/2_1/2 / m_i[(wx)1'2]e- < u+*>/2 (A 1-3)

where «  is the constant

«  =  2 2  jn (A l-4)
71 ■* 1

Here we are interested in the cumulative distribution function, i.e., the 
probability that x  is less than some given value x0,

rT0
P (x o, «) =  / p(x, u) dx  (A l-5)

Jo

as M  becomes large. In this case the central limit theorem tells us that 
p(x, u) approaches a normal law with average x  =  M  +  «  and variance =  
ave. (x — I ) 2 =  2M  +  4«. The function P (x0, «) has been studied by J. I. 
Marcum in some unpublished work, and by P. K. Bose(9). In particular,
Marcum has used the Gram-Charlier series to obtain values for P (x 0, «) in
the vicinity of x  for large values of M .  However, since I have not been able 
to find any previous work covering the case of interest here, namely values 
of P (x o, u) when ,r0 is appreciably less than x, a separate investigation is 
necessary and will be given here.

Integrating the general expression (4-5) with respect to x  between —X 
and .To, letting X  —* °° , and discarding the portions of the integrand which 
oscillate with infinite rapidity gives
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P(xo, u) =  — s le ,zz° [ave. eUT\ dz

=  1 -  -L . ( “ z~1e~ [ave. <WX] dz
2 7 r l  J — oo, b e lo w  0

( Al - 6 )

oo. b e lo w  0

where the subscripts “above 0 ” and “below 0 ” indicate that the path of 
integration is indented so as to pass above or below, respectively, the pole 
at s =  0. The value of ave. exp (izx) may be obtained by setting N  +  1 /2  
=  m  in (4-5). The new notation

where the path of integration K  is the straight line in the complex v plane 
running from l  +  f=o t o l  — f°° with an indentation to the right of a =  1 , 
and

The K  used here should not be confused with the K  denoting the number 
of messages in the body of the paper. We have run out of suitable symbols.

An asymptotic expression for (Al-10) will now be obtained by the method 
of “steepest descents.” The saddle points are obtained by setting the 
derivative

.To =  M s =  2 ms, u =  2 ml, 2s =  f  (Al-7)

enables us to write

1 — #  =  v (Al-9)

carries (A l-8 ) into

P (x 0, u) =  f (1 — v) 1 exp [w /'/i1)] dv (A l-10)
2 ir i J k

F(v) =  sv — log v +  l /v  — s — I. (Al-11)

F'(v) =  5  -  \ f v  -  t /v2 (Al-12)

to zero and are at

vi =  [1 +  (1 +  4 s0 ,/2]/2s  

tu =  [1 -  (1 +  4 i/)1/2]/2s (A l-13)
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As ,T0 and 5 increase from 0 to a>, u and I of course being fixed, we have the 
following behavior:

[t is seen that i>i ^  0  and % ^  0 .
Putting aside for the moment the factor (1 — d )_1  i n  (A l-10), the path of 

steepest descent through the saddle point is one of the two curves specified 
by equating the imaginary part of F(v) to zero. Introducing polar coordi
nates gives

The path of steepest descent through Dr m ay be obtained in polar form 
by solving

for p as a function of 0 . Setting <p =  0 esc 0 and taking the positive value of 
p leads to

As 0 increases from 0 to t , <p increases from 1 to « ,  and p starts from di (as 
it should) and ends at . Thus, the path of steepest descent through di 

comes in from d =  — oo +  i r / s  (when 0  is nearly ir, p ~  ¡p/s, ¡p PH ir/(ir — 0) 

and p ( i r  — 0 ) ~  7r /s )  , crosses the positive imaginary d  axis and bends down 
to cut the real positive v axis (at right angles) at d i ,  and then goes out to 
d =  — oo — iir/s  along a similar path in the lower part of the plane. It thus 
avoids the branch cut (which we take to run from — «  to 0 ) in the d plane 
necessitated by the term log d in F(v). Since m and r are positive the path of 
integration K  in (A l-10) may be made to coincide with the path of steepest 
descent when Di >  1. This corresponds to the case in which t 0 C x as (Al-14)

T0 =  0  

s =  0 1 +  I 

1

x

00

00

(A l-14)
Di =  CO 0

- / / ( I  +  0 0

Real F(v) =  (sp +  i/p ) cos 6 — log p — í  — 

Imag. F(v) — (sp — i/p)  sin 0 — 0
(Al-15)

At Di, 6 — 0, p =  D i. Imag. F(v/) =  0 and, from (A l-12),

Real F(vi) =  (2svi — 1) — log Di — í  — t
(Al-16)

=  (1 +  4J/ ) 1/2 — log D l — s — I

(sp — i/p) =  0/s in  0 (Al-17)

P  =  1<P +  Op2 +  4 î/)1/2]/2s (Al-18)
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shows. When 0 <  »1 <  1, i.e., <x> >  x0 >  x, the two paths may still be made 
to coincide but it is necessary to add the contribution of the pole at v =  1 
as K  is pulled over it. This is equivalent to passing from the first to the 
second of equations (A l-6). The path 0 = 0  which makes Imag. F(v) of 
(Al-15) zero turns out to be the curve of “steepest ascent” and hence need 
not be considered. As (Al-13) shows, the saddle point »2 does not enter into 
our considerations because it lies on the negative real v axis and the path 
of integration K  in (Al-10) cannot be made to pass through it without 
trouble from the singularity of F(v) at v =  0.

We now suppose x0 <  x  so that s and I are such as to make Vi >  1. In 
order to remove the factor (1 — v) from the denominator of the integrand 
in (Al-10), we change the variable of integration from n to w:

v — 1 =  ew, (1 — v)~ldv =  — dw

1 r  (A l-19)
P(xo, 11) =  — : /  exp [mF(  1 +  ew)\ dw

2 t i  J  l

As v comes in along the path of steepest descent, the path of integration L  
for w comes in from w  =  «> +  ix  and dips down towards the real w  axis 
as arg v decreases from t .  L  crosses the real w  axis perpendicularly at the 
point

wi  =  log (vi — 1) (Al-20)

and then runs out to w =  00 — i t  along a curve which tends to become 
parallel to the real w  axis, wi  may be either positive or negative. When .t0 
is almost as large as x, Wi is large and negative.

Since F(v) is real along the path of steepest descent, F(  1 +  ew) is real
along L. This real value is — co at the ends of L  and attains its maximum
value F(vi), given by (A l-16), at w =  w\. wi is a saddle point in the complex 
w plane because

4 -  F(1 +  ew) =  F'( 1 +  ew)ew =  F'(v)ew (A l-21)
dw

vanishes at w  =  iej.
Instead of /^(l +  ew) itself we shall be concerned with

r =  F (l  +  ewi) -  T(1 +  ew) (Al-22)

so that (Al-19) may be written as

P (.*0, «) =  -  CXP [W/' ( 1 +  [  e~mr dw. (A l-23)
2 t t i  J l

The variable r is real on the path of integration L, is zero at Wi, and in
creases to +  00 as we follow L  out to w =  °° ±  iir. It is convenient to split
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K  into two parts (10). The first part connects oo +  iV to vj\ and the second 
part connects w\  to «> — i r .  The values of w  on these two parts will be 
denoted by wi  and Wn, respectively. Corresponding to each value of r there 
is a value W; and a value wu  (in fact it turns out that Wn is the conjugate 
complex of w/). Changing the variable of integration in (A l-23) from w  to 
t , and remembering that K  starts a t »  +  iir, gives

Since m is large, most of the contribution to the value of the integral 
comes from around r =  0 or w  =  Wi. In order to obtain an expression for 
the integrand in this region we note that, because F'(vj) =  0, the Taylor 
series for (A 1-22) is of the form

r =  —bi(w — wi)2 — bi(w — wi)3 — bi (w — Wi)'1 — • • • (Al-25)

The circle of convergence of this series is centered on w i and extends out to 
w  =  ztiV , these points being the nearest singularities of F{ 1 +  ew) as may 
be seen by setting v =  1 +  ew in (A l-11) and observing that the singularities 
of log v — t /v  in the finite portion of the w  plane occur at odd multiples of 
Aziir. W e imagine the branch cuts associated with log v to run out to the 
right from these points along lines parallel to the real w  axis. Since (Al-25) 
has a non-zero radius of convergence, the same is true of the two series ob
tained from it by inversion, namely

and the series for w n  — obtained from (Al-26) by changing the sign of 
i. Differentiation of these two series gives a series for d(w, — wn ) /d r  which 
also converges for sufficiently small | r  | (putting aside the term in t ~ i/2), 

and which, when put in (A l-24), leads to

That this is an asym ptotic expansion holding for large values of m  follows 
from a lemma given by W atson (11). The conditions of the lemma hold 
since we have already shown that the series for d(wi  — Wn)/dT converges 
for | r | small enough. Furthermore, d(wi — w n ) /d r  is bounded for a ^  r 
where r is real and 0 <  a ^  the radius of convergence of (A l-26). This 
follows the fact that

J d r  (A l-24)

Wt — Wi =  ib o ^ 'r11' +  bir/2b~>
(A l-26)

+  i [ b ï \  -  5Ô23ôI/4]r3/2/2Ô2/2 +  • • ■
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is bounded except near w — w x (i.e., r  =  0 ) and, indeed, decreases to zero 
like —e~w/ s  as w  —> a> ±  iir (i.e., r —» a>).

The values of b2, ¿3, h  obtained by expanding (Al-22) and comparing 
the result with (A l-25) are

62 =  F " (v 0 e wl/ 2

b3 =  [F"'(vi)eWl +  3F"(vl)e'°'}/6  (Al-28)

bt =  [F""(Vl) e wl +  6F’" M e Zwi +  7F"(vl)c2wi]/2A 

F"(v) =  1r »  +  2 /d -3, F '" ( d )  =  - 2 d - 3 -  6/d“ 4, F""{d) =  6d- 4 +  24/d“ 5

Our asymptotic expression for P (x0, u), when :v0 <  x, is given by (Al-28) 
and (Al-27). Only the leading term of (A l-27) is used in the paper. Some
times the following expressions are more convenient than the ones which 
have already been given.

b2 =  d73(di +  2 l ) e Wl/ 2  =  d73(d’i +  2/)(di —  \)~¡2

=  (1 -  1 /d i)2(1 +  4*/)«*/2 (A l-29)

F(vi) =  (1 +  4j/ ) 1/2 — i  — / — log Di.

In all of these formulas Di is given in terms of s and / by (Al-13) and s and 
/ in terms of and u  by (A l-7).

When .To >  x, the saddle point Di lies between 0 and 1 in the v plane. As 
d follows the path of steepest descent (discussed just below equation (A l-18)) 
arg (d  —  1) now stays close to i t .  From (Al-19) Imag. w  stays close to i r  on 
the new path of steepest descent in the w  plane, and the saddle point w x 
now lies on the negative real portion of the line Imag. w =  ir. The new path 
starts at w  =  co -)- ix ,  swings down a little as it comes in, swerves up to 
pass through w x and then goes out to w — <*> -f- i i r  above the branch cut 
joining w =  fa  to w  =  00 +  iir. The analysis goes along much as for Di >  1 
except that instead of being 0 the imaginary part of w x is iir. This causes 
the terms in b3 and bx containing exp (3u>i) to change sign. The numerical 
values of b2 and F (dj) are computed by the formulas (A l-29) as before. The 
fact that b2 contains the factor exp (i2ir) shows up only in changing the sign 
of b2 ‘ to give the minus sign in the leading term:

P (x0, u)  ~  1 — (4tt;h| b-i | ) ~ 1/2 exp [wF(di)]

which holds for x0 >  x. The one arises from the pole at d  =  1 and is the 
same as the one in the second of equations (A l-6 ).

In order to see how (A l-27) breaks down near x0 =  x, we set x0 — x —
2w(s  — ! — / ) = _  2 nit or j  =  1 -f- / — e where e is a small positive number



Using ax =  ave. (# — x f  — 4 (m -f- u) =  4 w (l +  2t) it is found that

Vi =  1 +  e/(l +  2/) =  1 —  2(a'o —  x)<rz

mF(v  i) =  —me2/ (2 +  4/) =  — (*o — xf/2<j~z

2mbi — m(vi — 1 )2(1  +  2l) =  (.r0 — x)2/<U

and that, since w x —> — oo, b3 —> b2 and b4 —> 7&2/1 2 . When these values are 
put in (A l-27) the leading term becomes

P (x 0, u) ~  (2 x)- 1/2((Ti/s) exp [—z2/ 2 (Tx]

and the term within the braces in (A l-27) reduces to 1 — <s\/i  where s =  x
— a'o >  0. Since the asym ptotic expansion is useful only in the region where
the second term within the braces is small in comparison with the first term, 
which is unity, x  — x0 m ust be several times as large as ax before we can use 
(A l-27). I t  will be noticed that the above expression for P (xB, u) is closely 
related to the asym ptotic expansion of the error function.

A P P E N D IX  II

An A p p r o x im a t io n  f o r  I a-(.v)

When s in the Bessel function J q(qz) is imaginary a formula given by 
Meissel (12) becomes

/  (ov) =  (qy)7 £XP {qW +  V) (A2-1)
M y )  c*r(q +  i)w 1/2( i  +  w y  {

where w =  (1  +  y2) 1/2 and V  is a function of y  and q which, when q is large, 
has the formal expansion

v  =  ± ( 2 - 2- ^ l \ + y - * y
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24 q ( w3 ) 16q-wt>

1 /  16 +  1512y2 -  3654y4 +  375y6\
5760g3\  w9 J

(A2-2)

Here we shall show that for y  ^  0 and q >  1

| V  | <  l/(2<? -  1) (A2-3)

Consideration of (A2-2) and also of the method used to establish (A2-3) 
indicates that the inequality is very rough. I t  doubtlessly can be greatly 
improved (but not beyond the 1/ ( 1 2 ^) obtained by letting y  and q —» =° in 
(A2-2)). Incidentally, it  m ay be shown that the constant terms which re
main in (A2-2) when y  =  oo are associated with the asym ptotic expansion 
of log T(q +  1).



When (A2-1) is substituted in Bessel’s differential equation, which we 
write as

y  U q y )  +  y j - y h i w )  -  q ^  +  y ^ ^ iq y )  =  °>

we obtain a differential equation for V :

V" =  (4 — y2)w_ V  4 — (2 qw +  w_2)y_1 V' — V'2 (A2-4)

Here the primes denote differentiation with respect to y. The constants of
integration associated with (A2-4) are to be chosen so that

V —> y2/(^q +  4) as y  —> 0. (A2-5)

This condition is obtained by comparing the limiting form of (A2-1), in 
which w —> Î -f" y 2/ 2 , with
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(?3’/2 ) ’ f ,  , (93-/2) (qy /2)
f ( 9 T T )  L 1 +  9 +  1 J  > r ( 9 +  1)

Condition (A2-5) completely determines V  since substitution of the 
assumed solution

V  =  4~ > (9  +  l ) - ’y2 +  ciy4 +  c2 y  +  • • •

in (A2-4) leads to relations which determine Cj, c2, • • • successively.
Let V' -  v. Then (A2-4) becomes

v’ =  c -  2bv -  v2 (A2-6)

where c and b are known functions of y  defined by

c =  (4 -  y 2)w~*/4, b =  (qw +  w~2/2 )y~ l (A2-7)

From (A2-5), v y / (2q  +  2) as y ->  0 and therefore

y  — f u dy  (A2-8)
Jo

We first show that | v | <  l / (2 ç  — 1) when q >  1. The (y, v) plane may 
be divided into regions according to the sign of v'. 1 he equations of the 
dividing lines between these regions are obtained by setting v =  0  in (A2 -6 ). 
Thus, for a given value of y, v' is positive if v2 <  v <  t'i and negative if 
v >  si or « <  v2 where

Vl =  - b  +  (b2 +  Cy I2 =  c/[b +  (b2 +  c)1'2]
=  - b  +  (b2 +  c) 1/2 (A2‘9)

When y  >  0 we have b ^  q. A  plot of c versus y  shows that | c | ^  1. Hence,
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when q >  1,

62 +  c >  q2 — 1 >  (q — l ) 2 

K l  <  1 /(2 q -  1)

i’2 <  —2 g +  1

(A2-10)

The curve obtained by plotting Vi as a function of y  plays an important 
role because, as we shall show, the maxima and minima of the curve for v 
lie on it. Therefore, the maximum value of | v | cannot exceed the maximum 
value of | »i |. The maxima and minima must lie on either the Vi or the vt 
curve since v' vanishes only on these curves. In order to show that it is the 
i’i curve we note from (A2-9) that, near y  =  0, Vi behaves like y / (2q  +  1). 
Consequently both the Vi and v curves start from v =  0 at y  =  0 but for a 
while i'i lies above v which behaves like y /(2q  +  2). Here v lies in a v' >  0 
region and continues to increase until it intersects i’i (as it m ust do before 
y  reaches 2 because t’j <= 0 at y  — 2) at which point v' =  0, v\ ^  0, and v 
has a maximum which is less than the maximum of K  | so » <  l/(2<? — 1) 
when q >  1. Upon passing through vlt v enters a v' <  0 region and decreases 
steadily until it either again intersects the vL curve or else approaches some 
limit as y  —> <». In either case | v | does not exceed 1 /(2q — 1), since, in the 
first case v would have a minimum at the intersection and in the second 
i'i —* 0  as y  —■> «3 . The same reasoning m ay be applied to the remaining 
points of intersection, if any, of the v and i>i curves.

In order to obtain an inequality for V  itself we rewrite (A2-6) as

The solution of this equation which behaves like y / (2 q  +  2) as y  —» 0 also 
satisfies the relation

as m ay be verified by making use of the relations c(x) —» 1 as x —* 0 and 
2¿>(£) —> (2q +  !)/£ , i’(£) —» £ /(2 q +  2) as $ —> 0. For then

v' =  c — (2b +  v)v (A2-11)

'o L

y

X

Hence, from (A2-8)

F (y 0  =  j i dy ^ c(x)  exp ĵ  — J [26(f) +  r(f)] df dx



and

I H y i)  | <  jf  dy  j i  | c(x) | exp [26(f) -  | v(£) |] dx.

From b q and j v j <  l / (2 q  — 1) it follows that 2b(£) — | v($) | >  2q — 1 

when q >  1. This and | c(x) | iC (4 +  :i'2) ( l  +  x-)~~/i gives

I V(yi) | <  [  d y  [  (4 +  a-2) ( l  +  a:2)_J4- 1  exp [ — (2 q — 1 ) (y  — .v)] dx 
J 0 Jo
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16(2q -  1 ) <  2q -  1

which is the result we set out to establish. The double integral may be 
reduced to a single integral by inverting the order of integration and inte
grating with respect to y. Incidentally, most of the roughness of our result 
is due to the use of the inequality for | c(x) |.
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Realization of a Constant Phase Difference 
By SIDNEY DARLINGTON

This paper bears on the problem of splitting a signal into two parts of like am
plitudes but different phases. Constant phase differences are utilized in such cir
cuits as Hartley single sideband modulators. The networks considered here are 
pairs of constant-resistance phase-shifting networks connected in parallel atone  
end. The first part of the paper shows how to compute the best approximation 
to a constant phase difference obtainable over a prescribed frequency range 
with a network of prescribed complexity. The latter part shows how to design 
networks producing the best approximation.

P E R E N N IA L  problem is that of designing a circuit to split a signal
into two parts which are the same in amplitude but which differ in 

phase by a constant amount. A 90-degree phase difference is needed, for 
example, in the single sideband modulation system due to R. V. L. Hartley .1 

I t  is well known that it is not possible to obtain exactly equal amplitudes 
and exactly constant phase differences at all frequencies except in the 
trivial special case of a 180-degree phase difference. Various m ethods have 
been devised, however, for approximating these characteristics over finite 
frequency ranges. The most obvious method is to use a pair of constant 
resistance phase shifting sections in parallel at one end and with separate 
terminations at the other end2 as indicated in Fig. 1.

This paper is devoted to the problem of obtaining approximately constant 
phase differences under the specific assumption that pairs of constant re
sistance phase shifting networks are to be used. The paper has been written 
with two objects in mind. The first is the development of a method for 
determining the best approximation to a constant phase difference which 
can be obtained over a prescribed frequency range with a pair of phase 
shifting networks of a prescribed total complexity. The second object is 
the description of a straightforward design procedure by means of which 
the networks can be designed to give this best possible approximation.

The problem under consideration is typical of those usually described 
as problems in network synthesis. In other words, a network of a prescribed 
general type is to be designed to approximate as closely as possible an ideal 
operating characteristic of a prescribed form. The same procedure will be 
followed as that appropriate for most such problems. The procedure begins 
with the development of a mathematical expression representing the most

1 U. S. Patent 1,666,206, 4 /17 /28 , Modulation System.
2 Another common method uses reactance shunt branches between effectively infi

nite impedances, such as the plate and grid impedances of screen grid tubes.
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general characteristics which can be obtained with the prescribed type of 
network. This is followed by the determination of particular choices of the 
arbitrary constants in the expression, which will lead to the best approx
imation to the prescribed ideal characteristic. The next step is to deter
mine formulae for the degree of approximation to the ideal, which will be

PHASE-SHIFTING
NETWORKS

Fig. 1—Phase-shifting networks for approximation to a constant phase difference.

Fig. 2—Variation in phase difference, when average is 90°, with a network of n sections.

obtained with those particular values of the constants. The final step is 
the development of a method for determining corresponding actual net
works.

From the optimum choice of constants, curves can be calculated which 
show what can be done with a network of any given complexity (Fig. 2). 
Then the complexity needed for any particular application can be read 
directly from the curves. The special choice of constants also leads to special
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formulae for element values of corresponding networks, using tandem sec
tions of the simplest all-pass type (Fig. 3).

/  r \
F o r m  o f  t h e  t a n  i -  j  F u n c t i o n

If /3i and 0 2 represent the phase shifts through the two constant resistance

networks of Fig. 1, then tan and tan ( ^ j  must both be realizable

as the reactances of physical reactance networks. In other words, these 
quantities m ust be odd rational functions of co with real coefficients and 
m ust also meet various other special restrictions. If 0  is used to represent

the phase difference 0 2 — 0 i , the function tan must also be an odd

rational function of co with real coefficients. Because of the minus sign

'n u r>-

-^nnr^
Fig. 3—Simplest all-pass section.

associated with 0 i in the definition of 0 , however, tan does not have to

meet the additional restrictions which must be imposed upon tan and

tan . In a later part of the paper a method will be described by which 

a pair of physical phase shifting networks can be designed to produce any 

tan ( ^ j  function which is an odd rational function of co with real coefficients. 

In any range where the phase difference 0 approximates a constant, the

function tan will also approximate a constant. Hence, the present

problem is really that of approximating a constant over a given frequency 
range with an odd rational function of co with real coefficients. In this prob
lem, the degree of the function m ust be assumed to be prescribed as well 
as the frequency range in which a good approximation is to be obtained, 
for the degree of the function determines the complexity of the correspond
ing network.

W. Cauer shows how functions of certain types can be designed to approx
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imate unity in prescribed frequency ranges.3 These functions, however, are 
not odd rational functions of frequency but are irrational functions appro
priate to represent filter image impedances or the hyperbolic tangents or 
cotangents of fdter transfer constants. It turns out, however, that they  
can be transformed into odd rational functions of the desired type by a 
simple transformation of the variable.

Each of Cauer’s functions is said to approximate a constant in the Tcheby- 
cheff sense, which means that in the prescribed range of good approximation 
the maximum departure from the approximated constant is as small as is 
permitted by the specifications on the frequency range and the degree of 
the function. Each function also has the property of exhibiting series of 
equal maxima and equal minima in the range of good approximation, such 
as those indicated in the illustrative |3 curve4 of Fig. 4.

FREQUENCY IN CYCLES PER  SECO ND 

Fig. 4—Example of a phase difference characteristic.

Of the various forms in which Cauer’s Tchebycheff functions F  can be 
expressed, the following form is the one appropriate for showing how odd 
rational functions of frequency can be obtained:

When n is odd

»-"-f1 [  1 -  sn2 K ,  k )  X 2~\

' - « ^ 3  [ t . 4 ^

( 1 ) When n is even

F = U s i
[ i  -  s , r  ( - ’  n  1 X ,  k) x ‘]

V l  -  A '2 . - | - i

n  1

[ i - » ■ ( ! * . * ) * ■ ]

3 “Ein Interpolationsproblem mit Funktionen mit Positivem Realteil,” Mathematische 
Zeitschrift, 38, 1-44 (1933).

4 The data for the illustrative curve were obtained from a trial design carried out by 
P. W. Rounds.
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In these equations, the symbol sn indicates an elliptic sine, of modulus 
k, while K  represents the corresponding complete elliptic integral. U  is 
merely a constant scale factor, while n  is an integer measuring the complex
ity of corresponding networks. In the case of phase-difference networks, 
n represents the total number of sections of the type indicated in Fig. 3, 
which are included in the two phase-shifting networks or their tandem sec
tion equivalents.

In Cauer’s filter theory, the variable X  represents a rational function of

a; which permits F  to be an image impedance or a coth function. In 

order that F  may be an odd rational function of w, however, as is required 

when it is to represent tan , X  must be defined by the relation

(2) w =  w2\ / 1 — X 2.

Cauer shows that F approximates a constant in the Tchebycheff sense in 
the range 0 <  X  <  k . Hence, in terms of oi, the range of approximation 
is wi <  w <  , where wi and w2 are arbitrary provided the modulus k is
assumed to be determined by the relation

(3) k =
V V l  — cof

Cd2

A l t e r n a t iv e  E x p r e s s io n  f o r  t i i e  t a n  F u n c t io n

While equations (1) are the most convenient form of F  to use in deriv
ing the transformation of the variable, an alternative more compact form 
is more suitable for determining the degree of approximation to a constant 
phase difference and the element values of corresponding networks. When 

/  S \
F  represents tan 1 - 1  and hence oi and X  are related as in (2), the equivalent 

expression is as follows:5

(4) =  * . ( » « § ! , * , )

w =  oi2 dn(u, k).

In this expression, dn  represents a so-called “dn” function, the third type of 
Jacobian elliptic function usually associated with the elliptic sine, or sn 
function, and the elliptic cosine, or cm function. The sym bol u represents

5 This expression depends on a so called modular transformation of elliptic functions 
not found in the usual elliptic function text. The transformation theory may be found in 
“An Elementary Treatise on Elliptic Functions,” Arthur Cayley, G. Bell & Sons, Lon
don, 1S95.
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a “parametric variable” which would be eliminated on forming a single 
equation from the two simultaneous equations indicated. The modulus h\,

of the dn function corresponding to tan is related to the modulus k,

of the dn function corresponding to to, in the manner indicated below. The 
constant K \,  of course, represents the complete integral of modulus kl} 
just as K  represents the complete integral of modulus k.

Corresponding to any modulus k there is a so-called modular constant q. 
Using <?i to represent the corresponding modular constant of modulus kh 
it is here required that

(5) qx =  <?".

One modulus can be computed from the other by means of this relation
ship and tabulations of logio q vs sin-1 k which are included in most elliptic 
function tables.0

D e g r e e  o f  A p p r o x im a t io n  t o  a  C o n s t a n t  P h a s e  D if f e r e n c e

When u  is real and varies from zero to infinity, the corresponding value 
o f«  as determined by (4) merely oscillates back and forth between the values 
<¿>1 and oi2- In other words, it merely crosses back and forth across the range

in which tan approximates a constant. Similarly, when u  is real and

increases from zero to infinity, tan oscillates between U s / \  — k\ and 

U. The equal ripple property of the curve illustrated in Fig. 4 is explained 

by the fact that the period of oscillation of tan with respect to u is

/  r\
merely a fraction of that of w, so that tan 1 - 1  passes through several ripples

while the value of oj moves from on to co2.
Combining the formulae for the maximum and minimum values of

/ / A  .
tan \2 y  2lves ^ie relation

(6) t a n ( A .
\ 2 /  1 +  U W 1 -  k\

6 When k is extremely close to unity, it may be easier to obtain accurate computations 
by using the additional relation

log« (?) logio (q') -  ( - ¿ - Yy!oge (10;J

. t   Ctfi
where q' is the modular constant of modulus v  1 — k1 =  \Cd; V . 4



in which 5 represents the total variation of the phase difference 0  in the 
approximation range. Similarly, the average value 0a of 0  in the approxi
mation range is given by7

(7 )  t i n  (3 ) -  u j i ±1.7) « U  j  _  u W l — j ;

If the phase variation 5 is reasonably small, (6 ) and (7) can be replaced 
by the approximate relationships
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(8)

sin (0a) ,2  5 =  — ~ — kl ra bans

tan I vj- ) =  £/ V  1 — k \ | - 8

A still further modification is obtained by replacing h\ by the quantity 16i/i, 
which is an approximate equivalent when k\ is small, and by then replacing 
qi by the equivalent qn of (5). This gives

(9) 5 =  8  sin (0a)qn

( § ) - u - y rtan =  U  V I  -  1 6 3 ".

When combined with (3) and tabulations of sin- ! (T) vs logi0(3 ) , these 
formulae can be used to compute 5 when the parameters coi, co2, 0a and n are 
prescribed. Curves of 5 are plotted against w2/w 1 in Fig. 2, assuming 0 a to 
be 90 degrees.

D e t e r m in a t io n  o f  a  N e t w o r k  C o r r e s p o n d in g  t o  a  G e n e r a l  
P h a s e  D if f e r e n c e  F u n c t io n

Since tan ( ^ j  must be an odd rational function of co, it can be expressed 

in the form

( i° )  tan ~

in which A and B  are even polynomials in co. This requires

( 1 1 ) ^ =  arg (A +  iuB).

7 M ore exactly, fia is the average of the maximum and minimum values of |3 occurring 
in the range of approximation.

8 In  the im portant special case in which the average phase difference (3a is 90°, this
expression for tan  is exact ra ther than approximate.
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Similarly, if attention is focused on the phase shifts of the individual 
phase-shifting networks rather than on the phase difference, the following 
odd rational functions can be introduced:

in which A i,  B i, A*, and B 2 are additional even polynomials in This 
requires

Since the argument of a product is the sum of the arguments of the sep
arate factors, (13) and (14) require

the product of two polynomials (A 2 +  iuB 2) and (A i  — iwBi) such that 
A i, Bi, A 2, and B 2 determine physically realizable phase shifts through

readily be obtained in a number of ways. The only question is how to obtain 
them in such a way that the corresponding phase characteristics will be 
physical. A procedure meeting this requirement is described below.

The variable w is first replaced in (A  +  iuB)  by p  representing ico. This 
leaves a polynomial in p  w ith real coefficients, since A  and B  represent 
polynomials in co2, while p2 represents — w2. Suppose all the roots of the poly
nomial A  +  pB  are determined. Then this polynomial can be split into

(1 2)

(13)
~  =  arg (A i +  ioiBi) 

j  =  arg (A i +  i-ußi).

It also requires 

(14) ^  =  arg (Ay -  ioiBi).

(1 5 ) ß  _  ß'i ~  ßi 
2 2

=  arg (A2 +  iu B 2)(A i  — iuBi).

This permits us to write

(16) (Ai +  KoZhOUi -  ioiBi) = II(A +  ioiB)

in which II  is a real constant.

When prescribed, a corresponding polynomial of the form

(A +  iwB) can readily be derived. The problem is then to factor it into

(12). Two factors of the general form (A 2 +  iwB2) and (A i — iwBi) can
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two factors by assigning various of the roots to each of the two factors. 
It turns out that physically realizable phase characteristics will be obtained 
if all those roots with positive real parts are assigned to the factor {A \ — p B j) 
which appears in (16) when iw is replaced by p, all other roots being assigned 
to the factor (/12 +  p B 2).

The physical realizability of the above division of the roots follows from
j) jB

a theorem which states that is realizable as the impedance of a two-

terminal reactance network whenever A x and B x are even polynomials in 
p  with real coefficients such that A x +  p B x has no roots with positive real 
parts.9 From this theorem and the fact that the evenness of A x and B x 
causes them to remain unchanged when p  is reversed in sign, it follows that 
i>B will also be the impedance of a physical two-terminal reactance net-
A x
work whenever A x — p B x has no roots with negative real parts. Thus, by

(12) the above division of the roots of A  +  pB  makes tan and tan

realizable as the impedances of two-terminal reactance networks.

These reactance networks and their inverses are merely the arms of unit 
impedance lattices producing the phase characteristics defined by (12). 

The above argument merely shows that each of the two phase-shifting

networks can at least be realized as a single lattice when tan and

tan are determined by the method described. Actually, they can be

broken into tandem sections directly as soon as the roots of (A i — pBi)  
and (v42 +  pB 2) have been determined. From (A i — p B x) , the quantity  
(A i -j- pBi)  can be found by merely reversing the signs of the roots. Then  
by using the principle that the argument of a product is the sum of the 
arguments of the separate factors, phase-shifting networks can be designed 
corresponding to various factors or groups of factors as determined from 
the known roots of (zli +  pB\)  and (A 2 +  p B 2) . There can be a separate 
section for each real root and each conjugate pair of complex roots.10

D e t e r m in a t io n  o f  a  N e t w o r k  C o r r e s p o n d in g  to  a  T c h e b y - 
c h e f f  T y p e  o f  P h a s e  D if f e r e n c e  C h a r a c t e r is t ic

The procedure described above for determining a network corresponding 
to a general phase difference characteristic is complicated by the necessity

9 See “Synthesis of Reactance 4-Poles which Produce Prescribed Insertion Loss Char
acteristics,” Journal of Mathematics and Physics, Vol. XV III, No. 4, September, 1939— 
page 276.

10 See H. W. Bode, “Network Analysis and Feedback Amplifier Design,” D. Van 
Nostrand Company, New York, 1945, Page 239, §11.6.
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of determining the roots of the polynomial A  +  pB  . In the case of the 
Tchebycheff type of characteristic described in tire first part of the paper, 
the required roots can be determined by means of special relationships.

In the first place, the roots of A  +  pB  are the roots of ^1 +  i  tan . In

other words, by equation (4) they are the roots of j^l +  iU  dn{^ n u T ’ k) ]

The values of u  at the roots turn out to have an imaginary part iK ' ,  where 
K '  is the complete elliptic integral of modulus \ / l  — k-. If a new variable 
u' is defined by

(17) u =  u ’ +  iK '

the roots can be shown to correspond to the values of u' determined by

sn
(18) — )    f  =  - U .

cn [n u '  h

If it is assumed that the phase variation is small in the range of approx
imation to a constant, it can be shown that one value of u' determined 
by the above relation is given approximately by

(1 9 )  ^  =  - f t ,

where is the average phase difference for the range of approximation as 
before (in radians). After this value of u' has been computed, all the roots

o f [ l  +  iU  dn ( n u §  , k^j can be found by computing the values of u

corresponding to this value of n' and to those values obtained by adding

integral multiples of the real period —  of dn(^m  ^ , k i j .  This gives the

following formula for the roots in terms of p =  iu>.

( 2 „ K  A
cn I  b «o )

(20) p„ =  co2— a J L .------- 1 1 =  0, • • • , ( » -  1)
(2<tK

su  I   +  «o

in which tto is the value of u' determined by (19).
Finally, instead of using the above elliptic function formula directly, one 

may replace the elliptic functions by equivalent ratios of Fourier series 
expansions of 0 functions. This gives

C91s . / cos (X,) +  qi cos (3X„) +  i f  cos (5X„) • • •
V/1/ Pi — V  WlO)2

sin (\ c) — f  sin (3X^) +  i f  sin (5X,)
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in which the angle A„ is defined by

(22) A, -  — — - — degrees, a =  0, • ■ ■ , ( « — 1).

Because all the p , ’s are real in this Tchebycheff case, corresponding net
works can be made up of sections of the simple type indicated in Fig. 3. 
In one of the two phase-shifting networks there will be one section for each 
positive p „  and it will be given by

-  1
pa R-Opa

where R 0 is the image impedance. Similarly, in the second phase-shifting 
network there will be one section for each negative p„, and it will be given by

L  =  — — C  =  .
Po R qP<t



Conversion of Concentrated Loads on Wood Crossarms to 
Loads Distributed at Each Pin Position

By RICHARD C. EG GLESTO N

NE of the most important requisites in all fields of engineering endeavor
is knowledge of the strength of materials. The development of testing 

machines and techniques to study the basic properties of metals, plastics 
and wood products to withstand breaking forces has been a distinctive 
achievement during the last half century. All materials, whether they be 
part of a bridge, a building, a shipping crate, a telephone pole or a crossarm 
on a telephone pole, break under an excessive stress. To have accurate 
knowledge of the strength of the millions of crossarms used to carry the 
regular load of wires, which are frequently subjected to the extra loads of 
wind and ice, is m ost important in electrical communication.

When strength tests of crossarms are made, the information most gen
erally sought is how great a vertical load equally distributed at each insulator 
pin hole will the arms stand. In the past m any crossarm tests have been 
made by the concentrated load method, where the arm is either supported 
at each end and loaded at the center, or supported at the center and loaded 
at the ends until failure occurs (Fig. 1, a and b). Some have been made by 
the distributed load method by placing, manually and simultaneously, 50- 
pound weights in wire baskets suspended from each pin hole, and continuing 
such load applications until the arm fails. The method is objectionable 
chiefly because, in many of the tests, the loading is inadvertently carried 
past the maximum loads the arms will support. This objection was over
come in recent tests made by the Bell Telephone Laboratories1, where the 
loads were also distributed at each pin position. However, instead of sub
jecting the 10-pin test arms to sudden 500-pound load increments (viz. 50 
pounds at each of the 10 pin holes), the loads were applied gradually by a 
hydraulic testing machine (Fig. 1, c). But, in spite of the advantages of 
this machine method of distributed load application, it is probable that, be
cause of the less elaborate apparatus involved in simple beam tests, there 
will continue to be tests made by the concentrated load method.

Where tests have been made by the concentrated load method, the ques
tion arises how can the results be converted to a load-per-pin basis? A  
conversion is needed before a fair comparison can be made of all test results, 
and also to furnish the information generally m ost -wanted, which is, as

'Bell System Monograph No. B-1563, Strength Tests of Wood Crossarms.
105



Fig. 1—Photographs of crossarm tests:
a—Arm supported at center in testing machine ready for application of load at end pin holes.
b—Arm supported at center on a pole. This roofed 10A arm was loaded manually at end pin holes and failed at a pole pin hole (critical) 

section.
c —Arm supported at center in testing machine ready for application of load at each pin position.
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previously stated, what load per pin will the arm support? There are more 
than twenty million crossarms in the pole lines of the Bell System  and each 
year about a million arms are added. A complete understanding of every  
problem associated with this im portant item  of outside plant material is 
manifestly worth while. This paper is intended to contribute to that end. 
It presents a solution of the problem of converting concentrated vertical 
loads to comparable loads distributed at each insulator pin position.

The location of the critical section in crossarms is a basic factor in a study  
of the problem. The critical section of a crossarm is the section at which the 
fiber stress is greatest when the arm is loaded. I t  is the section where the 
arm may be expected to break if overloaded. To determine its location, the 
bending moment at various sections along the arm is divided by the section  
modulus of the respective sections. The quotient in each instance is the 
fiber stress for each section investigated. The location showing the greatest 
fiber stress is the critical section. Since horizontal shear is not the control
ling stress in crossarm failures under loads distributed at each pin hole, 
bending stresses only were considered in this analysis.

Because of the differences in arm shape and in the spacing of pin holes, 
the location of the critical section is not the same in all arms. I t  is es
timated that at least three fourths of the arms in the Bell System  are 10A 
and 10B crossarms.2 Both are 10 feet long and 3.25" x 4.25" in cross section. 
In the 10A arm (Fig. 3), the space between the pin holes is 12 inches, except 
between the pole pin holes, where the space is 16 inches. In the 10B (Fig.
4) the pin hole spacing is 10 inches w ith  a 32-inch space between the pole 
pins. Both types are bored for wood pins. M ost of the arms now in the 
plant are “roofed” , that is, the top surface of the arm, except the center foot 
of length, is rounded on a radius of about 4.25 inches. Under the current 
design, however, the top surface of Bell System  arms is flat, except for the 
edges, which are beveled.

Previous studies of both roofed and beveled arms of various types have 
shown that the critical section of clear arms under vertical loads is either at 
the center or at the pole pin hole sections. This study is confined to those 
sections of clear 10A and 10B crossarms of nominal dimensions, both roofed 
and beveled. Moreover, it was assumed for the purpose of load analysis, 
that the crossarms are supported at the center only; since, under loads on 
each side of the pole, the standard crossarm braces provide no significant 
support when the loads are sufficient to break the arm.

R o o f e d  10A A r m

Let it be assumed that the breaking load concentrated in each end pin 
hole of a roofed 10A arm is 800 pounds. As shown in Calculation 1 in the

210A and 10B crossarms were formerly known as Type A and Type B crossarms, 
respectively.
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appendix, the bending moment at the center of the arm from the assumed 
loads would be 44,800 pound-inches, and the fiber stress a t the center would 
be 4600 psi. That calculation also shows that the bending moment at the 
pole pin holes would be 38,400 pound-inches, and the fiber stress a t the pole 
pin holes 7515 psi. Since the stress at the pole pin holes is greater than that 
at the center, the critical section of a roofed 10A arm is at the pole pin holes 
when the arm is subjected to a breaking load at each end pin hole.

The information wanted, however, is what load at each of the ten pin 
positions would have produced the same moment and same fiber stress at 
the critical section? A  tentative answer is found by dividing the 38,400 
bending moment by the “ total-per-pin” lever arm3, 120" (see Calculation 
1) or 320 pounds. Checking to determine whether the location of the criti
cal section changes under loads of 320 pounds at each pin position, Calcula
tion 1 shows that the fiber stress a t the pole pin holes and at the center 
would be 7515 psi and 5257 psi, respectively. Since the stress at the pole 
pin holes is greater, it is clear that the critical section is there also under 
equal loads a t each pin position; and the 320-pound load per pin is com
parable to the concentrated load of 800 pounds at each end of the arm.

If a similar investigation were made of a roofed 10B arm and of a beveled  
10A arm, it would be found that the pole pin hole section is the critical 
section of these arms; and that the load per pin comparable to concentrated  
loads a t the arm ends would, like the roofed 10A arm, be equal to the bending 
moment at the pole pin hole section due to the concentrated load divided by 
the total per pin lever arm to that section. Figure lb  shows a roofed 10A 
arm that broke under test at a pole pin hole (critical) section from concen
trated loads at the ends of the arm.

B e v e l e d  10B  A r m

For the investigation of this arm, let a breaking load of 1000 pounds at 
each end pin hole be assumed. Incidentally, it should be noted that so far 
as this analysis is concerned, the magnitude of the assumed concentrated  
loads is of no importance. However, since both com putations and tests 
show the 10B arm to be stronger than the 10A, it seemed appropriate to 
assume a larger concentrated load for the 10B arm.

As shown in Calculation 2 of the appendix, the bending moment at the 
center due to the 1000-pound load would be 56,000 pound-inches and the 
fiber stress 5882 psi, while at the pole pin holes the bending moment would 
be 40,000 pound-inches and the fiber stress 6885 psi. Here again, under 
concentrated loads at each end pin hole, the critical section is at the pole 
pin holes.

3By total-per-pin lever arm is meant the summation of the distances from each pin 
position to the section concerned—in this instance to the pole pin hole section.
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Calculating the load for each of the 10 pin positions in the same manner 
as for the roofed 10A arm, we have, tentatively, a load per pin of 400 pounds. 
However, in checking to determine whether the location of the critical sec
tion changes under loads of 400 pounds at each pin position, we obtain re
sults quite different from those in Calculation 1; for Calculation 2 indicates 
a fiber stress of 6885 psi a t the pole pin holes, but a higher stress (7563 psi) 
at the center, which shows that the location of the critical section does 
change. Moreover, this change would occur whether the loads were 400 
pounds per pin or 4 pounds per pin. B ut let us now consider the 400- 
pound load.

If a concentrated load of 1000 pounds results in a fiber stress at the pole 
pin hole section of 6885 psi and causes failure, that stress is the maximum  
ultimate fiber stress for the arm. I t  is, therefore, not reasonable to suppose 
that the same arm would have endured a higher stress (7563 psi) at the 
center if it had been loaded at each pin position. If 6885 psi is the maxi
mum stress for the arm, the maximum moment it would endure at its center 
would be 65,500 pound-inches (viz. 6885 multiplied by 9.52, the section  
modulus of the center section). The maximum load per pin would be 364 
pounds (viz. 65,500 divided by 180, the total-per-pin lever arm to the center); 
and this load of 364 pounds, not 400 pounds, distributed at the 10 pin posi
tions is comparable to the 1000-pound concentrated load. Thus, while the 
critical section of a beveled 10B arm is at the pole pin holes when the load is 
concentrated at the arm ends, it shifts to the center when the load is dis
tributed at each pin position; and, moreover, the load is less than the load 
per pin tentatively computed.

A graphic illustration of this shift of the critical section is shown in Fig. 2. 
Graph 1 in this figure is the graph of the resisting moments of a clear, 
straight-grained beveled 10B arm, 3.25" x 4.25" in cross-section, and having 
an assumed ultimate fiber strength in bending of 6000 psi. Each point 
in the graph is equal to the section modulus of the section under considera
tion multiplied by 6000 psi. Graph 2, which is the graph of a concentrated  
load at the end pin position, was drawn from the zero moment under the 
end pin to the point of greatest moment possible w ithout intersecting re
sisting moment Graph 1. Since the point of coincidence between Graphs 
1 and 2 is the pole pin hole section, that section is the critical section for a 
concentrated load at the end pin. The magnitude of this concentrated 
load is equal to the resisting m oment at the pole pin hole, 34,860 pound- 
inches (viz. 5.81 inches3 x 6000 psi) divided by the 40" lever arm, or 871.5 
pounds. The load per pin, tentatively figured, would be 34,860 pound- 
inches divided by 100 inches or 348.6 pounds. Graph 3 is the graph of a 
load (P) of 348.6 pounds at each pin hole. Under such loading, however, 
the bending m oment a t the center of the crossarm would be 62,748 pound-
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inches (viz. 348.6 x 180), which exceeds the 57,120 pound-inches resisting 
m oment at the center (viz. 9.52 inches3 x  6000 psi). This means that the

Fig. 2—Moment diagrams for a beveled 10B crossarm:
Graph 1—Resisting moments of a clear,straight grained, 3.25" x 4.25" arm. Fiber - 

stress assumed to be 6000 psi;
Graph 2—Bending moments from a concentrated load of 871.5 pounds at end pin hole; 
Graph 3—Bending moments from a load of 348.6 pounds at each pin hole; and 
Graph 4—Bending moments from a load of 317.3 pounds at each pin hole.

arm would fail under such loading; and that the critical section of the arm 
under loads distributed at each pin hole is not at the pole pin holes but at 
the center of the arm. The maximum load per pin that the arm would
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endure is the resisting m oment a t the center divided by the total-per-pin 
lever arm, or 57,120 pound-inches divided by 180 inches or 317.3 pounds. 
Graph 4 is the bending m oment graph of this 317.3-pound maximum load 
per pin.

S u m m a r y  

Let W  =  Concentrated load,
P  =  Load per pin,

M p =  Bending moment a t pole pin hole section, 
fc =  Fiber stress at center section, 
fp =  Fiber stress at pole pin hole section,
Sc =  Section modulus of center section, and 
Sp =  Section modulus of pole pin hole section.

Using this notation, the results of the analyses m ay be summarized as 
follows:

For 10A arms both roofed and beveled:

M p =  48W (for concentrated loads), and 

M p =  120P (for pin loads). Therefore,

P -  ^  -  0.4W

For 10B arms-roofed:

M p =  40W (for concentrated loads), and  

M p =  100P (for pin loads). Therefore,

P =  =  0.4W
100

For the beveled 10B arm, however, where the critical section is at the 
center, the value P =  0.4W  does not apply. The value of P would be such 
as to produce the same fiber stress at the center section as the fiber stress 
resulting from the concentrated load (W) at the pole pin hole section. Thus

180P 
fc =  and

Sc

40W
p "  ‘s R

Equating these, we have 

180P 40W
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Therefore, under the conditions assumed, and only under such conditions, 
we m ay say that the loads per pin (P) comparable to the assumed concen
trated loads (W) would be

Í10A arms—roofed 
10A arms— beveled 
10B arms— roofed 

and
P =  0.364W  for 10B arms— beveled

While these results are restricted to the four arm types listed, the same 
principles followed in arriving at these results m ay be applied to other types 
and sizes of arms, and to other conditions of loading. W hether the conver
sion of single concentrated loads to loads per pin is performed by the method  
illustrated in Calculations 1 and 2 of the appendix, or is done by a m oment 
diagram, as in Fig. 2, the procedure recommended is as follows:
Step 1. Determine the critical section under the concentrated load.
Step 2. D ivide the bending moment at the critical section by the total-per- 

pin lever arm to the critical section to determine the load per pin. 
Step 3. Check the fiber stress (under such loads per pin) a t various sections 

to see whether the location of the critical section differs under load  
per pin.

Step 4. If it does differ, proceed as shown for the beveled 10B arm (viz., 
the comparable load per pin is equal to the resisting moment of 
the critical section divided by the total-per-pin lever arm to the 
critical section). If it does not differ, the load per pin as deter
mined in Step 2 is the comparable load per pin sought.

C o n c l u s io n s

(1) The location of the critical section under loads distributed at each 
pin position m ust be determined before undertaking the conversion of 
concentrated loads to distributed loads.

(2) The location of the critical section of a crossarm under a given condi
tion of loading m ay or m ay not be the same under a different condition of 
loading.

(3) The load per pin comparable with a given concentrated load is equal 
to the resisting moment of the critical section divided by the total-per-pin 
lever arm to the critical section.

(4) While the results shown are confined to the conversion of concentrated  
vertical loads to distributed loads for 10A and 10B arms only, the principles 
of the study m ay be applied to other types and sizes of arms and to other 
conditions of loading.
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A P P E N D IX

Calculation 1. Bending Moments and Fiber Stresses in  a Roofed 10A 
Crossarm— (See Figure 3)

Notation:
W  =  800 pounds concentrated load 
P  =  Load per pin 

M e — Bending moment at arm center 
M p  =  Bending moment at pole pin hole 

fc  =  Fiber stress a t center 
f p  =  Fiber stress at pole pin hole 
Sc — Section modulus of center section4 
Sp  =  Section modulus of pole pin hole section4

j*Tili 6 ----- l2"-----*1*------l2"---- *!*•----- l2"---- *1*--------"-----

..-P O LE  PIN  
' H O LE

W

77 7
- 4 8 '

Fig. 3—Loading diagram for a roofed 10A crossarm.

Concentrated Load:
M e =  W  X  56 =  800 X  56 =  44,800 pound-inches 
M p  =  ]V X  48 =  800 X  48 =  38,400 pound-inches 

fc  =  M e +  Sc =  44,800 ^  9.74 =  4600 psi 
f p  =  M p  ~  S p  =  38,400 -4- 5.11 =  7515 psi 

Load per Pin:
Me  =  56 P  +  44P  +  32 P  +  20 P  + 8  P  =  160 P  
M p  =  48P  +  36 P  +  24 P  + 1 2  P  =  120 P
(Note: The total-per-pin lever arms are 160" to center and 120" to the 

pole pin hole).
Since under W  load /  is maximum at pole pin hole, the P  load that would 

result in same /  is P  =  38,400 -5- 120 =  320 pounds. Thus 
f p  =  m P  +  S p  =  (120 X  320) -v- 5.11 =  7515 psi 
fc  =  160P -i- Sc =  (160 X  320) ^  9.74 =  5257 psi 

Conclusion:
Under both IV loads and P  loads, the critical section is the pole pin hole 

section.

4Sc =  9.74 and Sp — 5.11 for clear roofed 3.25" x 4.25" crossarms. (See Pages 27 and 
28 of Bell Sys. Teclt. Jour., Jan. 1945).
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Calculation 2. Bending Moments and Fiber Stresses in  a Beveled 10B 
Crossarm— (See Figure 4)

Notation:
W  =  1000 pounds concentrated load 
P  =  Load per pin 

M e =  Bending moment at arm center 
M p  =  Bending moment a t pole pin hole 

fc  =  Fiber stress a t center 
f p  =  Fiber stress at pole pin hole 
Sc  =  Section modulus of center section6 
S p  — Section modulus of pole pin hole section5

PO LE PIN  
HOLE

’ i l l  l 6 "  r ”—  ,0 ” — * t * " —  , 0 " — —  l 0 " — *1 * — , 0 " ~

W

4 0 "

Fig. 4—Loading diagram for a beveled 10B crossarm.

Concentrated Load:
M c  =  W  X  56 =  1000 X  56 =  56,000 pound-inches
M p  =  W  X  40 =  1000 X  40 =  40,000 pound-inches

fc  =  M e -tr Sc — 56,000 -t- 9.52 =  5882 psi
f p  =  M p  -F S p  =  40,000 4- 5.81 =  6885 psi

Load per Pin:
M c  =  56P  +  46P +  36P  +  26 P  +  16P =  180P

M p  =  40P  + -3 0 P  +  20P +  10P =  103P
P  =  40,000 -i- 100 =  400 pounds
,A 100P 100 X  400 . QCC .f p  == =  — _ _ —  =  6885 psi

S p

fc
180 X  400 

9.52
7563 psi

180
Sc

Conclusion:
Critical section shifts under P  loads, and arm will not support 400 pounds 

per pin.

hSc — 9.52 and Sp — 5.81 for clear beveled 3.25" x 4.25" crossarms. (See Calculation 
3 of this appendix.)
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0 .3 2 4 8 "
C E N T E R  S EC T IO N

PO LE PIN HOLE SECTIO N

Fig. 5—Beveled crossarm sections showing significance of the notation used in Calcu
lation 3 of this appendix.



Calculation 3. Section Modulus— Clear Beveled Sections 
{The notation used in this calculation is  shown in  Fig. 5)

Section width (IF) Inches
Section depth (D ) Inches
V  =  (W  -  1.25") -t- 2 Inches
U — V — .3248" Inches
Areas:

T Sq. Ins.
R1 Sq. Ins.
R2 Sq. Ins.
R3 Sq. Ins.

Total 1 Sq. Ins.
t =  h +  (.1875" H- 3) Inches
r l  =  h +  (.1875" -h 2) Inches
r2 =  h — (1.59375" -f- 2) Inches
r3 =  1.78125" -5- 2 Inches
Moments about M M :

Tl Ins.3
R l r l Ins.3
R2r2 Ins.3
R3r3 Ins.3

Total 2 Ins.3
c =  Total 2 -r- T otal 1 Inches
dl =  I — c Inches
dr l  =  r l — c Inches
dr2 =  r2 — c Inches
¿r3 — c — r3 Inches
Moments of Inertia:

I T Ins.4
IR1 Ins.4
IR 2 Ins.4
IR3 Ins.4
T (d l)2 Ins.4
R l ( d r l ) 2 Ins.4
R2(dr2T- Ins.4
R3(dr3 )2 Ins.4

I Ins.4

1CiII Inches
Section Modulus:

S  =  I  +  y Ins.3

Center Section Pole P in  Hole 
Section

3 .25 3 .25
4.25 4 .2 5

1.00
.6752

(2 T) .0609 .0304
.4876 .1266

5.1797 4.0625
5.7891 —

11.5173 4.2145
4.1250 4.1250
4.1563 4.1563
3.2656 (JA) 2.0313

.8906 —

(227) .2512 .1254
2.0266 .5262

16.9148 8.2522
5.1558 —

24.3484 8.9038
2.1141 2.1127
2.0109 2.0123
2.0422 2.0436
1.1515 (c -  r2) .0812
1.2151 —

(2 ZT) .0001 .00006
.0014 .0003

1.0964 5.5873
1.5307 —

[2T{dl)-\ .2463 .0612
2.0336 .5287
6.8680 .0268
8.5474 —

20.3239 6.2044
2.1359 2.1373

9 .52
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The Linear Theory of Fluctuations Arising from Diffusional 
M echanism s—An Attempt at a Theory of Contact N oise

By J. M . R ICH ARD SO N

The spectral density is calculated for the electrical resistance when it is linearly 
coupled to a diffusing medium (particles or heat) undergoing thermally excited 
fluctuations. Specific forms of the spectral density are given for several types of 
coupling which are simple and physically reasonable. The principal objective is 
the understanding of the frequency dependence of the resistance fluctuations in 
contacts, rectifying crystals, thin films, etc.

1. I n t r o d u c t io n

WH E N  a direct current is passed through a granular resistance such as 
a carbon microphone or a metallic-film grid leak, or through a single 

contact, there is produced a voltage fluctuation possessing a component 
called contact noise which is differentiated from the familiar thermal noise 
component by the fact that its r.m.s. value in any frequency band is roughly 
proportional to the magnitude of the average applied voltage, and is differ
entiated from shot noise by the strong frequency dependence of its spectral 
density. One m ay regard this component of the voltage fluctuation as aris
ing from the spontaneous resistance fluctuations of the element in question  
if one is willing to allow the resistance to have a slight voltage dependence. 
This effect has been the subject of numerous experimental investigations,1-3 
among which we mention in particular that of Christensen and Pearson9 
on granular resistance elements. These authors (henceforth abbreviated  
as CP) arrived at an empirical formula, to be discussed presently, connect
ing the contact noise power per unit frequency band with the applied volt
age, the resistance, and the frequency for several types of granular resistance. 
Their measurements covered a range of frequency from 60 to 10,000 cps, 
and involved the variation of several other parameters, i.e., pressure. More 
recently, Wegel and M ontgomery10 have measured the noise power arising

1 H. A. Frederick, Bell Telephone Quarterly 10, 164 (1931).
2 A. W. Hull and N. H. Williams, Phys. Rev. 25, 173 (1925).
3 R. Otto, Hochfrequenztcchnikund Elektroakustik 45, 187 (1935).
4 G. W. Barnes, Jour. Franklin Inst. 219, 100 (1935).
5 Erwin Meyer and Heinz Thiede, E. N . T. 12, 237 (1935).
* 1'. S. Gaucher, Jour. Franklin Inst. 217, 407 (1934). Bell Sys. Tech. Jour. 13, 163 

(1934).
7J. Bernamont, Aitnales de Phys., 1937, 71-140.
e M. Surdin, R. G. E., 47, 97-101 (1940).
9 C. J. Christensen and G. L. Pearson, Bell Sys. Tech. Jour. 15, 197-223 (1936).
10 Private communication.
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from single contacts and have obtained results in agreement with the CP 
empirical formula down to frequencies of the order of 10-1 — 10~2 cps.

Significant theoretical work upon this problem has not been attem pted  
until recently. G. G. M acfarlane11 has advanced a theory based upon a 
non-linear mechanism containing one degree of freedom which seems to be 
in agreement with the CP law. W. M iller12 has worked out a general theory 
of noise in crystal rectifiers. H is theory is linear, contains essentially an 
infinite number of degrees of freedom, and is equivalent in m any respects 
to the theory discussed in this paper; however, he has not succeeded in ob
taining agreement with the experimental data on crystal rectifiers (which 
satisfy approximately the CP law) for any of the specific models he used.

The purpose of this paper is the calculation of the spectral density of the 
fluctuations of the electrical resistance when it is linearly coupled to a diffus
ing medium (particles or heat), or, mathem atically speaking, is equal to a 
linear function of the concentration deviations of this diffusing medium. 
This diffusing medium undergoes thermally excited fluctuations and thereby 
causes fluctuations in the resistance. The m otive behind this investigation 
was the understanding of the frequency dependence of contact noise dis
cussed in the following paragraphs, but at the present time it is apparent 
that this treatment in addition m ay apply to rectifying crystals, thin films, 
transistors, etc. The quantitative details of the coupling between the resist
ance and the diffusing medium are not considered here; in consequence of 
which, this work can hardly pretend to give a complete explanation of con
tact noise. However, important results are given concerning the relation 
between the spectral density of the resistance, on one hand, and the geom
etry of the coupling and the dim ensionality of the diffusion field on the 
other.

Now  let us consider the CP empirical formula in detail. Let R  be the 
average resistance13 of the contact (we will henceforth consider only contacts 
and will regard a granular resistance as a contact assemblage) and let 
(/) be the instantaneous deviation from the average. By theorems 1-3 of 
Appendix I, we can express the m.s. value of Ri as a sum of the nr.s. values 
of R\ in each frequency interval as follows:

11 G. G. Macfarlane, Proc. Pliys. Soc. 59, Pt. 3, 356-374 (1947).
12 To be published.
13 The resistance of a contact is composed of two parts: the “gap resistance” and the 

“spreading resistance.” The term “gap resistance” is self-explanatory. The “spreading 
resistance” is the resistance involved in driving the electric current through the body of 
the contact material along paths converging near the area of lowest gap resistance. The 
measured contact resistance is the sum y f  these two parts. In some of the particular 
physical models considered in Section 5, R  is taken to be the gap resistance necessitating 
ad hoc arguments relating gap resistance and total resistance.

( 1.1)
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where S(gj) is called the spectral density of Ri  and co is the frequency in 
radians per second. N ow  in our notation the CP formula m ay be expressed

S (o )  =  K V a~* i? + 2/w , (1.2)

where V  is the applied d-c voltage across the contact, K  is a constant de
pending upon the temperature and the nature of the contact, and a and b 
are constants having values of about 1.85 and 1.25 respectively. CP state 
that the constant K  is equal to about 1.2 X  10-10 in the case of a single 
carbon contact at room temperature.

In this paper we will regard the nonvanishing of a — 2 as arising from  
a non-linear effect which should become negligible a t a sufficiently low  
voltage, although this interpretation does not seem com pletely justified on 
the basis of the work of CP. Consequently we assume that a —* 2 as V  —» 0 
in such a way that Va~2 —> 1. This is in keeping with the idea that the 
resistance fluctuations are truly spontaneous—at least for small applied 
voltages.

Although Eq. (1.2) may represent the observations over a large range of 
frequency it must break down at very high and very low frequencies in 
order that the noise power be finite (or, in other words, in order that the 
integral (1.1) converge).

One has several clues to be considered in looking for an underlying mecha
nism of the resistance fluctuations. First of all, the mechanical action of 
the thermal vibrations in the solid electrodes of the contact seems to be 
unimportant because of the following reasons: (1) there are no resonance 
peaks in S(co) at the lowest characteristic frequencies of mechanical vibra
tion of the contact assembly; (2) S(w) becomes very large far below the 
lowest characteristic frequency; and (3), according to CP, R i  is strictly  
proportional to F 2 when the fluctuations are produced by acoustic noise 
vibrating the contact, whereas 'R[ is proportional to F°-2, a ~  1.85, when 
the fluctuations arise from the dominant mechanism existing in the macro- 
scopically unperturbed contact. One of the obvious mechanisms left is a 
diffusional mechanism. Such a mechanism does not violate any of the ob
servations to date and, furthermore, possesses a sufficient density of long 
relaxation times to give large contributions to 5(co) near zero frequency.

Evidence that diffusion of atoms (or ions) can be important in modulating 
a current is provided by the “flicker effect” in which the emission of elec
trons from a heated cathode is caused to fluctuate by the fluctuations in 
concentration of an adsorbed layer. We m ight suppose that contact noise 
is a different manifestation of the basic mechanism involved in the flicker 
effect.

In view of these considerations it seems worthwhile to investigate in a
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general w ay a large class of models involving resistance fluctuations arising 
from diffusional mechanisms. In the next section we propose a general 
m athem atical model embracing a class of linear diffusional mechanisms. 
In Sections 3 and 4 the consequences of the general mathematical model 
are obtained by the “Fourier” and “Smoluchowski” methods, respectively, 
these alternative methods leading to identical results. In Section 5, the 
general results are specialized to several physical cases, some of which are 
introduced only for the purpose of providing some insight into the relations 
between the possible physical mechanisms and the resultant resistance 
fluctuations, and one of which along with its refinement is a successful14 
attem pt to provide a theory of Eq. (1.2). Section 6. is a summary.

2. T h e  G e n e r a l  M a t h e m a t ic a l  M o d e l

The physical models which we consider in this paper are concerned with 
the fluctuations of contact resistance arising from a diffusional process. We 
are consequently led to consider the following general mathematical model 
embracing a rather extensive class of the physical models as special cases: 
Let us consider the instantaneous contact resistance R(t)  to be related to 
the intensity c(r, t) of some diffusing quantity as follows16:

G(R(t)) =  I  H r ,  c(r, 0 )  dr, (2 .1 )

where r is a vector in two or three dimensional space depending on whether 
the diffusion takes place on a surface or in a volume, and dr  is correspond
ingly a differential area or volume. The intensity c(r, l) m ay be either a 
concentration (in the case of diffusion of material in two or three dimensions) 
or a temperature (in the case of heat flow in three dimensions). In writing 
Eq. (2.1) we have evidently assumed that the contact resistance R(t)  is 
independent of the applied voltage. Eq. (2.1) may of course allow a de
pendence on voltage through the quantity c; however, we will consider no 
processes involving a dependence of c on the voltage. These restrictions, 
strictly speaking, make the model applicable only in the limit of low applied 
voltages.

Before proceeding further let us lim it the treatm ent to the case in which 
the deviations of R  and c from their average values are sufficiently small 
for higher powers of these deviations to be neglected. Let

R(l)  =  R  +  R l( 0 ,  (2.2)

c(r, t) =  c +  Ci(r, I), (2.3)
u That is, successful in so far as agreement with the form of Eq. (1.2) is concerned.
15 A relation more general than R(l) =  SI;{r, c{r, I)) dr is required as one can see from

considering the special case of a total resistance composed of a parallel array of resistive
elements.
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where R  and c are the average16 values of R(t)  and c(r, I) respectively. 
Evidently, Ri(l)  =  0, and d (r , l) =  0. Introducing the expressions (2.2) 
and (2.3) into Eq. (2.1), expanding in terms of d(r ,  l), and neglecting terms 
of the order of c\, we get

Ri(t) =  I  f(r) dir, I) dr, (2.4)

where

The function /(r) defines the linear coupling between Ri  and d  and depends 
upon the specific physical model used. The non-linear terms neglected in 
Eq. (2.4) m ay be of importance under some conditions; however, we will 
not consider them here. Nevertheless, non-linear effects in the behavior of 
d  itself are possibly important in determining the form of the power spec
trum of Ri(l)  in the neighborhood of zero frequency.

3. T h e  F o u r ie r  Se r ie s  M e t h o d  o f  S o l u t io n

In this section we consider the state of the diffusing system  to be defined 
by the Fourier space-amplitudes ck(t) of ci(r, t). The time behavior of ck(t) 
will be described by an infinite set of ordinary differential equations con
taining random exciting forces according to the conventional theory of 
Brownian m otion .17 This method yields the spectral density of Ri(l)  directly.

Now the diffusion process is assumed to occur in a rectangular area A 2 =  
L\ X Z-2 or in a rectangular parallelopiped of volume /13 =  I i  X  1« X  I j  ■ 
In regions of the above types, if we apply periodic boundary conditions18,

(rot) may be expanded in Fourier space-series as follows:

d i r ,  I) =  £ '  ck(l)eik r (3 .1 )
k

where the components of k  take the values

ki =  2-KHi/Li , i  =  1, ■ • • , v, (3 .2 )

in which n,  are integers and v is the number of dimensions. The prime on
the summation indicates that the term for k  =  0  is to be om itted. This is
required by the equivalence of the time and space averages of d  (true for 
A,  sufficiently large) and by the vanishing of the time average of d  (by 
definition).

15 The average values here may be considered as either time or ensemble averages but
not space averages.

" See Wang and Uhlenbeck, Rev. Mod. Phys., 17, 323-342 (1945).
18 If the final results are given by integrals over k- space they will be insensitive to the 

boundary conditions.
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Before proceeding to the solution itself let us consider w hat it is that we
wish to know about c*(f). Expanding the function f (r)  of Eq. (2.4) in a
Fourier space-series in the region A , ,

f i r )  =  E / / ' r, (3-3)
k

we can write Eq. (2.4) in the form

-RiW =  A . ' Z ' f U k O )  (3.4)
k

where f t  is the conjugate of /* .
The spectral density S(co) of Ri(t)  is then

S(cc) =  a ; £ '  CkM f t f k., (3.5)
k k '

w h e re  C kk1 (“ ) >s th e  s p e c tr a l  d e n s i ty  m a t r ix  fo r  th e  s e t  ck(t) g iv e n  b y

C * fc-(co) =  27T L illi  -  [e*(co, r)cfc.(co, r )  +  Cfe( —co, r ) c £ . (  — co, r ) ]  (3 .6 )
T-.00 T

in which

1 r+Tli
Cfc(w, t) =  —  / cfc(/)e <f/. (3.7)

2  IT J -r/ 2

For a full discussion of spectral densities and spectral density matrices see 
Appendix I. Consequently our objective in this section is the calculation 
of the m axtix (to) defined by Eq. (3.6).

Now we assume that Ci(r, l) satisfies the diffusion equation

~  ci(r, /) =  Dx'ci{r, t) +  g(r, t) (3.8)
Ol

where D  is a constant, V2 is the Laplacian operator in two or three dimen
sions, and where g(r, t) is a random source function, whose Fourier space-
amplitudes gk(t) possess statistical properties to be discussed presently.
The random source function g is required for exciting Cy sufficiently to main
tain the fluctuations given by equilibrium theory. In the case of material 
diffusion the random source function g may be discarded in favor of a ran
dom force term of the form —D / x  E-V ■[/(<= -fi ci)], where V -/ =  dhf,  x  
is the Boltzmann constant, T  is the temperature, and /  is the random force; 
however, in the linear approximation these two procedures will give identical 
final results. In the case of heat flow it is understood that the diffusion 
constant is D  =  K /p C  where K  is the thermal conductivity, p the density, 
and C the specific heat. Eq. (3.S) as written is valid only for D  a constant 
and Ci small.



Introducing the expansion (3.1) and the expansion

Sir, I) Z '  gk{t)eik r  (3.9)
k

into Eq. (3.8) we obtain the infinite set of ordinary differential equations

I  ck(l) =  - D k \ k{t) +  gk(l), (3.10)
at

k =  i k \ ,

describing the time behavior of the Fourier space-amplitudes ck(l). The 
Fourier space-amplitudes gk(t) are assumed to be random functions of t 
possessing a white (flat) spectral density matrix C kk , independent of fre

quency. M ultiplying Eq. (3.10) by integrating with respect to time
Z7T

from —T,-r to - f i r ,  and neglecting the transients at the end points of the 
r-interval, we obtain

. / \ T) 11Ck(u, r) =  ( A l l ;
m  +  I /« 2

where ck(co, r) is given by Eq. (3.7) and gk(co, r) is given by an analogous
equation. Forming the spectral density matrices we get for the diagonal
elements

-  s r f k -  (3'12>

The matrix Gkk- can now be evaluated by the thermodynamic theory of 
fluctuations (See Appendix II). This theory gives

ck(Ocuo = 4%; (3-i3)
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where

&kk' —

A ,s n

( l  if k  =  k'  

10 otherwise,

fdVI , 1 fd~e
(dc2J c-c T  l<?c-

+  4  (3 .i4 )
C“ C

san d  e being the entropy and energy, respectively, per unit area or volume, 
I the average temperature, and x  the Boltzmann constant. In the case 
where c is the concentration of particles whose configurational energy is 
constant, s" =  x/c- If c be the temperature T  then s" =  C / I ’2 where C



is the heat capacity per unit area or volume. N ow  by a general theorem 
concerning spectral density matrices (see Appendix I) we have
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— —  /•“
Ck(l)ct'U) =  /  Cfc/.-(co) du, 

Jo

giving finally by combination with (3.12) and (3.13),
,2

and

Gkk’ — -  ^— r, h k ‘ , (3.15)
7r A y s

r* ( \    ̂ XD k bkk' ^  4 /\
C k A )  ' i i 7 '  CO2 +  D * p '  ( 3 , 1 6 )

The spectral density S ( w) of R\(t) then becomes

f  ̂ 2 x A vT) Tp k~ | f k |2
S M (3.17)

If we are concerned with frequencies greater than a characteristic fre
quency

wo =  4ir 2D /L 3 (3.18)

where L  is the sm allest of L i , i  =  1, • • • , v, then the summation in (3.17) 
m ay be replaced by an integration giving

*., ■> ort-1 -1X 77 f  \ f ( k ) \ 2k*dk
5(<o) =  2 * -prj  (3-19)

where

/ (A) =  T r \ "  f  f ( f ) e~ik r dr. (3.20)\£TV) ¿A,

The integration in Eq. (3.19) is carried out over the entire »»-dimensional 
h-space. If the range of the function /(r )  is sufficiently small compared with 
the region A , , or if we let A ,  become indefinitely large, then the integration 
in Eq. (3.20) m ay be extended to all of »»-dimensional r-space.

It is perhaps revealing to rephrase Eqs. (3.17) and (3.19) in terms of 
distributions of relaxation times. In the theory of dielectrics we speak of 
the real part of the dielectric constant being equal to a series of terms
summed over a distribution of relaxation times: S , a iT < /(l Tjw2), if the

distribution is discrete, or / a(r)r<fr/( 1 +  r2w2), if the distribution is con-
Jo

tinuous. In the above, a,- is the weight for the relaxation time r,-, and, in
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the case of a continuous distribution, a(r)dr  is the weight for the relaxation 
times in the range dr  containing r. In these terms Eq. (3.17) becomes

in which I is the unit vector in the direction of k, dU, is the differential 
“solid” angle in the ^-dimensional ft-space, and the integration is over the 
total solid angle (2ir in 2 dimensions, or 4ir, in 3).

It is of interest to calculate the self-covariance Ri(l)Ri(l  +  u). In Appendix 
I, it is shown that the self-covariance above is related to the spectral density 
S («) as follows:

The method of the next section yields the self-covariance directly.

(3.17a)

where

(3.17b)

Eq. (3.19) becomes

(3.19a)

where

f  \ / ( 1 / V D t )  (3.19b)

'0
(3.21)

Using S(co) in the form (3.17), Eq. (3.21) gives

R i( t)R i( l  +  «) =  x A , / s" ■ E  I f k  Pe (3.22)
k

u >  0 ;

whereas with S(co) in the form (3.19) we get

R l(t)R1(l +  u) =  (2t ) '  x / s" I  | f (k )  I2 e - * *  dk. (3.23)

4 . S m o l u c h o w s k i M e t h o d  o f  S o l u t io n

We call the procedure employed in this section the “Smoluchowski 
method” because it is based on an equation very closely analogous to the 
well-known Smoluchowski equation forming the basis of the theory of



126 BELL S Y S T E M  TECHNICAL JOURNAL

Markoff processes.19 We set out directly to calculate the self-covariance for 
R i(t) which, by Eq. (2.4), is given by

+  u) =  JJ f {r ') f { r )c i{ j '  l)ci{r', I +  u) dr' dr. (4.1)

Thus the problem is now reduced to the calculation of Ci{r', t)ci{r, t -f- u).
The quantity Ci(r', l)ci(r, I +  u) is calculated in two steps. First we find 

 (<+«)
Ci(r, I +  u) , the average value of Ci at the point r a t the time I -f- u 
with the restriction that cx is known at every point r' with certainty to be 
Ci(r', t) a t the time t (assuming, of course, that u  >  0). Then we find that 
the required self-covariance for C\ is given by multiplying the above
_________ (<+u)
Ci(r, t +  u) by Ciir’, t) and averaging over-all values of Ci(r, /) at 
time I-, thus:

__________________ (i)
Ci(r', t)ci(r, I -f- m)(î+“> =  ci(r', t)ci{r, t +  «)■ (4.2)

 (<+«)
Now we assume that Ci(r, I +  u) is related to c(r', t) by an integral 
equation, analogous to the Smoluchowski equation, as follows:

___________ (Î+U) ç
Ci(r, I +  u) =  J p(| r -  r' |, u)ci(r’, I) dr’. (4.3)

In the case that c represents a concentration as in the diffusion of particles, 
p(l r ~  r> li u) dr is the probability that a particle be in the ^-dimensional 
volume element dr  a t time I +  «  when it is known with certainty to be at 
r' a time /. Now the number of particles in dr' a t r' at time I is evidently 
[c +  ci(r', /)] dr'-, consequently, the probable number of particles in dr at 
time t +  u which were in dr ' at time I is p(| r — r' |, u)[c +  Ci(r', /)] dr dr'.
Integration over dr' gives the total probable number

 (<+«)
(c +  Ci(r, I +  u) ) dr of particles in dr equal to

( ^ j  p(| r — r" |, u)[c +  Ci(r', /)] dr'^j dr which reduces to

(c +  J p(| r — r' I, u)ci(r', t) d r d r .  D ivision by dr  and subtraction of I
from both sides of the equality leads directly to Eq. (4.3). For the case of 
heat flow in crystal lattices the above picture can be used approximately if 
one uses the concept of phonons.20 For a difiusional process p(| r — r' j, u) 
is the normalized singular solution of the diffusion equation21; thus

p(| r -  r' I, u) =  (4Tjp w)>/,  exp [ - 1 r -  r' |2/4ZM] (4.4)

Loc cit.
:oJ. Weigle, Experienlia, 1, 99-103 (1945).
21 Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).



where v, as previously defined, is the number of dimensions of the region in 
which the process occurs.

Combining Eqs. (4.2) and (4.3) we get 
  r  0)
ci(r', t)d{r, I +  u) =  J d ir ' ,  t )d { r” , /) p(| r -  r"  |, u) dr” . (4.5) 

Now using the fact that
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AD
d ( r ' } l ) d (r", I) =  d{r' ,  t)d (r" , l) (4.6)

and using the relation

d {r ' ,  O d ( r ” , l) =  J  S(r' -  r ” ) (4.7)

proved in Appendix II, Eq. (4.5) reduces to

Ciir', i)ci{r, t +  u) =  j ,  p i \ r  -  r' |, u).  (4.8)

Introducing the expression (4.8) into Eq. (4.1) we obtain at once the desired 
result

RiiORiU  +  u) I  J  f i r ) f i r ' )p i  I r -  r' I, u) dr dr'

(4.9)

■  7 -T4 , W «  ¡ ¡ / m ’ ’)exp [ - 1 r -  1/4 i ,  dr'.

For the sake of comparison with Eq. (3.23) it is necessary to write (4.9) 
in terms of the Fourier space-transforms of the pertinent quantities. We 
write

f i r )  =  f  f ik )  eik r dk

where

-  { ¿ j .
Also, we write

p(| r ~ T' 1’ u) =  ( 1 cxp [ _1 r "  r' ]‘ / W u ]

=  [  exp [ — Duk1 +  ik  ■ (r — r')] dk.
( 2 t y  j

After introduction of these expressions into (4.9) a short calculation yields 
the result

~Riit)RiU +  «) =  (2 t Y  ^  J  I f i k )  \2e~Duk2 dk  (4.10)
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which is identical with Eq. (3.23) (provided that we let A„ —* <» in the lat
ter). Thus the methods of approach used in Section 3 and in this Section  
are completely equivalent.

5 . Sp e c ia l  P h y s ic a l  M o d e l s

In the previous two Sections we have developed by two different methods 
tlie consequences of the general mathematical model discussed in Section 2. 
Here we apply the general results to some special physical cases. In this 
task we will be principally concerned with finding the form of the function  
/(r )  and establishing the number of dimensions v of the diffusion field. The 
main objective here is to provide some orientation on what mechanisms are 
or are not reasonable and to find at least one mechanism leading to the 
observed spectral density (inversely proportional to the frequency).

a. A General Class of Models. Here we consider all a t once mechanisms 
which can be adequately represented by having/(r) a p-dimensional Gaussian 
function of the form

(5' °

where A1/" is the “width” of the function measured along the i-th  coordinate 
a;,-. This form of f ir )  can represent approximately several types of localiza
tion of the coupling between R\ and C\ , as will be seen in the special examples 
later. N ow  if we work with A„ =  oo, we will then have to consider the Fourier 
space-transform of /(r ) , which is readily shown to be

=  I I  h / 2 v e ~ Aikh2
t-»l

Inserting this result into Eq. (3.19) we obtain immediately

o n  /  - \  r exP ( “ 2 3  A,- k2 dk

k =  ¿  k\ .
1-1

(5.2)

(5.3)

Inserting this expression (5.2) into Eq. (3.23) gives
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In order that (5.3) give the observed S(co) a  1/co as a result, the integral

nust reduce to som ething proportional to / k d k j (or +  D 2k*). I t  is clearly

impossible that any choice of v and any set of A; can achieve this result. 
Furthermore the self-covariance R x(t)R x(t +  u) corresponding to the ob
served S(u)  should depend explicitly on the way S(co) deviates from 1/co 
as co goes to zero. The expression (5.4) is finite for all u  >  0 and does not 
depend upon any cut-off phenomena in S (co) at low frequencies. Therefore 
we can exclude any physical mechanisms belonging to the class considered 
here. However, since several mechanisms that have been proposed do fall 
into this class, we consider them below:

(i) SchijJ’s Mechanism. Schiff22 considered tentatively that the fluctua
tions in contact resistance m ay be due to the variation in concentration of 
diffusing ions (atoms, or molecules) in a high resistance region bounded by  
parallel planes of very small separation. Schiff arrived at a noise spectrum  
proportional to 1/co but at the expense of disagreeing in a fundamental way  
with thermodynamic fluctuation theory. Here we will show what the cor
rect consequences of this mechanism are.

Consider that the high resistance region is bounded on either side by planes 
parallel to the (a'i, .T-.)-plane and that the thickness in the »^-direction is 
very small. Now this is obviously a case of the general model just considered 
in which we take v — 3 and

where 1 /«  is of the order of magnitude of the frequencies of interest. It is 
then a matter of algebraic manipulation to show that

Thus we see that Shiff’s mechanism leads to a noise spectrum proportional 
to 1/co1'2, not 1/co. The explanation of the singularity of the self-covariance

“ L. L Schiff, BuShips Contract NObs-34144, “Tech. Rpt. # 3 ”, (1946). Before the 
publishing of this paper, Schiff informed the writer that he has discarded this mechanism.

(5.5)

r  k2x dkx 

i)  co2 T  D" k\
(5.6)

b\ b\ bl 1
2 A»2 A1'2

and

m m  + « )  =  ^

(5.7) at u =  0 lies in the inequalities (5.5).
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The above treatment could just as well be applied to the case in which 
the diffusing quantity is heat instead of ions.

(«) Resistance of a Localized Contact Disturbed by a Diffusing Surface 
Layer. Here we consider the case of two conductors covered with diffusing 
surface layers. I t  is supposed that the conduction from one conductor to 
the other is distributed Gaussianly with a width A1/2. Finally, it is supposed 
that the conductivity through the above area varies with the surface con
centration of the surface layer in that region. This situation is well repre
sented by the above general model by taking v =  2, Ai =  A2 =  A, and 
bi — b% =  b.

The self-covariance is readily calculated with the result

w ,«  + »> - f,■ 4- la + (5*
The corresponding spectral density is

n/ \ 1 /'" cos uo  du  1 y b [ r  , .
~  2V2 T 7 Jo A +  D u  ~  Ï ?  V^D L _C0S

+  sin (coA/Z?) ( ~ -  S i(u A /D )

(5.8a)

where Ci(x) and Si(x)  are the cosine and sine integrals23 respectively. When 
<o «  D /A

S ( to) ^  log (SioA/D), (5.8b)

and when oj D /A

5 =  0.5772,

Qf \ 1 xb* D  1 . .
S(u)  —  -3 7 —  — . (5.8c)

¿Ti- S A" or

Thus we see that this case does not lead to the experimental form of the 
spectral density. I t  m ust be remarked that here S (co) is very sensitive to 
the form of the self-covariance for small u.

b. Contact between Relatively Large Areas of Rough Surfaces Covered with 
Diffusing Surface Layers. We consider this case in detail since it leads to 
results in agreement with experiment. Furthermore, the more detailed 
consideration of this case will illustrate more fully the use of the general 
m athem atical model, which m ay be of use in studying other diffusional 
mechanisms should they be postulated at some future time. This mechanism  
does not fall into the class just considered.

23 See Jahnke and Emde, “Tables of Functions,” p. 3, Dover (1943).
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Suppose that the contact in an idealized form consists of two rough sur
faces close together. Let positions on the surfaces be measured with respect 
to a plane between the surfaces, which we will call the mid-plane. Let the 
coordinate system  be oriented so that the a'i and a-2 axes lie in the mid- 
plane. Furthermore let the region in the mid-plane corresponding to close 
proximity of the rough surfaces be a rectangular area A 2 =  L y X  L-i . Now, 
for convenience, we describe positions on the mid-plane by a two dimensional 
vector r =  ( x i , Xo), and henceforth it will be understood that all vector 
expressions refer to this two-dimensional space. Let the distance between  
the upper and lower surfaces at r be denoted by h(r). The geometry of the 
above model is illustrated in Fig. 1.

Now suppose that each surface is covered by a diffusing absorbed layer, 
such that the sum of the concentrations on both surfaces is c(r, /) a t the 
time / in the neighborhood of r. Now  consider the conduction of current 
between the surfaces. Let us assume that the conductance per unit area 
(of mid-plane) is a function of the separation h of the surfaces and the total 
concentration c of absórbate near the point in question, i.e., F(h, c). The 
total conductance will be the sum of the conductances through each element 
of area: hence, the instantaneous resistance R(l) at time / will be given by

where dr is the differential area on the mid-plane and the integration extends 
over the rectangle / I 2 =  L\ X  L 2 . Behind the above statem ents lies the 
tacit assumption that the radii of curvature of the rough surfaces are gen
erally considerably larger than the values of h. However, we will not explic
itly concern ourselves with this implied restriction.

At this point it is expedient to imagine that we have an ensemble of con
tacts identical in all respects except for different variations of the separa
tion h(r). If we have any function of h, \p(Ji) say, which we wish to average 
with respect to the variations of It, we sim ply average the function over the 
above ensemble giving a result which we denote b y  ip(h) .

Now let us write

We assume that the ensemble average hM and the time averages It and c 
are constants independent of r and I. Let us also assume that the integrals

(5.9)

k(r) =  hM +  //i (r), (5.10)

and, as before,

(5.11)



132 BELL S Y S T E M  TECHNICAL JOU RNAL

of hi(r) and C\{r ,  /) over A 2 vanish. Inserting (5.10) and (5.11) into (5 9) and 
expanding, we get

1/ R  -  R M / R 1 +  • • • =  c)

+
(5.12)

where the super zero on the derivatives indicates that they are evaluated at 
It =  t i e) and c =  c. In accordance with previous approximations in this 
memorandum we neglect24 terms of the order of cl and R \  . W e also neglect 
terms of the order of h \ . After taking the time average of (5.12) and sub
tracting the result from (5.12) we get

R i (0  =  [  f(r)d(r ,  l) dr, 

f(T)  =  a /?  M r ),

= ( a*F V
\ d h d c )

(5.13)

Thus we now have a special case of our general mathematical model for the 
number of dimensions v =  2, provided that we assume that the total con
centration c on both of the rough surfaces fluctuates in the same manner as 
the concentration of a single adsorbed layer confined to a plane rectangular 
surface. The spectral density S(u)  of Ri(l) is then given by Eq. (3.17) which 
we repeat here

S ( w )  =  -
2 x A iD E

k
I A  I2

w2 +  D 2k*
(5.14)

where ft is a two-dimensional vector whose components take the values 
ki =  2 ir i i i /L i , Hi — 0, ±  1, =fc 2, ■ • • , and where/*  are the Fourier space- 
amplitudes of /(r) given by

fk  =  AT1 f  f (r )e~ ik r dr.
JA 2

I t  m ay be appropriate at this point to consider the quantity s" in detail 
for this particular case. If the energy e per unit area is independent of c,

c where 5  is here the entropy of the
-,2 v  S

we have s" =  — —  evaluated at c 
dc*

absórbate per unit area. For the sake of illustration let us consider a single 
layer of absórbate in which the molecules are non-interacting. If c, the sur-

24 We neglect these terms not because they are small compared with c, or h¡c¡ but, 
because they are non-fluctuating (in time), are hence to be compared with 1//2.
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face concentration of the absórbate, be measured in molecules (atoms, or 
ions) per unit area, then, for the ideal system  above, it follows that s =  — x  
c log c and finally that s" — xA - However, in the mechanism discussed in 
this part we have a compound system  consisting of two separate layers on 
the upper and lower surfaces respectively. Nevertheless, a detailed analysis 
reveals that with c equal to the sum of the concentrations of both layers 
we still have s" — x A  even though s itself is no longer given by an expres
sion the same as that above. In conclusion let us consider the factor x / s" 
in Eq. (5.14). This factor is under the above idealization sim ply equal to 
c. That is, the spectral density S(co) is directly proportional to the average 
concentration of absorbed molecules, meaning sim ply that each molecule 
makes its contribution to the resistance fluctuations independently of the 
others. Of course, in any real system  this will not be quite true; however, 
the existence of interactions will be manifested only by making x /s"  not 
equal to c in Eq. (5.14).

The results quoted thus far apply to a system  with a given h(r). N ow  we 
shall average the right-hand side of Eq. (5.14) over the ensemble of varia
tions of h(r), it  being supposed that S(co) itself on the left-hand side will 
be negligibly affected by this operation. This amounts to replacing \ f k |2 
by |/ftp 1 \  We then have

| / * | 2<e) =  a W | M s<i) (5.15)

where hk are the Fourier space-amplitudes of lh(r).

We now consider more closely the problem of calculating | hk |2 • W e want 
to assume that hi(r) is a more or less random function of r. If /q(r) were a 
random function of r in the same way that the thermal noise voltage is a 
random function of the time I, then | hk |2 would be a constant independent 
of k  and the self-covariance //i(r)Ai(r')( ' would vanish for r ^  r'. This 
clearly cannot be so, since the function /q(r) with such statistical properties 
would represent a highly discontinuous type of surface incapable of physical 
existence. We then fall back upon the more reasonable assumption that the 
gradient of hr possesses statistical properties of the above type. This notion 
is precisely formulated by m eans of the following equations:

V //i(r) =  p(r)  (5.16)
where

[  p {r)  dr  =  0, (5.17)

and

p ( r )p ( r ' ) W  =  /SI5(r -  r'). (5.18)



In Eq. (5.18) 0 is a parameter (with the dimensions of area) characterizing 
the amplitude of the surface roughness, and ^  is the unit tensor in two di
mensions. Expressing (5.16) in terms of tire Fourier space-amplitudes hk 
and pk  of hi and p  respectively, we have

- i k h k =  p k , (5.19)

giving finally
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|./i*|l(,> =  k - p „ p tM  - k / V  (5.20)

Expressing (5.18) in terms of Fourier space-amplitudes we get

pkb%'M  =  p A ? n kk., (5.21)

which, when inserted into (5.20) gives the following desired result:

//fep(i) =  P A ?  k ~ \  (5.22)
 (c)

Now replacing \ f k |2 by| J); |- in Eq. (5.14) and substituting the ex
pression (5.22) with the use of Eq. (5.15), we obtain

SM. a  . f ,E  (5.23)

If the frequencies of interest are larger than a certain characteristic frequency 
co0 =  47t2 D / L 2 where L  is the smaller of Li and L 2 , the summation in 
(5.23) m ay be replaced by an integration giving finally

>5(co) =  xD/iv~s"■ afSLi*A2- [
Jn

k dk
022 +  D-k* 

x /^ v s "  ■ (3a It?A2 - 1/co

(5.24)

T his result is in agreement with experiment in most respects. The dependence 
on frequency is, of course, that experimentally observed by all investigators. 
The non-dependence on the voltage applied across the contact is implied 
by the basic assumptions common to all of the mechanisms considered here, 
and is in approximate agreement with the results of Christensen and Pearson 
(see Eq. (1.2)). For our result to agree with the results of CP as regards the 
dependence on the average resistance25 Li, the factor c-R* A 2 m ust be pro
portional to R 2+b where b ~  1.25. These authors also im ply that some of

“  I t  must be remembered that the resistance H in the CP formula is the total contact 
resistance equal to sum of the gap resistance and the spreading resistance, whereas the Li 
in our theory evidently should be considered the gap resistance. For the purposes of com
parison we make the ad hoc assumption that the gap resistance is proportional to the total 
contact resistance.
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the parameters necessary to complete the description of a contact between 
given substances at a given temperature show up im plicitly only through 
R. According to our theory the factor or Ri A 2 does not depend in any unique 
way upon Â; it matters by what means f t  is varied. If the resistance l i  is 
changed by altering the contact area A 2 , keeping other parameters fixed, 
we would find that HA 2 is constant so that the factor in question would be 
proportional to R3, that is, b = 1. However, if R is changed by varying the 
contact pressure, the effect would show up through the factor a 2, (f3 also, 
to some extent, perhaps) and, since one would expect a  to increase somewhat 
with pressure whereas R decreases with pressure, the factor of interest would 
probably depend upon some power of R between 3 and 4, that is, 1 <  b <  2.

The theory formulated here suffers from the difficulty that the integral 
of the power spectrum with respect to frequency is logarithmically divergent 
at 0 and 0 0 , that is

/»« 2 /«Uj
/ *S(co) dw — / du a1=  log (co2/coi) —> «3 as coi —>0 and too— •

J  <J 1 J u i

The divergence at <» does not bother us as much as the divergence at 0 
since, with only a divergence at °o, the self-covariance R f t y R f t  +  u) exists 
for all non-vanishing values of «; whereas, with a singularity at 0, the self
covariance does not exist for any value of u. For this reason we cannot con
sider the self-covariance here. In Part c of this Section we consider a possible 
way of removing the divergence at 0, and consequently, then, we are able 
to calculate the self-covariance for non-vanishing values of u.

c. Refinement of the Theory of Part b. Here we propose a simple modifi
cation of the model of Part b, removing the divergence of the integral of 
S(  co) at co =  0. The modification considered here, although it is one of several 
possibilities any one of which is sufficient for removing the divergence 
(See Section 6.), is perhaps the only one that is sufficiently simple to treat 
in a memorandum of this scope. The results of this section are thus intended  
to be only provisional and suggestive.

Let us reconsider the statistics of the function h(r) giving the separation 
between the surfaces near a point r on the mid-plane. The distribution of 
It’s considered in the last section is open to several criticisms: (1) it possesses 
no characteristic length parallel to the mid-plane ; and (2) the self-covariance 
M r)M r ')(e) does not exist for any value of r — r’.

To correct partially for these difficulties we replace Eq. (5.22) by

P S > "  -  Sf  , (5-25)Ai{\ +  t  k )
where I is a new characteristic length. The self-covariance h i { r ) h f r ' f  
based upon (5.25) now exists for all values of r — r' except 0. Thus we still
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T-S')have the objection that the variance/;2 is infinite; however, this will 
cause us no trouble.

W ith Eq. (5.25) instead of (5.22) the spectral of density R\  takes the form

k dk
S(oi) =  xD /v~  s" -ßa  R 'A î • í  —

Jo 1
e2k2
+  e2 k2 w2 +  D 2 k4

Q(y) =
y  ( y  -  -  log y

y  =  f u / D .

(5.26)

1 +  f

In obtaining the above equation we have made the usual assumption that 
the frequencies of interest are larger than co0 =  4x2Z>/L2, and have replaced 
the original sum by an integral. The function Q(y) has the following proper
ties:

Q(y) ~  —  y  log y  for y «  1
X

Q(y) ~  1 for y  72> 1

(5.27)

Hence for to «  D/P,S(<S) «  log w, the integral of which converges as co —> 0; 
whereas, for coi2> D /D , S(w) differs negligibly from that given by the unre
fined theory (Eq. (5.24)^__________

The self-covariance i?i(/) Ri(t  +  u) now exists for all non-vanishing u  and 
is given by

Ri{l)R i( t  +  u) =  ( x /2 irs")-ßa  l i
• I

co —Duktkdk,I  e

where

+  D k 2

= (x/4 tts") -ßa RiA 2-eDul(i[—E i(—D u/12)]

— E i ( —x ) =  J  e~v dv/v,

~  —log y x  for a- «  1,
— X

~  —  for X »  1, 
x

7  =  0.5772.

(5.28)

Thus for u «  P /D ,  i?i(/)i?i(f +  «) «  “  log (yD u /D )  and for u  »  P /D ,  
R\{i)R\(t +  u) a  1 / i t .
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Thus we have illustrated how one modification of the model has removed 
the divergence at co =  0 .

I t appears from the treatm ent here and in part b that roughness and 
diffusion in two dimensions are essential (at least in a linear treatment) 
features in obtaining S(ui)a 1/co. In the case of a non-linear coupling (to be 
considered in a later paper) a “self-induced” roughness effect m ay occur 
without introducing roughness ab initio as an intrinsic feature of the model.

6. S u m m a r y

(a) If the resistance deviation R\(l)  is related to the concentration devia
tion c /r , l) of a diffusing medium (particles or heat) by the linear functional

=  [  / M c / r ,  0  dr, (6 .1 )
Ja „

where r is a vector and dr  a volume element in a ¡/-dimensional space of 
volume A y , then the spectral density 5(co) of Ri(t)  is

,  N 2  x AyD kr \ f k |2 ,  ^
S(a>) =  — r / ' r a u  ’ (6-2)7r s" co -j- k*

where D  is the diffusion constant, s" is defined by Eq. (3.14), x is the Boltz
mann constant, co is the frequency (in radians per sec.), ¿ is the wave number 
vector in ¡/-dimensional ¿-space limited to a discrete lattice of points (defined 
by Eq. (3.2)) over which the summation is taken, and /*, is the ¿th  Fourier 
component o f /(r )  (Eq. (3.3)).

(a) If the important terms in (6.2) vary slowly between lattice points in
¿-space (true if co >  co0 given by Eq. (3.18)), then (6.1) can be replaced by
the integral

o ,  ̂ 0 v+i r i x D  f \ f ( k ) \ 2k2d k  ( ^S{  co) =  2 w 7 7 j - r T W , (6.3)

where the integration extends over the entire ¿-space and where / ( ¿ )  is 
given by (Eq.3.20)

}(.k) =  f  f (r )e~ ik r dr. (6.4)
( ZlT ) JA u

(b) Let co' be a frequency in the middle of a wide range. Suppose \ f ( k ) | 2 

averaged over the total solid angle in ¡/-dimensional ¿-space is proportional 
to k ", where n is an integer, in a wide range of k with k =  \ A y / D  in its 
middle. It follows then that .S(co) Jr)_n~1'/2 CJ- i+ n+1'/2 as jong as _  i  <  2n 
+  v +  1 <  3. As a consequence, we see that with n an integer (as is true for 
the simple cases considered in Section 5) v m ust be 2— the only even di
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m ensionality—in order that £(to) be inversely proportional to w in agree
m ent with experiment. In  this case the only allowed value of n is — 1.

(c) From (b) we have the interesting result that S(u)  is independent of D 
when it is inversely proportional to «. This means that very slowly diffusing 
substances can contribute as much to contact noise as rapidly diffusing 
substances. This result can be derived on quite dimensional grounds and is 
not dependent upon the special assumptions underlying our treatment.

(d) A system  comprising a high resistance layer modulated by the three-

in Section 5.
(e) In a system  composed of a localized contact disturbed by a diffusing 

surface layer (See Case a.(ii), Section 5), the self-covariance u)
is inversely proportional to A +  D u  where A m ay be considered the contact 
area. We have S(œ) œ — log a +  const, for œ «  D /A  and 5(w) o -2
for «  »  D /A .

(f) In a system  involving the contact between relatively large areas of 
rough surfaces covered with diffusing surface layers (Cases b. and c., Section
5), we have been successful in obtaining S ( to) œ w_1, and also in obtaining 
a reasonable dependence upon the average resistance.

Here we consider in detail the spectral density, the self-covariance, and 
the relation between these two quantities, first for the case of a single random  
variable. The treatment is subsequently extended to the case of a set of 
random variables which necessitates the consideration of the spectral density
matrix and the covariance matrix. ___

Let y(/)be a real random variable whose time average vanishes, y(t)  =  0. 
Now the m.s. value of y  can be defined

interval. Evidently y(l,  r) can be expressed by the Fourier integral

dimensional diffusion of particles or heat gives S (u ) cc u  1/2. See Case a.(i)

A P P E N D IX  I

S p e c t r a l  D e n s it y  a n d  t h e  S e l f - C o v a r ia n c e

(1-1)

where y  (I, t )  =  y(l)  in the interval — ̂  ^ and vanishes outside this

(1-2)

where
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By Parseval’s theorem we obtain
/»+°0 /*+°0/*+«>
/ y'(l, t) dl -  2ir | y(u ,  t )  |2 ¿co,

co co

which, when combined with (1-1), gives finally the desired result (using 
the fact that | y(co, r) |2 is an even function of co)

7(0 =  f  E(co) do, (1-3)
Jo

where

F(co) =  4ir Lim  — | y(co, r) ¡' (I-d)
x —*oo T

is the spectral density.
By a procedure not very different from the preceding, one can show that

y(O yO  +  « ) =  / E(co) cos com ¿co, (1-5)
Jo

F(co) =  — [  y(O y(t  +  u)  cos com  du. (1-6)
7r J

The quantity (y(/)y(/ +  u) is called the self-covariance.
Now let us suppose that we have a set of random variables y ,(i) which are

in general complex and whose tim e averages vanish. W e are then led to
consider, instead of (1-3), relations of the form

yX O y* (0  =  [  F ,-,(«) ¿co (1-7)
Jo

where now

Yij(0>) =  27r Lim -  [y,(co, r)y*(co, t )  +  y ,( — co, r ) y * (-c o , r)] (I-S)
i— * co T

in which
1 r +(r/2)

y<(“ , r) =  —  / y .W c1"1 ¿6Z7T

Instead of self-covariances like y(i)y( l  +  m )  we have to consider a covari
ance matrix of the form y ,(/)y * (/ +  m ) .  Since we shall not have occasion in 
this paper to consider the relation between the spectral density matrix and 
the covariance matrix we will not consider the derivation of the analogue of 
Eq. (1-5).
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A P P E N D IX  II

T h e r m o d y n a m ic  T h e o r y  oe  F lu c tu a tio n s

The value of the quantity Ci(r, t)ci(rl, I) or (ck(l)cti( l)) is determined from 
equilibrium considerations. Before going into the above continuum  problem 
let us first consider the problem for the case of a system  described by a finite 
set of variables. More specifically let us suppose that the state of the system  
subject to certain restraints (i.e. fixed total mass and energy) is described 
by the set of variables X i , • • • , x „ . L et the equilibrium state be given by the 
values x i , ■ ■ ■ , x°n , and let

If the system  is constrained to constant average energy E, the entropy of the 
non-equilibrium state S  =  5° +  AS  will be less than S°, the entropy of the 
equilibrium state, by an amount

Obviously, AS  m ust be the negative of a positive definite quadratic form, 
otherwise the equilibrium state would not be a state of maximum entropy. 
The probability distribution26 for the a ’s is given by

where N  is a normalization factor and x  is the Boltzmann constant. Averag
ing the products cti a ,  we find that

M ultiplying (II-4) by the arbitrary set 7 , and summing over i  we get

The generalization to a system  described by a continuous set of variables 
is not difficult on the basis of (II-5). N ow  suppose that, in a »'-dimensional 
space A , , we have a system  whose state at time t is defined by the continuous 
set of values of the variable c(r, l) =  c +  Ci(r, t ) ; we have

(II-l)

(II-2)

where

S i,  =

P ( ai =  N eAslx (II-3)

X I S  a a¡ ak =  xSik- (II-l)

X  7 iS ija jO tk  =  XT*- (II-5)

(II-6 )

H. B. G. Casimir, Rev. Mod. Phys. 17, Nos. 1 and 3, 343-4 (1945).
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when s and e are the entropy and energy, respectively, per unit volume (of 
('-dimensional space). In calculating (II-6) it was assumed that

[  ci(r, I) dr  =  0, 
J a ,

expressing the fact that the system  is closed. In order to put (II-6) into a 
form strictly analogous to (II-2) we write it

A 5  =  —i  f  [  s" 5(r -  r')ci(r, l )d{r ' ,  t) dr dr'.  (II-7)
I  J a ,  J a ,

We see that the equation analogous to Eq. (II-5) m ust be

[  f  y ( r ' ) s" 8 (r  — r" )d (r" ,  i)ci(r, t) dr dr' =  x t W  (H -8)
•IA, JA,

where y(r)  is an arbitrary function. Integrating (II-8) with respect to r'' 
and using the fact that the delta function is defined by

J  y(r')S(r' - r )  dr' =  y(r)

we readily arrive at the result

d jr ,  t)d(r ' ,  t) =  J  o(r -  r'). (II-9)

Using the Fourier space-expansions of C\ and 5(r) 

ci(r, I) =  X '  ck{t)eik r,
k

S(r) =
A ,  k

in the region A ,  =  L t X  ■ ■ ■ X L ,  w ith k, =  2 in i i /L i , we can write (II-9) 
over into the equivalent expression:

CkiOctiO =  h k ’ , (11-10)

where

i l  if k  =  k',
5kk' =  i

0 otherwise.



A b s t r a c t s  o f  T e c h n i c a l  A r t i c l e s  b y  B e l l  S y s t e m  A u t h o r s

Audio-Frequency Measurements}  f  W. L. B la c k *  and H. H. S c o t t .  This 
paper indicates the theory involved in making measurements of gain, fre
quency response, distortion, and noise at audio frequencies, w ith particular 
emphasis on such measurements made on high-gain system s. There are 
also discussed techniques of measurement and factors affecting the accu
racy of results. This subject is not new art but has not previously been 
published in correlated form, to the knowledge of the authors.

Growing Quartz Crystals.2 f  E. B u e h l e r  and A. C. W a l k e r .  The Bell 
Telephone Laboratories started an investigation of this subject in March 
1946, based on information gleaned from several investigators who visited  
Germany after the war, particularly M r. J. R . Townsend of these Labora
tories, and Professor A. C. Swinnerton of Antioch College. After a relatively 
few experiments made with equipment similar to that used by Professor 
Richard Nacken in Germany, and w ith the process he described, it became 
apparent that Nacken had made substantial progress in the art of growing 
quartz at temperatures and pressures near the critical state of water, i.e., 
about 374°C, and 3,200 pounds per square inch. This report summarizes 
further progress that has been made in the Laboratories since March 1946.

Corrosion of Telephone Outside Plant Material?  f  K. C. C o m p to n  and 
A. M e n d iz z a . Problems resulting from corrosion in the telephone outside 
plant are m any and varied. In  this article an attem pt is made to give a 
broad overall picture of these problems and the manner in which they are 
m et and solved by the telephone plant engineer.

Magnetic Recording in Motion Picture Techniques A J o h n  G. F r a y n e  and 
H a l l e y  W o l f e .  Developm ent of magnetic recording at the Bell Telephone 
Laboratories is described with the application of such facilities to Western 
Electric recording and reproducing system s. A m ethod of driving 35-mm. 
m agnetic film with a flutter content not greater than 0.1 per cent is de
scribed, as is a multigap erasing head.

Semi-Conducting Properties in  Oxide Cathodes .5 f  N . B . H a n n a y ,  D. 
M a c N a i r ,  a n d  A. II. W h it e .  I t  h a s  b een  w id e ly  a ssu m ed , w ith o u t ade-

1 Proc. I . R. E ., v. 37, pp. 1108-1115, October 1949.
* Of Bell Tel. Labs.
- Sci. Monthly, v. 69, pp. 148-155, September 1949.
5 Corrosion, v. 5, pp. 194-197, June 1949.
4 5 . AT. P. E. Jour., v. 53, pp. 217-234, September 1949.
5 Jour. Applied Physics, v. 20, pp. 669-681, July 1949.
t  A reprint of this article may be obtained by writing to the Editor of the Bell System 

Technical Journal.
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quate experimental verification, that barium-strontium oxide, as used in 
the oxide cathode, is an excess electronic semi-conductor. Accordingly, the 
electrical conductivity of (B a,Sr)0 has been studied as a function of tem 
perature before and after activation with m ethane, extensive precautions 
being taken to exclude spurious effects. The increase in conductivity ob
tained characterizes (Ba,Sr)0 as a “reduction” semi-conductor, and hence 
very probably as an electronic semi-conductor whose conduction electrons 
arise from a stoichiometric excess of (Ba,Sr) atoms in solid solution.

A basic prediction of the semi-conductor theory has been tested quan
titatively with the finding that the electrical conductivity and the thermionic 
emission of a (B a,Sr)0 cathode are directly proportional through three 
orders of magnitude of activation; well-defined chemical and electrical 
activation and deactivation procedures were used in obtaining this result. 
It may be concluded that activation represents an increase in the chemical 
potential of the electrons in the oxide, little or no change in the state of the 
surface occurring. It has also been found that deviations from the propor
tionality of conductivity and emission m ay be expected under conditions 
leading to inhomogeneity in the oxide, in agreement with the semi-conduc
tor theory also.

Electron Microscope and Diffraction Study of Metal Crystal Textures by 
Means of Thin Sections.0 f  R . D . H e id e n r e i c h . B ethe’s dynamical theory 
of electron diffraction in crystals is developed using the approximation of 
nearly free electrons and Brillouin zones.

The use of Brillouin zones in describing electron diffraction phenomena 
proves to be illuminating since the energy discontinuity at a zone boundary 
is a fundamental quantity determining the existence of a Bragg reflection. 
The perturbation of the energy levels a t a corner of a Brillouin zone is 
briefly discussed and the manner in which forbidden reflections m ay arise at 
a corner pointed out. It is concluded that the kinematic theory is inadequate 
for interpreting electron images of crystalline films.

An electrolytic method for preparing thin metal sections for electron 
microscopy and diffraction is introduced and its application to the structure 
of cold-worked aluminum and an aluminum-copper alloy demonstrated. 
It is concluded that cold-worked aluminum initially consists of small, in- 
homogeneously strained and disoriented blocks about 200A in size. These 
blocks are not revealed by etching but would contribute to line broadening 
in conventional diffraction experiments. B y  means of a reorientation of the 
blocks through a nucleation and growth process, larger disoriented domains 
about 1-3/2 in size found experimentally could be accounted for. I t  is sug-

i Jour. Applied Physics, v. 20, pp. 993-1010, October 1949.
T A reprint of this article may be obtained by writing to the Editor of the Bell System  

Technical Journal.



gested that such a nucleation and growth reorientation phenomenon is re
sponsible for self-recovering in cold-worked metals.

The formation of CuA12 precipitate particles is demonstrated w ith both 
electron micrographs and diffraction patterns. A fine lamellar structure found 
in the quenched Al-4 per cent Cu alloy is at present unexplained.

Path-Lenglli Microwave Lenses.7f  W in s to n  E. K o c k . Lens antennas for 
microwave applications are described which produce a focusing effect by 
physically increasing the path lengths, compared to free space, of radio 
waves passing through the lens. This is accomplished b y  means of baffle 
plates which extend parallel to the m agnetic vector, and which are either 
tilted or bent into serpentine shape so as to force the waves to travel the 
longer-inclined or serpentine path. The three-dimensional contour of the 
plate array is shaped to correspond to a convex lens. The advantages over 
previous m etallic lenses are: broader band performance, greater sim plicity, 
and less severe tolerances.

Refracting Sound Waves?]  W in s to n  E. K o c k  and F. K . H a r v e y .  
Structures are described which refract and focus sound waves. T hey are 
similar in principle to certain recently developed electromagnetic wave lenses 
in that they consist of arrays of obstacles which are small compared to the 
wave-length. These obstacles increase the effective density of the medium  
and thus effect a reduced propagation velocity  of sound waves passing 
through the array. This reduced velocity is synonym ous with refractive 
power so that lenses and prisms can be designed. When the obstacles ap
proach a half wave-length in size, the refractive index varies with wave
length and prisms then cause a dispersion of the waves (sound spectrum  
analyzer). Path length delay type lenses for focusing sound waves are also 
described. A diverging lens is discussed which produces a more uniform  
angular distribution of high frequencies from a loud speaker.

Double-Stream Amplifiers?]  J. R . P ie r c e .  This paper presents expressions 
useful in evaluating the gain of a double-stream amplifier having thin con
centric electron streams of different velocity and input and output gaps 
across which both streams pass.

Direct Voltage Performance Test for Capacitor Paper P ]  H . A. S a u e r  and 
D . A. M c L e a n .  Performance of capacitors on accelerated life test m ay vary 
over a wide range depending upon the capacitor paper used. Indeed, at 
present a life test appears to be the only practical means for evaluating

'Proc. I . R. E., V. 37, pp. 852-855, August 1949.
8 Acous. Soc. Avier. Jour., v. 21, pp. 471-481, September 1949.
9 Proc. I . R. E., v. 37, pp. 9SO-985, September 1949.
“ Proc. I . R. E., v. 37, pp. 927-931, August 1949.
f  A reprint of this article may be obtained by writing to the Editor of the Bell System 
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capacitor paper, since, within the lim its observed in commercial material, 
the chemical and physical tests usually made do not correlate with life. 
Lack of correlation is ascribed to obscure physical factors which have not 
yet been identified.

Generally, several weeks are required to evaluate a paper by life tests of 
the usual severity. Unfortunately, the duration of these tests is too long for 
quality control of paper.

The desire for a life test which requires no more than a day or two for 
evaluation led to the developm ent of a rapid d-c. test. The philosophy of 
rapid life testing is based upon the experimental evidence that the process 
of deterioration under selected temperature and voltage conditions is prin
cipally of a chemical nature, and also upon the well-known fact that rates 
of chemical reaction increase exponentially w ith temperature.

Life tests on two-layer capacitors conducted at 130°C. provide an ac
celeration in deterioration m any fold more than that obtained in the lower- 
temperature life tests, and correlate well w ith these tests.
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