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Error Detecting and Error Correcting Codes
By R. W. HAMMING

1. Introduction

HE author was led to the study given in this paper from a considera-

tion of large scale computing machines in which a large number of
operations must be performed without a single error in the end result. This
problem of “doing things right” on a large scale is not essentially new; in a
telephone central office, for example, a very large number of operations are
performed while the errors leading to wrong numbers are kept well under
control, though they have not been completely eliminated. This has been
achieved, in part, through the use of self-checking circuits. The occasional
failure that escapes routine checking is still detected by the customer and
will, if it persists, result in customer complaint, while if it is transient it will
produce only occasional wrong numbers. At the same time the rest of the
central office functions satisfactorily. In a digital computer, on the other
hand, a single failure usually means the complete failure, in the sense that
if it is detected no more computing can be done until the failure is located
and corrected, while if it escapes detection then it invalidates all subsequent
operations of the machine. Put in other words, in a telephone central office
there are a number of parallel paths which are more or less independent of
each other; in a digital machine there is usually a single long path which
passes through the same piece of equipment many, many times before the
answer is obtained.

In transmitting information from one place to another digital machines
use codes which are simply sets of symbols to which meanings or values are
attached. Examples of codes which were designed to detect isolated errors
are numerous; among them are the highly developed 2 out of 5 codes used
extensively in common control switching systems and in the Bell Relay
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Computers,1 the 3 out of 7 code used for radio telegraphy,2 and the word
count sent at the end of telegrams.

In some situations self checking is not enough. For example, in the Model
5 Relay Computers built by Bell Telephone Laboratories for the Aberdeen
Proving Grounds,1 observations in the early period indicated about two
or three relay failures per day in the 8900 relays of the two computers, repre-
senting about one failure per two to three million relay operations. The self-
checking feature meant that these failures did not introduce undetected
errors. Since the machines were run on an unattended basis over nights and
week-ends, however, the errors meant that frequently the computations
came to a halt although, often the machines took up new problems. The
present trend is toward electronic speeds in digital computers where the
basic elements are somewhat more reliable per operation than relays. How-
ever, the incidence of isolated failures, even when detected, may seriously
interfere with the normal use of such machines. Thus it appears desirable
to examine the next step beyond error detection, namely error correction.

We shall assume that the transmitting equipment handles information
in the binary form of a sequence of 0Os and |’s. This assumption is made
both for mathematical convenience and because the binary system is the
natural form for representing the open and closed relays, flip-flop circuits,
dots and dashes, and perforated tapes that are used in many forms of com-
munication. Thus each code symbol will be represented by a sequence of
0’s and I’s.

The codes used in this paper are called systematic codes. Systematic codes
may be defined3 as codes in which each code symbol has exactly n binary
digits, where m digits are associated with the information while the other
k — n — m digits are used for error detection and correction. This produces
a redundancy R defined as the ratio of the number of binary digits used to
the minimum number necessary to convey the same information, that is,

R = n/m.

This serves to measure the efficiency of the code as far as the transmission
of information is concerned, and is the only aspect of the problem discussed
in any detail here. The redundancy may be said to lower the effective channel
capacity for sending information.
The need for error correction having assumed importance only recently,
very little is known about the economics of the matter. It is clear that in
1Franz Alt, “A Bell Telephone Laboratories” Computing Machine”—I, Il. Mathe-

matical Tables and Other Aids to Computation, Vol. 3, pp. 1-13 and 60-84, Jan. and
Apr. 1948.

2S. Sparks, and R. G. Kreer, “Tape Relay System for Radio Telegraph Operation,”
R.C.A. Review, Vol. 8, pp. 393-426, (especially p. 417), 1947.

3In Section 7 this is shown to be equivalent to a much weaker appearing definition.
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using such codes there will be extra equipment for encoding and correcting
errors as well as the lowered effective channel capacity referred to above.
Because of these considerations applications of these codes may be expected
to occur first only under extreme conditions. Some typical situations seem
to be:

a. unattended operation over long periods of time with the minimum of

standby equipment.

b. extremely large and tightly interrelated systems where a single failure

incapacitates the entire installation.

c. signaling in the presence of noise where it is either impossible orun-

economical to reduce the effect of the noise on the signal.
These situations are occurring more and more often. The first two are par-
ticularly true of large scale digital computing machines, while the third
occurs, among other places, in “jamming” situations.

The principles for designing error detecting and correcting codes inthe
cases most likely to be applied first are given in this paper.Circuits for
implementing these principles may be designed by the application of well-
known techniques, but the problem is not discussed here. Part | of the paper
shows how to construct special minimum redundancy codes in the follow-
ing cases:

a. single error detecting codes

b. single error correcting codes

c. single error correcting plus double error detecting codes.

Part Il discusses the general theory of such codes and proves that under
the assumptions made the codes of Part | are the “best” possible.

PART |
SPECIAL CODES

2. Single Error Detecting Codes

We may construct a single error detecting code having n binary digits
in the following manner: In the first n — 1 positions we put n — 1 digits of
information. In the H-th position we place either 0 or 1, so that the entire n
positions have an even number of 1’s. This is clearly a single error detecting
code since any single error in transmission would leave an odd number of
I’s in a code symbol.

The redundancy of these codes is, since m = n — 1,

It might appear that to gain a low redundancy we should let n become very
large. However, by increasing n, the probability of at least one error in a
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symbol increases; and the risk of a double error, which would pass unde-
tected, also increases. For example, if <SC1is the probability of any error,
then for n so large as \/p, tire probability of a correct symbol is approxi-
mately 1/e = 0.3679 ..., while a double error has probability 1/12e =
0.1839__

The type of check used above to determine whether or not the symbol
has any single error will be used throughout the paper and will be called
a parity check. The above was an even parity check; had we used an odd
number of I’s to determine the setting of the check position it would have
been an odd parity check. Furthermore, a parity check need not always
involve all the positions of the symbol but may be a check over selected posi-
tions only.

3. Single Error Correcting Codes

To construct a single error correcting code we first assign m of the n avail-
able positions as information positions. We shall regard the m as fixed, but
the specific positions are left to a later determination. We next assign the k
remaining positions as check positions. The values in these k positions are
to be determined in the encoding process by even parity checks over selected
information positions.

Let us imagine for the moment that we have received a code symbol, with
or without an error. Let us apply the k parity checks, in order, and for each
time the parity check assigns the value observed in its check position we
write a 0, while for each time the assigned and observed values disagree
we write a 1. When written from right to left in a line this sequence of k 0’s
and |’s (to be distinguished from the values assigned by the parity checks)
may be regarded as a binary number and will be called the checking number.
We shall require that this checking number give the position of any single
error, with the zero value meaning no error in the symbol. Thus the check
number must describe m + k + 1 different things, so that

2'7*m~4k H 1

is a condition on k. Writingn = m + k we find

Using this inequality we may calculate Table I, which gives the maximum
m for a given 11, or, what is the same thing, the minimum n for a given m.
We now determine the positions over which each of the various parity
checks is to be applied. The checking number is obtained digit by digit,
from right to left, by applying the parity checks in order and writing down
the corresponding 0 or 1 as the case may be. Since the checking number is



ERROR DETECTING AND CORRECTING CODES 151

Tabte |
n m Corresponding k
1 0 1
2 0 2
3 1 2
4 1 3
5 2 3
6 3 3
7 4 3
8 4 4
-7 5 4
10 6 4
1 7 4
12 8 4
13 9 4
14 10 4
15 11 4
16 11 5
Etc.

to give the position of any error in a code symbol, any position which lias
a 1 on the right of its binary representation must cause the first check to
fail. Examining the binary form of the various integers we find

1= 1
3= 11
5= 101
7= 111
9 = 1001

Etc.
have a 1on the extreme right. Thus the first parity check must use positions
1,3,5, 7,9, e

In an exactly similar fashion we find that the second parity check must
use those positions which have |’ for the second digit from the right of their
binary representation,

2 = 10
3= 1
6 - 110
7= 11
10 - 1010
1 - 1011
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the third parity check

4 = 100
5 = 101
6 - 110
7= 111
12 = 1100
13 = 1101
14 = 1110
15 = 1111
20 - 10100
Etc.

It remains to decide for each parity check which positions are to contain
information and which the check. The choice of the positions 1, 2, 4, 8, e
for check positions, as given in the following table, has the advantage of
making the setting of the check positions independent of each other. All
other positions are information positions. Thus we obtain Table I1I.

T abif. Il
Check Number Check Positions Positions Checked
1 1 1, 3,5, 7,9, 11, 13, 15, 17,---
2 2 2,3,6,7 10, 11, 14, 15, IS, ---
3 4 4,5,6,7, 12, 13, 14, 15, 20, -
4 8 8,9, 10, 11, 12, 13, 14, 15, 24 ,-e¢

®As an illustration of the above theory we apply it to the case of a seven-
position code. From Table I we find forn = 7, m = 4 and k = 3. From
Table Il we find that the first parity check involves.positions 1, 3, 5, 7 and
is used to determine the value in the first position; the second parity check,
positions 2, 3, 6, 7, and determines the value in the second position; and
the third parity check, positions 4, 5, 6, 7, and determines the value in posi-
tion four. This leaves positions 3, 5, 6, 7 as information positions. The results
of writing down all possible binary numbers using positions 3, 5, 6, 7, and
then calculating the values in the check positions 1, 2, 4, are shown
in Table I11.

Thus a seven-position single error correcting code admits of 16 code sym-
bols. There are, of course, 27 — 16 = 112 meaningless symbols. In some ap-
plications it may be desirable to drop the first symbol from the code to
avoid the all zero combination as either a code symbol or a code symbol plus
a single error, since this might be confused with no message. This would still
leave 15 useful code symbols.



ERROR DETECTING AND CORRECTING CODES 153

Table III
Position Decimal Value of
Symbol

1 2 3 4 5 6 !

0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 !
0 1 0 1 0 L 0 2
1 0 0 0 0 1 1 3
i 0 0 1 1 0 0 4
0 1 0 0 1 0 ! p
1 1 0 0 1 1 0 6
0 0 0 1 1 1 1 7
| 1 1 0 0 0 0 8
0 0 1 | 0 0 1 :
1 0 1 1 0 1 0 10
0 1 1 0 0 1 1 i
0 1 1 1 1 0 0 12
1 0 L 0 1 0 ! i
0 0 1 0 L L 0 o
1 1 1 1 1 1 L 0

As an illustration of how this code “works” let us take the symbol
011110 0 corresponding to the decimal value 12 and change the 1 in
the fifth position to a 0. We now examine the new symbol

01110 00

by the methods of this section to see how the error is located. From Table 11
the first parity check is over positions 1, 3, S, 7 and predicts a 1 for the first
position while we find a 0 there; hence we write a

1.

The second parity check is over positions 2, 3, 6, 7, and predicts the second
position correctly; hence we write a 0 to the left of the 1, obtaining

0 1.

The third parity check is over positions 4, 5, 6, 7 and predicts wrongly; hence
we write a 1 to the left of the 0 1, obtaining

10 1.

This sequence of 0’s and |’s regarded as a binary number is the number 5;
hence the error is in the fifth position. The correct symbol is therefore ob-
tained by changing the 0 in the fifth position to a 1.

4. Single Error Correcting Plus Double Error Detecting Codes

To construct a single error correcting plus double error detecting code we
begin with a single error correcting code. To this code we add one more posi-
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tion for checking all the previous positions, using an even parity check. To
see the operation of this code we have to examine a number of cases:

1. No errors. All parity checks, including the last, are satisfied.

2. Single error. The last parity check fails in all such situations whether
the error be in the information, the original check positions, or the last
check position. The original checking number gives the position of the
error, where now the zero value means the last check position.

3. Two errors. In all such situations the last parity check is satisfied, and
the checking number indicates some kind of error.

As an illustration let us construct an eight-position code from the previous
seven-position code. To do this we add an eighth position which is chosen
so that there are an even number of I’s in the eight positions. Thus we add
an eighth column to Table Il which has:

Table IV

OCOR m,PR OO

(SR JENIN

LR OO

PART Il
GENERAL THEORY

5. A Geometrical Model

When examining various problems connected with error detecting and
correcting codes it is often convenient to introduce a geometric model.
The model used here consists in identifying the various sequences of 0’s and
I’s which are the symbols of a code with vertices of a unit «-dimensional
cube. The code points, labelled x, y, z, mmm, form a subset of the set of all
vertices of the cube.

Into this space of 2" points we introduce a distance, or, as it is usually
called, a metric, D(x, y). The definition of the metric is based on the observa-
tion that a single error in a code point changes one coordinate, two errors,
two coordinates, and in general d errors produce a difference in d coordinates.
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Thus we define the distance D(x, y) between two points x and y as the num-

ber of coordinates for which x and y are different. This is the sameasthe
least number of edges which must be traversed ingoing from x toy.This
distance function satisfies the usual three conditions for a metric, namely,

D(x,y) = 0 ifandonlyifx =y
D(x,y) = D(y,x) >0 ifa”y
D(z, y) + D(y, z) > D(r, z) (triangle inequality).

As an example we note that each of the following code points in the three-
dimensional cube is two units away from the others,

001
010
100
111.

To continue the geometric language, a sphere of radius r about a point x
is defined as all points which are at a distance r from the point x. Thus, in
the above example, the first three code points are on a sphere of radius 2
about the point (1, 1, 1). In fact, in this example any one code point may be
chosen as the center and the other three will lie on the surface of a sphere
of radius 2.

If all the code points are at a distance of at least 2 from each other, then it
follows that any single error will carry a code point over to a point that is
not a code point, and hence is a meaningless symbol. This in turn means that
any single error is detectable. If the minimum distance between code points
is at least three units then any single error will leave the point nearer to the
correct code point than to any other code point, and this means that any
single error will be correctable. This type of information is summarized in
the following table:

Table V
Minimum :
Distance Meaning
1 uniqueness
2 single error detection
3 single error correction
4 single error correction plus double error detection
5 double error correction

Etc.

Conversely, it is evident that, if we are to effect the detection and correc-
tion listed, then all the distances between code points must equal or exceed
the minimum distance listed. Thus the problem of finding suitable codes is
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the same as that of finding subsets of points in the space which maintain at
least the minimum distance condition. The special codes in sections 2, 3,
and 4 were merely descriptions of how to choose a particular subset of points
for minimum distances 2, 3, and 4 respectively.

It should perhaps be noted that, at a given minimum distance, some of
the correctability may be exchanged for more detectability. For example, a
subset with minimum distance 5 may be used for:

a. double error correction, (with, of course, double error detection).

b. single error correction plus triple error detection.

c. quadruple error detection.

Returning for the moment to the particular codes constructed in Part |
we note that any interchanges of positions in a code do not change the code
in any essential way. Neither does interchanging the 0’s and |’ in any posi-
tion, a process usually called complementing. This idea is made more precise
in the following definition:

Definition. Two codes are said to be equivalent to each other if, by a finite
number of the following operations, one can be transformed into the other:

1. The interchange of any two positions in the code symbols.

2. The complementing of the values in any position in the code symbols.
This is a formal equivalence relation (~) since A ~ A; A B implies
B~ .4;and A~ B, B~ CimpliesA ~ C. Thus we can reduce the study
of a class of codes to the study of typical members of each equivalence class.

In terms of the geometric model, equivalence transformations amount to
rotations and reflections of the unit cube.

6. Single Error Detecting Codes

The problem studied in this section is that of packing the maximum num-
ber of points in a unit «-dimensional cube such that no two points are closer
than 2 units from each other. We shall show that, as in section 2, 2"-1 points
can be so packed, and, further, that any such optimal packing is equivalent
to that used in section 2.

To prove these statements we first observe that the vertices of the «-
dimensional cube are composed of those of two (« — I)-dimensional cubes.
Let A be the maximum number of points packed in the original cube. Then
one of the two (« — I)-dimensional cubes has at least .4/2 points. This cube
being again decomposed into two lower dimensional cubes, we find that one
of them has at least A/21points. Continuing in this way we come to a two-
dimensional cube having A/2"~~ points. We now observe that a square can
have at most two points separated by at least two units; hence the original
«-dimensional cube had at most 2°1-1 points not less than two units apart.
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To prove the equivalence of any two optimal packings we note that, if
the packing is optimal, then each of the two sub-cubes has half the points.
Calling this the first coordinate we see that half the points have a 0 and half
have a 1. The next subdivision will again divide these into two equal groups
having 0’s and |’s respectively. After (u — 1) such stages we have, upon re-
ordering the assigned values if there be any, exactly the first n — 1 positions
of the code devised in section 2. To each sequence of the first n — 1 coordi-
nates there exist n — 1 other sequences which differ from it by one co-
ordinate. Once we fix the w-th coordinate of some one point, say the origin
which has all 0’s, then to maintain the known minimum distance of two
units between code points the «-th coordinate is uniquely determined for all
other code points. Thus the last coordinate is determined within a comple-
mentation so that any optimal code is equivalent to that given in section 2.

It is interesting to note that in these two proofs we have used only the
assumption that the code symbols are all of length n.

7. Single Error Correcting Codes

It has probably been noted by the reader that, in the particular codes of
Part I, a distinction was made between information and check positions,
while, in the geometric model, there is no real distinction between the various
coordinates. To bring the two treatments more in line with each other we re-
define a systematic code as a code whose symbol lengths are all equal and

1. The positions checked are independent of the information contained

in the symbol.

2. The checks are independent of each other.

3. We use parity checks.

This is equivalent to the earlier definition. To show this we form a matrix
whose 7-th row has I’s in the positions of the 7-th parity check and 0’s else-
where. By assumption 1 the matrix is fixed and does not change from code
symbol to code symbol. From 2 the rank of the matrix is k. This in turn
means that the system can be solved for k of the positions expressed in
terms of the other n — k positions. Assumption 3 indicates that in this
solving we use the arithmetic in which 1 +1 = 0.

There exist non-systematic codes, but so far none have been found which
for a given n and minimum distance d have more code symbols than a sys-
tematic code. Section 9 gives an example of a non-systematic code.

Turning to the main problem of this section we find from Table V that a
single error correcting code has code points at least three units from each
other. Thus each point may be surrounded by a sphere of radius 1 with no
two spheres having a point in common. Each sphere has a center point and
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n points on its surface, a total of L+ 1 points. Thus the space of 2“ points
can have at most:

2n
n+ 1

spheres. This is exactly the bound we found before in section 3.

While we have shown that the special single error correcting code con-
structed in section 3 is of minimum redundancy, we cannot show that all
optimal codes are equivalent, since the following trivial example shows that
this isnot so. For n = 4 we find from Table | thatm = land k = 3. Thus
there are at most two code symbols in a four-position code. The following
two optimal codes are clearly not equivalent:

0000 ,0000
iin and0 1 1 1 .

8. Single Error Correcting Plus Double Error Detecting Codes

In this section we shall prove that the codes constructed in section 4 are
of minimum redundancy. We have already shown in section 4 how, for a
minimum redundancy code of n — 1 dimensions with a minimum distance
of 3, we can construct an n dimensional code having the same number of
code symbols but with a minimum distance of 4. If this were not of minimum
redundancy there would exist a code having more code symbols but with
the same n and the same minimum distance 4 between them. Taking this
code we remove the last coordinate. This reduces the dimension from n to
n — 1 and the minimum distance between code symbols by, at most, one
unit, while leaving the number of code symbols the same. This contradicts
the assumption that the code we began our construction with was of mini-
mum reduncancy. Thus the codes of section 4 are of minimum redundancy.

This isa specialcase of the following general theorem:To any minimum
redundancy codeof N points in n — ldimensions and having aminimum
distance of 2k — 1 there corresponds a minimum redundancy code of N
points in n dimensions having a minimum distance of 2k, and conversely.
To construct the n dimensional code from the n — 1 dimensional code we
simply add a single n-th coordinate which is fixed by an even parity check
over the n positions. This also increases the minimum distance by 1 for
the following reason: Any two points which, in the n — 1 dimensional code,
were at a distance 2k — 1 from each other had an odd number of differences
between their coordinates. Thus the parity check was set oppositely for the
two points, increasing the distance between them to 2k. The additional co-
ordinate could not decrease any distances, so that all points in the code are
now at a minimum distance of 2k. To go in the reverse direction we simply
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drop one coordinate from the n dimensional code. This reduces the minimum
distance of 2k to 2k — 1 while leaving N the same. It is clear that if one
code is of minimum redundancy then the other is, too.

9. Miscellaneous Observations

For the next case, minimum distance of five units, one can surround each
code point by a sphere of radius 2. Each sphere will contain

1+ C(n, 1)+ CO, 2

points, where C(n, k) is the binomial coefficient, so that an upper bound on
the number of code points in a systematic code is

2- 2n+i > 2
1+ C(n, 1) + CO) 2) «2+ n+ 2
This bound is too high. For example, in the case of n = 7, we finch'that

m = 2 so that there should be a code with four code points. The maximum
possible, as can be easily found by trial and error, is two.

In a similar fashion a bound on the number of code points may be found
whenever the minimum distance between code points is an odd number.
A bound on the even cases can then be found by use of the general theorem
of the preceding section. These bounds are, in general, too high, as the above
example shows.

If we write the bound on the number of code points in a unit cube of dimen-
sion n and with minimum distance d between them as B(ii, d), then the
information of this type in the present paper may be summarized as follows:

B(n, 1) = 2"

Bin, 2) = 2n~I

13(n, 3) = 2™ < 2
(n, 3) n 2

2'11
B(n, 4) = 2m<

B{n - 1,2k - 1) = B{n, 2k

Bin, 2k - D= 2m< T A k- B "

While these bounds have been attained for certain cases, no general
methods have yet been found for contracting optimal codes when the mini-
mum distance between code points exceeds four units, nor is it known
whether the bound is or is not attainable by systematic codes.
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We have dealt mainly with systematic codes. The existence of non-sys-

tematic codes is proved by the following example of a single error correcting
code withn = 6.

0000O00O0
0 10 10 1
10 0 110
1110 00
0010 11
111111.

The all 0 symbol indicates that any parity check must be an even one.
The all 1symbol indicates that each parity check must involve an even num-
ber of positions. A direct comparison indicates that since no two columns
are the same the even parity checks must involve four or six positions. An
examination of the second symbol, which has three |’ in it, indicates that

no six-position parity check can exist. Trying now the four-position parity
checks we find that

12 56
2345

are two independent parity checks and that no third one is independent of
these two. Two parity checks can at most locate four positions, and, since
there are six positions in the code, these two parity checks are not enough
to locate any single error. The code is, however, single error correcting since
it satisfies the minimum distance condition of three units.

The only previous work in the field of error correction that has appeared
in print, so far as the author is aware, is that of M. J. E. Golay.4

4M. J. E. Golay, Correspondence, Notes on Digital Coding, Proceedings of the I.R.E.,
Vol. 37, p. 657, June 1949.



Optical Properties and the Electro-Optic and Photoelastic
Effects in Crystals Expressed in Tensor Form

By W. P. MASON

I. Introduction

HE electro-optic and photoelastic effects in crystals were first investi-

gated by Pockels,1who developed a phenomenological theory for these
effects and measured the constants for a number of crystals. Since then not
much work has been done on the subject till the very large electro-optic
effects were discovered in two tetragonal crystals ammonium dihydrogen
phosphate (ADP) and potassium dihydrogen phosphate (KDP). With these
crystals light modulators can be obtained which work on voltages of 2000
volts or less. Their use has been suggested2in such equipment as light valves
for sound on film recording and in television systems. Furthermore, since
the electro-optic effect depends on a change in the dielectric constant with
voltage, and the dielectric constant is known to follow the field up to 1010
cycles, it is obvious that this effect can be used to produce very short light
pulses which may be of interest for physical investigations and for strobo-
scopic instruments of very high resolution. Hence these crystals renew an
interest in the electro-optic effect.

In looking over the literature on the electro-optic effect and photoelastic
effect in crystals, there do not seem to be any derivations that give them
in terms of thermodynamic potentials, which allow one to investigate the
condition under which equalities occur between the various electro-optic
and photoelastic constants. Hence it is the purpose of this paper to give such
a derivation. Another object is to give a derivation of Maxwell’s equations
in tensor form, and to apply them to the derivation of the Fresnel ellipsoid.

The first sections deal with the optics of crystals, and derive the Fresnel
ellipsoid from Maxwell’s equations. Other sections give a derivation of the
two effects, discuss methods for measuring them by determining the bi-
refrigence in various directions and give the constants for the two effects in
terms of crystal symmetries. The final section discusses the application of
the photoelastic effect for measuring strains in isotropic media.

1F. Pockels, Lehrbuck Der Kristalloptic, B. Teubner, Leipzig, 1906.

2See Patent 2,467,325 issued to the writer; “Light Modulation by P type Crystals,”
George D. Gotschall, Jour. Soc. Motion Picture Engineers, July. 1948, pp. 13-20; B. H.
Billings, Jour. Opt. Soc. Am., 39, 797, 802 (1949).
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Il. Solution of Maxwell's Equations In Tensor Form

In tensor notation, Maxwell’s equations for a nonmagnetic medium with
no free charges take the form

ld Di dilj dlj dEk_  ODi _ n_ dllj _
v 8 axk ) U af bxi > bxi > xj o

where Di is the electric displacement, H, the magnetic field, Ek the electric
field, V the velocity of light in vacuo and e,# a tensor equal to zero when
i =jorkorj = k, butequal to 10or —1 when all three numbers are different.
If the numbers are in rotation, i.e. 1, 2, 3; 2, 3, 1; 3, 1, 2 the value is +1
while, if they are out of rotation, the value is —1.

We assume the electric vector to be representable by a plane wave whose
planes of equal phase are taken normal to the unit vector m . Then

Ek = EOkeM i- Xinih) )

where Eok are constants representing the maximum values of the field along

the three rectangular coordinates and j = y /—I. Substituting (2) in the

second of equations (1), noting that Eok are not functions of the space co-
ordinates, we have

. - .

FAHT 0 ot g v Y I )

ot \

Integrating with respect to the time
I, = - ‘ekiEoknileiWJ- XiniM = llajeM ,- Zi™ 'v). 4)
v

Hence,
\%
Ho, = -\;*,-*:,- E»*«(] (5)

and therefore the magnetic vector is normal to the plane determined by
EOt and m .
Next, using the first of equations (1),

dDi . dllj gdultmxknkiv]
di " VHIk e — VelinUo

(6)

Integrating with respect to time,

Di = - lu ijkH0.nkleM I- Iknkv]. )



OPTICAL PROPERTIES IN CRYSTALS 163

Inserting the value of /<mfrom (5), this equation takes the form

and, in general,
\%
Di — - [eqk(tjkiE*»<)#*]. (9)
v2

Expanding the inner parenthesis, we have the components

(Ein-i — £j»2)1; (Ej«i — Ein-i)2) (Byi-i — " «1)3. (10)
Then
e»t[(fa«j — £«-2); (E«i - £i»j); (E1*2 — £hi)]»a gives
F2
A = ————ir? [(E3i*i — Einm — (Eill2 — A ih)nA
= [(E3«3 + E2«2 + E\U\)ni —Ei(n\ + «2 + «3)]
F2 o
02 = — [(E1«2 — EvuiiHi — (E2113 — £3 «2)"3]
= [(£373 -)- £2 «2 4" £i«i)«2 — £ 2(~1 4~ m* 4~ «3)]
F2
03 — r—[(£2"3 — E312112 — (£3 »1 £1 )M

= [(E3«3 -(- £»2 4* £1Ui))i3 — £(m i 12 -f- »*)m

Now, since n\ + m2+ n\ = 1 because nisa unit vector, we have
. F2 . .
Di = v, [E» — (EmUj)nf] or 7 Di — Et— (E,n,)m = 0. (12)

This equation states that D i, £ and are in the same plane, H,- being
normal to the plane as shown by Fig. 1. The energy flow vector

Si = %-entEjHt (13)
47T

also lies in the plane since it is perpendicular to £ and Il. It is at the same
angle i vyith 11 that £ is with D. The velocity of energy flow is d/cos 6. The
energy velocity is called the ray velocity and the energy path the ray path.

Next, from the relation for a material medium, that
EllI*!* gf ) o
Di = KijEjorconversely £ = /£ £ (14)
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where Ka are the dielectric constants measured at optical frequencies and
fin are the impermeability constants determined from the relations

i AjilA K (15)
where

Kn Ku Ku

Ku Kzz Kzz

Ku Kzz Kzz

and A’lthe determinant obtained by suppressing the j th row and ith column,
we can eliminate from equation (12) and obtain
2

—\)/i‘Di = 8uA + fiubz + fiubz — (Ejn,)nj

- Do —B812A + 822A + 823A — (Ejnfinz (16)

2

This can be put in the form

(Ejtijyni = A[8u — vMV-] + 812A + 813A
{Eflij)»2 = finDi + (822 - d&F)Z)2-{ fiizDz (17)
(EjUj)>h = 8nA + 823A + {fizz— c2AF 2)A-

Solving for A , Dz and D3

A = [(fizz - v*/V*)(fin~ "N/V2- fiUIEpijjul
Dz = [{fin - i*/V°-)(fiz3- t21/2)- 8n P I»[H (18)
A = [@B11 - "F 2(822- v-fV'-)- fiU[Ejnj]nz.

Now, since D and n are at right angles,

D\)i\ -f- Dztiz T Dztiz — 0. (19)

Hence,
0 = [(822 - is/V )(fin - v*IV2 - fiUnl
+ [{fin ~ ttyF*)G8,i ~ - fiunl (20)

+ [{fin - ~T-){fizz - ~"IF2 - 812)«l
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PLANE OF
CONSTANT
PHASE

Fig. 1—Position of electric, magnetic and normal vectors for an electromagnetic plane
wave in a crystal.

Fig. 2—Rotated axes and angles for relating them lo unrotated axes.

By choosing the original x, y, z axes so that fe = 0« = = 0 ancl usinsg
the values = Bi,/fe = ft,fin — ft this gives the equation
m n% «3 = 0. (21)
5 +
Bi

For transmission along the X axis »1= 1,»* = » 3 =0 and the two velocities
are given by

i?7 = fcv2 = b\ t2 = /3sF2 = c2 (22)



166 BELL SYSTEM TECHNICAL JOURNAL

Similarly the third velocity v2 = (hF2 = «2can also be used and equation
(21) reduces to

m

2lpt Blet o—w= 0 (23)

This is a quadratic equation for the velocities v in terms of the principal
velocities a, b and ¢ which are usually taken so thata > b > c.
Solving for the velocities, we obtain the quadratic equation

Bt — v2[nl(b2+ c2) + nl(a? + ¢c2 + nl(a2+ 2Z&)]

2 2 (24)
+ n\bx2+ n\ax2+ n\ad2 =

Letting L = n\(b2 — ¢, M = ;/2(c2 — a2, N = n\(a2 — b2 the solutions
for the velocities become

2v = nl(b2+ cd + nl(c2+ a2 + »j(a2+ bH
o (2t>)

db VL- + M2+ N2- 2LM - 2LN - 2MN

This equation can be put into a simpler form if we change to the coordinate
system shown by Fig. 2. Here the rotated system is related to the original
system by three angles 9, < \p. 9 is the angle between the Z axis and the
Z axis, pis the angle the plane containing Z and Z makes with the X axis
while \p represents a rotation of the primed coordinate systems about the
Z axis. The direction cosines for the primed system with respect to the
normal system are designated by the matrix

X Yy z

X h nti ni (26)
\ 2 >«2  «2
Z' 61 W3 >H

where, in terms of 9, pand i> these direction cosines are,

(i = cos 9cos Ppcos \p — sin Ppsin \p,

ni\ = cos9sin Ppcos \p + cos Psin p, ih = — sin 9cos \p
12 = —cos 9 cos Ppsin » — sin p cosV\
«2 = cos cos i/ — sin psin y cos 9, = sin 9sin \p
U — cos psin 9, m3 = sin <psin 9, n3 — cos 9. (27)

If we takeZJ as the direction of the wave normal, then in equation(25)

IL = 13, lig2= m3, »3 = Kl
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and the equation for the velocities becomes

Ilv = a2(sin2<psin20 + cos2(?) + ¢2(cos2<psin20 + cos2(?) + ¢ sin2(

A £2)2(cos26 cos2< + Sin2<p\+ 2(a2- &@)(c2 - (2
sin20(co0s29 cos2 jp — sin2 %) + (c2 — &)2sin4g

(28)

A very elegant construction for the wave-velocities and the directions of
vibration is the Fresnel index ellipsoid. Consider the ellipsoid

azx2+ by + cz2= 1 (29)

Then Fresnel3 showed that, for any diametral plane perpendicular to the
wave normal, the two principal axes of the ellipse were the directions of the
two permitted vibrations, while the wave velocities were the reciprocals of
the principal semi-axes.

We wish to show now that the maximum and minimum values of the im-
permeability constants in a plane perpendicular to the direction of the
wave normal determine the directions of vibration and the values of the two
velocities. To show this we make use of the fact that /3y is a second rank
tensor and transforms according to the tensor transformation formula

ja = ht (30)

g%k gxc

where the partial derivatives are the direction cosines

dx[ . Ox[ = ) Ox[

— = ti, — = mi AT = nl

dxi d.v2 0

dx'i Qna 0X2

B — (21 — — nili2, — = «2
Ox 2 ox3

Ox» ox3 _ 0X3

ki~ 3 ™ e
Expanding equation (30) the six transformation equations become
On = (i/3n + 2A%i/3i2 ~F 2A«ii3i3 ~F + 2i»i/?23 ~F P1&3
di2 — CC/BLL "F {(pih + wiiOAs ~F {(ph T" »iC)/3n T" nilw2/32
‘F (iHpbl + PpPI"23 ~F npHA~zz
/3n = (133U -F (Cwtj + ?KIC)3i2 + {(ptz + KIO/3i3 + mpnzBn
+ (HWMB+ »hih)/3n + npizPzz (31)

* See for example “Photoelaslicity,” Coker and Filon, Cambridge University Press,
pages 17 and 18.
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022 =¢2011 4“ 2CNhRI2 4% 2('iUiRu -f- »12022 4- 2ni2»2023 4" » 2033
023 = fatsRll 4« (2m34" »h(i)Rr> + ((m&4- "2~)013 4- IWB022

4% (j»2»j 4- »A»3/023 4" AR
033 = (3011 4" 2f3'230i2 4- 2i3;.30i3 4- »/3022 4~ 2wi3»3023 4" «303

Now, if the axes refer to the axes of a Fresnel ellipsoid, Ou = 0i3= 023= 0
and one of the impermeability constants for any direction, say 033, can be
expressed in the form

033 = (301 4“ AR 4“ "303 (22)

If r, which lies along Z' of Fig. 2, is the radius vector of the Fresnel ellipsoid,
then the direction cosines ¢4, ms and »3 are
X z
Is = ms = _y’ "3 = -,
r r r
From equation (24) 0i = a~/V2 0» = b-/V~, 03 = e2F 2and equation (32)
becomes

TZWSS - a2x2 4- b’2y 2y czz2 =1

Hence the square of the radius vector of the Fresnel ellipsoid is 1/F '033
and the radius vector of the impermeability ellipsoid agrees with that of the
Fresnel ellipsoid. Hence, the directions of vibration can be determined from
the principal axes of the impermeability ellipsoid for any diametral plane.

When light transmission occurs along Z', the direction for maximum and
minimum impermeability can be obtained by evaluating 0n and deter-
mining the angle p for which it has an extreme value. Inserting the direction
cosines A, »h and n1from equation (27), we find

2, 2 2, sin 2ipsin 2pcos6 . .. L
On = 01 COS &cCO0S tpcos y — — 4~sin tpsin 4/
S .2 -, sin 29sin2\pcos 6 2. .2 (33)
+ cos 6sm tpcos \p 4- - P \p r cos tpsin 4

4- 03 sin' 6 cos' p.

Differentiating with respect to p and setting the resultant derivative equal
to zero, the value of p that will satisfy the equation is given by

(02 — 01i) sin 2<pcos d
(0i —02) (cos20 cos2tp — sin2tp) 4- (03 — B-i) sin26

1 . (34)
— a') sin 2tpcos Q

{a- — B2 (cos26 cos2 p— sin2tp) 4* (c2 — b2 sin26"'

tan 0(;4/ —



OPTICAL PROPERTIES IN CRYSTALS 169

For a given value on the right-hand side there are two values of \p, 90° apart,
that will satisfy the equation and hence we have two directions of vibration
at right angles to each other. Inserting (34) in (33) the values of dn and
dn for these two directions are

2/3n = /3i(sin2psin20+ co0s20) + /32(cos2p sin20 + co0s26) + ds sin20

/(ft - ft)2(cos20cos2<p+ sin2<)- + 2(ft - ft)(ft - ft)
y msin26 (cos20 cos2 p— sin2<p + (ft — ft)2sin40.

Since ft corresponds to a2, etc., this equation agrees with the two velocities
given in equation (28) and shows that the directions of vibration correspond
with the maximum and minimum values of fti.

It can also be shown that the two directions of electric displacement co-
incide with the two values of \p given by equation (34). Transforming the
electrical displacements to the X', Y', Z' set of axes we have

D[=p 7ft+ ~ D.+ N 7ft = fiDIl + mi7ft + nxDz
dXi 0X2 O0X3

£>' = to*Di + ~ T7ft+ ~ Ds= ftA + m2D» + n,Dt (35)
3*i ox2 0X»

D3=p Di+ ~ Tft+ A = ftA + m3Do+ n:in 3.
ox1l 0*2 OX3

Hence, inserting the values of A, A, A from equation (18), we find
A = (i(3ffiz — dn)033 — dn) + »h»i3@si — dn)0?3 — dn)

+ — dn)(ds ~ dn)
Do = (2(3{f)2 — dn)03 — dn) — duXds dn)

(36)
+ iteiiiifii — dn)(d2 ~ dn)

>
I

fs(d2 — dll)(d3 — dlI) 4" ~ dll)(ds dll)
+ »»(di —dn) (da ~ dn).

From equation (20) with dn = di3 = da3 = 0, it is evident that the A com-
ponent vanishes and hence the two values of electric displacement lie in a
plane perpendicular to Z'. By inserting the values of dn and the value of
i found from equation (34) we find that D» = 0 and hence the electric dis-
placement lies along the directions of the greatest value of dn - Similarly,
from the second value of dii >A vanishes and hence the second wave is per-
pendicular to the first and in the direction of the smallest value of dn «
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Ill. Location of Optic Axes in a Crystal

When the expression in the radical of equation (28) vanishes the two
velocities are equal and an optic axis exists. Since the expression inside the
radical can be written

[(a2 — ft2 (cos2 0cos2ip + siivV) — (¢2 — e2)sin2 Of
@37
— 4(a2 — b-)(c2 — b2) sin20sin2p = 0
then, since the square is always positive and since (a2— 2) > 0 and
(b2 —c2 > 0, the equation can vanish only if 9= 0. But ¢ — 0 indicates
that the two optic axes always lie in a plane perpendicular to the inter-
mediate velocity b. With jp = 0 then the square vanishes when

tan" 6 = (38)

If (a2 — b2) < (b2 — c-) the value of the tan 6 is less than unity and the
crystal is called a positive crystal. For this case the two axes approach more
closely the Z axis having the velocity ¢ than they do the X axis. If
(a2 — b2) > (b2 — c2) the crystal is negative.

If a = bor b — cthe crystal has a single optic axis and is respectively a
positive or negative uniaxial crystal. For the first case the two velocities
are given by

ti = a = b, v2 = s/a2co0s20 + c2sin26. (39)

The first velocity is that of the ordinary ray while that of the second is that
of the extraordinary ray. Since a > c, the ordinary ray will have a velocity
greater than the extraordinary ray except along the optic axis where they
are equal. Since ¢ < a, the maximum axis for any ellipse, formed by inter-
secting the Fresnel ellipsoid at an angle to the optic axis, will lie in the plane
formed by the normal and the c axis and hence the direction of polarization
of the extraordinary ray will lie in the ¢, n plane. The polarization of the
ordinary ray will be perpendicular to this plane.

If b = c the a axis is the optic axis and the velocities of the two rays are
again

Hence, when d= 90°, = 0°, the two velocities are equal and a is the optic
axis. In this case the velocity of the extraordinary ray is greater than that
of the ordinary ray except along the a axis, and the crystal is a negative
uniaxial crystal. The polarization of the extraordinary ray lies again in the
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plane of the normal and the optic axis while the ordinary ray is perpendicu-
lar to it.

IV. Derivation of the E lectro-optic and Piiotoelastic E ffects

In a previous paper4 and in the book “Piezoelectric Crystals and Their
Application to Ultrasonics”, D. Van Nostrand, 1950, it was shown that the
electro-optic and photoelastic effects can be expressed as third derivatives
of one of the thermodynamic potentials. Probably the most fundamental
way of developing these properties is to express them in terms of the strains,
electric displacements and the entropy. For viscoelastic substances it has
been shown that the photoelastic effects are directly related to the strains.
In terms of the electric displacements, the electro-optic constants do not
vary much with temperature whereas, if they are expressed in terms of the
fields, the constants of a ferroelectric type of crystal such as KDP increase
many fold near the Curie temperature. The entropy is chosen as the funda-
mental heat variable, since most measurements are carried out so rapidly
that the entropy does not vary.

The thermodynamic potential which has the strains, electric displace-
ments and entropy asthe independent variables is theinternalenergy U,
given by

dUu = TadSn + Em-fv + 0 (a (41)
47r

where S -, are the strains, Ta the stresses, Em the fields, Dmthe electric dis-
placements, 0 the temperature and a the entropy. In this equation the
strains Sa are defined in the tensor form

$-1(S+S) @

where the u’s are the displacements along the three axis. In the case of a
shearing strain occurring when i ~ j, the strain is only half that usually
used in engineering practice. In order to avoid writing the factor 1/ 47T, we
use the variable 8tn— Dnv 4ir. Then, from (41),

du i du n du tail
7» -9V e- =w.’ - * nm <43)

Since, for most conditions of interest, adiabatic conditions prevail, we can
set da equal to zero and can develop the dependent variables, the fields and

1“First and Second Order Equations for Piezoelectric Crystals Expressed in Tensor
Form,” W. P. Mason, B.S.T.J., Vol. 26, pp. 80-138, Jan., 1947.
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the stresses in terms of the independent variables, the strains and the elec-
tric displacements. Up to the second derivatives, these are

dEm . dEm~
m ic.. ' ' ~W" on
00 1) oon
dEm A ,\2d~I§\m d~Em 2
d-sijgsn T g8itdch ™ ds, dso 20 *

(44)

r_ QOTkC % i dTul. .

1kl = -, *Sij+ TT 0,
odii UVn

— o
d'TkC c , 2d'TkC ¢ s , d'Tkl j j
+ Y Adsijdsir 0 'r dsifdsn " ” aéndso

For the electro-optic and photoelastic cases, the two tensors of interest are

& Tul = d U = = AwmkCh
35,dS0  dSkCdS, dS0  dskCa<
(45)
(TEmM d3U
as = (4T0)r
do,i 35» 35,, dd,,dd0
For the first partial derivatives, we have the values
dTkC _ n dTk( _ 3“U _ dEn
. . = —hnkC
dsri ~ Ciikl ; d¥n ~ d&Skl35n  dSkC
(46)
dEm
47rBmn
357

where c’k( are the elastic stiffnesses measured at constant electric displace-
ment, hrkCare the piezoelectric constants that relate the open circuit voltages
to the strains, and ffltn are the impermeability constants measured for con-
stant strain.

With these substitutions and neglecting the other second partial deriva-
tives, we have, from (44),

. -
Em hmij Sij -f- Z)n nn iI HIijmnéolij iI R0 ’Iyo +
(47)
hikC i tHktonDn

Tkt = cLtSij + D,
! ~att A o~ 2 .

This equation shows that there is a relation between the change in the im-
permeability constant due to stress in the first equation, and the electro-
strictive constant in the second equation through the tensor m . These
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effects, however, have to be measured at the same frequency before equality
exists.

To obtain the changes in tire optical properties caused by the strain and
the electric displacement we have to determine the fields and displacements
occurring at the high frequencies of optics. Even for piezoelectric vibrations
occurring at as high frequencies as they can be driven by the piezoelectric
effect, these frequencies are small compared to the optic frequencies/ and
can be considered to be static displacements or strains. Hence, writing

Em= E°m+ E meiwl, Dn = D°n+ Dneiu‘
D,, = D©®+ DOeiut, S-j = Sh

where to = 2irf, the first of equation (47) can be written in the form

(48)

If we develop one of the fields, say E1, this can be written in the form
E \'e = [dn + viijnSij + I'niDi - rmDz + rn32)i/71cl
d- tdia 4* M ijiiSij -f-t12Di + tlIi"D7i -f- rmDsIDzel (49)
+ [dn + MijuSij + rmDi + ruzD* + riwDilDze u

where the first number of r refers to the field, the second to the optical value
of D and the third to the static value of D. ITence, for the general case,

Emeiut = D jw[dmn + + rmnoD \\. (50)

From the definition of the two tensors nixjno and rnmmo given by equation
(45), we can show that there are relations between the various components
of the tensors. For the first tensor »»s/,0, since 5,7 = Sj, is a symmetrical
tensor, then

(51)
From the definition of the tensor 0in the form

(45)

it is obvious that we can interchange the order of 5, and 80so that

Mijno Wijon
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Since ij and no are reversible, it has been customary to abbreviate the tensor
by writing one number in place of the two in the following form:

11 = 1;22= 2;33=3;12=21=6;13=31=5;23=32=4 (52)
Since the reduced tensor is associated with the engineering strains, it is
necessary to investigate the numerical relationships between the four in-
dex symbols and the two index symbols. From equation (48), when m
?m n, the change in the impermeability constant is given by

niijmn S jj -f~ ffljimn Sji — IHraSr (55)
Since Sr = 2Sn — 2Sji we have the relation that
mumn = mrs(i,j, m,n = 1to 3, r, s, = 1to 6) (54)

In equation (45) we cannot in general interchange the order of ij and no
since U does not contain product terms of strains and electric displace-
ments and hence in general

Mrs m,,. (55)

Hence in the most general case there are 36 photoelastic constants. Crystal
symmetries cut down the number of constants as shown in a later section.
The tensor rmmo defined in equation (45) as

*
/(4ir32 rmo = .d v (56)
@0jn UOK UCo
shows that we can interchange the order of m and n since 77 contains product
terms of Smand 5,,. Hence

fmno  famo (57)
and this is usually replaced by the two index symbols
rgo = rmno(m, n,0= 1to 3;q = 1to 6).

The socalled “true” electro-optic constants are measured at constant
strain and for this case the modifications in the impermeability constants
are given by the equation

Em = Dn[{fmn + r mnoDQ]. (58)

Since in and n are interchangeable, the third rank tensor is usually replaced
by the two index symbols

rm0 — rgofm, n, o = 1to 3;q = 1to 6). (59)

As discussed inthe next sections, these constants can bedetermined by

applying an electric field of a frequency high enough so that the principal
resonances and their harmonics cannot be excited by the applied field, and
measuring the resulting birefringence along definite directions in the crystal.
On the other hand if we apply a static field to the crystal, an additional effect
occurs because the crystal is strained by the piezoelectric effect and this
causes a photoelastic effect in addition to the “true” electro-optic effect. A
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better designation for these effects is the electro-optic effect at constant
strain and stress.

This latter effect can be calculated from equation (47) by setting the
stresses Tu equal to zero and eliminating the S a strains. After neglecting
second order corrections,

Em = Dneiut + &rsmo + D\ (60)
L ATCijkl /
Since hakl/cijkt = g0a, the other piezoelectric constant relating the open
circuit voltage to the stress, the electro-optic effect at constant stress can be
written in the form

T _ S 1>lijmngoij
Tvino Zmno | *
T
In terms of the two index symbols
= rno+ (62)
47T

since it has been shown4 that gOlJ-= gop/ 2 wheni  j, and the tensor in (61)
has ij as common symbols which involves the summations of two terms,

The electro-optic effect is usually measured in terms of an applied field.
The change in the impermeability constant /3f,,, for this case can be de-
termined from the first equations (47), setting Tut equal to zero and neglect-
ing second order terms. Multiplying through by the tensor K Ip of the di-
electric constants

Tfv = EIKlIp (63)
since the product Ko,,i30P= 1. Introducing thisequation into(58) we have

Em= Dn[PL+ fmnpKopEo] = DnlIP.L +4,»,£°]. (64)
where the new tensor zmmo is equal to
Zmo ~ fmnpEop (65)
In terms of the two index symbols
4 0= rffiPKop m (66)
in which the repeated index indicates a summation. The difference between

the electro-optical constant at constant stress expressed in terms of the field
and the electro-optical constant at constant strain is

rr I m'j ijj j i

¢mno = imno r erngou Jl’r:)rp *"’Eno JT Mijmnd pij \(V id
47T

since the piezoelectric constants dva are related to the g constants by the

equation

dpii = (68)
47T
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In terms of two index symbols
Z0 = 40 + mpadop(p, g = 1to6;0= 1to 3) (69)

where a repeated index means a summation with respect to this index.

Finally the photoelastic effect is sometimes expressed in terms of the
stresses rather than the strains. As can be seen from equation (47), the new
set of constants is

Trptj = MlprSrq (79

where the sw are the elastic compliances measured at constant electric dis-
placement.

V. Birefringence Along Any Direction In the Crystal and
D etermination of the E lectro-optic and

Photoelastic Constants
If we take axes along the Fresnel ellipsoid when no stress or field is ap-

plied to the crystal, the result of the electro-optic and photoelastic effects
is to change the impermeability constants by the values

on = ft + Ai; 02 =02+ A2; 038 = 034- A3
(‘1)
023 = A4 ; 0i3 — As ; 0i2 — As
where
Ai = ZUEi -j- Z2®@ d~ - 13E 34" WUS14~ HIS2d- WiiS] d- viuS4
4" niisSa -f- ini$S$
A = &IE!L-f- Z2E2 d~ zizEs -{- MinSi + M252 4~ M23S 34~ tti'ZiSs
d- ShsSs d- W2&S5
A3 = z-S\E\  zvaEi -f- z33¢ 3 -f- viz\S\ 4* tnwsSt -f- ftizzSz 4~ 7»3404
4 »7306 4~ »7BHb
(72)

A4 = zpJZi -f- Z&2-E2 d- Z43E 3 -)m ;«4i5i 4~ maSs 4- »7.1303 4" »74404
4- »/49%5 4- nUeSe

As = ZsiH + 2B + ZEs 4" »1551:Si 4 »1502 4" 755303 4" »75404
4" »MHb 4" B

As = ZeiE 4- ZmE« 4* ZstEz 4~ mmSi  »762A02 4~ »hzSi 4~ »16A4
4% »6006 4'" »76506

If we transmit light along the z” axis which, as shown by Fig. 2, makes an
angle of 6 degrees with the z axis in a plane making an angle pwith the xz
plane, the birefringence can be calculated as follows: Keeping z' fixed and
rotating the other two axes about z' by varying the angle p, one light vector
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will occur when 0n is a maximum ancl the other when on is a minimum.
Using the transformation equations (31) and the direction cosines of (27),
we find that /3n is given by the equations

. B 2 2 2, sin 2fpsin 2pcos 6 , , 2 2,
fri = 0ii cos 6 cos tpcos y/ — + sin tpsin Y

+ 0iZsin 2pcos 2ip — sin“9 sin 2pcos' + cos 9 sin 2tp cos 2|
+ 0n[—sin 26 cos €cos' tp + sin tpsin 0 sin 2\p] (73)

2, W2 2 cos 6 sin 2psin 2\p . 2 2
+02 cos“9smtpcos\p ¥ P+ cos Ppsin” th

+ 0jj[—sin 26 sin ip cos2tp — sin 6 cos Psin 2tp] -f- 033 sin26 cos2p

Differentiating with respect to tp and setting dd_fp\) = 0, we find an ex-
pression for tan 2tp in the form

—0ii sin 2tp cos 6 + 2012 cos 6 cos 2tp

tan Ry — -£.20 £0z 8in b co n74)
on[cos" 6cos tp — sin"tp] + 0i2[(l + cos'6) sin 2
—0i3sin29 cos tp -f 022(cos26 sin2tp — cos“tp)
— 023sin 26 sin tp + 033sin20

Inserting this value back in equation (73) we find that the two extreme values
of 0ii are given by the equation

20'n = 2022+ (0u— 02)(cos-6 cos2tp + sin2”) + (033 — 022)sin2 6
— 0i2 sin26 sin 23 — 0i3 sin 26 costp — fin sin26 sin tp
(011 — 022)2(cos2 6 cos2tp+ sin2tp)2-t 2(0n —02)(033 — 022) sin26X
(cos29 cos2tp — sin2tp) + (0§ — 022)2sin49 — 2(0n — 022 X
[0i2(sin 2tp sin20(cos2 6 cos2tp + sin2tp) -f- On sin 26 cos <pX
(cos2 6 cos2 tp -+ sinfy) — 023 sin 26 sin tp(1 + co0s2tp sin20)]
+ 2(033 — 022) sin20[oi2sin 2tp(l -f cos26) — 0« sin 26 cos tp
— 023 sin 29 sin tp\ + (20i2)2[sin4 6 sin2tp cos2tp + €0S2 6\ (r9)
— 4012013 sin2 6 sin ~[cos2 6 cos2tp -f- sin2"] — 4(0i2023)
[sin 26 cos ip(sin2tp cos2 0+ cos2tp)\ -f- (20iJ2sin20X
(cos26 coS2tp + sin2tp) — 4013023 sin 2tp sin4 o

V + (202s)2sin26(c0s26 sin2tp + cos2tp
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The birefringence in any direction can be calculated from equation (75);
since on = vI/V2 it equals 1/m? where mi is the index of refraction corre-
sponding to a light wave with its electric displacement in the 0'n direction.
Similarly, for the second solution at right angle to the first,

£ -1 = - 16

v H2 (16)
Hence if we designate the expression under the radical by K» and half the
expression on the right outside the radical by K i, we have

1 1 1 1 r - /,«
24% 2 — K 1; o — 2 — aln2 77)
Ml M2 Ml M2

Since i1 and M are very nearly equal even in the most biréfringent crystal,
we have nearly

M2 — Mi = B =~V k2 (78)

For special directions in the crystal, the expression for A2 simplifies very
considerably. Along the x, y and z axes, the values are

3
X, fp = 0°50=90°; Bx=]| V(fc - 022+ (2032

F, @@= 90°0=90°  Bv=" V(0On - ft)*+ (2032 (79)

Z (>= 0°9= 0°; VIt - @+ (002

If any natural birefringence exists along these axes, (2023)2 will be very
small compared to this and

M3, * M3 /! 1
X —9 (03- 02+ A3—A2 —  ( 2— 2+A3—A2/\)
2 2 i,

\ mc Mi

Bv— - (0i —0B+ Al —Aj) = - —1 + Al —A3) (80
/

2 \Ma Me

M3 /! 1 \
- - - S+ A - A2 e
2 \M a Mb /

M3 \4
5*:)2((01- 02 + a, - As)

Hence, for this case, measurements alongthe three axes will tell the differ-
ence between the three effects Ai, A2and A3. To get absolute values requires
a direct measurement of the index of refraction along one of the axes and
its change with fields or stresses. This is a considerably more difficult meas-
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urement than a birefringence measurement and requires the use of an ac-
curate interferometer.

If, however, the Z axis is an optic axis as it is in ADP, for example, and
Ax= A2 = 0, a birefringence occurs due to the term Bi2. As shown in tire
next section, the electro-optic constants for ADP (tetragonal Aim) are z«
and Ze3. z63 occurs in the expression for 612 = A6, as can be seen from equa-
tions (72), and hence the birefringence along the Z axis is

Bz =~ = jlaZnsEa. (81)

The constants Zgdand Zn have been measured independently by W. L. Bond,
Robert O’B. Carpenter, and Hans Jaffe. Probably the most accurate meas-
urements, and the only one published, are those of Carpenter,6 who finds
that the indices of refraction and the 7Z83 and zn constants for ADP and
KDP are in cgs units

Mo M relxin7 nixto’
ADP 1.5254 1.4798 2.54 + 0.05 6.25 db 0.1
KDP 1.5100 1.4684 3.15 + 0.07 258 + 0.05

An even larger constant has been found for heavy hydrogen KDP by Zwicker
and Scherrer.6 They find at 20°C that rt! = 6 X 10-7. Using this constant, a
half wave retardation for a X = 5461 A° mercury line occurs for a voltage
of 4000 volts.

For tetragonal crystals of these types the only photoeleastic constant for
the z axis is , and the birefringence for this case is given by

Bz = MiWeSo (82)

When a natural birefringence exists for the crystal, measurements of the
other three effects A.i, A6 and A6 can be made by determining the bire-
fringence along other directions than the Fresnel ellipsoid axes. In a direction
of Z' lying in the XZ plane 9 — 0, 0= variable and

re_ /. /[(dn - fe)cos2o0 + (dx- fe) sin20- /3U sin20}2 , S
“ o2 + [2BWcos 0+ ®23sin 6)2

When a natural birefringence exists, this reduces to

Bxy = ~ (2 —“2+ Ai —A2 c0s20
2 L\Ma Pb /

(84)

+ (“5—“2+ A3 — A2)sin2d — A6sin 20
\Pc Rb / J

5“The Electro-oplic Effect in Uniaxial Crystals of the Type XIUPCq ” Robert 0B,
Carpenter, Jour. Opt. Soc. Am., in course of publication.
8Zwicker and Scherrer, Bflv. Pltys. Acta., 17, 346 (1944).
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and lienee, by measuring at 45° between the two axes, one can evaluate the
A5 term.
Similarly, for the YZ plane, ip = 90°, 9= variable and

0 _ M ./[—(0n — 02 + (033 — R-n) sin20 — Ri3 sin 20]2 8y
Ty = B (w + 192 0. B — YB3 8iR UR.

Hence, when a natural birefringence exists, we have
3

B, =7 —\~-i —-2+Al — Ao0)
\Ma M6 /
(86)
-b\ 2”7 2" A3 — J}in 0 — A4sin 20 1.
\Me M&: / J
In the XV plane 9= 90°, 9 = variable and
n _ M ,/\(01 —"1) sin2p— (0M — /2) — 012 sin 2k /071
X' 2V + [2k)3 sin 9 — cos ip]".
Then, for natural birefringence,
3
B = — "1 %~ #d- A1— A2)sinip
2 \Ra. Mi. J
(88)

—fh— ®hA3m-AYL— Af sin
\Vc M, /

Hence, with measurements at 45° between the axes and with suitably ap:
plied fields and strains, the three effects A(, A5 and A0 can be measured.
Since the axes of the test specimen are turned with respect to the X, Y and
Z axes, suitable transformations of the effects ALto A0 with respect to the
new axes will have to be made. These can be done as shown in reference (4)
by means of tensor transformation formulae.

Another method for measuring the constants in A4, A5, Acis to measure
the amount they rotate the axes of the Fresnel ellipsoid. As an example con-
sider the Z\1constant of ADP. For example, if we look along the X axis and
apply a field in the same direction, then, in equation (74), 9= 90°, 9= 0 and

tan 2il= ~ 20M- = x |4dLEi =_ -"mIm”"i-Ei (ay)
Vo033 - 02 | 1 U + Mc)U - Me)

2 2
Me M&

According to Carpenter, the 241 electro-optic constant of ADP is 6.25 X 10"7
in cgs units, m = Ms = 1.5254; Mt = 1.4798; hence the angle of rotation for
a field of 30,000 volts per centimeter = 100 stat volts cm is

ip — —2.25 X 10-3 radians = 7.7 minutes of arc. (90)
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VI. Electro-optic and Piiotoelastic Tensors for Various

Crystal Classes

Since r,m0 = rnmo and zmmo = z,,,,,, are third rank tensors similar to the
hmij piezoelectric tensor, they will have the same components for the various
crystal classes. For the twenty crystal classes that show the electro-optic
effect these tensors are given below. They are given with the crystal system
they belong to, and the symmetry is designated by the Hermann-Mauguin
symbol. The last number of the subscript of s designates the direction of the
applied static field.

(91)
Triclinic; 1 ZIl 21 Z31 Za 751 Zagi
ZI2 %2 Z32 742 752 2
ZI3 223 733 743 753 763
Monoclinic; 2 0 0 0 Za1 0 Zu
z12 72 73 0 0
0 0 0 Z43 0 763
Monoclinic; 2 = m 2zl 1 Z31 0 751 0
0 0 0 8 0 762
ZI13 3 Z33 0 753 0
Orthorhombic; 222 0 0 0 Za1 0 0
0 0 0 0 752 0
0 0 0 0 0 763
Orthorhomic; 2mm 0 0 0 0 7z 0
0 0 0 Z42 0 0
ZI3 723 Z33 0 0 0
Tetragonal ; 4 0 0 0 Z41 z1 0
0 0 0 —751 Za1 0

ZI3 —713 0 0 0 763
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Tetragonal; 4

Tetragonal; 42m

Tetragonal; 422

Tetragonal; 4mm

Trigonal; 3

Trigonal; 32

Trigonal; 3m

Hexagonal; 6

ZI3

ZI3

pAl

ZI3

ZIl

—"22

Zu

— 722

ZI3

—ZIl

ZI3

—ZIl

713

—ZIl

Z3

Z3

741

Z51

241

Z51

Z41

Z51

z41

zsi
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51

—241

741

—241

Z51

51

—241

—241

Z51

—72

—ZIl

-Z 11

— 72

—ZI
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Hexagonal; 6m?2 zll -z 0
0 0 0
0 0 0
Hexagonal; 6 0 0 0
0 0 0
ZI13 ZI3 z33
Hexagonal; 622 0 0 0
0 0 0
0 0 0
Hexagonal; 6mm 0 0 0
0 0 0
Z13 ZI13 733
Cubic; 23 and 43m 0 0 0
0 0 0
0 0 0

The r tensor has similar terms.

IN CRYSTALS

0 0

0 0

0 0

741 751
51 —z41
0 0

741 0

0 —z41
0 0

0 Zsi
751 0

0 0

741 0

0 z41

0 0

183

-Z 11

z41

The photoelastic constants are similar to the elastic constant tensors
except that mrma Z m,, in general. However, for the tetragonal, trigonal,
hexagonal and cubic systems, Pockels found that mn = nu_\. This follows
from the transformation equations about the Z axis which is the n fold
axes for these groups. For a rotation of an angle 8 about Z, the direction

cosines are

=2 M se mi= BB s P
dxi = % T o T uxs
i‘ dx?2 dxi dx2
2= = —sin8 m2= —_= coS g «@ = —
Oox1 ox2 8X2
, dx3 _ 0 3 (rjXS (r)1 dxz

—_ = m _— =
dxi dx2 n>= aTs

=0

=0 (92)

=1
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Transforming the two terms #1122 = m[2 and »4» = «21 by the tensor
transformation equation

dxi dxj dxk dxt

. 93
5)Qti Wmn 5Xq uxXp ffimnop (©3)

MijkC
we find, for these two coefficients,
m[2 = («in + mn — 4»;«) sin28 cos28 -f- 2(«« — nim)

sin 6 cos38 + 2(i«@ — «jis) sin38 cos 8 -f- «j12 cos48+ mn sin49

«2l = (mn + «2 —4mm) sinZ cos28 f- 2(»;0—«i&) )
sin38 cos 8 -f- 2(«26 — »ijei) sin 6 cos30 - «j2l cos46+ «jl2 sin48
If M — «j21 for all angles of rotation we must have
16+ i = «6l "t «j62
For all the classes that «j12 = mw\ either «20 = —l6 and «g = —mm or

else «16 = «26 = «0l = «62 = 0.

Now, if Z is a four-fold axis, as it is in the tetragonal and cubic systems,
then, for a 90° rotation, the value of mn or «j2l must repeat. From the first
of (92) this means that

«il2 = «2land «2L = «12
For a trigonal or hexagonal system additional relations are obtained between

«jeoand »jll, ¢2and mn in the usual manner. Hence the photoelastic matrices
become, for the various crystal classes,

(95)

Triclinic 36 mu MR 7713 ma 5 6 The t ten-
Constant sor is en-

2L T2 T3 A (7] 5 tirely anal-

mi TR B T 5 % ogous

mi M2 7183 s s %6

m i M2 715 T 7% 1%

mi TR 7163 ma T 7l
Monoclinic mi M2 7113 0 s 0 The w ten-
20 Con- . sor is en-
stants mi M2 713 0 5 0 tirely anal-

mi R W 0 % 0 ogous

0 0 0 T 0 %6

mi T 0 1% 0



Ortho-
rhombic 12
Constants

Tetragonal
4,4,4/ni 9
Constants

Tetragonal
42»i, 422
4mm,
(4/m)mm

7 Constants

Trigonal
3,3 11 Con-
stants

Trigonal
32,3in
3(2/m) 8
Constants

win
»ml!
«31
0
0

met

init
12
»1

»ill

N2

«lll
'HIR

=1
{2
>3l
>4l
0
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)Xdz
»22
»

»1,2
inn

))131

- »lﬁ'].

W12
»In
»131

—»lll

=2
>d1
=3l

—>dl
0

13
HZ3

s

»13
»,3
»13B

))113
1»13

>3
13
=3B

inn

—»in

win
—«15

«25

>d4
—x{4

o o o o

»1.6

o O o o

»in

o o o o

»in

- ))].5

»120

«15

«ll

» Il

o O o o

>4

0
0
0
0
0

»16«

»116
—1<6

o o o o o

»i«

>«@
=41
A1 —>12

185
The x ten-
sor is en-
tirely anal-
ogous
The x ten-
sor is en-
tirely anal-
ogous
The it ten-
sor is en-
tirely anal-
ogous
The T tcn-
sor is anal-
ogous  ex-
cept that
™ = MR
&% = 241
7% —
(tth — 7))
The it ten-
sor is ana-
logous ex-
cept that
B = 241
X66 =
X1 — X]2
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He?(a onal »»1l w12 »»13 0 0 0 The. * ten-
6, >»2,6 sor is anal-
622 s 6/ M, 12 »11 w13 0 0 0 ogous  ex-
cept that

6mm, w mm »@31 Sl »133 0 0 0 e -
6 Constants 0 0 0 ol 0 0 U — 712

0 0 0 0 ", 0

w1l — »»l2
0 0 0 0 0
2

Cubic Sys- swll w12 w12 0 0 0 The » ten-
tem 23,432 sor is en-

swl2  oHU  owl2 0 0 0 tirely anal-
m_3’43»»’ﬁ3-m ogous

>w12 12 »»11 0 0 0 5
3 Constants (95)

0 0 0 P 0 0

0 0 0 0 111 0

0 0 0 0 0 1111
Isotropic il w12 »»12 0 0 0 The_ tt ten-
Systems 2 sor is anal-
Constants 12 »adl w12 0 0 0 ogous  ex-

cept that
»»12 >'»12 »»1l 0 0 0 M _
»»1l— »il12 oL — T
0 0 0 0
2
»111 — »»l12
0 0 0 0 0
2
will — «j12
0 0 0 0 0

2

From measurement7 on the photoelastic effects at high pressure for cubic
crystals, it has become apparent that the second derivatives of equation
(44) are not sufficient to represent the experimental results and derivatives
up to the fourth power should be included. This extension, however, is not
considered in the present paper.

VII. PIHOTOELASTICITY IN ISOTROPIC MEDIA

The photoelastic effect in isotropic solids has been used extensively in
studying the stresses existing in machine parts and other pieces. For this
purpose a plastic model cut in the shape of the original is used and is loaded
in a similar manner to that of the machine part to be studied. Since stresses
are applied, the in photoelastic constants are most useful. If we look along

7H. B. Maris, Jour. Optical Society of Amcr., Vol. 15, pp. 194-200, 1927.
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the Z axis, the last of equations (79) shows that the birefringence is equal

to
3

Bz=\ V(ft+ Ax- ft - A)*+ 4(AeP (96)

Since, for an isotropic substance /3i = fa , we have, after substituting the

value of Ai and A2, with the appropriate photoelastic constants from equa-
tion (95), (last tensor):
3

B: = | (in - iri*)V(r, - T2 + 47V 97)

If we transform to axes rotated by an angle 9 about Z, the values of T\\
and Tu are given by

Tn = cos -0TX+ 2 sin 9 cos 9T6 + sin29T2

(98)
7?2 = sin BTi — 2 sin 9 cos 9Ta + cos A I\
If, now, we choose the angle 9 so that Tn is a maximum, we find
tan 29 = 99
11—12 (99)
Inserting this value of tan 20 in (98) we find
r'l = + iVm - T)2+ 4Tc2
(100)
r2="71- | Ya- i\/[(ri - r2+ 4N
and, hence,
T[ - T[ = V (fi - ~)2+ 4Te (101)

Hence the birefringence obtained in stressing a material is proportional to
the difference in the principal stresses. By observing the isoclinic lines of a
photoelastic picture, methods8 are available for determiningthestresses
in a model. A photograph9 of a stressed disk is shown by Fig.3.The high
concentration of lines near the surface shows that the shearing stress is
very high at these points. By counting the number of lines from the edge
and knowing the stress optical constant, the stress can be calculated at any
point.

If we apply a single stress 7\, the birefringence is given by the equation

B, = (i (lu - #i97\ (102)

8Sec Photoelasticity, Coker and Filon, Cambridge University Press, 1931.
9This photograph was taken by T, F. Osmer.
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Instead of using the constants xu and iri2 it is customary to usé a single
constant C given by

B=M- H=r=CT (103)

where the constant C is called the relative stress optical constant and r the
retardation. The dimensions of C are the reciprocal of a stress and are

Fig. 3—Photoelastic picture of a disk in compression.

measured in cm- per dyne. A convenient unit for most purposes is one of
10~13cm2dyne; if this is used, the stress optical coefficients of most glasses
are from 1to 10 and most plastics are from 10 to 100. This unit so defined
has been called the “Brewster”. In terms of the Brewster, the retardation is

»= CTd (104)

’

If C is measured in Brewsters, d in millimeters and T in bars (106 dynes
cm2) then r, as given by the formula, is expressed in angstrom units,
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[SECOND INSTALLMENT]

CHAPTER IV
FILTER-TYPE CIRCUITS

Synopsis of Chapter

A SIDE FROM HELICES, the circuits most commonly used in traveling-

* wave tubes are iterated or filter-type circuits, composed of linear
arrays of coupled resonant slots or cavities.

Sometimes the geometry of such structures is simple enough so that an
approximate field solution can be obtained. In other cases, the behavior of
the circuits can be inferred by considering the behavior of lumped-circuit
analogues, and the behavior of the circuits with frequency can be expressed
with varying degrees of approximation in terms of parameters which can be
computed or experimentally evaluated.

In this chapter the field approach will be illustrated for some very simple
circuits, and examples of lumped-circuit analogues of other circuits will be
given. The intent is to present methods of analyzing circuits rather than
particular numerical results, for there are so many possible configurations
that a comprehensive treatment would constitute a book in itself.

Readers interested in a wider and more exact treatment of field solutions
are referred to the literature.12

fhe circuit of Fig. 4.1 is one which can be treated by field methods. This
“corrugated waveguide” type of circuit was first brought to the writer’s
attention by C. C. Cutler. It is composed of a series of parallel equally spaced
thin fins of height h projecting normal to a conducting plane. The case treated
18 that of propagation of a transverse magnetic wave, the magnetic field
being parallel to the length of the fins. It is assumed that the spacing | is
small compared with a wavelength. In Fig. 4.2, (3his plotted vs. Pah. Here /3

Is the phase constant and /30 = w/c is a phase constant corresponding to the
velocity of light.

1E. L. Chu and W. W. Hansen, “The Theory of Disk-Loaded Wave Guides,” Journal
vj Applied Physics, Vol. IS, pp. 999-1008, Nov. 1947.

*L. Brillouin, “Wave Guides for Slow Waves,” Journal of Applied Physics, Vol. 19,
PP. 1023-1041, Nov. 194S.
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For small values of doh, that is, at low frequencies, very nearly d = do;
that is, the phase velocity is very near to the velocity of light. The field
decays slowly away from the circuit. The longitudinal electric field is small
compared with the transverse electric field. In fact, as the frequency ap-
proaches zero, the wave approaches a transverse electromagnetic wave
traveling with the speed of light.

At high frequencies the wave falls oil rapidly away from the circuit, and
the transverse and longitudinal components of electric field are almost equal.
The wave travels very slowly. As the wavelength gets so short that the
spacing | approaches a half wavelength (fi( = r) the simple analysis given
is no longer valid. Actually, 3C = x specifies a cutoff frequency; the circuit
behaves as a lowpass filter.

Figure 4.3 shows two opposed sets of fins such as those of Fig. 4.1. Such
a circuit propagates two modes, a transverse mode for which the longi-
tudinal electric field is zero at the plane of symmetry and a longitudinal
mode for which the transverse electric field is zero at the plane of symmetry.

At low frequencies, the longitudinal mode corresponds to the wave on a
loaded transmission line. The fins increase the capacitance between the con-
ducting planes to which they are attached but they do not decrease the
inductance. Figure 4.6 shows (3h vs. (3h for several ratios of fin height, h,
to half-separation, d. The greater is h/d, the slower is the wave (the larger
is d/do).

The longitudinal mode is like a transverse magnetic waveguide mode; it
propagates only at frequencies above a cutoff frequency, which increases
as h/d is increased. Figure 4.7 shows j3h vs. 1h = (w/c)h for several values
of h/d. The cutoff, for which j3C = r, occurs for a value of (3oh less than ir/2.
Thus, we see that the longitudinal mode has a band pass characteristic. The
behavior of the longitudinal mode issimilar to that of a longitudinal mode of
the washer-loaded waveguide shown in Fig. 4.8. The circuit of Fig. 4.8 has
been proposed for use in traveling-wave tubes.

The transverse mode of the circuit of Fig. 4.3 can also exist in a circuit
consisting of strips such as those of Fig. 4.1 and an opposed conducting
plane, as shown in Fig. 4.5. This circuit is analogous in behavior to the disk-
on-rod circuit of Fig. 4.9. The circuit of Fig. 4.5 may be thought of as a
loaded parallel strip line. That of Fig. 4.9 may be thought of as a loaded
coaxial line.

Wave-analysis makes it possible to evaluate fairly accurately the trans-
mission properties of a few simple structures. However, iterated or repeating
structures have certain properties in common: the properties of filter
networks.

For instance, a mode of propagation of the loaded waveguide of Fig. 4.10
or of the series of coupled resonators of Fig. 4.11 can be represented ac-
curately at a single frequency by the ladder networks of Fig. 4.12. Further,
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if suitable lumped-admittance networks are used to represent the admit-
tances Bi and B%, the frequency-dependent behavior of the structures of
Figs. 4.10 and 4.11 can be approximated.

It is, for instance, convenient to represent the shunt admittances B2and
the series admittances Bi in terms of a “longitudinal” admittance B and
a “transverse” admittance Br mB Land Br are admittances of shunt resonant
circuits, as shown in Fig. 4.15, where their relation to lh and Bwand ap-
proximate expressions for their frequency dependence are given. The res-
onant frequencies of BL and BT, that is, and , have simple physical
meanings. Thus, in Fig. 4.10, is the frequency corresponding to equal
and opposite voltages across successive slots, that is, the x mode frequency,
wt is the frequency corresponding to zero slot voltage and no phase change
along the fdter, that is, the zero mode frequency.

If uL is greater than wr, the phase characteristic of this lumped-circuit
analogue is as shown in Fig. 4.17. The phase shift is zero at the lower cutoff
frequency uTand rises to ir at the upper cutoff frequency .IfuTis greater
than uL, the phase shift starts at —m at the lower cutoff frequency coL and
rises to zero at the upper cutoff frequency «?-, as shown in Fig. 4.19. In this
case the phase velocity is negative. Figure 4.20 shows a measure of (E?/p-P)
plotted vs. o for oiL > wr . This impedance parameter is zero at uTand rises
to infinity at

The structure of Fig. 4.11 can be given a lumped-circuit equivalent in a
similar manner. In this case the representation should be quite accurate.
We find that $+ is always greater than wj>and that one universal phase curve,
shown in Fig. 4.27, applies. A curve giving a measure of (E2fi2P) vs. fre-
quency is shown in Fig. 4.28. In this case the impedance parameter goes to
infinity at both cutoff frequencies.

The electric field associated with iterated structures does not vary sinus-
oidally with distance but it can be analyzed into sinusoidal components.
The electron stream will interact strongly with the circuit only if the elec-
tron velocity is nearly equal to the phase velocity of one of these field com-
ponents. If dis the phase shift per section and L is the section length, the
phase constant fimof a typical component is

Pm= (0+ 2mx)/L

where m is a positive or negative integer. The field component for which
m = 0 is called the fundamental; for other values of m the components are
called spatial harmonics. Some of these components have negative phase
velocities and some have positive phase velocities.

The peak field strength of any field component may be expressed

E= —M(V/L)

Here V is the peak gap voltage, L is the section spacing and M is a function
of P (or pm) and of various dimensions. For the electrode systems of Figs.
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4.29, 430, 431 and 4.32 M is given by (4.69), (4.71), (4.72) and (4.73),
respectively.

The factor M may be indifferently regarded as a factor by which we
multiply the a-c beam current to give the induced current at the gap, or,
as a factor by which we multiply the gap voltage in obtaining the field. We
can go further, evaluate E2f32 in terms of gap voltage, and use M'A oas the
effective current, or we can use the current /oand take the effective field in
the impedance parameter as

El= M2{V/ty

It is sometimes desirable to make use of a spatial harmonic (m * 0)
instead of a fundamental, usually to (1) allow a greater resonator spacing
(2) to obtain a positive phase velocity when the fundamental has a negative
phase velocity (3) to obtain a phase curve for which the phase angle is
nearly a constant times frequency; that is, a phase curve for which the group
velocity does not change much with frequency and hence can be matched
by the electron velocity over a considerable frequency range. Figure 4.33
shows how 8 + 2ir (the phase shift per section for m — 1) can be nearly a
constant times weven when 0 is not.

1-1 K

Fig. 4.1—A corrugated or finned circuit with fillcr-like properties.

4.1 Field Solutions

An approximate field analysis will be made for two very simple two-
dimensional structures. The first of these, which is shown in Fig. 4.1, is
empty space fory > 1and consists of very thin conducting partitions in the
y direction fromy = 0 to y — —It; the partitions are connected together
by a conductor in the z direction at y = —It. These conducting partitions
are spaced a distance (apart in the z direction. The structure isassumed to
extend infinitely in the + .f and —x directions.

In our analysis we will initially assume that the wavelength of the propa-
gated wave is long compared with C In this case, the effect of the partitions
is to prevent the existence of any y component of electric field below the z
axis, and the conductor at y = —h makes the z component of electric field
zero aty — —z.

In some perfectly conducting structures the waves propagated are either
transverse electric (no electric field component in the direction of propaga-
tion, that is, z direction) or transverse magnetic (no magnetic field com-
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ponent in the z direction). We find that for the structute under consideration
there is a transverse magnetic solution. We can take it either on the basis
of other experience or as a result of having solved the problem that the
correct form for the x component of magnetic field fory > 0 is

Hr = (4.1)

Expressing the electric field in terms of the curl of the magnetic field, we have

. . OHz Oil
jueEi = — - =
Oy Oz
(4.2)
. LMix Ollz
JWeE,, = e
dz Ox
Ej= — u llCe ~ (4.3)
we
. Oily 01'x L
jcceEz = —-%£ — (4.4)
Ox Oy
Ez= ji- & zlid@el-yw=j 4.5
_ 1 @ W= jiV (4.5)
We can in turn express 1IXin terms of Euand E.
. OEz 0OE )
Gwixlh = —2 . X 14.6)
Oy Oz
This leads to the relation
2 —72= wVe (d.7)
Now, is the velocity of light, and w dividedby the velocity of light
has been called do, so that
d2- 72= do2 (4.8)
Between the partitions, the field does not vary in the z direction. In any
space between fromy = 0toy = —It the appropriate form for the magnetic
field is

H.-H,™ Mz+E (4,9)
cos poh

From this we obtain by means of (4.4)

Ez= _ igo77QSin £o(y+ /0 (410)
we QS pPoll

Application of (4.6) shows that this is correct.
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Now, aty = 0 we have just above the boundary
Ez= -j 1 lhe~ik (4.11)
0)6

The fields in the particular slot just below the boundary will be in phase
with these (we specify this by adding a factor exp —j/3z to 4.10) and hence
will be

Ez = lloe~iRz tan/Soh (4.12)
oe

From (4.11) and (4.12) we see that we must have

doh tan doh — yh (4.13)

0.2 4 0.6 0.8 to 1.2
A)h
Fig. 4.2—The approximate variation of the phase constant /3 with frequency (propor-

tional to /3h) for the circuit of Fig. 4.1. The curve is in error as fit approaches ir, and there
is a cutoff at Ot = .

Using (4.8), we obtain

gh = ABoh (4.14)
cos doh

In Fig. 4.2, (Hi has been plotted vs /30li, which is, of course, proportional to
frequency. This curve starts out as a straight line, d = do ; that is, for low
frequencies the speed is the speed of light. At low frequencies the field falls
off slowly in the y direction, and as the frequency approaches zero we have
essentially a plane electromagnetic wave. At higher frequencies, 3 > (lo,
that is, the wave travels with less than the speed of light, and the field falls
off rapidly in the y direction. According to (4.14), d goes to infinity

at do* = k/2.
As a matter of fact, the match between the fields assumed above and below
the boundary becomes increasingly bad as /3Cbecomes larger. The most rapid
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alteration we can have below the boundary is one in which fields in alternate
spaces follow a + — pattern. Thus, the rapid variations of field above
the boundary predicted by (4.14) for values of fioh which make j31 greater
than 7 cannot be matched below the boundary. The frequency at which
fit = 7Tconstitutes the cutoff frequency of the structure regarded as a filter.
There is another pass band in the region x < rioh < 3 t/2, in which the ratio
of E to Il below the boundary has the same sign as the ratio of E to Il above
the boundary.

A more elaborate matching of fields would show that our expression is
considerably in error near cutoff. This matter will not be pursued here; the
behavior of filters near cutoff will be considered in connection with lumped
circuit representations.

We can obtain the complex power flow P by integrating the Poynting
vector over a plane normal to the z direction in the regiony > 0. Let us
consider the power flow over a depth W normal to the plane of the paper.
Then

P =U, /[ (EXI1* - Eylit) dx dy (4.15)
Il jo Jo

Using (4.1) and (4.3), we obtain

(4.16)
TIIRW

4 we7

We will express this in terms of E the magnitude of the z component of
the field at y — 0, which, according to (4.5), is

E=?-Ho (4.17)

(4.18)

(4.19)

(4.20)

We notice that this impedance is very small for low frequencies, at which
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the velocity of the wave is high, and the field extends far in the y direction
and becomes higher at high frequencies, where the velocity is low and the
field falls off rapidly.

We will next consider a symmetrical array of two opposed sets of slots
(P'ig. 4.3) similar to that shown in Fig. 4.1. Two modes of propagation will
be of interest. In one the field is symmetrical about the axis of physical
symmetry, and in the other the fields at positions of physical symmetry are
equal and opposite.

In writing the equations, we need consider only half of the circuit. It is
convenient to take the z axis along the boundary, as shown in Fig. 4.4.

4 - 2yyyy/l 111

f-
h

L

Fig. 4.3— A double finned structure which will support a transverse mode (no longi-
tudinal electric field on axis) and a longitudinal mode (no transverse electric field on axis).

| i iid b L
Fig. 4.4—-The coordinates used in connection with the circuit of Fig. 4.3.
This puts the axis of symmetry aty = +d, and the slots extend fromy = 0
toy = —h.

For negative values of y, (4.9), (4.10), (4.12) hold.

Let us first consider the case in which the fields above are opposite to the
fields below. This also corresponds to waves in a series of slots opposite a con-
ducting plane, as shown in Fig. 4.5. In this case the appropriate form of the
magnetic field above the boundary is

cosh7(d —y) - jiz

4.21
cosh yd’ (4.21)

Hx = Ho

From Maxwell’s equations we then find

B Ir coshy(d —y) -a.
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. i ~n oL
o FT ;97)03|nh t(i1 Jy) (4.23)
cosh 7

« = d2- 72 (4.24)

Aty = 0 we have from (4.23) and (4.12)

Ez= -j -1 lhe~ipztanh 77/ (4.25)
ooc
Ez= -j Hoe~iPz tan dofi (4.12)
Hence, we must have
7/7 tanh ((777/797/7) = do/' tan do/' (4.26)

Fig. 4.5— The transverse mode of the circuit of Fig. 4.3 exists in this circuit also.

Here we have added parameter, (d/li). For any value of d/h, we can obtain
7/7 vs doh] and we can obtain fill in terms of 7/7 by means of 4.24

fih = ((7/i)' + (do/) ) 1 (4.27)
We see that for small values of fioh (low frequencies)
72 = (Ji/d) do (4.2S)

12
h fd
fi = fio (4.29)

If we examine Fig. 4.5, to which this applies, we find (4.28) easy to explain.
At low frequencies, the magnetic field is essentially constant from y = d
toy - —h}and hence the inductance is proportional to the height h + d.
The electric field will, however, extend only fromy = 0 toy = d; hence
the capacitance is proportional to 1/d. The phase constant is proportional
to VIC, and hence (4.29). At higher frequencies the electric and magnetic
fields vary with y and (4.29) does not hold.

We see that (4.26) predicts infinite values of 7 for fill = r/2. As in the
previous cases, cutoff occurs at fit = x.
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As an example of the phase characteristic of the circuit, ph from (4.26)

and (4.27) is plotted vs fioh- for h/d = 0, 10, 100 in Fig. 4.6. The curve for
li/d = 0 is of course the same as Fig. 4.2.

If we integrate Poynting’s vector fromy = 0toy = d and for a distance

W in the * direction, and multiply by 2 to take the power flow in the other
half of the circuit into account, we obtain

EVP= WT< («0)

O 02 04 06 08 10 (2 1.4 16

y30h
Fig. 46— The.variation of O with frequency (proportional to I}qh) for the transverse
mode of the circuit of Fig. 4.3. Again, the curves are in error near the cutoffat 01 = r.

At very low frequencies, at which (4.28) and (4.29) hold, we have
E'/P-P = (y/pop3(d/W) VijA
E'/p-p = (h/d)I2(1 + d/k)w (d/W) V/Ve

At high frequencies, for which yd is large, (4.30) approaches 5-of the value

given by (4.20). There is twice as much power because there are two halves
to the circuit.

Let us now consider the case in which the field is symmetrical and E z does
not go to zero on the axis. In this case the appropriate field fory > 0 is

K=lb - y)e& 43

sinh- 7a
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Proceeding as before, we find

yh
tanh {(d/h) yh) — doh tan doh (4.33)

We see that, in this case, for small values of yh we have

doh tanh doh = It/d (4.33a)

There is no transmission at all for frequencies below that specified by (4.33).
As tire frequency is increased above this lower cutoff frequency, yh and
hence (Hi increase, and approach infinity at do/« = ir/2. Actually, of course,
the upper cutoff occurs at fiC = tt. In Fig. 4.7 Oh is plotted vs do// for h/d — 0,

130 h

I'ig. 4.7— The variation of 3 with frequency (proportional to (30h) for the longitudinal
mode of the circuit of Fig. 4.3. This mode has a band pass characteristic; the band narrows
as the opening of width 2d is made small compared with the fin height. Again, the curves
are in error near the upper cutoff at 01 —ir.

10, 100. This illustrates how the band is narrowed as the opening between
the slots is decreased.
By the means used before we obtain

£2d2P = (2/do iFXy/d)3

We see that this goes to infinity at yd — 0. For large values of yd it be-
comes the same as (4.30).
4-2 Practical Circuits

Circuits have been proposed or used in traveling-wave tubes which bear
a close resemblance to those of Figs. 4.1, 4.3, 4.5 and which have very similar
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properties3 Thus Field4 describes an apertured disk structure (Fig. 4.8)
which has band-pass properties very similar to the symmetrical mode of the
circuit of Fig. 4,3. In this case there is no mode similar to the other mode,
with equal and opposite fields in the two halves. Field also shows a disk-on-
rod structure (Fig. 4.9) and describes a tube using it. This structure has low-

ing. 48— This loaded waveguide circuit has band-pass properties similar to those of
Fig. 4.7.

Fig. 49— This disk-on-rod circuit has properties similar to those of Fig. 4.6.

(a) (b)
Fig. 4.10 —A circuit consisting of a ridged waveguide with transverse slots or resonators
in the ridge.

pass properties vertl similar to those of the circuit of Fig. 4.5, which are
illustrated in Fig. 4.6.

Figure 4.10 shows a somewhat more complicated circuit. Here we have a
rectangular waveguide, shown end on in a of Fig. 4.10, loaded by a longi-
tudinal ridged portion R. In b of Fig. 4.10 we have a longitudinal cross sec-

sF. B. Llewellyn, U. S. Patents 2,367,295 and 2,395,560.

*Lester M. Field, "Some Slow-W ave Structures tor Traveling-W ave Tubes,” Proc.
I.R.E., Vol. 37, pp. 34-40, Jan. 1949.
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tion, showing regularly spaced slots S cut in the ridge R. The slots 5 may be
thought of as resonators.

Figure 4.11 shows in cross section a circuit made of a number of axially
symmetrical reentrant resonators R, coupled by small holes Il which act as
inductive irises.

It would be very difficult to apply Maxwell’s equations directly in de-
ducing the performance of the structures shown in Figs. 4.10 and 4.11.
Moreover, it is apparent that we can radically change the performance of

Fig. 4 .11— A circuit consisting of a number of resonators inductively coupled by means
of holes.

Fig. 4.12— Ladder networks terminated in x (above) and T (below) half sections. Such

networks can be used in analyzing the behavior of circuits such as those of Figs. 4.10
and 4:11.

such structures by minor physical alterations as, by changing the iris size,
or by using resonant irises in the circuit of Fig. 4.11, for instance.
As a matter of fact, it is not necessary to solve Maxwell’s equations afresh

each time in order to understand the general properties of these and other
circuits.

43 Lumped lterated Analogues

(onsider the ladders of lossless admittances or susceptances shown in
Fig. 4.12. Susceptances rather than reactances have been chosen because the
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elements we shall most often encounter are shunt resonant near the fre-
quencies considered; their susceptance is near zero and changing slowly but
their reactance is near infinity.

If these ladders are continued endlessly to the right (or terminated in a
reflectionless manner) and if a signal is impressed on the left-hand end, the
voltages, currents and fields at corresponding points in successive sections
will be in the ratio exp(-r) so that we can write the voltages,

Vn = Vo c~nr (4.35)

If the admittances V1and F2 are pure susceptances (lossless reactors), I1
iseither purely real (an exponential decay with distance) or purely imaginary
(a pass band). In this case T is usually replaced by j/3. In order to avoid
confusion of notation, we will use j6 instead, and write for the lossless case
in the pass band

Vn = Vo e~in0 (4.35a)
Thus, 9 is the phase lag in radians in going from one section to the next.
In terms of the susceptances,*
cos 9= 1+ Bo/2lh (4.36)
We will henceforward assume that all elements are lossless.

Two characteristic impedances are associated with such iterated networks.
If the network starts with a shunt susceptance B\/2, as in a of Fig. 4.12, then
we see the mid-shunt characteristic impedance Kr

Kt = 2(-B2(Bo+ 4Bi))~m (4.37)

If the network starts with a series susceptance 2B\ we see the mid-series
characteristic impedance Kt

Kt=+(l/2Bi)(-B2+ 4Bi)/B " (4.38)

Here the sign is chosen to make the impedance positive in the pass band.

When such networks are used as circuits for a traveling-wave tube, the
voltage acting on the electron stream may be the voltage across Bo or the
voltage across B\ or the voltage across some capacitiveelement of B2 or
Bi. Wewillwish to relate this peak voltage V to the power flow P. If the
voltage across Bo acts on the electron stream

V-IP = 2Kr (4.39)

If the voltage across Y xacts on the electron stream

V = 1/jBx

* The reader can work such relations out or look them up in a variety of books or hand-
books. They are in Schelkunoff's Electromagnetic W aves.
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where | is the current in Bi

P=|P|Kt/2

and hence
VyP = 2/BJKt (4.40)
Vyp = -A(Bi/B/)(-Bi(Bi+ AB/))~" (4.41)
VYyp = -2(B2ZB DKt (4.42)

Here the sign has been chosen so as to make V2P positive in the pass band.

Let us now consider as an example tire structure of Fig. 4.10. We see that
two sorts of resonance are possible. First, if all the slots are shorted, or if no
voltage appears between them, we can have a resonance in which the field
between the top of the ridge R and the top of the waveguide is constant

Fig. 4.13— A ladder network broken up into ir sections.

all along the length, and corresponds to the cutoff frequency of the ridged
waveguide. There are no longitudinal currents (or only small ones near the-
slots S) and hence there is no voltage across the slots and their admittance
(the slot depth, for instance) does not affect the frequency of this resonance.
Looking at Fig. 4.12, we see that this corresponds to a condition in which
all shunt elements are open, or B2 = 0. We will call the frequency of this
resonance uT, the T standing for transverse.

There is another simple resonance possible; that in which the fields across
successive slots are equal and opposite. Looking at Fig. 4.12, we see that
this means that equal currents flow into each shunt element from the two
series elements which are connected to it. We could, in fact, divide the net-
work up into unconnected ir sections, associating with each series element of
susceptance B\ half of the susceptance of a shunt element, that is, B2 2,
at each end, as shown in Fig. 4.13, without affecting the frequency of this

resonance. This resonance, then, occurs at the frequency wj, (L for longi-
tudinal) at which

B, + Bi/A = 0. (4.43)

We have seen that tire transverse resonant frequency, ur , has a clear
meaning in connection with the structure of Fig. 4.10; it is (except for small
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errors due to stray fields near the slots) the cutoff frequency of the wave-
guide without slots. Does the longitudinal frequency w,, have a simple
meaning?

Suppose we make a model of one section of the structure, as shown in
Fig. 4.14. Comparing this with b of Fig. 4.10, we see that we have included
the section of the ridged portion between two slots, and one half of a slot
at each end, and closed the ends off with conducting plates C. The resonant
frequency of this model is cu/., the longitudinal resonant frequency defined
above.

We will thus liken the structure of Fig. 4.10 to the filter network of Fig.

Fig. 4.14— A section which will have a resonant frequency corresponding to that for jt
radians phase shift per section in the circuit of Fig. 4.10.

L0 T S R .
Bc=B|+" A Cologj Bt=B" r"pCf g

Bu= 2C 1 (dJ-£UI) Bt= 2Ct (0i-£Ut)

Fig. 4.15— The approximate variation with frequency (over a narrow band) of the
longitudinal (Br) transverse (Br) susceptances of a filter network.

4.12, and express the susceptances Bi and Bi in terms of two susceptances
Bt and Btj associated with the transverse and longitudinal resonances and
defined below

BT = B* (4.44)
B,. = B, + BilA (4.45)

At the transverse resonant frequency wT, Br = 0, and at the longitudinal
resonantfrequency toi., B = 0. Sofar, the lumped-circuitrepresentation
of thestructure ofFig. 4.14 can be considered exact inthe sense that at
any frequency we can assign values to Brand B which will give the correct
values for 0 and for V2P for the voltage across either the shunt or the series
elements (whichever we are interested in).
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We will go further and assume that near resonances these values of Br
and B,, behave like the admittances of shunt resonant circuits, as indicated
in Fig. 4.15. Certainly we are right by our definition in saying that BT = 0
atuT,and Bt = 0 at w/,. We will assume near these frequencies a linear
variation of Br and B L with frequency, which is very nearly true for shunt
resonant circuits near resonance*

Br = 2Cr(u - un (4.46)
Bl = 2C1(u — ui) (4.47)

Here CT can mean twice the peak stored electric energy per section length
for unit peak voltage between the top of the guide and the top of the ridge R
when the structure resonates in the transverse mode, and CL can mean twice
the stored energy per section length L for unit peak voltage across the top

g. 4.16—tongitudinal and transverse susceptances ive zero radians phase
shlftatihe lower cutoff (w= ur) and r radians phaseshlftatithppercut off (u =

of the slot when the structure resonates in the longitudinal mode.
In terms of Br and B , expression (4.36) for the phase angle 6 becomes
4B1 -j- Br ,
cos 8 = Ry o (4. 48)
40j1 — #Hr
We see immediately that for real values of 6 (cos 9 < 1), BTand B,, must
have opposite signs, making the denominator greater than the numerator.
Figure 4.16shows one possible case, in whichur < Wj.. In this case the
pass band(9 real)starts at the lower cutoff frequencyu = uT atwhich Br
is zero, cos 8 = 1 (from (4.48)) and 9 =0, and extends up to the upper

cutoff frequency o = ut, at which Blt = 0,cos 9= —land 6 = t.
*In case the filter has a large fractional bandwidth, it may be worth while to use the
aocurate | ircuit forms
Bt— —ai) (4.463)

B1 —wiCl(coAd —ul/w) (4.460)
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The shape of the phase curves will depend on the relative rates of varia-
tion of Br and B,, with frequency. Assuming the linear variations with fre-
quency of (4.46) and (4.47) the shapes can be computed. This has been done
for CJCr — 1, 3, 10 and the results are shown in Fig. 4.17.

Fig. 4.17—Phase shift per section, 0, vs radian frequency u for the conditions of Fig. 4.16.

_Fig. 4.18— ongitudinal and transverse . which give —t radians phese
shift at the lowner Cutoff (« = 8&? and O degrees shift at the upper cutoff @ = wr)
This mears a negative velocity.

It is of course possible to make oiL > oiTmlIn this case the situation is as
shown in Fig, 4.18, the pass band extending from oiL to 0iT* At @ = wi,
cos0= —1, 0= —ir. Ata = ,cos 0=1 and 0=0. In Fig. 4.19, as-
suming (4.46) and (4.47), 0 has been plotted vs oi for CUCT — 1, 3, 10.

The curves of Figs. 4.17 and 4.18 are not exact for any physical structure
of the type shown in Fig. 4.10. In lumped circuit terms, they neglect coupling
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between slots. They will be most accurate for structures with slots longitu-
dinally far apart compared with the transverse dimensions, and least ac-
curate for structures with slots close together. They do, however, form a
valuable guide in understanding the performance of such structures and in
evaluating the effect of the ratio of energies stored in the fields at the two cut-
off frequencies.

i if* A — ase st t Persecd®n, vs radian frequency, w for the conditions of Fig

It is most likely that the voltages across the slots would be of most in'
terest in connection with the circuit shown in Fig. 4.10. We can rewrite
(4.41) in terms of BTand BL

VI/P =21 - ABI/Bt){-BtBlw (4,49)

We see that V'i/P goes to 0 at BT = 0 (to = 0iT) and to infinity at BL = 0
(« = ub. In Fig. 4.20 assuming (4.46) and (4.47), (V2P)(wLCI19tCt) is
plotted vs to for CUCT = 1, 3, 10.

Let us consider another circuit, that shown in Fig. 4.11. We see that this
consists of a number of resonators coupled together inductively. We might
draw the equivalent circuits of these resonators as shown in Fig. 4.21. Here
L and C are the effective inductance and the effective capacitance of the

resonators without irises. They are chosen so that the resonant frequency
«0 is given by

oo — 's/LC (4.50)
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and the variation of gap susceptance B with frequency is
dB/du = 2C (4.51)

The arrows show directions of current flow when the currents in the gap
capacitances are all the same.

ardFiZ(tJ'l 7420—A quantity proportional to (E?/fFP) vs § for the conditions of Figs. 4.16

k  k ¢ Kk

Fig. 4.21—A representation of the resonators of Fig. 4.11.

We can now represent the circuit of Fig. 4.11 by interconnecting the
circuits of Fig. 4.21 by means of inductances L\, of Fig. 4.22. This gives a
suitable representation, but one which is open to a minor objection: the
gap capacitance does not appear across either a shunt or a series arm.

It is important to notice that there is another equally good representa-
tion, and there are probably many more. Suppose we draw the resonators as
shown in Fig. 4.23 instead of as in Fig. 4.21. The inductance L and capaci-
tance C are still properly given by 4.50 ancl 4.51. We can now interconnect
the resonators inductively as shown in Fig. 4.24.

We should note one thing. In Fig. 4.21, the currents which are to flow in
the common inductances of Fig. 4.22 flow in opposite directions when the
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gap currents are in the same directions. In the representation of Fig. 4.23
the currents which will flow in the common inductances of Fig. 4.24 have
been drawn in opposite directions, and we see that the currents in the gap
capacitances flow alternately up and clown. In other words, in Fig. 4.24,
every other gap appears inverted. This can be taken into account by adding
a phase angle —ir to 9 as computed from (4.48).

2L 2L 2L 2L 2L 2L

@) 0 O O O

Fig. 4.23—Another representation of the resonators of Fig. 4.11.

2L 2L 2L 2L 2L 2L

Fig. 4.24—Figure 4.23 with inductive coupling added.

_ La La M
- —nN

(@) m () m
lig 425—A T —ir transformation used in connection with the circuit of Fig. 4.24.

Now, the T configuration of inductances in a of Fig. 4.25 can be replaced
by the it configuration, b of Fig. 4.25. Imagine | and Il to be connected
together and a voltage to be applied between them and I1l1. We sec that

U = La+ 2LM (4.52)
Imagine a voltage to be applied between | and Il. We see that
1/La = YU + 2/im (4.53)

If I'Ma« La, then Lb will be nearly equal to Laand L Mo» Lb.
By means of such a | — it transformation we can redraw the equivalent
circuit of Fig. 4.24 as shown in Fig. 4.26. The series susceptance B\ is now
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that of L\, and the shunt susceptance is now that of the shunt resonant
circuit consisting of C2 (the effective capacitance of the resonators) and Z2.

Fig. 4.26—The final representation of the circuit of Fig. 4.11.

Fig. 4.27—The phase characteristic of the circuit of Fig. 4.11.

The transverse resonance, B2 = 0, occurs at a frequency
@y — V"C2£2 (4.54)
Near this frequency the transverse susceptance is given by
Bt —2C2 —O) (4.55)
The longitudinal resonance occurs at a frequency

ml ICIL 1L 2 (L\ -f- 2L2) (4.56)
and near

Bl — C2w — wg) (4.57)

These are just the forms we found in connection with the structure of Fig.
4.10; but we see that, in the case of the circuit of Fig. 4.11, the effective
transverse capacitance is always twice the effective longitudinal capacitance
(C/Ct = 1/2 in Fig. 4.19), and that oy. > oir for attainable volume of in-
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We obtain 9 vs w by adding —tr to the phase angle from 4.48,using(4.55)
and (4.57) in obtaining Brand Bh mThe phase angle vs. frequency isshown
in Fig. 4.27. As the irises are made larger, the bandwidth, <. — , becomes

larger, largely by a decrease in co®.
The voltage of interest is that across C2, that is, that across the gap.
From (4.37), (4.44), (4.45), (4.55) and (4.57) we obtain

V-/P =2/(—BtBi,)u- (4.58)
V'/P = — «)(W — ut))~ii~ (4.59)
This goes to infinity at both to = and w — oTmlIn Fig. 4.28,

{V'-/P)Ci-\/(jiLwr is plotted vs to. This curve represents the performance of
all narrow band structures of the type shown in Fig. 4.11.

o ~ a
Fig. 4.28— A quantity proportional to (E?/{PP) for the circuit of Fig. 4.11, plotted vs
radian frequency w.

In a structure such as that shown in Fig. 4.11, there is little coupling
between sections which are not adjacent, and hence the lumped-circuit
representation used is probably quite accurate, and is certainly more ac-
curate than in structures such as that shown in Fig. 4.10.

Other structures could be analyzed, but it is believed that the examples
given above adequately illustrate the general procedures which can be
employed.

4.4 Traveling Field Components

Filter-type circuits produce fields which are certainly not sinusoidal with
distance. Indeed, with a structure such as that shown in Fig. 4.11, the elec-
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trons are acted upon only when they are very near to the gaps. It is possible
to analyze the performance of traveling-wave tubes on this basis“. The chief
conclusion of such an analysis is that highly accurate results can be obtained
by expressing the field as a sum of traveling waves and taking into account
only the wave which has a phase velocity near to the electron velocity. Of
course this is satisfactory only if the velocities of the other components are
quite different from the electron velocity (that is, different by a fraction
several times the gain parameter C).

As an example, consider a traveling-wave tube in which the electron stream
passes through tubular sections of radius a, as shown in Fig. 4.29, and is
acted upon by voltages appearing across gaps of length Cspaced L apart.

[*- L »)< L >)* L >|

Al e e AU

vn-t Vn Wi+l vn+2
Fig. 4.29— A series of gaps in a tube of inside radius a. The gaps are Clong and are
spaced L apart. Voltages Vn, etc., act across them.

A wave travels in some sort of structure and produces voltages across the
gaps such that that across the u-th gap, V, is

Vn = VO0e-jn0 (4.60)

where n is any integer.
We analyze this field into traveling-wave components which vary with
distance as cxp(-j(3m) where

(Bm— (fi+ 2mx)/L (4.61)

where m is any positiveor negative integer. Thus, the total fieldwill be

E = E Em= E Ame~”"zlohnr) (4.62)
T«*=—@0 »1=—=0
ym= PJ - (A2 (4-63)

Here lo(ymr) is a modified Bessel function, and ymhas beenchosen so that
(4.62) satisfies Maxwell’s equations.

sJ. R. Pierce and Nelson Wax, “A Note on Filter-Type Traveling-W ave Amplifiers,”
Proc. I.R.E., Vvol. 37, pp. 622-625, June, 1949.
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We willevaluate the coefficients by the usual means of Fourier analysis.
Suppose we let 2 = 0 at the center of one of the gaps. We see that
/ Li2 @ .LI2
EE* dz — E / AmA*Jo(ymr) dz
L2 »E>—00 J—1 12

= 2 fm/l *11(ymr)L
m=—00
All of the terms of the form EmEp, A~ ? integrate to zero because the
integral contains a term exp(-j27r(> — m)/L)z.
Let us consider the field at the radius r. This is zero along the surface of
the tube. We will assume with fair accuracy that it is constant and has a
value —V /t across the gap. Thus we have also at r = a,

i12 ® 12
/ EE*dz = - (vit) E h{yma) dz
oL/2 m—o J12 (4.65)
= - / E 1)10(yma) ( e
(vio E (ANIotyma) - ?
We can rewrite this
LI_/'~ EE*dz = - (V/t) E A*10(yma) (4.66)
2 00 A
By comparison with (4.64) we see that
Am= —(F/L)(sin@@mt/2)/1o(ya)) (4.67)

This is the magnitude of the ;«th field component on the axis. The magnitude
of the field at a radius r would be lo{yf) times this.

The quantity fim€ is an angle which we will call 0Oa, the gap angle. Usually
we are concerned with only a single field component, and hence can merely
write 7 instead of ymmThus, we say that the magnitude E of the travelling
field produced by a voltage V acting at intervals L is

E = —M{V/L) (4.68)
_ i 1
U SV e (4.69)

Q= (3 (4.70)

The factor M is called the gap factor or the modulation coefficient*.
For slow waves, 7 isvery nearly equal to j3 and wecan replace yr and 7a
by ( and \3aFor unattenuated waves, M is areal positivenumber; and,

*This factor is often designated by 0, but we have used B3otherwise.
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for the slowly varying waves with which we deal, we will always consider
M as a real number.

The gap factor for some other physical arrangements is of interest. At a
distance y above the two-dimensional array of strip electrodes shown in
Fig. 4.30

sin (69/2) -yy

(4.71)
(dg/2)

Fig, 4.30— A series of slots 60 radians long separated by walls L long.

Fig. 4.31— A system similar to that of Fig. 4.30 but with the addition of an opposed
conducting plane.

If we add a conducting plane a aty = h, as in Fig. 4.31,

M = sin (°S/2) sinh y(h - y)

(4.72)
(dg/2) sinh yh

For a symmetrical two-dimensional array, as shown in Fig. 4.32, with a
separation of 2 h in the y direction and the fields above equal to the fields
below

sin (fig/2) cosh yy

4.73
(69/2) cosh yh (*73)

45 Effective Field and Effective Current

In Section 4.4 we have expressed a field component or “effective field”
in terms of circuit voltage by means of a gap-factor or modulation coeffi-
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cient M. This enables us to make calculations in terms of fields and currents
at the electron stream.

The gap factor can be used in another way. A voltage appears across a
gap, and the electron stream induces a current at the gap. At the electron
stream the power P i, produced in a distance L by a convection current
i with the same z-variation as the field component considered, acting on the
field component is

Pi = —Ei*L
(4.74)
+ (MV)i*

/

—~

n? 7
<-Sg
Fig. 4.32—A system of two opposed sets of slots.

At the circuit we observe some impressed current | flowing against the
voltage V to produce a power

P2= VI* (4.75)

By the conservation of energy, these two powers must be the same, and we
deduce that

I* = Mi* (4.76)
or, since we take M as a real number
/| = Mi (4.77)

Thus, we have our choice of making calculations in terms of the beam
current and a fieldcomponent or effective field, or intermsof circuit voltage

and an effectivecurrent, and ineither case we make useof the modulation
coefficient M.

Our gain parameter C3 will be

C3= iy/L)-M2o/8/2F0
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where V is circuit voltage. We can regard this in two ways. We can think
of —(V/L)M as the effective field at the location of the current /0, or we
can think of M'2a as the effective current referred to the circuit.

If we have a broad beam of electrons and a constant current density /o
we compute (essentially as in Chapter Il1l1) a value of C3 by integrating

where da is an element of area. We can think of the result in terms of an
effective field Ee

(4.79)

where a is the total beam area, and a total current aJ0, or we can think of
the integral (4.77) in terms of an effective current h given by

(4.80)

and the voltage at the circuit.

Of course, these same considerations apply to distributed circuits. Some-
times it is most convenient to think in terms of the total current and an
effective field (as we did in connection with helices in Chapter 111) and
sometimes it is most convenient to think of the field at the circuit and an
effective current. Either concept refers to the same mathematics.

4.6 Harmonic Operation

Of the field components making up E in (4.62) it is customary to regard
the »i = 0 component, for which 13 = Q/L, as the. fundamental field com-
ponent, and the other components as harmonic components. These are some-
times called Hartree harmonics. If the electron speed is so adjusted that the
interaction is with the m = 0 or fundamental component we have funda-
mental operation; if the electron speed is adjusted so that we have interac-
tion with a harmonic component, we have harmonic operation.

There are several reasons for using harmonic operation in connection
with filter-type circuits. For one thing the fundamental component may
appear to be traveling backwards. Thus, for circuits of the type shown in
Fig. 4.11, we see from Fig. 4.27 that 9 is always negative. Now, in terms of
the velocity v

B = o)fv — 6/L (4.81)
and if 6 is negative, » must be negative. However, consider the m = 1

component
B=wv= (u+ 9)/L (4.82)
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We see that, for this component, v is positive.

The interaction of electrons with backward-traveling field components
will be considered later. Here it will merely be said that, in order to avoid
interaction with waves traveling in both directions, one must avoid having
the electron speed lie near both the speed of a forward component and the
speed of a backward component.

In order that the fundamental component be slow, 8 must be large or L
must be small. The largest value of Ois that near one edge of the band, where
8approaches x. Thus, the largest fundamental value of j3isir/L, and to make

Fig. 4.33— The variation of phase with frequency for the fundamental (0 to x over the
band) and a spatial harmonic (2x to 3x over the band). The dotted lines show W divided
by the electron velocity for the two cases. For amplification over a broad band the dotted
curve should not depart much from the filter characteristic.

Blarge with m — 0 we must make L small and put the resonators very close
together. This may be physically difficult or even impossible in tubes for
very high frequencies. The alternative is to use a harmonic component,
for which 0 = (2«w + 9)/L.

Another reason for using harmonic operation is to achieve broad-band
operation. The phase of a filter-type circuit changes by x radians between
the lower cutoff frequency on and the upper cutoff frequency tuof. Now,
for the wave velocity to be near to the electron velocity over a good part
of the band, f3 must be nearly a constant times to. Figure 4.33 shows how
this can be approximately true for the m — 1 component even when it ob-
viously won’t be for the m = 0 or fundamental component. Similarly, for
a filter with a narrower fractional bandwidth and hence a steeper curve of
8vs m, a larger value of m might give a nearly constant value of v.

t The phase of some filters changes more than this, but they don't seem good candidates
or traveling-wave tube circuits.
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CHAPTER V

GENERAL CIRCUIT CONSIDERATIONS

Synopsis of Chapter

N CHAPTERS 11l AND 1V, helices and filter-type circuits have been
I considered. Other slow-wave circuits have been proposed, as, for in-
stance, wave guides loaded continuously with dielectric material. One may
ask what the best type of circuit is, or, indeed, in just what way do bad cir-
cuits differ from good circuits.

So far, we have as one criterion for a good circuit a high impedance,
that is, a high value of E?/fi2P. If we want a broad-band amplifier we must
have a constant phase velocity; that is, 3 must be proportional to frequency.
Thus, two desirable circuit properties are: high impedance and constancy
of phase velocity.

Now, E202 can be written in the form

E/firP = &/pWyv,,

where IF is the stored energy per unit length for a field strength E, and v,
is the group velocity.

One way of making E-[$-P large is to make the stored energy for a given
field strength small. In an electromagnetic wave, half of the stored energy
is electric and half is magnetic. Thus, to make the total stored energy for a
given field strength small we must make the energy stored in the electric
field small. The energy stored in the electric field will be increased by the
presence of material of a high dielectric constant, or by the presence of large
opposed metallic surfaces, as in the circuits of Figs. 4.8 and 4.9. Thus, such
circuits are poor as regards circuit impedance, however good they may be in
other respects.

If the stored energy' for a given field strength is held constant, E/8'P
may be increased by decreasing the group velocity. It is the phase velocity
v which should match the electron speed. The group velocity vgis given in
terms of the phase velocity' by' (5.12). We see that the group velocity' may
be much smaller than the phase velocity' if —dv/dai is large. It is, for in-
stance, a low group velocity' near cutoff that accounts for the high imped-
ance regions exhibited in Figs. 4.20 and 4.28. We remember, however,
that, if the phase velocity of the circuit of a traveling-wave tube changes
with frequency, the tube will have a narrow bandwidth, and thus the high
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impedances attained through large values of —dv/du are useful over a nar-
row range of frequency only.

If we consider a broad electron stream of current density J0, the highest
effective value of 2i-//32P, and hence the highest value of C, will be attained
if there is current everywhere that there is electric field, and if all of the
electric field is longitudinal. This leads to a limiting value of C, which is
given by (5.23). There \ Ois the free-space wavelength. The nearest practical
approach to this condition is perhaps a helix of fine wire flooded inside and
outside with electrons.

In many cases, it is desirable to consider circuits for use with a narrow
beam of electrons, over which the field may be taken as constant. As the
helix is a common as well as a very good circuit, it might seem desirable
to use it as a standard for comparison. However, the group velocity of the
helix differs a little from the phase velocity, and it seems desirable instead
to use a sort of hypothetical circuit or field for which the stored energy is
almost the same as in the helix, but for which the group velocity is the same
as the phase velocity. This has been referred to in the text as a “forced
sinusoidal field.” In Fig. 5.3, (E2f}2? )13 for the forced sinusoidal field is
compared with (E2/32P)WB for the helix.

Several other circuits are compared with this: the circular resonators of
Fig. 5.4 (the square resonators of Fig. 5.4 give nearly the same impedance)
and the resonant quarter-wave and half-wave wires of Figs. 5.6 and 5.7.
The comparison is made in Fig. 5.8 for three voltages, which fix three phase
velocities. In each case it is assumed that in some way the group velocity
has been made equal to the phase velocity. Thus, the comparison is made on
the basis of stored energies. The field is taken as the field at radius a (cor-
responding to the surface of the helix) in the case of the forced sinusoidal
field, and at the point of highest field in the case of the resonators.

We see from Figs. 5.8 and 5.3 that a helix of small radius is a very fine
circuit.

In circuits made up of a series of resonators, the group velocity can be
changed within wide limits by varying the coupling between resonators, as
by putting inductive or capacitive irises between them. Thus, even cir-
cuits with a large stored energy can be made to have a high impedance by
sacrificing bandwidth.

The circuits of Fig. 5.4 have a large stored energy because of the large
opposed surfaces. The wires of Fig. 5.6 have a small stored energy asso-
ciated entirely with “fringing fields” about the wires. The narrow strips of
lig- 5.5 have about as much stored energy between the opposed flat sur-
faces as that in the fringing field, and are about as good as the half-wave
wires of Fig. 5.7.

An actual circuit made up of resonators such as those of Fig. 5.4 will be
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worse than Fig. 5.8 implies. Thus, there is a decrease of (F?/p2P y13due to
wall thickness. Thickening the flat opposed walls of the resonators decreases
the spacing between the opposed surfaces, increases the capacitance and
hence increases the stored energy for a given gap voltage. In Fig. 5.9 the
factor/ by which (E2(32P)in is reduced is plotted vs. the ratio of the wall
thickness / to the resonator spacing L.

There is a further reduction of effective field because of the electrical
length, 9 in radians, of the space between opposed resonator surfaces.
The lower curve in Fig. 5.10 gives a factor by which (E?/f?P)w is reduced
because of this. If the resonator spacing, Ot in radians, is greater than 2.33
radians, it is best to make the opening, or space between the walls, only
2.33 radians long by making the opposed disks forming the walls very
thick.

There is of course a further loss in effective field, both in the helix and in
circuits made up of resonators, because of the falling-off of the field toward
the center of the aperture through which the electrons pass. This was dis-
cussed in Chapter IV.

Finally, it should be pointed out that the fraction of the stored energy
dissipated in losses during each cycle is inversely proportional to the <3 of
the circuit or of the resonators forming it. The distance the energy travels
in a cycle is proportional to the group velocity. Thus, for a given Q the sig-
nal will decay more rapidly with distance if the group velocity is lowered
(to increase Er/fPP). Equations (5.38), (5.42) and (5.44) pertain to attenu-
ation expressed in terms of group velocity. The table at the end of the
chapter shows that a circuit made up of resonators and having a low enough
group velocity to give it an impedance comparable with that of a helix can
have a very high attenuation.

51 Group and Phase Velocity

Suppose we use a broad video pulse /*'(/), containing radian frequencies
p lying in the range 0 to pa, to modulate a radio-frequency signal of radian
frequency u which is much larger than p0, so as to give a radio-frequency
pulse/(/)

(6.1)

the functions F(t) and /(/) are indicated in Fig. 5.1.
F(1), which is a real function of time, can be expressed by means of its
Fourier transform in terms of its frequency components

(5.2)
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Here A(p) is a complex function of p, such that A(—p) is the complex con-
jugate of A{p) (this assures that F(t) is real).
With F(t) expressed as in (5.2), we can rewrite (5.1)

/ Vo
A (p)eiia+nt dp (5.3)

\h
Now, suppose, as indicated in Fig. 5.2, we apply the r-f pulse /(/) to the
input of a transmission system of length L with a phase constant /3 which

rig. 5.1— A radio-frequency pulse varying with time asjy). m e envelope varies witn
time as F(|). The pulse might be produced by modulating a radio-frequency source
with F(t).
PHASE CONSTANT fl(ui)
F(t)_ G(1)
f(t)’ g(t)

L- J

Fig. 5.2— W hen the pulse of Fig. 5.1 is applied to a transmission system of length L
and phase constant /3(w) (a function of U), the output pulse g(t) has an envelope G(t).

is a function of frequency. Let us assume that the system is lossless. Ihe
output g(I) will then be

9(0 = J/rPOA(p)eré((<(+p)t_&)dp (5.4)
-po

We have assumed that pa is much smaller than w. Let us assume that over
the range ® — pOto to -f- p0, f) can be adequately represented by

(5.5)
a®
In this case we obtain
1 i A
9(0 = f oA (p) gjpU—idBldw) L) " p (5.6)
I-PO
The envelope at the output is

G( = f P A(p) eM,- (9fiduL) dp (5.7)
3P0
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By comparing this with (5.2) we see that

G{1) = F (58)

In other words, the envelope at the output is of the same shape as at the
input, but arrives a time r later

(.9

This implies that it travels with a velocity v,

(5.10)

This velocity is called the group velocity, because in a sense it is the veloc-
ity with which the group of frequency components making up the pulse
travels down the circuit. It is certainly the velocity with which the energy
stored in the electric and magnetic fields of the circuit travels; we could ob-
serve physically that, if at one time this energy is at a position x, a time |
later it is at a position x + v,

If the attenuation of the transmission circuit varies with frequency, the
pulse shape will become distorted as the pulse travels and the group velocity
loses its clear meaning. It is unlikely, however, that we shall go far wrong
in using the concept of group velocity in connection with actual circuits.

We have used earlier the concept of phase velocity, which we have desig-
nated simply as v. In terms of phase velocity,

(5.11)
v
We see from (5.10) that in terms of phase velocity v the group velocity
vg is

(5.12)

For interaction of electrons with a wave to give gain in a traveling-wave
tube, the electrons must have a velocity near the phase velocity v. Hence,
for gain over a broad band of frequencies, v must not change with frequency;
and if v does not change with frequency, then, from (5.12), vB = .

We note that tire various harmonic components in a filter-type circuit
have different phase velocities, some positive and some negative. The group
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velocity is of course the same for all components, as they are all aspects of
one wave. Relation (4.61) is consistent with this:

= (0+ 2mr)/L (4.61)
1UVq = dOmdo) = (dO/dco)/L (5.13)

5.2 Gain and Bandwidth in a Traveling-Wave Tube

We can rewrite the impedance parameter E20-P in terms of stored
energy per unit length IV for a field strength E, and a group velocity v, .
If IF is the stored energy per unit length, the power flow P is

P = Wva (5.14)
and, accordingly, we have
ET-/0°-P = Er/0-Wi't, (5.15)
And, for the gain parameter, we will have
C = (P?/0Wvayi3(lo/8Vo)m (5.16)

For example, we see from Fig. 4.20 that E20-P for the circuit of Fig. 4.10
goes to infinity at the upper cut-off. From Fig. 4.17 we see that dd/du,
and hence I/vg, go to infinity at the upper cutoff, accounting for the infinite
impedance. We see also that dO/dw goes to infinity at the lower cutoff, but
there the slot voltage and hence the longitudinal field also go to zero and
hence E2@-P does not go to infinity but to zero instead.

In the case of the circuit of Fig. 4.11, the gap voltage and hence the longi-
tudinal field are finite for unit stored energy at both cutoffs. As dd/du is
infinite at both cutoffs, V-/P and hence Er/0-P go to infinity at both cut-
offs, as shown in Fig. 4.28.

To get high gain in a traveling-wave tube at a given frequency and volt-
age (the phase velocity is specified by voltage) we see from (5.16) that we
must have either a small stored energy per unit length for unit longitudinal
field, or a small group velocity, va.

To have amplification over a broad band of frequencies we must have the
phase velocity v substantially equal to the electron velocity over a broad
band of frequencies. This means that for very broad-band operation, v
must be substantially constant and hence in a broad-band tube the group
velocity will be substantially the same as the phase velocity.

If the group velocity is made smaller, so that the gain is Increased, the
range of frequencies over which the phase velocity is near to the electron
velocity is necessarily decreased. Thus, for a given phase velocity, as the
group velocity is made less the gain increases but the bandwidth decreases.

Particular circuits can be compared on the basis of (E202) and band-
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width. We have discussed the impedance and phase or velocity curves in
Chapters Il and 1V. Fieldlhas compared a coiled waveguide structure with
a series of apertured disks of comparable dimensions. Both of these struc-
tures must have about the same stored energy for a given field strength.
He found the coiled waveguide to have a low gain and broad bandwidth
as compared with the apertured disks. We explain this by saying that the
particular coiled waveguide he considered had a higher group velocity than
did the apertured disk structure. Further, if the coiled waveguide could be
altered in some way so as to have the same group velocity as the apertured
disk structure it would necessarily have substantially the same gain and
bandwidth.

In another instance, Mr. O. J. Zobel of these Laboratories evaluated the
effect of broad-banding a filter-type circuit for a traveling-wave tube by
/«-derivation. He found the same gain for any combination of m and band-
width which made v = v, (dv/du = 0). We see this is just a particular
instance of a general rule. The same thing holds for any type of broad-
banding, as, by harmonic operation.

5.3 A Comparison of Circuits

The group velocity, the phase velocity and the ratio of the two are param-
eters which are often easily controlled, as, by varying the coupling between
resonators in a filter composed of a series of resonators. Moreover, these
parameters can often be controlled without much affecting the stored energy
per unit length. For instance, in a series of resonators coupled by loops or
irises, such as the circuit of Fig. 4.11, the stored energy is not much affected
by the loops or irises unless these are very large, but the phase and group
velocities are greatly changed by small changes in coupling.

Let us, then, think of circuits in terms of stored energy, and regard the
phase and group velocities and their ratio as adjustable parameters. We
find that, when we do this, there are not many'- essentially different configura-
tions which promise to be of much use in traveling-wave tubes, and it is
easy to make comparisons between extreme examples of these configura-
tions.

5.3a Uniform Current Density throughout Field

Suppose we have a uniform current density Jo wherever there is longi-
tudinal electric field. We might approximate this case by flooding a helix
of very fine wire with current inside and outside, or by passing current
through a series of flat resonators whose walls were grids of fine wire.

lLester M. Field, “Some Slow-W ave Structures for Traveling-W ave Tubes,” Proc.
I.R.E., Vol. 37, pp. 34-40, January 1949.
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In the latter case, if resonators had parallel walls of very fine mesh normal
to the direction of electron motion there would be substantially no trans-
verse electric field. All the electric field representing stored energy would
act on the electron stream. In this case, we would have

w=il E2d (5.17)

Here dS is an elementary area normal to the direction of propagation. W
given by this expression is the total electric and magnetic stored energy
per unit length. Where E is less than its peak value, the magnetic energy
makes up the difference.

In evaluating E2<>in (5.16) we will have as an effective value

(Eh)d[ = Jo ] Edz (5.18)

Hence, we will have for the gain parameter C

(5.19)

It is of interest to put this in a slightly different form. Suppose X0 is the
free-space wavelength. Then

- — - 5.20
v Ao v ( )

where c is the velocity of light
¢c = 3 X 10incm/sec = 3 X 10s m/sec

Further, we have for synchronism between the electron velocity W
and the phase velocity v

'J = 2mVo (5.21)
Also
c=1
e = l/c'sljule (5.22)

my/mA = 577 ohms
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Using (5.20), (5.21), (5.22) in connection with (5.19), we obtain

q — oV
\' \6rev,, ) (5.23)

= 11.16 (/oV A )13

We have in (5.23) an expression for the gain parameter C in case longi-
tudinal fields only are present and in case there is a uniform current density
Jo wherever there is a longitudinal field.

In a number of cases, as in case of a large-diameter helix, or of a resonator
with large apertures, the stored energy due to the transverse field is about
equal to that due to the longitudinal field and C will be 2~1/3 times as great
as tire value of C given by (5.23). Thus, the value of C given by (5.23), or
even 2~13 times this, represents an unattainable ideal. It is nevertheless
of interest in indicating how limiting behavior depends on various parame-
ters. For instance, we see that if the wavelength X0is made shorter, a higher
current density must be used if C is not to be lowered; for a constant C
the current density must be such as to give a constant current through a
square a wavelength on a side.

In the table below, some values of C have been computed from (5.23)
for various wavelengths and current densities. The broad-band condition
of equal phase and group velocities has been assumed, and the voltage has
been taken as 1,000 volts.

W avelength\ Amp/cm?2
Cm \

For larger voltages, C will be smaller. C can of course be made larger by
making the group velocity smaller than the phase velocity.

Of course, if the electron stream does not pass through some portions of
the field, C will be smaller than given by (5.23). C will also be less if there
are “harmonic” field components which do not vary in the z direction as
exp(juz/v).

5.3b Narrow Beams

Usually, no attempt is made to fill the entire field with electron flow even
though this is necessary in getting a large value of C for a given current
density. Instead a narrow electron beam is shot through a region of high
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field. We then wish to relate the peak field strength to the stored energy in
comparing various circuits.

Let us first consider a helically conducting sheet of radius a. The upper
curve of Fig. 5.3 shows {E?/(PP)w (v/c)w vs. /3a. In obtaining this curve it
was assumed that v &Cc, so thaty can be taken as equal to j3 The field E
is the longitudinal field at the surface of the helically conducting cylinder.
Figure 5.3 can be obtained from Fig. 3.4 by multiplying F{ya) by (h(ya))w
to give a curve valid for the field at r = a.

The helix has a very small circumferential electric field which represents
“useless” stored energy. The lower curve of Fig. 5.3 is based on the stored
electric energy of an axially symmetrical sinusoidal field impressed at the
radius a.f This field has no circumferential component but is otherwise the

fia
Fig. 5.3—The impedance parameter (E?/iPP)113 compared for a helically conducting
sheet (A) and a forced sinusoidal field (2J) with a group velocity equal to the phase ve-
locity. The helix has a higher impedance because the phase velocity is higher than the
group velocity by a radio shown to the power by curve C.

same as the electric field of the helix (again assuming v <c). We can imagine
such a field propagating because of an inductive sheet at the radius a,
which provides stored magnetic energy enough to make the electric and
magnetic energies equal. The quantity plotted vs. (3ais (E¥f32P)l,z (v/c)13
(v, /i>m .

The forced sinusoidal field is not the field of some particular circuit for
which a certain group velocity va corresponds to a given phase velocity v.
Hence, the factor (vjv)13is included in the ordinate, so that the curve will
be the same no matter what group velocity is assumed. For the helically
conducting sheet, a definite group velocity goes with a given phase velocity.
In Fig. 5.3, the ordinate of the curve for the helically conducting sheet
does not contain the factor (i'fA')13 H> for instance, we assume vg = v

t see Appendix Il1.
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in connection with the curve for the forced sinusoidal field, then the two
ordinates are both (E2ffP )13 (v/c)I13and the curve for the sheet is higher
than that for the forced field because, for the helically conducting sheet

Fig. 5.4—Pillbox and rectangular resonators. When a number of resonators are coupled
one to the next, a filter-type circuit is formed.

W < v for small values of ya. Curve C shows (v/vO)lli
T )) for the sheet vs. ISa. Aside from the influence of group
velocity, we might have expected the curve for the
sheet to be a little lower than that for the forced field
because of the energy associated with the transverse

4V
electric field component of the sheet. This, however,
%t becomessmall in comparisonwith the transverse mag-
CL
% netic component when ®« ¢, as we have assumed.

Various other circuits will be compared, using
the impressed sinusoidal field as a sort of standard
| Fgl of reference.

| -1yi' One of the circuits which will be considered is a
series of flat resonators coupled together to make a
filter. Figure 5.4a shows a series of very thin pill-
boxes with walls of negligible thickness. A small cen-
_ °'0?a°A" tral hole is provided for the electron stream, and the
Witﬁ'?he‘r’(‘)%;oiiensgg?r%ﬁs_ field E is to be measured at the edge of this hole.
lel surfaces reduced to The diameter is chosen to obtain resonance at a
:g‘é"ri;:éogfndp:g;;%g.and wavelength X0. Figure 5.4b shows a similar series

of flat square resonators.

For the round resonators it is found that*
(Et/ppyi* = 5.36 (v/c)13 (v/vg)13 (5.24)
for the square resonators®
(E-/pPy<3= 5.33 (v/c)13 G//vgy 3 (5.25)

For practical purposes these are negligibly different.
*See Appendix I11.
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Suppose we wanted to improve on such circuits by reducing the stored
energy. An obvious procedure would be to cut away most of the flat opposed
surfaces as shown in Fig. 5.5. This reduces the energy stored between the
resonator walls, but results in energy storage outside of the open edges,
energy associated with a “fringing field.”

Going to an extreme, we might consider an array of closely spaced very
fine wires, as shown in Fig. 5.6. Here there are no opposed flat surfaces,
and all of the electric field is a fringing field; we have
reached an irreducible minimum of stored energy in
paring down the resonator.

The structure of Fig. 5.6 has not been analyzed
exactly, but that of Fig. 5.7 has. In Fig. 5.7, we have
an array of fine, closely spaced half-wave wires be-
tween parallel planes.* This should have roughly
twice the stored energy of Fig. 5.6, and we will esti-
mate (Er/~P)13for Fig. 5.6 on this basis. We obtain

in Appendix II1:
For the half-wave wires, FiS- 5.6r Quartcr-wave
wires, which have a min-
(E?/ppyn = 6.20 (v/iva)m (5-25)  iraum ot slored cncrgy'

and hence for the quarter-wave wires, approximately
(&/F-P)13= 7.81 (v/vsyn (5.26)

As we have noted, (v/c), which appears in the expression for (E?/f?P)w
for the sinusoidal field impressed at radius a and in (5.24) and (5.25), is a

Fig. 5.7-——Half-wave wires between parallel planes. The stored energy can be calculated
for this configuration, assuming the wires to be very fine. The circuit does not propagate a
wave unless added coupling is provided.

function of the accelerating voltage. Figure 5.8 makes a comparison be-
tween the sinusoidal field impressed at a radius a, curve A ; the flat resona-

tors, cither circular or square, B; the half-wave wires, C; and the quarter-
*There is no transverse magnetic wave propagation along such a circuit unless extra

coupling or loading is provided. Behavior of nonpropagating circuits in the presence of an
electron stream is considered in Section 4 of Chapter XIV.
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wave wires C'. In all cases, it is assumed that the coupling is so adjusted as
to make (v, /v) = 1 (broad-band condition).

W hat sort of information can we get from the curves of Fig. 5.8? Con-
sider the curves for 1,000 volts. Suppose we want to cut down the opposed
areas of resonators, as indicated in Fig. 5.5, so as to make them as good as
half-wave wires (curve C). The edge capacitance in Fig. 5.5 will be about
equal to that for quarter-wave wires (curve C'). Curve C' is about 3.7 times
as high as curve B, and hence represents only about (1/3.7)3 = .02 as much
capacitance. If we make the opposed area in Fig. 5.5 about .01 that in Fig.
5.4a or b, the capacitance* between opposed surfaces will equal the edge

Fig. 5.5—Comparisons in terms of impedance parameter of an impressed sinusoidal
field (4), circular resonators (B), half-wave wires (C) and quarter-wave wires (C') assuming
the group and phase velocities to equal the electron velocity. The radius of the impressed
sinusoidal field is a.

capacitance and the total stored energy will be twice that for quarter-wave
wires, or equal to that for half-wave wires. This area is shown approxi-
mately to scale relative to Fig. 5.4 in Fig. 5.5. Thus, at 1,000 volts the
resonant strips of Fig. 5.5 are about as good as fine, closely spaced half-
wave wires.

Suppose again that we wish at 1,000 volts to make the gain of the reso-
nators of Fig. 5.4 (or of a coiled waveguide) as good as that for a helix with
O0a = 3. For0a = 3the helix curve A isabout 3.2 times as high as the resona-

*This takes into account a difference in field distribution—that in Fig. 5.4b.

j
I
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tor curve B. As (£2/32P)1/3 varies as (i>n0) 13 we must adjust the coupling
between resonators so as to make

v,, = v/(3.2)3= .031v

in order to make {E2(32 )W the same for the resonators as for the helix.
From (5.12) we see that this means that a change in frequency by a frac-
tion .002 must change v by a fraction .06. Ordinarily, a fractional variation
of v of -b.03 would cause a very serious falling off in gain. At 3,000 me the
total frequency variation of .002 times in v would be 6 me. This is then a
measure of the bandwidth of a series of resonators used in place of a helix
for which 13a = 3 and adjusted to give the same gain.

Fig. 5.9—The factor/ by which (EP/jPP)1/3 for a series of resonators such as those of
t'ig. 5.4 is reduced because of wall thickness t, in relation to gap spacing L,

5.4 Physical Limitations

In Section 3.3b the resonators were assumed to be very thin and to have
walls of zero thickness. Of course the walls must have finite thickness, and
it is impractical to make the resonators extremely thin. The wall thickness
and the finite transit time across the resonators both reduce E2f32P.

5.4a Effect of Wall Thickness

Consider the resonators of Fig. 5.4. Let L be the spacing between resona-
tors (1/L resonators per unit length), and t be the wall thickness. Thus, the
gap length is (L — /). Suppose we keep L and the voltage across each
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resonator constant, so as to keep the field constant, but vary I. The capaci-
tance will be proportional to (L — /)"' and, as the stored energy is the
voltage squared times the capacitance, we see that (E~/f3~P) ¥3 will be re-
duced by a factor /,

/= @- tiL)w (5.27)

The factor/ is plotted vs. I/L in Fig. 5.9.

Fig. 5.10—The lower curve shows the factor by which EJ/JPPis reduced by gap length.
Oin radians. If the gap spacing is greater than 2.33 radians, it is best to make the gap 2.33
radians long. Then the upper curve applies.

5.4b Transit Time

As it is impractical to make the resonators infinitely thin, there will be
some transit angle 6g across the resonator, where

6, = $1 (5.28)

Here | is the space between resonator walls, or, the length of the gap.
If we assume a uniform electric field between walls, the gap factor M,
that is, the ratioofpeakenergy gained in electron voltsto peak resonator
voltage, ortheratio of the magnitude of thesinusoidal fieldcomponent
produced to that which would be produced by the same number of infinitely
thin gaps with the same voltages, will be (from (4.69) with r = a)

= sin (0,,/2) 29)
0J2
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For a series of resonators 0,,long with infinitely thin walls E2f32P will be
less than the values given by (5.24) and (5.25) by a factor M'm. This is
plotted vs. 0, in Fig. 5.10.

5.4c Fixed Gap Spacing

Suppose it is decided in advance to put only one gap in a length specified
by the transit angle di. How wide should the gap be made, and how much
will E/jp-P be reduced below the value for very thin resonators and infi-
nitely thin walls?

Let us assume that all the stored energy is energy stored between parallel
planes separated by the gap thickness, expressed in radians as 6 or in dis-
tance as L

6t = 01
0,, = OL

Here | is the gap spacing and L is the spacing between resonators.
From Section 4.4 of Chapter IV we see that if V is the gap voltage, the
field strength E is given by

E = MV/L
The stored energy per unit length, W, will be
W = W OVZPL (5.30)

Here W0 is a constant dependingon the cross-section of the resonators.
Thus, for unit field strength, the stored energy will be

W = WoL/UP
(5.31)
W = TIMO0,/O0(0d2)ysinW 2)

We see that WO is merely the value of W when 6, = 0, and da = 0, or,
for zero wall thickness and very thin resonators. Thus, the ratio W/W Ore-
lates the actual stored energy per unit length per unit field to this optimum
stored energy for resonators of the same cross section.

For O < 2.33, IV/Wo is smallest(best) for 9,, = 0t (zerowall thickness).
For larger values of 6t the optimum value of 0,is 2.33 radians and for
this optimum value

(IF0/JF)k = (1.450/0913 (5.32)

If Si < 2.33, it is thus best to make d, = 6t. Then (E/p2P)m is re-
duced by the factor [sin(0/2)/(0/2)]2/3, which is plotted in Fig. 5.10. If
St > 2.33, it is best to make 6 = 2.33. Then (E2(32)13is reduced from the
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value for thin resonators with infinitely thin walls by a factor given by
(5.32), which is plotted vs. O<in Fig. 5.10.

If there are edge effects, the optimum gap spacing and the reduction in
(EVfiP )3 will be somewhat different. However, Fig. 5.10 should still be a
useful guide.

In case of wide gap separation (large 6t), there would be some gain in
using reentrant resonators, as shown in Fig. 4.11, in order to reduce the
capacitance. How good can such a structure be? Certainly, it will be worse
than a helix. Consider merely the sections of metal tube with short gaps,
which surround the electron beam. The shorter the gaps, the greater the
capacitance. The space outside the beam has been capacitively loaded,
which tends to reduce the impedance. This capacitance can be thought of
as being associated with many spatial harmonics in the electric field, which
do not contribute to interaction with the electrons.

5.5 Attenuation

Suppose we have a circuit made up of resonators with specified unloaded
(Ft The energy lost per cycle is

WL= 2tWs/Q (5.33)
In one cycle, however, a signal moves forward a distance L, where
L = vOf (5.34)

The fractional energy loss per unit distance, which we will call 2a, is

2 .- * A (5,5)

whence

* m (536)
So defined, a is the attenuation constant, and the amplitude will decay
along the circuit as exp(—az).
The wavelength, X is given by

X= v/f= 2tv/ B3 (5.37)
The loss per wavelength in db is

db/wavelength = 20 logio exp(aX)

11
>
>

db/wavelength

t Disregarding coupling losses, the circuit and the resonanlors will both have this

same Q.
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We see that, for given values of v and Q, decreasing the group velocity,
which increases E-//32P, also increases the attenuation per wavelength.

5.5a Attenuation of Circuits

For various structures, Q can be evaluated in terms of surface resistivity,
R, the intrinsic resistance of space, y/ji/t = 377 ohms, and varous other

parameters. For instance, SchelkunofP gives for the Q of a pill-box resona-
tor

0 = (5 39)
1+ alh

Here a is the radius of the resonator and h is the height. If we express the

radius in terms of the resonant wavelength X0 (a = 1.2Xo/ir), we obtain
p = *(V~I/R)W ¢) (540)
(1 + h/a)n

Here n is the number of resonators per wavelength (assuming the walls
separating the resonators to be of negligible thickness); thus

n = h/\ = (h/N\o)(c/v) (5.41)
From (5.40) and (5.38) we obtain for a series of pill-box resonators
db/wavelength = 8.68(2?/my/ti/e)(c/v,,)(I + h/a)n (5.42)

In Appendix Il an estimate of the Q of an array of fine half-wave paral-
lel wires ismade by assuming conduction in one direction with a surface
resistance R. On this basis, Q is found to be

Q = (VWe/R)(v/c) (5.43)
and hence

db/wavelength = 27.3{R/y/n/e)(c/v0) (5.44)

For non-magnetic materials, surface resistance varies as the square root
of the resistivity times the frequency. The table below gives R for copper
and db/wavelength for pill-box resonators for h/a « 1 (5.42) and for wires
(5.44) for several frequencies

f, me R, Ohms (db/wavelength)/ (C/VO)
Pill-box Resonators W ires
3,000 .0142 3.3 X 10 "k 10.3 X It)-1
10.000 .0260 6.0 X 10"4 18.1 X 10~4
30.000 .0450 10.4 X 10-J« 32.6 X 10-°

In Section 3.3b a circuit made up of resonators, with a group velocity
.031 times the phase velocity, was discussed. Suppose such a circuit were

2Electr0magnetic W aves, S. A. Schelkunoff, Van Nostrand, 1943. Page 269.
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used at 1,000 volts (c/v = 16.5), were 40 wavelengths long, and had three
copper resonators per wavelength. The total attenuation in db is given below

f, me Attenuation, db
3,000 21
10.000 38

30.000 67
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CHAPTER VI

THE CIRCUIT DESCRIBED IN TERMS OF
NORMAL MODES

Synopsis of Chapter

N CHAPTER II, the field produced by the current in the electron stream,
I which was assumed to vary as exp (—Pi), was deduced from a simple
model in which the electron stream was assumed to be very close to an ar-
tificial line of susceptance B and reactance X per unit length. Following
these assumptions, the voltage per unit length was found to be that of
equation (2.10) and the field E in the z direction would accordingly be T
times this, or

E = i (6.1)

Here we Will remember that Pi is the natural propagation constant of
the lire, and k is the characteristic impedance.
We further replaced k by a quantity

Er/pP = 2K (6.2)

where E is the field produced by a power flow P, and /3is the phase constant
of the line. For a lossless line, Pi is a pure imaginary and

2= -Pi (6.3)
Fom (6.1) and (6.2) we obtain

2(P? - P2

To the writer it seems intuitively clear that the derivation of Chapter
Il iscorrect forwaveswith a phase velocity smallcompared with the
velocity oflight, andthat(6.4) correctly gives thepart of thefield asso-
ciated with the excitation of the circuit. However, it is clear that there are
other field components excited; a bunched electron stream will produce a
field even in the absence of a circuit. Further, many legitimate questions
can be raised. For instance, in Chapter Il capacitive coupling only was
considered. W hat about mutual inductance between the electron stream
and the inductances of the line?
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The best procedure seems to be to analyze the situation in a way we know
to be valid, and then to make such approximations as seem reasonable. One
approximation we can make is, for instance, that the phase velocity of the
wave is quite small compared with the speed of light, so that

Ith 2» [30= (uc)2 (6.5)

In this chapter we shall consider a lossless circuit which supports a group
of transverse magnetic modes of wave propagation. The finned structure of
Fig. 4.3 is such a circuit, and so are the circuits of Figs. 4.8 and 4.9 (assum-
ing that the fins are so closely spaced that the circuit can be regarded as
smooth). It is assumed that waves are excited in such a circuit by a current
in thez direction varying with distance as exp (—I'z) and distributed normal
to the z direction as a function of x and y,J (x, y). Such a current might
arise from the bunching at low signal levels of a broad beam of electrons
confined by a strong magnetic field so as not to move appreciably normal
to the z direction.

The structure considered may support transverse electric waves, but these
can be ignored because they will not be excited by the impressed current.

In the absence of an impressed current, any field distribution in the struc-
ture can be expressed as the sum of excitations of a number of pairs of nor-
mal modes of propagation. For one particular pair of modes, the field dis-
tribution normal to the z direction can be expressed in terms of a function
7rn(@*, y) and the field components will vary in the z direction as exp(=fcr,,z)-
Here the -f- sign gives one mode of the pair and the — sign the other. If
F, is real the mode is passive; the field decays exponentially with distance.
If r,, is imaginary the mode is active; the field pattern of the mode propa-
gates without loss in the z direction.

An impressed current which varies in the z direction as exp(—Tz) will
excite a field pattern which also varies in the z direction as exp(—Tz), and
as some function of x and y normal to the z direction. We may, if we wish,
regard the variation of the field normal to the z direction as made up of a
combination of the field patterns of the normal modes of propagation, the
patterns specified by the functions w,(x, y). Now, a pattern specified by
X,(.v, y) coupled with a variation exp(xF,z) in the z direction satisfies
Maxwell’s equations and the boundary conditions imposed by the circuit
with no impressed current. If, however, we assume the same variation with
x and y but a variation as exp(—Tz) with z, Maxwell’s equations will be
satisfied only if there is an impressed current having a distribution normal
to the z direction which also can be expressed by the function irn(T, y).

Suppose we add up the various forced modes in such relative strength
and phase that the total of the impressed currents associated with them is
equal to the actual impressed current. Then, the sum of the fields of these
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modes is the actual field produced by the actual impressed current. The
field is so expressed in (6.44) where the current components Jn are defined
by (6.36).

If it is assumed that there is only one mode of propagation, and if it is
assumed that the field is constant over the electron flow, (6.44) can be put
in the form shown in (6.47). For waves with a phase velocity small compared
with the velocity of light, this reduces to (6.4), which was based on the simple
circuit of Fig. 2.3.

Of course, actual circuits have, besides the one desired active mode, an
infinity of passive modes and perhaps other active modes as well. In Chapter
VIl a way of taking these into account will be pointed out.

Actual circuits are certainly not lossless, and the fields of the helix, for
instance, are not purely transverse magnetic fields. In such a case it is per-
haps simplest to assume that the modes of propagation exist and to cal-
culate the amount of excitation by energy transfer considerations. This has
been done earlierl, at first subject to the error of omitting a term which
later2 was added. In (6.55) of this chapter, (6.44) is reexpressed in a form
suitable for comparison with this earlier work, and is found to agree.

Many circuits are not smooth in the z direction. The writer believes that
usually small error will result from ignoring this fact, at least at low signal
levels.

6.1 Excitation of Transverse M agnetic M odes of Propagation by

a Longitudinal Current

We will consider here a system in which the natural modes of propagation
are transverse magnetic waves. The circuit of Fig. 4.3, in which a slow wave
is produced by finned structures, is an example. We will remember that the
modes of propagation derived in Section 4.1 of Chapter IV were of this
type. We will consider here that any structure the circuit may have (fins,
for instance) is fine enough so that the circuit may be regarded as smooth
in the z direction.

Any transverse electric modes which may exist in the structure will not
he excited by longitudinal currents, and hence may be disregarded.

The analysis presented here will follow Chapter X of Schelkunoff’s
Electromagnetic Waves.

The divergence of the magnetic field H is zero. As there isno z component
of field, we have

1J. R. Pierce, “Theory of the Beam-Type Traveling-W ave Tube,” Proc. I.R.E., vol.

APP- 111-123, February, 19-17.

‘J- R. Pierce, “Effect of Passive Modes in Traveling-W ave Tubes,” Proc. |.R.E.,
36, pp. 993-997, August, 1948.
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A+ A = (6.6)
da; ay
This will be satisfied if we express the magnetic field in terms of a “stream
function”, 7

Hx = ~ (6.7)

v = -

" 6.8
ix (6.8)
t can be identified as the z component of the vector potential (the vector
potential has no other components).

We will assume tvto be of the form

v= (X, y)e~lz (6.9)

Here w (r, y) is a function of x and y only, which specifies the field dis-
tribution in any x, y plane.
We can apply Maxwell’s equations to obtain the electric fields

dllz d7Hy_ JieE
dy Taz T M

Using (6.7) and (6.8), and replacing differentiation with respect to z by
multiplication by —T, we find

E,=£ ¢ (6.10)
0)6 OX
Similarly
E,-E£(6.11)
oe ay

We see that in an x, y plane, a plane perpendicular to the direction of propa-
gation, the field is given as the gradient of a scalar potential V

V= (5T/Mjt (6.12)

This is because we deal with transverse magnetic waves, that is, with waves
which haveno longitudinalor z component of magnetic field. Thus, a closed
path in an .r,y plane,which is normal to the directionof propagation, will
link no magnetic flux, and the integral of the electric field around such a
path will be zero.

We can apply the curl relation and obtain Ez

dITy dHx
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Applying Maxwell’s equations again, we have

t)Ez dEy . TIT
— = JuUfllix
y z (6.15)
we dy \dx2 dy?2) we dy dy
This is certainly true if
0 + N - - <1+ )&* (6.16)
/SO —wVTte = wic (6.17)

We find that this satisfies the other curl E relations as well.
From (6.16) and (6.14) we see that

Em= (-jl«e)(r* + $)*(*, y)e~Tz (6.18)

For a given physical circuit, it will be found that there are certain real
functions Tm(x, y) which are zero over the conducting boundaries of the
circuit, assuring zero tangential field at the surface of the conductor, and
which satisfy (6.16) with some particular value of T, which we will call Fn.
Thus, as a particular example, for a square waveguide of width W some
(but not all) of these functions are

Tm(xty) = cos (niry/W) cos (nirx/W) (6.19)

where n is an integer. We see from (6.10), (6.11) and (6.18) that this makes
Ex, Ey and Ez zero at the conducting walls x = +TF/2, y = dblF/2.

Each possible real function tt,(x, y) is associated with two values of
i’n, one the negative of the other. The rn’s are the natural propagation
constants of the normal modes, and the 7,’s are the functions giving their
field distribution in the x, y plane. The 7,’s can be shown to be orthogonal,
at least in typical cases. That is, integrating over the region in the x, y
plane in which there is field

[ ] *e,(*,y) "m(x,y) dx dy - 0
JJ (6.20)

nstm

For a lossless circuit the various field distributions fall into two classes:
those for which F,, is imaginary, called active modes, which represent
waves which propagate without attenuation; and those for which Tn is
real, which change exponentially with amplitude in the z direction but do
not change in phase. The latter can be used to represent the disturbance
11 a waveguide below cutoff frequency, for instance.
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If r,, is imaginary (an active mode) the power flow is real, while if r,, is
real (a passive mode) the power flow is imaginary (reactive or “wattless”
power).

The spatial distribution functions rn and the corresponding propagation
constants F,, are a means for specifying the electrical properties of a physical
structure, just as are the physical dimensions which describe the physical
structure and determine the various #,’s and F,’s. In fact, if we know the
various tt"’s and F,,’s, we can determine the response of the structure to an
impressed current without direct reference to the physical dimensions.

In terms of the 7,,’s and r»’s, we can represent any unforced disturbance
in the circuit in the form

XX(-'y)Uxe1'1+ Bre 1 6.21)

Here A, is the complex amplitude of the wave of the wth spatial distribu-
tion traveling to the right, and Bn the complex amplitude of the wave of
the same spatial distribution traveling to the left.

It is of interest to consider the power flow in terms of the amplitude, A,
or Bn. We can obtain the power flow P by integrating the Poynting vector
over the part of the x, y plane within the conducting boundaries

pP-ffEXHUS-s

(6.22)

i <£_II - Eyll*) dx dy

By expressing the fields in terms of the stream function, we obtain

dtr,y / dy,

dx d 6.23
dx) \<9y Y (6.23)

p = a»a: _Jr’ //

200

We can transform this by integrating by parts (essentially Green’s
theorem). Thus

"% 4 -, . - . i U (6.24)

Ji, OX OX OoX «xi Jr, OX~

Here xu and x->, the limits of integration, lie on the conducting boundaries
where = 0, and hence the first term on the right is zero. Doing the same
for the second term in (6.23), we obtain

(6-2)
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By using (6.16), we obtain
N o= JI,,At (N (r2,+ Pa) JI (*ny*dxdy (6.26)

It is also of interest to express the z component of the nth mode, Ezn,
explicitly. For the wave traveling to the right we have, from (6.18),

Ezn = An (F; + $)*.(*,y) (6.27)
Let the field at some particular position, say, x = y = 0, be Ezno. Then
, jtoeEzn0

(s + R)#(0, 0
and from (6.26)

pP. = {E M ) 11 1 (<, 2)f* iy (6.29)
We can rewrite this

= 27ra(0, 0)(rd + ffo)

Crah s«PR-T2) 35 0, yi2dr <y (6:30)

For an active mode in a lossless circuit, F, is a pure imaginary, and the
negative of its square is the square of the phase constant. Thus, for a par-
ticular mode of propagation we can identify (6.30) with the circuit parame-
ter & /PP which we used in Chapter II.

Let us now imagine that there is an impressed current J which flows in
the z direction and has the form

/= J(x y)e~J (6.31)
According to Maxwell’s equations we must have

dHi - dUx = jmEz+ J (6.32)
dx dy
Now, we will assume that the fields are given by some overall stream func-
tion 7t which varies with x and y and with z as exp(—Tz).
In terms of this functiont, Ilx, Ilyand Ex, Euwill be givenby relations
(6-7), (6.8), (6.10), (6.11). However, the relation used inobtaining Ez is

not valid in the presence of the convection current. Instead of (6.16) we
have
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Again applying the relation

dEz dE,, )
dy gz = —IwpH,
we obtain
T, OV

(6.34)

We will now divide both twand J into the spatial distributions charac-
teristic of the normal unforced modes.
Let

J(x,y) = E JAm(x, y) (6.35)

11 J(x, y)irn(x, y) dxdy
n = (6.36)

1] BE Y2 ay
This expansion is possible because the 7,’s are orthogonal. Let

#=er" E CnTTn(x, y) (6.37)

Here there is no question of forward and backward waves; the forced ex-
citation has the same z-distribution as the forcing current.
For the wth component, we have, from (6.16),

+ ddtn(x,y) = _ (r, + BIHn(X) 0 (6.38)
00:- dy-

From (6.34) we must also have

¢ /d™Ix,y) dam,(v,y)
dx3 dy- / (6.39)

67,1(1 Ro)An~Xj Y) JnAn(.X,y)

Accordingly, we must have

Cn = 6.40
r;-r (640)

The overall stream function is thus
tt= el12E (6.41)
vV n - r2
From (6.33) and (6.34) we see that

Ez= 3?2 (r- + $)* (6.42)
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So

e, = é~Tz E r’\)’Y)\]n 643>
F1 = <rE . | (6.44)

coe

6.2 Comparison with Results of Chapter |l

Let us consider a case in which there is only one mode of propagation,
characterized by ti(x,y), IL, and a case in which the current flows over a
region in which wi(:c, y) has a constant value, say, fi(0, 0). This corre-
sponds to the case of the transmission line which was discussed in Chapter
1.

We take only the term with the subscript 1in (6.44) and (6.30). Combin-
ing these equations, we obtain for the field at 0, 0

TIj.JfIH x, y)Y dx dy (6 45)
 + 1% 2*%(0, 0)
We have from (636)
Jo_ m(Q, 0)
ff Y)Y dx dy (6.49)

From (6.45) and (6.46) we obtain

, ffi+ A t& M j
2(r' + [0)r? - r)

Let us compare this with (6.4), which came from the transmission line
analogy of Chapter I, identifying Ez and J with E and i. We see that,
for slow waves for which

(M7)

Bo« |r*| (6.48)
0o« |r | (6.49)

(6.47) becomes the same as(6.4). It was, of course, underthe assumption
that the waves are slow thatwe obtained (2.10),which led to (6.4).

63 Expansion Rewritten in Another Form

Expression (6.44) can be rewritten so as to appear quite different. We
can write

r2+ gL=r2- r2+ r2+
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Thus, we can rewrite the expression for Ez as

E, - e~T Mo
\% " " (6.50)
+ 0A»e) JL n(x,y)Jnj

The second term in the brackets is just j/toe times the impressed current,
as we can see from (6.35). The first term can be rearranged

(/<) (r* + (3Mn

(—=l««)(r; + Bo) ff im(x, y)J(x,y) dxdy (651)

ff [#»(*, y)\2dx dy

Referring back to (6.29), let T, be twice the power Pn carried by the
unforced mode when thefield strength is

|Eznoj = 1 (6.52)
Further, letus choosethe®,’s sothat, at some specified position, x = y = 0,
n@, 0) = 1 (6.53)

Then

T = j,ZA pi ff [tr.Gv, y)\2dx dy (6.54)
Using this in connection with (6.51), we obtain

I r Tan(yv, y) ff e, (x, ¥)J(x, y) dx dy

Tn(l'2 — F2) 655

+ (i/oie)j(x, y)

An expression for the forced field in terms of the parameters of the nor-
mal modes was given earlierl™ In deriving this expression, the existence of
a set of modes was assumed, and the field at a point was found as an in-
tegral over the disturbances induced in the circuit to the right and to the
left and propagated to the point in question. Such a derivation applies for
lossy and mixed waves, while that given here applies for lossless transverse-
magnetic waves only.
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The earlier derivationlleads to an expression identical with (6.55) except
that appears in place of 'f,, . In this earlier derivation a sign was im-
plicitly assigned to the direction of flow of reactive power (which really
doesn’t flow at all!) by saying that the reactive power flows in the direction
in which the amplitude decreases. If we had assumed the reactive power to
flow in the direction in which the amplitude increases, then, with the same
definition of 'I',, , for a passive mode th* would have been replaced by —T*
which is equal to 'l', (for a passive mode, T, is imaginary).

In deriving (6.55), no such ambiguity arose, because the power flow was
identified with the complex Poynting vector for the particular type of wave
considered. In any practical sense, 'lI' is merely a parameter of the circuit,
and it does not matter whether we call Im 'f reactive power flow to the right
or to the left.

The existence of a derivation of (6.55) not limited in its application to
lossless transverse magnetic waves is valuable in that practical circuits often
have some loss and often (in the case of the helix, for instance) propagate
mixed waves.

6.4 lterated Structures

Many circuits, such as those discussed in Chapter 1V, have structure in
the z direction. Expansions such as (6.55) do not strictly apply to such struc-
tures. We can make a plausible argument that they will be at least useful
if all field components except one differ markedly in propagation constant
from the impressed current. In this case we save the one component which
is nearly in synchronism with the impressed current and hope for the best.
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APPENDIX III

STORED ENERGIES OF
CIRCUIT STRUCTURES

A3.1 Forced Sinusoidal Field

If v ¢, the field can be very nearly represented inside the cylinder of
radius a by

T _ VvV - —i& I'D
and outside by
V = Vo 2)
A (7a)

Inside
17 = (3)
@)

Outside
dr - Rosa) r * 5)
T = (6)

Because there is a sinusoidal variation in the 2 direction, the average stored
electric energy per unit length will be

UT = Q (|) 1_oi(Erm,,f + {Ezm") “\{{2rrr dr) @)

Here Er mex and Ez max are maximum values at r = a. The total electric
plus magnetic stored energy will be twice this. This gives
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_ haf[[l-hU. , Kok Ag’
w +

272 18 A?
IF 7rt7g r li Ki ®©)
72 Lo An
120 13
(e7/32a)il3 = (c/*)*(*/01*
« , Al 9)

*e(a + if.
A32 Pl”'BOX R esonators
Schelkunoff gives on page 268 of Electromagnetic Waves an expression

for the peak electric energy stored in a pill-box resonator, which may be
written as

.135 tr e aViE?
Here a is the radius of the resonator and li is the axial length. For a series

of such resonators, the peak stored electric energy per unit length, which is
also the average electric plus magnetic energy per unit length, is

W = .135 x eaZkr (10)
For resonance
(11)
Whence
(12)
And
(Er/fPP)'B = 5.36 (v/v,)13 (v/c)m (13)

The case of square resonators is easily worked out.

A3.3 Parallel Wires

Let us consider very fine very' closely spaced half-wave parallel wires with
perpendicular end plates.

If z is measured along the wires, and y perpendicular to z and to the
direction of propagation, the field is assumed to be

2ir
Ez = E cosf3xc " cos — z
A0
(14)
Ej = Esih bre cos s
ag

Here the + sign applies fory < 0 and the —sign fory > 0. We will then
find that
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w 2W etrx Rv d
= = e~-Rv
¢ 2 b Y L *
(15)
W = "'E e’
and
(E'/pP)1B= 6.20 (V»i)13 0 6)

The surface charge density a on one side of the array of wires (say,y > 0)
is given by the y component of field aty — 0.

— 2t
a = tEy = eE sinfix cos — z 17)
Ao

This is related to the current | (flowing in the z direction) per unit distance
in the x direction by

g = -*1 (18)
dz dl

From (18) and (17) we obtain for the current on one side of the array

/ = E sin fix sin ™ 2 (129)
2% ao
If we use the fact that <d\o/2ir — ¢ and ce = 1/'s//¢/e, we obtain
= sin /3x sin — z (20)
V Ix/f Ao

If R is the surface resistivity of either side (y > 0, y <0) of the wires, when
the wiresact asaresonator (a standing wave) the averagepower lost per
unit length for both sides is

P = 1R\,E7(mA) (21)

In this case the stored electric energy is half the value given by (15), and
we find

0 = (VmMAI/A) (Vo) (2)



Factors Affecting Magnetic Quality*
By R. M. BOZORTH

N THE preparation of magnetic materials for practical use it is impor-

tant to know how to obtain products of the best quality and uniformity.
In the scientific study of magnetism the goal is to understand the relation
between the structure and composition on the one hand and the magnetic
properties on the other. From both standpoints it is necessary to know the
principal factors which influence magnetic behavior. These are briefly
reviewed here.

The properties depend on chemical composition, fabrication and heat-
treatment. Some properties, such as saturation magnetization, change only
slowly with chemical composition and are usually unaffected by fabrication
or heat treatment. On the contrary, permeability, coercive force and hystere-
sis loss are highly sensitive and show changes which are extreme among all
the physical properties. Properties may thus be divided into struclure-
sensilivc and structure-insensitive groups. As an example, Fig. 1 shows mag-
netization curves of permalloy after it has been (a) cold rolled, (b) annealed
and cooled slowly, and (c) annealed and cooled rapidly. The maximum
permeability varies with the treatment over a range of about 20 fold, while
the saturation induction is the same within a few per cent. Structure sensi-
tive properties such as permeability depend on small irregularities in atomic
spacings, which have little effect on properties such as saturation induction.

Some of the more common sensitive and insensitive properties are listed
in Table I. The principal physical and chemical factors which affect these
properties are listed in column 3. Their various effects will now be briefly
discussed and illustrated.

Phase Diagram

Some of the most drastic changes in properties occur when the fabrication
or heat treatment has brought about a change in structure of the material.
For this reason the phase diagram or constitutional diagram is of the ut-
most importance in relation to the preparation and properties of magnetic
materials. As an example consider the phase diagram of the binary iron-
cobalt alloys of Fig. 2. Here the various areas show the phases, of different

, *This article is the substance of Chapter Il of a book entitled “Ferromagnetism” to
he published early in 1951 by D. Van Nostrand Company, Inc.
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composition or structure, which are stable at the temperatures and com-
positions indicated. The a phase has the body-centered-cubic crystal struc-
ture characteristic of iron. At 910°C it transforms into the face-centered
phase 7, and at 1400° into the S phase, which has the same structure as the
a phase. At about 400°C cobalt transforms, on heating, from the e phase
(hexagonal structure) into the 7 phase.

FIELD STRENGTH, H, IN OERSTEDS
Fig. 1— ElTecl of mechanical and heat treatment on the magnetization curve of 70

permalloy (70% Ni, 30% Fe).

Table |

Properties Commonly Sensitive or Insensitive to Small Changes in Structure, and Some of the
Factors which Effect Such Changes

. . Structure-Sensitive Factors Affecting the
Structure-Insensitive Properties Properties Properties
I, , saturation Magnetization N. Permeability Composition (gross)
0, cCurie Point lie Coercive Force Impurities
X ,, Magnetostriction at Saturation II'd Hysteresis Loss Strain
K, Crystal Anisotropy Constant Temperature

Crystal Structure
Crystal Orientation

The dotted lines indicate the Curie point, at which the material becomes
non-magnetic.

In between the areas corresponding to the single phases a, 7, 8 and t
there are two-phase regions in which two crystal structures co-exist, some
of the crystal grains having one structure and others the other. Such a two-
phase structure is usually evident upon microscopic or X-ray examina-
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Fig. 2— Phase diagram of iron-cobalt alloys.
0.02% CARBON 0.06 % CARBON

IRON-COBALT-MOLYBDENUM

Ifhotomicr°graPhs remalloy (12% Co, 17% Mo, 71% Fe) showing the pre-

P ation of a second phase in the specimen containing an excess of carbon (0.06%)
rtesy of E. E. Thomas. Magnification: (a) 50 times, (b) 200 times.
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tion. Microphotographs of a single-phase alloy and a two-phase alloy of
iron-cobalt-molybdenum are reproduced in Fig. 3 (a) and (b).

The diagram of Fig. 2 shows several kinds of changes that affect the mag-
netic properties. At (a) the material becomes non-magnetic on heating,
without change in phase. At (b) there is a change of phase, both phases

Fig. 4— Effect of phase transformation of cobalt on magnetization with a constant
field of 150 oersteds. Both phases magnetic. Masumoto.

Fig. 5—Phase transformation in iron-cobalt alloy (50% Co). High-temperature phase
is non-magnetic.

being magnetic. Figure 4 shows the changes in magnetic properties that
occur during this latter transition; they are due partly to the high local
strains that result from the change in structure, and partly to the difference
in the crystal structures of the two phases. At (c) there is a change from a
ferromagnetic to a non-magnetic phase, and Fig. 5 shows the rapid change
in magnetization that occurs when the temperature rises in this area. At
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(d) the a phase becomes ordered on cooling, i.e., the iron and cobalt atoms
tend to distribute themselves regularly among the various atom positions
so that each atom is surrounded by atoms of the other kind. This phenome-
non is especially important in connection with the properties of iron-alumi-
num and manganese-nickel alloys.

The transition at (e) is entirely in the non-magnetic region but it has
its influence on the properties of iron at room temperature. If iron is cooled
very slowly through (e), the internal strains caused by the change in struc-
ture will be relieved by diffusion of the metal atoms, but if the cooling is too
rapid there will not be sufficient time for strain relief. Practically this means
that to obtain high permeability in iron it must be annealed for some time
below 900°C, or cooled slowly through this temperature so that diffusion
will have time to occur. In most ferromagnetic materials diffusion occurs
at a reasonably rapid rate only at temperatures above about 500 to 600°C.

103x

B

®
£
0
Z

FIELD STRENGTH, H, IN OERSTEDS

Fig. 6— Effect of tension on the magnetization curve of 68 permalloy.

The effect of a homogeneous strain on the magnetization curve can be
observed in a simple way, as by applying tension to an annealed wire and
then measuring B and Il. The effect of tension on some materials is to
increase the permeability and on other materials to decrease it, as shown
m Fig. 6. Compression usually causes a change in the opposite sense.

The internal strains resulting from plastic deformation of the material,
brought about by stressing beyond the elastic limit, as by pulling, rolling
or drawing, almost always reduce the permeability. The material is then
under rather severe local strains similar to those present after phase change,
and these strains are different in magnitude and direction in different places
m the material and have quite different values at points close together.
Strains of this kind can usually be relieved by annealing; therefore, metal
that has been fabricated by plastic deformation is customarily annealed to
raise its permeability. Figure 1 shows the effect of annealing a permalloy
strip that has been cold-rolled to 15 per cent of its original thickness.
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The temperature also is effective in changing permeability and other prop-
erties, even when no change in phase occurs. Figure 7 shows the rapidity
with which the initial permeability decreases as the Curie point is ap-
proached. For this material, Ferroxcube II1l, a zinc manganese ferrite
(ZnMnFe.|Os), the Curie point is not far above room temperature.

The effect of impurities may be illustrated by the B vs Il curves for iron
containing various amounts of carbon. Curve (a) of Fig. 8 is for a mild

72000
>

5 1500
n
b

2~ 500
2 2 40 60 80 100 120

TEMPERATURE IN DEGREES CENTIGRADE

Fig. 7— Variation of initial permeability of Ferroxcube 3, showing maximum at tern-
perature just

103X 16

14

N ONRA

NCED

0 1 2 3 4 5 6 7 8 9 0 1 2
FIELD STRENGTH, H, IN OERSTEDS
Fig. 8— Effect of impurities on magnetic properties of iron. Annealing at 1400°C in
hydrogen reduces the carbon content from about 0.02 per cent to less than 0.001 per cent.

steel having 0.2 per cent carbon, (b) is for the iron commonly used in elec-
tromagnetic apparatus—it contains about 0.02 per cent carbon and is an-
nealed at about 900°C. W hen this same iron is purified by heating for several
hours at 1400°C in hydrogen, the carbon is reduced to less than 0.001 per
cent and other impurities are removed, and curve (c) is obtained.

Finally, Fig. 9 shows that large differences in permeability may be found
by simply varying the direction of measurement of the magnetic properties
in a single specimen. The material is a single crystal of iron containing about
4 per cent silicon, and the directions in which the properties are measured
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are [100] (parallel to one of the crystal axes), and [111] (as far removed as
possible from an axis). The magnetic properties in the two directions are
different because different “views” of the atomic arrangement are ob-
tained in the two directions.

Production of Magnetic Materials

In the preparation of magnetic materials for either laboratory or commer-
cial use there are many processes which influence the chemical and physical

INTRINSIC INDUCTION, B-H, IN GAUSSES

tig. 9 Dependence of permeability on crystallographic direction. Williams.

structure of the product. The selection of raw materials, the melting and
casting, the fabrication and the heat treatment, are all important and must
e carried out with a proper knowledge of the metallurgy of the material. A
Jr>e description of the common practices is now given. For further dis-

cussion the reader is referred to more detailed metallurgical books and ar-
ticles.
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Melting and Casting

For experimental investigation of magnetic materials in the laboratory,
the raw materials easily obtainable on the market are generally satisfactory.
When high purity is desirable specially prepared materials and crucibles
must be used and the atmosphere in contact with the melt must be con-
trolled. The impurities that have the greatest influence on the magnetic
properties of high permeability materials are the non-metallic elements,

Fig. 10 —Induction furnace designed for small melts in controlled atmosphere, as de-
signed by J. H. Scaff and constructed by the Ajax Northrup Company.

particularly oxygen, carbon and sulfur, and the presence of these impurities
is therefore watched carefully and their analyses are carried out with special
accuracy. Impurities are likely to change in important respects during the
melting and pouring on account of reactions of the melt with the atmos-
phere, the slag or the crucible lining, or because of reactions taking place
among the constituents of the metal.

Melting of small lots (10 pounds) is best carried out in a high-frequency
induction furnace. Figure 10 shows such a furnace designed for melting ten
to fifty pounds, and casting by tilting the furnace, the whole operation being
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carried out in a controlled atmosphere. High-frequency currents (usually
1,000 to 2,000 cycles/sec but sometimes much higher) are passed through
the water-cooled copper coils, and the alternating magnetic field so produced

tig. 11— Arc furnace for large commercial melts. Courtesy of J. S. Marsh of the Bethle-
Cln Steel Company.

heats the charge by inducing eddy currents in it. Crucibles are usually com-
posed of alumina or magnesia.
On a commercial scale melts of silicon-iron are usually made in the open
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hearth furnace, in which pig-iron and scrap are refined and ferro-silicon
added. The furnace capacity may be as large as 100 tons. Sometimes silicon-
iron, and usually iron-nickel alloys, are melted in the arc furnace, in
amounts varying from a few tons to 50 tons. A photograph of such a fur-
nace, in the position of pouring, is shown in Fig. 11. The heat is produced
in the arc drawn between large carbon electrodes immersed in the metal,
the current sometimes rising to over 10,000 amperes. By tipping the fur-
nace the melt is poured into a ladle, and from this it is poured into cast-iron
molds through a valve-controlled hole in the ladle bottom. Special-purpose
alloys, including permanent magnets, are prepared commercially in high-

Tabik Il
Heals of Formation and Other Properties of Some Oxides (Sachs and Van Horn")
Heat of formation

Oxide (Kiio-cal per gram Melting Point (°C) Density (g/cm>)
atom of metal)

152 >2500 3.4
144 >2500 3.0
144 2800 3.65
141 >1700 2.0
127 2050 3.5
116 1970 4.9
109 1640 4.3
101 * 2.3
95 1670 2.3
94 580 1.8
91 1650 5.5
89 2700 a.a
85 * 5.5
73 * 2.4
68 1130 6.95
66 1420 5.7
5s i 7.45

*sSublimes.

** Decomposes before melting.

frequency induction furnaces or in arc furnaces in quantities ranging from a
fraction of a ton to several tons.

Slags are commonly used when melting in air, both to protect from oxi-
dation and to reduce the amounts of undesirable impurities. Common pro-
tective coverings are mixtures of lime, magnesia, silica, fluorite, alumina,
and borax in varying proportions. In commercial production different slags
are used at different stages, to refine the melt; e.g., iron oxide may be used
to decarburize and basic oxides to desulfurize.

Melting in vacuum requires special technique that has been described in
some detail by Yensen.1 Commercial use has been described by Rohn2and
others.3Melting in hydrogen has been used on an experimental scale in both

1T. D. Yensen, Trans. A.lLE.E. 34. 2601-41 (1915).

2W . Rohn, Heraeus Vacuumschmelze, Albertis, Hatiau, 356-80 (1933).
3VV. Hessenbruch and K. Schichtel, Zeits. f. Metallkunde 36, 127-30 (1944).
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high-frequency and resistance-wound furnaces. In commercial furnaces Rohn
has used hydrogen and vacuum alternately before pouring, for purification
in the melt, in low-frequency induction furnaces having capacities of several
lons.

Just before casting a melt of a high-permeability alloy such as iron nickel,
a deoxidizer may be added, e.g. aluminum, magnesium, calcium or silicon,
in an amount averaging around 0.1 per cent. The efficacy of a deoxidizer is
measured by its heat of formation, and this is given for the common ele-

TEMPERATURE IN DEGREES CENTIGRADE

Fig. 12—Solubility of some gases in iron and nickel at various temperatures. Sieverts.

ments in Table 11, taken from Sachs and Van Horn .4 Also several tenths of a
per cent of manganese may be put in to counteract the sulfur so that the
material may be more readily worked; the manganese sulfide so formed col-
lects into small globular masses which do not interfere seriously with the
magnetic or mechanical properties of most materials.

Ordinarily a quantity of gas is dissolved in molten metal, and this is likely
to separate during solidification and cause unsound ingots. The solubilities
of some gases in iron and nickel have been determined by Sievertsé and
others and are given in Fig. 12, adapted from the compilation by Dushman.e
Ihe characteristic decrease of solubility during freezing is apparent. Most

(1910) ~ac'ls anc* R -Van Horn, Practical Metallurgy, Am. Soc. Metals, Cleveland

5A-Sieverts, Zeils.f. Melallkunde 21, 37-46 (1929).
S. Dushman, Vacuum Technique, Wiley, New York (1949).
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of the gases given off by magnetic metals during heating are formed from
the impurities carbon, oxygen, nitrogen and sulfur; CO is usually given off
in greatest amount from cast metal, and some N2 and H* are also found.
Refining of the melt is therefore of obvious advantage, and the furnace of
Fig. 10 is especially useful for this purpose.

Small ingots are sometimes made by cooling in the crucible. Usually,
however, ingots are poured into cast iron molds for subsequent reduction
by rolling, etc.; permanent magnet or other materials are often cast in sand

Fig. 13—Design of rolls in a blooming mill for hot reduction of ingots to rod. Camegie
Illinois Sled Corp.

in shapes which require only nominal amounts of machining or grinding
for use in apparatus or in testing. Special techniques are used for specific
materials.

Other considerations important in the melting and pouring of ingots are
proper mixing in the melt, the temperature of pouring, mold construction,
inclusions of slag, segregation, shrinkage, cracks, blow holes, etc.

Fabrication

Magnetic materials require a wide variety of modes of fabrication, which
can best be discussed in connection with the specific materials. The methods
include hot and cold rolling, forging, swaging, drawing, pulverization, elec-
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trodeposition, and numerous operations such as punching, pressing and
spinning. In the commercial fabrication of ductile material it is common
practice to start the reduction in a breakdown or blooming mill (Fig. 13)
after heating the ingot to a high temperature (1200° to 1400°C). Large ingots,
of several tons weight, are often led to the mill before they have cooled
below the proper temperature. The reduction is continued as the metal
cools, in a rod or flat rolling mill, depending on the desired form of the final
product. When the thickness is decreased to 0,2 to 0.5 inch the material has
usually cooled below the recrystallization temperature. Because of the diffi-
culty in handling hot sheets or rod of small thickness, they are rolled at or
near room temperature, with intermediate annealings if necessary to soften
or to develop the proper structure. In experimental work, rod is often
swaged instead of rolled.

In recentyears the outstanding trends in methods of fabricating materials
have been toward the construction of the multiple-roll rolling mill for roll-
ing thin strip, and the continuous strip mill for high-speed production on
a large scale. Figure 14 shows the principle of construction of a typical 4-high
mill ((a) and (b)), and of two special mills ((c) and (d)). In the 20-high
Rohn' mill and 12-high Sendzimirg mill the two working rolls are quite
small (0.2 to one inch in diameter). These are each backed by two larger
rolls and these in turn by others as indicated. In the Rohn mill (c), power is
supplied to the two smallest rolls and the final bearing surfaces are at the
ends of the largest rolls. In the Sendzimir mill (d) the power is supplied to
the rolls of intermediate size and the bearing surfaces are distributed along
the whole length of the largest rolls so that no appreciable bending of the
rolls occurs. The small rolls reduce the thickness of thin stock with great
efficiency, and the idling rolls permit the application of high pressure.
In the Steckel mill power is used to pull the sheet through the rolls, which
are usually 4-high with small working rolls.

The continuous strip mill is an arrangement of individual mills such that
the strip is fed continuously from one to another and may be undergoing
reduction in thickness in several mills simultaneously. Figure 15 shows a
mill of this kind, used for cold reduction, with 6 individual mills in tandem.

For magnetic testing numerous forms of specimens are required for vari-
ous kinds of tests; these include strips for standard tests for transformer
sheet, rings or parallelograms for conventional ballistic tests, “pancakes”
of thin tape spirally wound for measurement by alternating current, ellip-
soids for high field measurements, and many others. The various forms are

W -Rohn, Heracus Vacuumschmelze, Albertis, Hanau, 381-7 (1933).
1- sendzimir, lron and, Steel Engr. 23, 53-9 (1946).
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required to study or eliminate the effects of eddy-currents, demagnetizing
fields and directional effects and to simulate the use of material in apparatus.
Most of the needs arizing in commerce and in experimental investigation
are filled by strips or sheets of thicknesses from 0.002 inch to 0.1 inch from

“Eli] dd
(a) 4-HIGH MILL, SIDE VIEW (b) 4-HIGH MILL, END VIEW
(C) 20-HIGH ROHN MILL (d) 12-HIGH SENDZIMIR MILL

Fig. 14—Arrangerment of rolls in mills used for reduction of thin sheet: (&) and (& an
ventional 4-high mill; (¢) Rohn 20-high; (d) Sendzimir 12-high.

which coils can be wound or parts cut, by rods from which relay cores or
other forms can be made, by powdered material used for pressing into cores
for coils for inductive loading, and by castings for permanent magnets or
other objects which may be machined or ground to final shape.



Fig. 15— Continuous strip mill designed for large output, having 6 individual mills in tandem. Courtesy of C. W. Stoker of Carnegie Illinois
Steel Corp.

ALITVYNO OJILANOVIN  ONILO3H4dY  SHOLOV4
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Eeal-Trealmenl

High permeability materials are annealed primarily to relieve the internal
strains introduced during fabrication. On the contrary permanent magnet
materials are heat-treated to introduce strains by precipitating a second
phase. Heat-treatments are decidedly characteristic of the materials and
their intended uses and are best discussed in detail in connection with them.

Fig. 16 —Some common heat treatments for magnetic materials.

Figure 16 shows some of the commonest treatments in the form of tempera-
ture-time curves. The purpose of these various heating and cooling cycles,
and typical materials subjected to them, may be listed as follows:
(1) Relief of internal strains due to fabrication or phase-changes (furnace
cool). Magnetic iron.
(2) Increase of internal strains by precipitation hardening (air quench
and bake). Alnico type of permanent magnets.
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(3) Purification by contact with hydrogen or other gases. Silicon-iron
(cold rolled), hydrogen-treated iron, Supermalloy.
There are also special treatments, such as those used for “double-treated”
permalloy, “magnetically annealed” permalloy, and perminvar.
Occasionally it is necessary to homogenize a material by maintaining the

PER CENT SILICON IN IRON

1'g .17— Variation of some properties of iron-silicon alloys with composition: B

,, satura-
tion intrinsic induction;

0, magnetic transformation point; p, electrical resistivity; pm,

maximum permeability as determined by Miss M. Goertz.

temperature just below the freezing point for many hours. Heat-treatments
also may affect grain size and crystal orientation.

furnaces for heat-treating have various designs that will not be considered
uere. A modern improvement has been the use of globar (silicon carbide)

heating elements that permit treatment at 1300 to 1350°C in an atmosphere
of hydrogen or air.
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Further discussion of “Metallurgy and Magnetism” is given in an excel-
lent small book of this title by Stanley.9

E ffect of Composition

Gross Chemical Composition

The effect of composition on magnetic properties will now be considered,
using as examples the more important binary alloys of iron with silicon,

Fig. 18 —Variation of B, and O with the composition of iron-nickel alloys.

nickel or cobalt, on which are based the most useful and interesting mate-
rials. The iron-silicon alloys are used commercially without additions, the
iron-nickel and iron-cobalt alloys are most useful in the ternary form; and
many special alloys, for example material for permanent magnets, contain
four or five components.

Figure 17 shows four important properties of the iron-silicon alloys of low
silicon content, after they have been hot rolled and annealed. The commer-
cial alloys (3 to 5% silicon) are the most useful because they have the best

3J. K. Stanley, Metallurgy and Magnetism, Am. Soc. M etals, Cleveland (1949).
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combination of properties of various kinds. The properties shown in the
figure are important in determining the best balance: the maximum per-
meability, nm, only indirectly (it is a good measure of hysteresis loss and
maximum field necessary in use), and the Curie point, 6, only in a minor
role. The saturation Bs, permeability, and resistivity p, should all be as
high as possible. Bs, 0 and p are structure insensitive, and vary with com-
position in a characteristically smooth way, practically independent of
heat treatment; jxm depends on heat treatment (strain), impurities and
crystal orientation. There are no phase changes to give sudden changes with
composition of properties measured at room temperatures.

Fig. 19 -Variation of saturation magnetostriction, X,, and crystal anisotropy, K, with
the composition of iron-nickel alloys.

Some of the properties of the iron-nickel alloys are given in Figs. 18 and
19. I'ne change in phase from a to 7 at about 30 per cent nickel is responsible
for the breaks at this composition. The permeabilities, poand pm, (Fig. 20)
show characteristically the effect of heat treatment. The maxima are closely
related to the points at which the saturation magnetostriction, X,, and crys-
tal anisotropy, K, pass through zero (Fig. 19).

Additions of molybdenum, chromium, copper and other elements are
made to enhance the desirable properties of the iron-nickel alloys.

The iron-cobalt alloys, some properties of which are shown in Fig. 21, are
usually used when high inductions are advantageous. The unusual course of

ic saturation induction curve, with a maximum greater than that for any
other material, is of obvious theoretical and practical importance. The sud-
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103X10
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PER CENT NICKEL

Fig. 20— Dependence of the initial and maximum permeabilities (no, nm) of iron-nickel
alloys on the heat treatment.

PER CENT COBALT IN IRON

Fig. 21— Variation of B, and 9 of iron-cobalt alloys with composition.
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den changes in the Curie point curve are associated with a, y phase boun-
daries, as mentioned earlier in this chapter. Tire peak of the permeability
curve (Fig. 22) occurs at the composition for which atomic ordering is stable
at the highest temperature (see also Fig. 2). The sharp decline near 95 per
cent cobalt coincides with the phase change y,e at this composition. Addi-
tions of vanadium, chromium and other elements are used in making com-
mercial ternary alloys.

Some useful alloys based on the binary iron-silicon, iron-nickel and iron-
cobalt alloys are described in Table III.

The hardening of material resulting from the precipitation of one phase in
another is often used to advantage when magnetic hardness (as in per-
manent magnets), or mechanical hardness, is desired. To illustrate this

PER CENT COBALT IN IRON

I'ig. 22— Variation of permeability at Il = 10 oersteds, and of the critical temperature
of ordering, with the composition of iron-cobalt alloys.

process consider the binary iron molybdenum alloys, a partial phase dia-
gram of which is given in Fig. 23. The effect of the boundary between the
aand a + efields is shown by the variation of the properties with composi-
tion (Fig. 24a). Saturation magnetization and Curie point are affected but
little, the principle change in the former being a slight change in the slope
of the curve at the composition at which the phase boundary crosses 500°C,
the temperature below which diffusion is very slow. The Curie point curve
has an almost imperceptible break at the composition at which the phase
boundary lies at the Curie temperature. The changes of maximum per-
meability and coercive force are more drastic; drops rapidly as the amount
°f the second phase, t, increases and produces more and more internal strain
(Fig- 24b), and Hc increases at the same time. The experimental points
correspond to a moderate rate of cooling of the alloy after annealing.



Table |11

Some Properties of Some Useful Alloys Based on the Fe-Si, Fe-Co and Fc-Ni Binary Systems

Name

Hot rolled Silicon Iron
Grain Oriented Silicon
Iron ..

Sendust
45 Permalloy** e
4-79 Permalloy

Supermalloy.
Permendur.
2V-Permendur.
HiPerco s

Composition (Per cent)

4Si, 96Fe
3Si, 97Fe
9Si, 85Fe, 5Al
45N, 55Fe

79Ni, 17Fe, 4Mo
75N, 18Fe, 2Cr, 5Cu
79Ni, 16Fe, 5Mo
50Co, 50Fe
49Co0,49Fe, 2V
34Co, 64Fe, ICT

* Measured at B = 20 instead of B = 0.

** Similar alloys: Hipenik, Nicaloi, 4750 alloy, and others.

Heat Treatment

800°C

1200°C
Cast

1200°C, H:

1100°C

1175°C. H2

1300°C,
800°C
s00°C
s50°C

FT

Initial Maximum Coercive
Permeabil- Permeabil- Force, lie
Ei, n ity, Hn  (oersteds)

500* 7000 0.5
1500* 40000 0.15
30000 120000 0.05
3500 50000 0.07
20000 100000 0.05
20000 100000 0.05
100000 1000000 0.002
800 5000 2.0
800 4500 2.0
650 10000 1.0

Saturation
Induction,
B. (gausses)

19700

20000
10000
16000
8700
6500
8000
24500
24000
24200

Curie
Point, 0
rc)

690

700
500
440
420
430
400
980
980

NILSAS 711349

AVNYNOr TVIOINHO3L
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ATOMIC PER CENT MOLYBDENUM

ie00l R —

MAGNETIC
TRANSFORMATION

J 1 |
Fe 10 20 30 20
PER CENT MOLYBDENUM

Hg. 23—Phase diagram of iron-rich iron-molybdenum alloys, showing solid solubility
curve important in the precipitation-hardening process.
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io
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517j
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4
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10 X25

>20

°0

10 IS 20 25 30
PER CENT MOLYBDENUM IN IRON

ig. 24— Change of structure-insensitive properties (0 and BS) and structure-sensitive
P opcrtics and HC) with the composition when precipitation-hardening occurs.
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When the amount of the second phase is considerable (as in the 15% Mo
alloy) it is common practice to quench the alloy from a temperature at which
it is a single phase (e.g. 1100 or 1200°C) and so maintain it temporarily as
such, and then to heat it to a temperature (e.g., 600°C) at which diffusion
proceeds at a more practical rate. During the latter step the second phase
separates slowly enough so that it can easily be stopped at the optimum
point, after a sufficient amount has been precipitated but before diffusion
has been permitted to relieve the strains caused by the precipitation. A
conventional heat treatment for precipitation-hardening of this kind, used
on many permanent magnet materials, has already been given in Fig. 16

In some respects the development of atomic order in a structure is like
the precipitation of a second phase. When small portions of the material
become ordered and neighboring regions are still disordered, severe local
strains may be set up in the same way that they are during the precipitation
hardening described above. The treatment used to establish high strains is
the same as in the more conventional precipitation hardening. The decom-
position of an ordered structure in the iron-nickel-aluminum system has
been held responsible, by Bradley and Taylor,10 for the good permanent
magnet qualities of these alloys.

Some of the common permanent magnets, heat treated to develop in-
ternal strains by precipitation of a second phase, or by the development ol
atomic ordering, are described in Table IV.

The changes in properties to be expected when the composition varies
across a phase boundary of a binary system are shown schematically by the
curves of Fig. 25.

Impurities

The principle of precipitation hardening, as just described, applies also
to the lowering of permeability by the presence of accidental impurities.
For example, the solubilities of carbon, oxygen and nitrogen in iron, de-
scribed by the curves of Fig. 26, are quite similar in form to the curve sep-
arating the a and a + e areas of the iron-molybdenum system of Fig. 23;
the chief difference is that the scale of composition now corresponds to con-
centrations usually described as impurities. One expects, then, that the
presence of more than 0.04 per cent of carbon in iron will cause the perme-
ability of an annealed specimen to be considerably below that of pure iron.
The amount of carbon present in solid solution will also affect the magnetic
properties.

Because the amounts of material involved are small, it is difficult to carry
out well defined experiments on the effects of each impurity, especially m

10A.J. Bradley and A. Taylor, Proc. Roy. SoC. (London) 1<56, 353-75 (1938).



Table 1V
Some Useful Permanent Magnets and Their Properties

Name Composition (Per cent)* Fabrication Heat Treatment He B, '\éreg;?:?tli?sl

Carbon Steel...incs IMn, 0.9C HR, PM Q800 50 10000 H,S
Tungsten Steel.. 5W,0.3Mn, 0.7C HR, PM Q850 70 10300 H,S
Chromium Steel 3.5Cr, 0.3Mn, 0.9C HR, PM Q830 65 9700 H, S
Cobalt Steel 36Co, 4Cr, SW ,0.7C HR, PM Q950 240 9500 H, S
Remalloy (Comol 17M o, 12Co HR, PM Q 1200, B700 250 10500 H
Alnico 2 12Co, 17N, 10AL, 6Cu C, G A1200, B60O 550 7200 I, B
Alnico 5 .. 24Co, 14N i, 8A1, 3Cu C, G A1300, **B600 550 12500 H, B
Alnico 12 35Co, ISNi, 6A1, 8Ti C, G Cast, B650 950 5800 H, B
Alcom ax. 25Co, IIN i, 8A1, 6Cu C, G A1300, **B600 550 12500 H, B
Vicalloy e 52Co, 10V C,Cr, PM B600 300 8800 D
Cunife 20Ni, 60Cu C,Cr, PM B600 550 5400 D
Platinum -Cobal 77Pt, 23Co C,Cr, PM Q 1200, B650 2600 4500 D
Silm anal.s 87AQg, 9Mn. 4A1 C,Cr,PM 6000f 550 D
*Remainder iron G— ground

Q— quenched from indicated centigrade temperature in oil

A —cooled in air from indicated temperature

B — baked at indicated temperature

HR—hot rolled

CR—cold rolled

PM —punched or machined
C— cast

** Cooled in magnetic field

t Coercive force for I =
H — hard

13— brittle

D —ductile or malleable
S— strong

0

ALITYNO ODILINOVIN  ONILOIH4Y  SHOLOVA
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Fig. 25— Diagrams illustrating the changes in various properties that occur when a
second phase precipitates.

the absence of disturbing amounts of other impurities. Two examples of the
effect of impurities will be given, in addition to Fig, 8. In Fig. 27 Yensen and
Zieglern have plotted the hysteresis loss as dependent on carbon content,

11T. D. Yensen and N. A. Ziegler, Trans. Am. Soc. Metals 24, 337-58 (1936).



FACTORS AFFECTING MAGNETIC QUALITY 277

the curve giving the mean values of many determinations. The hysteresis
decreases rapidly at small carbon contents, when these are of the order of
magnitude of the solid solubility at room temperature.

Fig. 26— Approximate solubility curves of carbon, oxygen and nitrogen in iron.

Fig. 27— Effect of carbon content on hysteresis in iron. Yensen and Ziegler.

Ciofh2 has purified iron from carbon, oxygen, nitrogen and sulfur by
beating in pure hydrogen at 1475°C, and has measured the permeability

11 P-P-cCioffi, Phys. Rev. 39, 363-7 (1932).
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at different stages of purification. Table V shows that impurities of a few
thousandths of a per cent are quite effective in depressing the maximum
permeability of iron.

Carbon and nitrogen, present as impurities, are known to cause “aging”
in iron—that is, the permeability and coercive force of iron containing these
elements as impurities will change gradually with time when maintained
somewhat above room temperature. As an example, a specimen of iron was
maintained for 100 hours first at 100°C, then 150°C, then 100°C, and so on.

Table V
Maximum permeability of Armco iron with different degrees of purification, cfecled by heal
treatment in pure hydrogen at 1475°Cfor the limes indicated (P. P. Cioffi).
Analyses from R. F. Mehl (private communication to P. P. Cioffi).

. Composition in Per Cent
Time of Treatment P

in Hours /im
o] S ] N Mn P
0 7000 0.012 0.018 0.030 0.0018 0.030 0.004
i 16000 .005 .010 .003 .0001 - -
3 30000 .005 .006 .003 .0003 - -
7 70000 .003 - .003 .0001 - -
18 227000 .005 <.003 .003 .0001 .028 .004
Precision of analysis. 001 .002 .002 .0001

The corresponding changes in coercive force are given in the diagram of
Fig. 28. A change of about 2-fold is observed.

Some Important Physical Properties

There are many physical characteristics that are important in the study
of ferromagnetism from both the practical and the theoretical point of view.
These include the resistivity, density, atomic diameter, specific heat, ex-
pansion, hardness, elastic limit, plasticity, toughness, mechanical damping,
specimen dimensions, and numerous others. In a different category may be
mentioned corrosion, homogeneity and porosity. Most of these properties
are best discussed in connection with specific materials or properties; only
the most important characteristics will be mentioned here. A table of the
atomic weights and numbers, densities, melting points, resistivities and
coefficients of thermal expansion of the metallic elements, is readily avail-
able in the Metals Handbook.

Dissolving a small amount of one element in another increases the re-
sistivity of the latter. To show the relative effects of various elements, the
common binary alloys of iron and of nickel are shown in Figs. 29 and 30.
From a theoretical standpoint it is desirable to understand (1) the relatively
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high resistivity of the ferromagnetic elements compared to their neighbors
in the periodic table and (2) the relative amounts by which the resistivity
of iron (or cobalt or nickel) is raised by a given atomic percentage of vari-
ous other elements. From a practical standpoint, a high resistivity is usually

AGING TEMPERATURE IN DEGREES CENTIGRADE

TIME IN HOURS

Fig. 28-Effect of nitrogen impurity on the coercive force of iron annealed successively
at 100 and 150<C.

PER CENT OF ALLOYING ELEMENT IN IRON

Fig. 29 Dependence of resistivity on the addition of small amounts of various elements
to iron.

desirable in order to decrease the eddy-current losses in the material, and
so decrease the power wasted and the lag in time between the cause and
effect, for example, the time lag of operation of a relay.

Knowledge of the atomic diameter is important in considering the effects
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PER CENT OF ALLOYING ELEMENT IN NICKEL

Fig. 30— Resistivity of various alloys of nickel.

Fig. 31— Atomic diameter of various metallic elements.
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of alloying elements, and values for the metallic and borderline elements are
shown in Fig. 31. Most of the values are simply the distances of nearest
approach of atoms in the element as it exists in the structure stable at room
temperature. Atomic diameter is especially important in theory because the
very existence of ferromagnetism is dependent in a critical way on the dis-
tance between adjacent atoms. This has been discussed more fully in a
previous paper.13

Even when no phase change occurs in a metal, important changes in struc-
ture occur during fabrication and heat treatment, and these are compli-
cated and imperfectly understood. When a single crystal is elongated by
tension, slip occurs on a limited number of crystal planes that in general
are inclined to the axis of tension. As elongation proceeds, the planes on
which slip is taking place tend to turn so that they are less inclined to the
axis. In this way a definite crystallographic direction approaches parallelism

tig. 32— The preferred orientations of crystals in nickel sheet and wire after fabrication
and after recrystallization.

with the length of the specimen. In a similar but more complicated way,
any of the usual methods of fabrication cause the many crystals of which it
is composed to assume a non-random distribution of orientations, often
referred to as preferred or special orientations, or textures. Some of the tex-
tures reported for cold rolled and cold drawn magnetic materials are given
in Table VI, taken from the compilation by Barrett.14 The orientations of
the cubes which are the crystallographic units are shown in Fig. 32 (a) and
(c) for cold rolled sheets and cold drawn wires of nickel.

Since the magnetic properties of single crystals depend on crystallographic
direction (anisotropy), the properties of polycrystalline materials in which
there is special orientation will also be direction-dependent. In fact it is
difficult to achieve isotropy in any fabricated material, even if fabrication
m\ol\es no more than solidifying from the melt. The relief of the internal

“R. M. Bozorth, Bell Sys. Tech. JI. 19, 1-39 (1940).
“*Barrett, Structure of Metals, McGraw Hill, New York (1943).
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strains in a fabricated metal by annealing proceeds only slowly at low
temperatures (up to 600°C for most ferrous metals) without noticeable grain
growth or change in grain orientation, and is designated recovery. The prin-
ciple change is a reduction in the amplitude of internal strains, and this can
be followed quantitatively by X-ray measurements. Near the point of com-
plete relief distinct changes occur in both grain size and grain orientation,
and the material is said to recrystallize. At higher temperatures grain growth
increases more rapidly. The specific temperatures necessary for both re-
covery and recrystallization depend on the amount of previous deformation,
as shown in Fig. 33. Special orientations are also present in fabricated mate-
rials after recrystallization, and some of these are listed in Table VI and illus-
trated for nickel in Fig. 32 (b).

As an example of the dependence of various magnetic properties on direc-
tion, Fig. 34 gives data of Dahl and Pawlek1s for a 40 per cent nickel iron

Table VI

Preferred Orientations in Drawn Wires and Rolled Sheets, Before and After Recrystalliza-
lion, and in Castings (BarrettH)

The rolling plane and rolling direction, or wire axis, or direction of growth, are designated

Drawn wires Rolled Sheets
Metal A
Structure Recrys- . Cast
As Drawn tallized As Rolled Recrystallized
BCC [1101 [110] (001), [110] and  (001), 15° to [100]
others [110]
Cobalt..... HCP (001)
Nickel. FCC [111] and (110), [112] and (100), [001]
[100] others

alloy reduced 9S.5 per cent in area by cold rolling and then annealed at
1100°C. After further cold rolling (50 per cent reduction) the properties
are as described in Fig. 35.

The mechanical properties ordinarily desirable in practical materials are
those which facilitate fabrication. Mild steel is often considered as the
nearest approach to an ideal material in this respect. Silicon iron is limited
by its brittleness, which becomes of major importance at about 5 per cent
silicon; this is shown by the curve of Fig. 36. Permalloy is “tougher” than
iron or mild steel and requires more power in rolling and more frequent
annealing between passes when cold-rolled, butcan be cold-worked to smaller
dimensions. If materials have insufficient stiffness or hardness, parts of
apparatus made from them must Ire handled with care to avoid bending
and consequent lowering of the permeability. If the hardness is too great
the material must be ground to size. This is the case with some permanent
magnets.

150. Dahl and F. Pawlek, Zeiis. f. Metallkunde 28, 230-3 (1936).
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Fig. 33 Dependence of the grain size of iron on the amount of deformation and on the

temperature of anneal.
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Pig- 34-~yarialion of magnetic properties with the direction of measurement in a sheet
Ni) severely rolled (98.5%) and annealed at 1100°C.

ron-nickel alloy (40%

The effect of size of a magnetic specimen is often of importance. This is
"ell known in the study of thinfilms, and fine powders in which the smallest
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dimension is about 10~4 cm or less. Many studies have been made of thin
electrodeposited and evaporated films. Generally it is found that the per-
meability is low and the coercive force high. The interpretation is uncertain

90°

i i i i i i i i i i i [ 1,

t03 XIS 10 5 0 5 10 i5 X 10
RESIDUAL INDUCTION, Br, IN GAUSSES
| 1 1 1 1 | | 1 1 l 1 1 1
150 100 50 0 50 100 150
INITIAL PERMEABILITY, /10

i i i i | i | | | 1 —.

103 X 3 2 1 0 1 2 3X10

MAXIMUM PERMEABILITY,

Fig. 35— Properties of the same material as that of Fig. 34, after it has been rolled,
annealed, and again rolled.

Fig. 36— -Variation of the breaking strength of iron-silicon alloys, showing the onset of
brittleness near 4 per cent silicon.

because it is difficult to separate the effects of strains and air gaps from the
intrinsic effect of thickness, though it is known that each one of these vari-
ables has a definite effect. As one example of the many experiments, 'w
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will show here the effect of the thickness of electrodeposited films of cobalt.
Magnetization curves are shown in Fig. 37 according to previously un-
published work of the author.

FIELD STRENGTH, H, IN OERSTEDS

tig. 37— Dependence of the magnetization curves of pure electrodeposited cobalt films
on the thickness.

(i micron = 1t0-4 cm)

tig. 38 Dependence of coercive force on the particle size of M fiBi powder. Guillaud.

Ibe high coercive force obtained in fine powders by Guillaudi is one of
die most clear cut examples of the intrinsic effect of particle size. The coer-
® e lorce increases by a factor of 15 as the size decreases to 5 X 10-4 cm
(Fig. 38).

ISC. Guillaud, Thesis, Strasbourg (1943).
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Properties AJfected by Magnetization

In addition to the magnetization, other properties are changed by the
direct application of a magnetic field. Some of these, and the amounts by
which they may be changed, are as follows:

Length and volume (magnetostriction) (0.01%)

Electrical resistivity (5%)

Temperature (magnetocaloric effect; heat of hysteresis) (1°C)

Elastic constants (20 per cent)

Rotation of plane of polarization of light (Kerr and Faraday
effects) (one degree of arc)

In addition to these properties there are others that change with tem-
perature because the magnetization itself changes. Thus there is “anoma-
lous” tempcrature-dependence of:

Specific heat

Thermal expansion

Electrical resistivity

Elastic constants

Thermoelectric force
and of other properties below the Curie point of a ferromagnetic material,
even when no magnetic field is applied.

Also associated with ferromagnetism are galvanomagnetic, chemical and
other effects.
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Measurement Method for Picture Tubes. M. W. Baldwin.1 Electronics,
V. 22, pp. 104-105, Nov., 1949.

Diffusion in Binary Alloys.f J. Bardeen.l Phys. Rev., V. 76, pp. 1403-
1405, Nov. 1, 1949.

Abstract—Darken has given a phenomenological theory of diffusion in
binary alloys based on the assumption that each constituent diffuses inde-
pendently relative to a fixed reference frame. It is shown that diffusion via
vacant lattice sites leads to Darken’s equations if it is assumed that the
concentration of vacant sites is in thermal equilibrium. Grain boundaries
and dislocations may act as sources and sinks for vacant sites and act to
maintain equilibrium. The modifications required in the equations if the
vacant sites are not in equilibrium are discussed.

Variable Phase-Shift Frequency-Modulated Oscillator. 0. E, de Lange.l
I.R.E., Proc., V. 37, pp. 1328-1331, Nov., 1949.

Abstract—The theory of operation of a phase-shift type of oscillator is
discussed briefly. This oscillator consists of a broad-band amplifier, the out-
put of which is fed back to the input through an electronic phase-shifting
circuit. The instantaneous frequency is controlled by the phase shift through
this latter circuit. True FM is obtained in that frequency deviation is
directly proportional to the instantaneous amplitude of the modulating sig-
nal and substantially independent of modulation frequency.

A practical oscillator using this circuit at 65 me is described.

Erosion of Electrical Contacts on Make.} L. H. Germerland F. E. Ha-
worth.1Jl. Applied Phys., V. 20, pp. 1085-1108, Nov., 1949.

abstrace'—When an electric current is established by bringing two elec-
trodes together, they necessarily discharge a capacity. Unless the current
which is set up is above 1 ampere, the erosion which is produced in a low
voltage circuit is appreciable only when the capacity is of appreciable size
and when it is discharged very rapidly by an arc. When the arc occurs, its
energy is dissipated almost entirely upon the positive electrode and, when
the circuit inductance is sufficiently low, melts out a crater intermediate in
volume between the volume of metal which can be melted by the energy

‘BT "1* A 'Sar'lc'c ma”n °hla'nccl on request to the editor of the B.S.T.J.
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and that which can be boiled. Some of the melted metal lands on the nega-
tive electrode and, with repetition of the phenomenon, results in a mound
of metal transferred from the anode to the cathode. This transfer, which is
about 4 X 10-14 cc of metal per erg, is the erosion which occurs on the
make of electrical contacts.

The arc voltage is of the order of 15. If the initial circuit potential is
more than about 50 volts, there may be more than one arc discharge, suc-
cessive discharges being in opposite directions and resulting in the transfer
of metal in opposite directions—always to the electrode which is negative.

The occurrence of an arc is dependent upon the condition of the electrode
surfaces and upon the circuit inductance. For “inactive” surfaces an arc
does not occur for inductances greater than about 3 microhenries. Platinum
surfaces can be “activated” by various organic vapors, and in the active
condition they give arcs even when the circuit inductance is greater than
this limiting value by a factor of 103

The Conductivity of Silicon and Germanium as Affected by Chemically In-
troduced Impurities. G. L. Pearson.lPaper presented at A. I. E. E., Swamps-
cott, Mass., June 20-24, 1949. Included in compilation on semiconductors.
Elec. Engg., V. 68, pp. 1047-1056, Dec. 1949.

Abstract—Silicon and germanium are semiconductors whose electrical
properties are highly dependent upon the amount of impurities present.
For example, the intrinsic conductivity of pure silicon at room temperature
is4 X 10-6 (ohm cm)-1 and the addition of one boron atom for each million
silicon atoms increases this to 0.8 (ohm cm)-1, a factor of 2 X 105.

Although such impurity concentrations are too weak to be detected by
standard chemical analysis, the use of radioactive tracers and the Hall
effect has made it possible to make quantitative measurements at impurity
concentrations as small as one part in 5 X 108

Silicon and germanium are elements of the fourth group of the periodic
table with the same crystal structure as diamonds and they have respec-
tively 5.2 X 102and 4.5 X 10” atoms per cubic centimeter. The addition
of impurity elements of the third group such as boron or aluminum gives
defect or p-type conductivity. Elements from the fifth group such as phos-
phorous, antimony or arsenic give excess or n-type conductivity.

The conductivity at room temperature, where it has been shown that
each impurity atom contributes one conduction charge, is given by equa-
tion (1) where N is the number of solute atoms per cubic centimeter.

= A+ BN. 0)

1B.T.L,
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The constants A and B for the various alloys investigated are given in the
following table:

Alloy A B
Si - B 4 X 10-° 1.6 X 10-"
Si -b P 4 X KP« 4.8 X 10-"
Ge + Sb 1.7 X 10-J 4.2 X 10->6

Equation (1) applies to solute atom concentrations as high as 5 X 1019
per cc. At higher concentrations the mobilities are lowered due to increased
impurity scattering so that the computed conduction is higher than the
measured.

Microslruclures of Silicon Ingots.f W. G. Pfamnl and J. IT. Scaff.l
Metals Trans., V. 185 (JI. Metals, V. 1) pp. 389-392, June, 1949.

Increasing Space-Cliarge Waves.] J. R. Pierce.l JI. Applied Pliys., V. 20,
pp. 1060-1066, Nov. 1949.

Abstract—An earlier paper presented equations for increasing waves in
the presence of two streams of charged particles having different velocities,
and solved the equations assuming the velocity of one group of particles to
be zero or small. Numerical solutions giving the rate of increase and the
phase velocity of the increasing wave for a wide range of parameters, cover-
ing cases of ion oscillation and double-stream amplihcation, are presented
here.

Traveling-Wave Oscilloscope. J. R. Pierce.l Electronics, V. 22, pp. 97-99,
Nov., 1949.

Abstract—This paper describes a 1,000 volt oscilloscope tube with a
traveling-wave deflecting system. The tube is suitable for viewing periodic
signals with frequencies up to 500 me. A signal of 0.037 volt into 75 ohms
deflects the spot one spot diameter. A few milliwatts input gives a good
pattern, so that the tube can be used without an amplifier. |he pattern is
viewed through a sixty power microscope.

P-type and N-lype Silicon and the Formation of Photovoltaic Barrier in
Silicon Ingots.f J. H. Scaff,l IT. C. Tiieurererland E. E. Schumacher.l
Metals Trans., V. 185 (JI. Metals, V. 1) pp. 383-388, Jan., 1949.

longitudinal Noise in Audio Circuits. H. W. Augustadtl and W. F.
Kannenberg.1Audio Engg., V. 34, pp. 22-24, 45, Jan., 1950.

Transistors. J. A. Becker.l Compilation of three papers presented at
A 1 E. E. meeting Swampscott, Mass., June 20-24, 1949. Elec. Engg.,
V- 69, pp. 58-64, Jan., 1950.

t A reprint of this article may be obtained on request to the editor of the B.S. | .J.
1B.T.L.
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Application of Thermistors to Control Networks.f J. H. Bollman! and
J. G.Kreer.ll. R. E., Proc,, V. 38, pp. 20-26, Jan., 1950.

Abstract—In connection with the application of thermistors to regulat-
ing and indicating systems, there have been derived several relations be-
tween current, voltage, resistance, and power which determine the electrical
behavior of the thermistor from its various thermal and physical constants.
The complete differential equation describing the time behavior of a di-
rectly heated thermistor has been developed in a form which may be solved
by methods appropriate to the problem.

Sensitive Magnetometer for Very Small Areas.f D. M. Chapin.l Rev. Sci.
Instruments, V. 20, pp. 945-946, Dec., 1949.

A bstract—A vibrating wire system for measuring weak magnetic fields
is described for use in very small spaces. Quartz crystals are used for drivers
to get sufficient velocity with very small displacements. To adjust the
driving voltage to correspond exactly to the natural crystal frequency, the
crystal is also used to regulate the oscillator.

Method of Calculating Hearing Loss for Speech from an Audiogram.f H.
Fletcher.l Acoustical Soc. Am., JI., V. 22, pp. 1-5, Jan., 1950.

A bstract—The question frequently arises, Can one compute the hearing
loss of speech from the audiogram and thus make it unnecessary to make a
speech test after the hearing loss for several frequencies has been recorded.
This paper shows that this can be done by taking a weighted average of the
exponentials of the hearing loss at each frequency. Or if ft is the hearing
loss for speech and pi the hearing loss at each frequency,

10wfio> = j G 10W 10df

The weighting factor G was determined by Fletcher and Galt from thresh-
old measurements of speech coming from filter systems. As specifically
applied to the case of hearing loss at the five frequencies 250, 500, 1000,
2000 and 4000 cps, the above equation is approximately equivalent to

ft = -10 log [01 X 10“W/0) + .13 X 10_0R/0>
+ 40X 10-™ + 38X 10~™ + -08X 10"'W0

where ft is hearing loss at 250 cps
ft is hearing loss at 500 cps

is hearing loss at 1000 cps

ft is hearing loss at 2000 cps

ft is hearing loss at 4000 cps

f A reprint of this article may be obtained on request to the editor of the B.S.T.J.
1B.T.L.
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Designing for Air Purity. A. M. Hanfmann.2 Heating & Ventilating, V.
47, pp. 59-64, Jan., 1950.

Reciprocity Pressure Response Formula Which Includes the Effect of the
Chamber Load on the Motion of the Transducer Diaphragms.f M. S. Haw 1ey.l
Acoustical Soc. Am ., JI., V. 22, pp. 56-58, Jan., 1950.

abstract—INn order to reduce the effects of wave motion in the coupling
chamber to permit reciprocity pressure response measurements to higher
frequencies, only two of the three transducers involved are coupled at a
time to the chamber. Given for these conditions is a derivation of the pres-
sure response formula which includes the effect of the chamber load on the
motion of the transducer diaphragms.

Theory of the ““Forbidden” (222) Electron Reflection in the Diamond Struc-
ture,f R. D. Heidenreich.l Pleys. Rev., V. 77, pp. 271-283, Jan. 15, 1950.

Abstract—The dynamical or wave mechanical theory of electron diffrac-
tion is extended to include several diffracted beams. In the Brillouin zone
scheme this is equivalent to terminating the incident crystal wave vector
at or near a zone edge or comer. The problem is then one of determining the
energy levels and wave functions in the neighborhood of a corner. The solu-
tion of the Schrddinger equation near a zone corner is a linear combination
of Bloch functions in which the wave vectors are determined by the boundary
conditions and the requirement that the total energy be fixed. This leads to
a multiplicity of wave vectors for each diffracted beam giving rise to inter-
ference phenomena and is an essential feature of the dynamical theory.

At a Brillouin zone edge formed by boundaries associated with reciprocal
lattice points S and 0 the orthogonality of the unperturbed wave functions
in conjunction with the periodic potential requires that another recipro-
cal lattice point Abe included in the calculation. The indices of A must be
such that (AIA2A3 = (S1S2S3) — (gig2gd)- The perturbation at the zone edge
results in non-zero amplitude coefficients Cg, Cs and Cj for the diffracted
waves irrespective of whether or not the structure factor for A, sor g van-
ishes. This is the basis of the explanation of the (222) reflection and since it
arises through perturbation at a Brillouin zone edge or comer the term
perturbation reflection” is advanced to replace the commonly used “for-
bidden reflection.”

Hie octahedron formed by the (222) Brillouin zone boundaries exhibits
an array of lines due to intersections with other boundaries to form edges,
fhis array of lines is called a “perturbation grid” and the condition for the
occurrence of a (222) reflection is simply that the incident wave vector
terminate on or near a grid line. Numerical intensity calculations are pre-

jgH ePftot of this article may be obtained on request to the editor of the B.S.T.J.

MV. E." Co.
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sented which show that a strong (222) can be accounted for by the dynamical
theory.

An impedance network model is briefly discussed which may aid in quali-
tative considerations of the dynamical theory for the case of several
diffracted waves.

Determination of g-Values in Paramagnetic Organic Compounds by Micro-
wave Resonance. A. N. Holden,l C. Kittei,,l] F. R. Merrittl and W. A
Y ager.l Letter to the Editor, Phys. Rev., V. 77, pp. 146-147, Jan. 1, 1950.

Nonlinear Coil Generators of Short Pulses,f L. W. Hussey.l I.R.E., Proc,
V. 38, pp. 40-44, Jan., 1950.

Abstract—Small permalloy coils and circuits have been developed which
produce pulses well below a tenth of a microsecond in duration with repeti-
tion rates up to a few megacycles.

The construction of these coils is described. Low power circuits are di-
cussed suitable for different types of drive and different frequency ranges.

Subjective Effects in Binaural Hearing. W. K oenig.l Letter to the Editor,
Acoustical Soc. Am., JI., V. 22, pp. 61-62, Jan., 1950.

Abstract—EXxperiments with a binaural telephone system disclosed some
remarkable properties, notably its ability to “squelch” reverberation and
background noises, as compared to a system having only one pickup. No
explanation has been found for this subjective effect. It was also discovered
that a well-known defect in the directional discrimination of binaural sys-
tems was remedied by a mechanical arrangement which rotated the pickup
microphones as the listener turned his head.

Corrosion Testing of Buried Cables. T. J. M aitland.3 Corrosion, V. 6, pp-
1-8, Jan., 1950.

40AC1 Carrier Telegraph System. A. L. Matte.l Tel. & Tel. Age, No. 2
pp. 7-9, Feb., 1950.

Giving New Life to Old Equipment. P. H. Mietle.3 Bell Tel. Mag., V. 25,
pp. 154-163, Autumn, 1949.

Thermionic Emission of Thin Films of Alkaline Earth Oxide Deposited b
Evaporation,f G. E. Moorel and H. W. Altison.l Phys. Rev., V. 77, PP-
246-257, Jan. 15, 1950.

Abstract—Monomolecular films of BaO or SrO were deposited by evap-
oration on clean tungsten or molybdenum surfaces with precautions to elimi-
nate effects caused by excess metal of the oxide or by heating. Thermionic
emissions of the same order of magnitude as from commercial oxide cathodes
have been obtained from these systems. The results can be explained quali-
tatively by considering the adsorbed molecules as oriented dipoles. aithough

f A reprint of this article may be obtained on request to the editor of the B.S.IJ-
1B.T.L.
3A. T. & T.
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the results may suggest a possible mechanism for a portion of the emission
from thick oxide cathodes, there exist serious obstacles to such thin film
phenomena as a complete explanation.

Long Distance, Finds the Way. W. H. N unn .3 Bell Tel. Mag., V. 28, pp.
137-147, Autumn, 1949.

Private Line Services for the Aviation Industry. Pl. V. R oumrort.3 Bell
Tel. Mag., V. 28, pp. 1-65-174, Autumn, 1949.

Growing and Processing of Single Crystals of Magnetic Metals.f J. G.
Watker,t H, J. wittiamst and R. M. Bozortii.t Rev. Sci. Instruments,
V. 20, pp. 947-950, Dec., 1949.

Abstract—-3ingle crystals of nickel, cobalt and various alloys are grown
by slow cooling of the melt. They are oriented by optical means and by
X-rays, and ground to the desired shape using the technique described.

A Look Around—and Ahead. L. A. w i1son.3 Bell Tel. Mag., V. 28, pp.
133-136, Autumn, 1949.

t A reprint of this article may be obtained on request to the editor of the B.S.T.T.
1B.T.L,

IA.T. & T.
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