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Error D etectin g  and Error Correcting C odes

By R. W. HAMMING

1. I n t r o d u c t io n

H E  au th o r was led to  the s tu d y  given in th is paper from a considera
tion  of large scale com puting m achines in w hich a large num ber of 

operations m ust be perform ed w ithou t a single erro r in th e  end result. T h is 
problem  of “doing th ings rig h t” on a  large scale is n o t essentially  new ; in a 
telephone cen tra l office, for exam ple, a  very  large num ber of operations are 
perform ed while the errors leading to wrong num bers are  k ep t well under 
control, though they  have n o t been com pletely elim inated. T h is  has been 
achieved, in p a r t, th rough the use of self-checking circuits. T h e  occasional 
failure th a t escapes rou tine checking is still detected  by  the custom er and 
will, if it persists, resu lt in custom er com plaint, while if i t  is tran sien t i t  will 
produce only  occasional wrong num bers. A t the sam e tim e the  rest of the 
central office functions sa tisfactorily . In  a d ig ital com puter, on the  o ther 
hand, a  single failure usually  m eans the com plete failure, in the sense th a t  
if it is detected  no m ore com puting can be done un til the failure is located 
and corrected, while if it escapes detection  then it invalidates all subsequent 
operations of the m achine. P u t in o ther words, in a  telephone cen tra l office 
there are a num ber of parallel p a th s  which are m ore or less independen t of 
each o ther; in a d ig ital m achine there is usually  a single long p a th  which 
passes th rough  the sam e piece of equipm ent m any, m any  tim es before the 
answer is obtained.

In  transm itting  in form ation from  one place to  an o th er d ig ita l m achines 
use codes which are sim ply se ts of sym bols to which m eanings or values are 
a ttached . Exam ples of codes which were designed to d e tec t isolated errors 
are num erous; am ong them  are the highly developed 2 o u t of 5 codes used 
extensively in com m on contro l sw itching system s and  in th e  Bell R elay
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C om puters ,1 the 3 o u t of 7 code used for radio te legraphy ,2 an d  th e  word 
count sent a t  the end of telegram s.

In  some situations self checking is no t enough. F or exam ple, in the  M odel 
5 R elay C om puters b u ilt by  Bell Telephone L aboratories for the Aberdeen 
P roving  G rounds ,1 observations in the  early  period indicated  ab o u t two 
or three relay failures per day  in the 8900 relays of the two com puters, repre
senting ab o u t one failure per two to  three million relay operations. T he self
checking feature m ean t th a t  these failures did n o t in troduce undetected  
errors. Since the m achines were run  on an  un atten d ed  basis over n igh ts and 
week-ends, however, the errors m ean t th a t frequently  the com putations 
cam e to  a h a lt although, often the m achines took up new problem s. The 
present trend  is tow ard electronic speeds in d ig ital com puters where the 
basic elem ents are som ew hat more reliable per operation than  relays. How 
ever, the incidence of isolated failures, even when detected , m ay  seriously 
interfere w ith the norm al use of such m achines. T hus it appears desirable 
to  exam ine the  nex t step  beyond erro r detection , nam ely error correction.

W e shall assum e th a t  the tran sm ittin g  equipm ent handles inform ation 
in the b inary  form  of a sequence of 0 ’s an d  l ’s. T h is assum ption is m ade 
bo th  for m athem atical convenience and  because the b inary  system  is the 
n a tu ra l form  for representing the  open an d  closed relays, flip-flop circuits, 
do ts and  dashes, an d  perforated tapes th a t are  used in m any  form s of com
m unication . T h u s each code sym bol will be represented  b y  a sequence of 
0 ’s and l ’s.

T he codes used in th is paper are called systematic codes. S ystem atic codes 
m ay be defined3 as codes in which each code sym bol has exactly  n  b inary  
digits, where m  d ig its are associated w ith  the inform ation while the other 
k — n  — m  d igits are used for error detection  an d  correction. T his produces 
a redundancy R  defined as the ratio  of the num ber of b inary  digits used to 
the m inim um  num ber necessary to convey the sam e inform ation, th a t  is,

R  =  n /m .

T his serves to  m easure the efficiency of the code as far as the transm ission 
of inform ation is concerned, an d  is the only aspec t of the problem  discussed 
in any  deta il here. T he redundancy m ay be said to  lower the effective channel 
capacity  for sending inform ation.

T he need for error correction having assum ed im portance on ly  recently, 
very  little  is know n ab o u t the economics of the  m a tte r. I t  is clear th a t  in

1 Franz Alt, “ A Bell Telephone Laboratories’ Com puting M achine”-—I, II . M athe
m atical Tables and O ther Aids to Com putation, Vol. 3, pp. 1-13 and 60-84, Jan . and 
Apr. 1948.

2 S. Sparks, and R. G. Kreer, “T ape Relay System for Radio Telegraph Operation,” 
R.C.A. Review, Vol. 8 , pp. 393-426, (especially p. 417), 1947.

3 In  Section 7 this is shown to be equivalent to a  much weaker appearing definition.
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using such codes there will be ex tra  equipm ent for encoding an d  correcting 
errors as well as the lowered effective channel capac ity  referred to above. 
Because of these considerations applications of these codes m ay be expected 
to occur first only under extrem e conditions. Some typical situations seem 
to be:

a. un a tten d ed  operation  over long periods of tim e w ith  the m inim um  of 
s tandby  equipm ent.

b. extrem ely large an d  tigh tly  in te rre la ted  system s where a  single failure 
incapacitates the en tire  installation .

c. signaling in  the presence of noise where it is e ither impossible or un
economical to  reduce the effect of the noise on the signal.

These situations are occurring m ore and  m ore often. T he first two are p a r
ticularly true  of large scale d ig ital com puting m achines, while the th ird  
occurs, am ong o ther places, in “ jam m ing” situations.

The principles for designing error detecting  an d  correcting codes in the
cases m ost likely to  be applied first are  given in th is paper. C ircuits for
im plem enting these principles m ay be designed by  the application of well- 
known techniques, b u t the problem  is n o t discussed here. P a r t  I  of the paper 
shows how to construc t special m inim um  redundancy codes in the follow
ing cases:

a. single error detecting  codes
b. single error correcting codes
c. single error correcting plus double error detecting  codes.

P art I I  discusses the general theory  of such codes and  proves th a t  under 
the assum ptions m ade the codes of P a r t  I  are the “ b est” possible.

P A R T  I 

S PE C IA L  CODES

2. S i n g l e  E r r o r  D e t e c t i n g  C o d e s

We m ay construc t a  single error detecting  code having n  b in a ry  dig its 
in the following m anner: In  th e  first n  — 1 positions we p u t n — 1 dig its of 
information. In  the H-th position we place either 0 or 1, so th a t  the en tire  n 
positions have an  even num ber of l ’s. T h is is clearly a single error detecting  
code since an y  single error in transm ission would leave an  odd num ber of 
l ’s in a code symbol.

The redundancy of these codes is, since m  =  n  — 1,

I t  m ight appear th a t  to gain a low redundancy we should le t n  becom e very  
large. However, by  increasing n, the p robability  of a t  least one error in a
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sym bol increases; and the risk of a double error, which would pass unde
tected , also increases. F or example, if <5C 1 is the p robab ility  of an y  error, 
then for n  so large as \ /p ,  tire p robability  of a correct sym bol is approxi
m ately  1/e =  0.3679 . . . , while a double error has p robab ility  l /2 e  =
0.1839____

T he type  of check used above to determ ine w hether or n o t the sym bol 
has any single error will be used th roughout the paper and  will be called 
a parity check. T he above was an  even p a r ity  check; h ad  we used an  odd 
num ber of l ’s to  determ ine the se tting  of the check position it would have 
been an  odd p a rity  check. F urtherm ore, a  p a r ity  check need n o t alw ays 
involve all the positions of the sym bol b u t m ay be a check over selected posi
tions only.

3 . S i n g l e  E r r o r  C o r r e c t i n g  C o d e s

To construc t a  single error correcting code we first assign m  of the n  avail
able positions as inform ation positions. W e shall regard the m  as fixed, b u t 
th e  specific positions are left to a la te r determ ination . W e next assign th e  k 
rem aining positions as check positions. T he values in these k  positions are 
to be determ ined in the encoding process by  even p arity  checks over selected 
inform ation positions.

L e t us im agine for the m om ent th a t  we have received a code sym bol, w ith 
or w ithou t an error. L e t us app ly  the k  p arity  checks, in  order, and  for each 
tim e the p a rity  check assigns the value observed in its check position  we 
w rite a  0 , while for each tim e the assigned and  observed values disagree 
we w rite a 1. W hen w ritten  from  righ t to  left in a  line th is sequence of k 0 ’s 
and l ’s (to be distinguished from  the values assigned by  the p a r ity  checks) 
m ay be regarded as a b inary  num ber and  will be called the checking number. 
W e shall require th a t  th is checking num ber give th e  position  of an y  single 
error, w ith the zero value m eaning no error in the sym bol. T hus the check 
num ber m ust describe m  +  k +  1 different things, so th a t

2 ' 7-* m  ~4~ k  H- 1 

is a condition on k. W riting  n  = m +  k we find

Using th is inequality  we m ay calculate T ab le  I, which gives the m axim um  
m  for a given 11, or, w h a t is the same thing, the m inim um  n  for a given m.

W e now determ ine the positions over which each of the various p a rity  
checks is to be applied. T he checking num ber is ob ta ined  d ig it by  digit, 
from  righ t to  left, b y  applying the p a rity  checks in  o rder an d  w riting down 
the corresponding 0 or 1 as the case m ay  be. Since the checking num ber is



E R R O R  D E T E C T IN G  A N D  C O RREC TIN G  CODES  151

T a b l e  I

n m Corresponding k

1 0 1
2 0 2
3 1 2
4 1 3
5 2 3

6 3 3
7 4 3
8 4 4
-7 5 4

10 6 4

11 7 4
12 8 4
13 9 4
14 10 4
15 11 4

16 11 5
Etc.

to give the position of any  error in a code sym bol, an y  position which lias 
a 1 on the righ t of its  b inary  rep resen tation  m ust cause the first check to 
fail. Exam ining the b inary  form  of the various integers we find

1 = 1
3 = 11
5 = 101
7 = 111
9 = 1001

E tc.

have a 1 on the extrem e right. T h u s the first p a rity  check m u st use positions

1 , 3 , 5 ,  7, 9, ••• .

In  an exactly  sim ilar fashion we find th a t  the second p a rity  check m ust 
use those positions which have l ’s for the second digit from the righ t of the ir 
binary representation ,

2 =  10 
3 =  11
6 =  110 
7 =  111 

10 =  1010 
11 =  1011 

E tc.,
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the th ird  p a rity  check

4  =  100
5 =  101
6 =  110
7 =  111

12  =  1 1 0 0
13 =  1101
14 =  1110
15 =  1111
20 =  10100

E tc.

I t  rem ains to  decide for each p a r ity  check which positions are to  contain 
inform ation and  which the check. T h e  choice of the positions 1, 2, 4, 8 , • • • 
for check positions, as given in the following table, has th e  advan tage  of 
m aking the  se tting  of the check positions independent of each o ther. All 
o ther positions are inform ation positions. T h u s we ob ta in  T able I I .

T a b l f . I I

Check N um ber Check Positions Positions Checked

1 1 1, 3, 5, 7, 9, 11, 13, 15, 17,---
2 2 2, 3, 6, 7, 10, 11, 14, 15, IS, - - -
3 4 4, 5, 6 , 7, 12, 13, 14, 15, 20, -
4 8 8, 9, 10, 11, 12, 13, 14, 15, 24 ,-••

■ As an illustration  of the above theory  we app ly  it to the case of a seven- 
position code. F rom  T able I  we find for n  =  7, m =  4 and  k =  3. From 
T able I I  we find th a t  the first p a rity  check involves.positions 1, 3, 5, 7 and 
is used to determ ine the value in the first position; the second p a rity  check, 
positions 2, 3, 6 , 7, and  determ ines the value in the second position; and 
the th ird  p a rity  check, positions 4, 5, 6 , 7, a n d  determ ines the  value in posi
tion four. T his leaves positions 3, 5, 6 , 7 as inform ation positions. T he results 
of w riting down all possible b inary  num bers using positions 3, 5, 6 , 7, and 
then  calculating the values in the  check positions 1, 2, 4, are  shown 
in T able I I I .

T hus a seven-position single error correcting code adm its  of 16 code sym 
bols. T here  are, of course, 27 — 16 =  112 meaningless symbols. In  some ap 
plications it m ay be desirable to  d rop the  first sym bol from  the code to 
avoid the all zero com bination as either a  code sym bol or a code sym bol plus 
a  single error, since th is m ight be confused w ith no message. T h is  would still 
leave 15 useful code symbols.
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T a b l e  I I I

Position D ecim al V alue of 
Symbol

1 2 3 4 5 6 7

0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1
0 1 0 1 0 1 0 2
1 0 0 0 0 1 1 3

1 0 0 1 1 0 0 4
0 1 0 0 1 0 1 5
1 1 0 0 1 1 0 6
0 0 0 1 1 1 1 7

I 1 1 0 0 0 0 8
0 0 1 I 0 0 1 9
1 0 1 1 0 1 0 10
0 1 1 0 0 1 1 11

0 1 1 1 1 0 0 12
1 0 1 0 1 0 1 13
0 0 1 0 1 1 0 14
1 1 1 1 1 1 1 15

As an  illustration  of how th is code “ w orks” le t us take the sym bol 
0  1 1 1 1 0  0  corresponding to the decim al value 12 an d  change the 1 in 
the fifth position to a 0. W e now exam ine the new sym bol

0  1 1 1 0  0  0

by the m ethods of th is section to  see how the error is located. F rom  T able I I  
the first p a rity  check is over positions 1, 3, S, 7 and predicts a 1 for the first 
position while we find a 0  there; hence we w rite a

1 .

The second p a rity  check is over positions 2, 3, 6 , 7, and predicts the  second 
position correctly; hence we w rite a 0  to  the left of the 1 , ob ta in ing

0  1 .

The th ird  p a r ity  check is over positions 4, 5, 6 , 7 and pred ic ts w rongly; hence 
we write a 1 to the left of the 0  1 , obtain ing

1 0  1 .

This sequence of 0 ’s and l ’s regarded as a  b inary  num ber is the num ber 5; 
hence the error is in  the fifth position. T he correct sym bol is therefore ob
tained by changing the 0  in the fifth position to a 1 .

4. S i n g l e  E r r o r  C o r r e c t i n g  P l u s  D o u b le  E r r o r  D e t e c t i n g  C o d e s

To construc t a  single error correcting plus double erro r detec ting  code we 
begin w ith a single error correcting code. T o th is  code we ad d  one m ore posi
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tion for checking all the previous positions, using an even p a r ity  check. To 
see the operation  of th is code we have to exam ine a  num ber of cases:

1. No errors. All p a rity  checks, including the last, are satisfied.
2. Single error. T he last p a rity  check fails in all such situations w hether 

the  error be in the inform ation, the original check positions, o r the last 
check position. T he original checking num ber gives the position of the 
error, where now the zero value m eans the last check position.

3. Two errors. In  all such s ituations the  last p a r ity  check is satisfied, and 
the checking num ber indicates some k ind  of error.

As an illustra tion  let us construc t an  eight-position code from  the previous 
seven-position code. T o  do th is  we ad d  an  eighth  position  w hich is chosen 
so th a t  there are an even num ber of l ’s in the eight positions. T h u s we add 
an  eighth  colum n to  T able I I I  which has:

T a b l e  IV 
0 
0 
1 
1

1
1
0
0

1
1
0
0

0
0
1
1

P A R T  I I  

G E N E R A L  T H E O R Y

5 . A G e o m e t r i c a l  M o d e l

W hen exam ining various problem s connected w ith  error de tec ting  and 
correcting codes it  is often convenient to in troduce a geom etric model. 
T he model used here consists in identify ing the various sequences of 0 ’s and  
l ’s which are the sym bols of a code w ith  vertices of a  u n it «-dim ensional 
cube. T he code points, labelled x, y , z, ■ ■ ■ , form  a subset of the set of all 
vertices of the cube.

In to  th is space of 2 " po in ts we in troduce a distance, or, as i t  is usually 
called, a metric, D (x, y ). T he definition of the m etric is based on the observa
tion th a t a single error in a code po in t changes one coordinate, two errors, 
two coordinates, and  in general d  errors produce a difference in d  coordinates.
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Thus we define the d istance D (x, y)  betw een two po in ts x  an d  y  as the num 
ber of coordinates for which x  an d  y  are  different. T h is is the sam e as the
least num ber of edges which m ust be traversed  in going from  x  to y. T h is
distance function satisfies the usual th ree conditions for a m etric, nam ely,

D (x, y) =  0  if and  only  if x  =  y  

D (x, y) = D (y, x) > 0  if a: ^  y

D(z, y) +  D (y, z) >  D(.r, z) (triangle inequality ).

As an exam ple we note th a t each of the following code poin ts in the three- 
dimensional cube is two un its  aw ay from the others,

0  0  1 
0  1 0 
1 0  0  
1 1 1 .

To continue the geom etric language, a sphere of radius r ab o u t a p o in t x  
is defined as all po in ts which are a t  a  distance r  from the po in t x. T hus, in 
the above example, the  first th ree code po in ts are on a sphere of rad ius 2 
about the p o in t (1, 1, 1). In  fact, in th is exam ple an y  one code p o in t m ay be 
chosen as the cen ter and  the o ther th ree will lie on the surface of a sphere 
of radius 2 .

If all the code po in ts are a t  a d istance of a t  least 2 from  each other, then  it 
follows th a t an y  single error will carry  a  code po in t over to a p o in t th a t  is 
not a code po in t, an d  hence is a m eaningless symbol. T h is in  tu rn  m eans th a t 
any single erro r is detectable. If  the  m inim um  distance betw een code po in ts 
is a t  least three un its  then  an y  single error will leave the p o in t nearer to the 
correct code p o in t th an  to any  o ther code po in t, an d  th is m eans th a t  an y  
single error will be correctable. T h is type of inform ation is sum m arized in 
the following table:

T a b l e  V

M inimum
Distance M eaning

1 uniqueness
2 single error detection
3 single error correction
4 single error correction plus double error detection
5 double error correction

Etc.

Conversely, it is eviden t th a t, if we are to effect the detection and  correc
tion listed, then  all the distances betw een code po in ts m ust equal o r exceed 
the m inim um  distance listed. T h u s the  problem  of finding suitable codes is
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the same as th a t of finding subsets of po in ts in the space which m ain ta in  a t  
least the m inim um  distance condition. T he special codes in sections 2, 3, 
and  4 were m erely descriptions of how to choose a p articu la r subset of points 
for m inim um  distances 2, 3, an d  4 respectively.

I t  should perhaps be no ted  th a t, a t  a given m inim um  distance, some of 
the correctability  m ay be exchanged for more detec tab ility . F or exam ple, a 
subset w ith m inim um  distance 5 m ay be used for:

a. double error correction, (w ith, of course, double error detection).
b. single error correction plus trip le  error detection.
c. quadruple error detection.
R etu rn ing  for the  m om ent to  the p articu la r codes constructed  in P a r t  I 

we note th a t any  interchanges of positions in  a  code do n o t change the code 
in any  essential way. N either does in terchanging the 0 ’s and  l ’s in an y  posi
tion, a process usually called com plem enting. T h is idea is m ade m ore precise 
in the following definition:
Definition. Tw o codes are said to  be equivalent to each o ther if, by  a  finite 
num ber of the following operations, one can be transform ed in to  the o ther:

1. T he interchange of an y  two positions in the code symbols.
2. T h e  com plem enting of the values in any  position in the code symbols. 

T his is a  form al equivalence relation ( ~ )  since A  ~  A ; A  B  implies 
B  ~  .4; an d  A  ~  B, B  ~  C  implies A  ~  C. T hus we can reduce the study  
of a class of codes to the s tu d y  of typ ical m em bers of each equivalence class.

In  term s of the  geom etric m odel, equivalence transform ations am oun t to 
ro ta tions and  reflections of the  u n it cube.

6. S i n g l e  E r r o r  D e t e c t in g  C o d e s

T he problem  stud ied  in th is  section is th a t of packing the m axim um  num 
ber of points in a u n it «-dim ensional cube such th a t no two poin ts are closer 
than  2 un its  from  each other. W e shall show th a t, as in section 2, 2"-1  points 
can be so packed, and , fu rther, th a t any  such optim al packing is equivalent 
to  th a t used in section 2 .

T o  prove these sta tem en ts we first observe th a t  the vertices of the «- 
dim ensional cube are com posed of those of two (« — l)-d im ensional cubes. 
L et A  be the m axim um  num ber of po in ts packed in the original cube. Then 
one of th e  two (« — l)-d im ensional cubes has a t  least .4 /2  points. T h is cube 
being again decomposed into two lower dim ensional cubes, we find th a t one 
of them  has a t  least A /2 1 points. C ontinuing in th is w ay we come to a  two- 
dim ensional cube having A / 2 ’'~~ points. W e now observe th a t a square can 
have a t  m ost two poin ts separated  by  a t  least two u n its ; hence the  original 
«-dim ensional cube had  a t  m ost 2 ’1-1 po in ts n o t less th a n  two u n its  ap art.
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To prove the equivalence of an y  two optim al packings we note th a t, if 
the packing is optim al, then each of the  two sub-cubes has half the points. 
Calling this the first coordinate we see th a t half the po in ts have a 0 and  half 
have a  1. T he nex t subdivision will again divide these into two equal groups 
having 0’s and  l ’s respectively. A fter (u  — 1) such stages we have, upon re
ordering the assigned values if there be any , exactly  the first n  — 1 positions 
of the code devised in  section 2. T o each sequence of the first n  — 1 coordi
nates there exist n  — 1 o ther sequences which differ from  it  b y  one co
ordinate. Once we fix the w-th coordinate of some one poin t, say  the origin 
which has all 0 ’s, then  to m ain ta in  the  know n m inim um  distance of two 
units between code po in ts the  « -th  coordinate is uniquely determ ined for all 
other code points. T hus the last coordinate is determ ined w ith in  a  com ple
m entation so th a t  an y  op tim al code is equ ivalen t to th a t  given in section 2 .

I t  is in teresting  to  no te th a t  in these two proofs we have used only  the 
assum ption th a t  the code sym bols are all of length n.

7 . S i n g l e  E r r o r  C o r r e c t i n g  C o d e s

I t  has p robably  been noted  by  the reader th a t, in the p articu la r codes of 
P art I, a d istinction  was m ade between inform ation and check positions, 
while, in the geom etric m odel, there is no real distinction  betw een the various 
coordinates. To bring the two trea tm en ts  m ore in line w ith each o ther we re
define a  systematic code as a  code whose sym bol lengths are all equal and

1. T he positions checked are independent of the inform ation contained 
in the symbol.

2. T he checks are independent of each o ther.
3. We use p a r ity  checks.

This is equivalen t to  the earlier definition. To show this we form  a m atrix  
whose 7-th row has l ’s in  the  positions of the 7-th p a rity  check an d  0 ’s else
where. B y assum ption 1 the m atrix  is fixed and  does no t change from code 
symbol to code sym bol. F rom  2 the rank  of the m atrix  is k. T h is in tu rn  
means th a t the system  can be solved for k of the positions expressed in 
terms of the o ther n  — k  positions. A ssum ption 3 indicates th a t  in this 
solving we use the a rithm etic  in which 1 + 1  =  0 .

There exist non-system atic codes, b u t so far none have been found which 
for a  given n and  m inim um  distance d have m ore code sym bols th a n  a sys
tematic code. Section 9 gives an exam ple of a  non-system atic code.

T urning to the m ain problem  of th is section we find from  T able V th a t  a 
single error correcting code has code po in ts a t  least th ree un its  from  each 
other. Thus each p o in t m ay  be surrounded by  a sphere of radius 1 w ith  no 
two spheres having a  po in t in  common. E ach  sphere h as  a center po in t and
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n  points on its surface, a to ta l of 11 +  1 points. T hus the space of 2“ points 
can have a t  m ost:

2 n 
11 +  1

spheres. T his is exactly the bound we found before in section 3.
W hile we have shown th a t the  special single error correcting code con

structed  in section 3 is of m inim um  redundancy, we canno t show th a t  all 
op tim al codes are equivalent, since the following triv ia l exam ple shows tha t 
th is is n o t so. F or n  =  4 we find from T able I  th a t m  =  1 an d  k =  3. Thus 
there are a t  m ost two code sym bols in a four-position code. T he following 
two optim al codes are clearly  n o t equivalen t:

0 0 0 0  , 0 0 0 0
i i n  and  0 1 1 1 .

8. S in g l e  E r r o r  C o r r e c t in g  P l u s  D o u b l e  E r r o r  D e t e c t in g  C o d es

In  th is section we shall prove th a t the codes constructed  in section 4 are 
of m inim um  redundancy. W e have a lready  shown in section 4 how, for a 
m inim um  redundancy code of n  — 1 dim ensions w ith  a  m inim um  distance 
of 3, we can construct an  n dim ensional code hav ing  the sam e num ber of 
code sym bols b u t w ith a m inim um  distance of 4. If  th is  were n o t of m inim um  
redundancy  there would exist a code having m ore code sym bols b u t  with 
the same n and  the same m inim um  distance 4 between them . T ak ing  this 
code we rem ove the last coordinate. T his reduces the dim ension from  n  to 
n  — 1 and  the m inim um  distance betw een code sym bols by, a t  m ost, one 
un it, while leaving the  num ber of code sym bols the  same. This contradicts 
the assum ption th a t the  code we began our construction  w ith was of m ini
m um  reduncancy. T hus the codes of section 4 are of m inim um  redundancy.

T h is  is a special case of the following general theorem : To an y  m inim um
redundancy code of N  po in ts in n  — 1 dim ensions an d  hav ing  a  m inim um
distance of 2k — 1 there corresponds a  m inim um  redundancy code of N  
po in ts in n  dimensions having a m inim um  distance of 2k, and conversely. 
T o construct the n dim ensional code from the n — 1 dim ensional code we 
sim ply add a single n -th  coordinate which is fixed by  an even p a rity  check 
over the n  positions. T his also increases the m inim um  distance by 1 for 
the following reason: Any two poin ts which, in the n  — 1 dim ensional code, 
were a t  a distance 2k — 1 from  each o ther had  an odd num ber of differences 
between the ir coordinates. T h u s the p a r ity  check was se t oppositely for the 
two points, increasing the d istance betw een them  to 2k. T he add itiona l co
o rd inate could no t decrease an y  distances, so th a t  all po in ts in the code are 
now a t  a m inim um  distance of 2k. T o go in the reverse direction we simply
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drop one coordinate from  the n  dim ensional code. T h is reduces the m inim um  
distance of 2k to 2k — 1 while leaving N  the same. I t  is clear th a t  if one 
code is of m inim um  redundancy  then  the o ther is, too.

9 . M i s c e l l a n e o u s  O b s e r v a t io n s

F or the next case, m inim um  distance of five un its , one can surround  each 
code po in t by  a sphere of rad ius 2. E ach sphere will contain

1 +  C (n, 1) +  C O , 2)

points, where C(n, k) is the binom ial coefficient, so th a t  an  upper bound on 
the num ber of code po in ts in a system atic  code is

2 "  2 n + i

1 +  C (n, 1) +  C O ) 2) « 2 +  n  +  2
>  2

This bound is too high. F or example, in the case of n  =  7, we finch'that 
m  =  2 so th a t  there should be a code w ith four code points. T h e  m axim um  
possible, as can be easily found by tria l and error, is two.

In  a  sim ilar fashion a  bound on the num ber of code po in ts m ay be found 
whenever th e  m inim um  distance between code po in ts is an odd num ber. 
A bound on the even cases can then  be found by  use of the general theorem  
of the preceding section. These bounds are, in general, too high, as the above 
example shows.

If we w rite the bound on the num ber of code po in ts in a u n it cube of d im en
sion n and  w ith m inim um  distance d  betw een them  as B (ii, d), then  the 
inform ation of th is type  in the presen t paper m ay be sum m arized as follows:

B (n , 1) =  2"

B in ,  2) =  2n~ l

13(n, 3) =  2’" <  2

2 '1“ 1

n  +  1

B (n ,  4) =  2m <
n

B {n  -  1, 2k -  1) =  B {n, 2k)
r\ n

B in , 2k -  1) =  2m <  -------- — ^  r  Ts ■1 +  C (n , 1) +  • • • +  C(m, k -  1)

While these bounds have been a tta in ed  for certain  cases, no general 
m ethods have y e t been found for con tracting  optim al codes when the m ini
mum distance betw een code po in ts exceeds four un its , nor is i t  know n 
whether the bound is or is n o t a tta in ab le  by  system atic codes.
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W e have dea lt m ainly  w ith  system atic codes. T h e  existence of non-sys- 
tem atic  codes is proved by the  following exam ple of a single error correcting 
code w ith n  =  6 .

0  0  0  0  0  0  
0  1 0  1 0  1 
1 0  0  1 1 0  
1 1 1 0  0  0 
0  0  1 0  1 1  
1 1 1 1 1 1 .

T he all 0 sym bol indicates th a t  an y  p a rity  check m u st be an  even one. 
T he all 1 sym bol indicates th a t  each p a rity  check m ust involve an  even num 
ber of positions. A d irect com parison indicates th a t  since no two colum ns 
are the sam e the even p a rity  checks m ust involve four or six positions. An 
exam ination  of the second sym bol, which has three l ’s in it, indicates th a t  
no six-position p a rity  check can exist. T ry in g  now th e  four-position p arity  
checks we find th a t

1 2  5 6
2 3 4 5

are two independent p a rity  checks and  th a t  no th ird  one is independent of 
these two. Tw o p a rity  checks can a t  m ost locate four positions, and , since 
there are six positions in the code, these two p a rity  checks are n o t enough 
to  locate any single error. T he code is, however, single error correcting since 
it satisfies the m inim um  distance condition of three units.

T he only previous w ork in the field of error correction th a t  has appeared  
in p rin t, so far as the au th o r is aware, is th a t  of M . J . E . G olay .4

4 M . J. E . Golay, Correspondence, Notes on Digital Coding, Proceedings of the I.R .E ., 
Vol. 37, p. 657, June 1949.



Optical Properties and the Electro-Optic and Photoelastic 
Effects in Crystals Expressed in Tensor Form

By W. P . MASON

I .  I n t r o d u c t io n

TH E  electro-optic an d  photoelastic effects in crystals were first investi
gated by  Pockels ,1 who developed a phenom enological theo ry  for these 

effects and  m easured the  constan ts for a num ber of crystals. Since then no t 
much work has been done on the sub ject till the  very  large electro-optic 
effects were discovered in  two te tragonal crysta ls am m onium  dihydrogen 
phosphate (ADP) an d  potassium  dihydrogen phosphate (K D P ). W ith  these 
crystals light m odulators can be ob ta ined  which work on voltages of 2000 
volts or less. T heir use has been suggested2 in such equipm ent as ligh t valves 
for sound on film recording an d  in television system s. F urtherm ore , since 
the electro-optic effect depends on a change in th e  dielectric co n stan t w ith 
voltage, and the dielectric constan t is known to follow the field up  to 1010 
cycles, it is obvious th a t th is effect can be used to produce very  short light 
pulses which m ay  be of in te rest for physical investigations and for strobo
scopic instrum ents of very  high resolution. H ence these crysta ls renew an 
interest in the electro-optic effect.

In  looking over th e  lite ra tu re  on the  electro-optic effect and  photoelastic 
effect in crystals, there do n o t seem to be an y  derivations th a t  give them  
in term s of therm odynam ic po ten tia ls, which allow one to  investigate the 
condition under which equalities occur between th e  various electro-optic 
and photoelastic constants. H ence it is the purpose of th is paper to give such 
a derivation. A nother ob ject is to give a  derivation  of M axw ell’s equations 
in tensor form, and  to  app ly  them  to the derivation of the Fresnel ellipsoid.

The first sections deal w ith  the  optics of crystals, and  derive the F resnel 
ellipsoid from  M axw ell’s equations. O ther sections give a derivation  of the 
two effects, discuss m ethods for m easuring them  by determ in ing  the bi- 
refrigence in various directions and  give the constan ts for the  two effects in 
term s of crysta l sym m etries. T h e  final section discusses the application  of 
the photoelastic effect for m easuring strains in isotropic m edia.

1 F. Pockels, Lehrbuck Der K ristalloptic, B. Teubner, Leipzig, 1906.
2 See Patent 2,467,325 issued to the writer; “L ight M odulation by P  type C rystals,”

George D. Gotschall, Jour. Soc. Motion Picture Engineers, July. 1948, pp. 13-20; B. H.
Billings, Jour. Opt. Soc. A m ., 39, 797, 802 (1949).
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I I .  S o l u t io n  o f  M a x w e l l ’ s  E q u a t io n s  I n  T e n s o r  F orm

In  tensor no ta tion , M axwell’s equations for a nonm agnetic m edium  w ith 
no free charges take the form

I d  D i d i l j  1 d l l j  _  dE k _ ODi _  n _ d l l j  _
17 a ;  .  ) T/" n / n > n .. > a . .  '  /V 01 dXk V dl OXi OXi dXj

where D i is the electric displacem ent, H , the m agnetic field, E k the electric 
field, V  the velocity  of ligh t in vacuo and  e ,#  a  tensor equal to  zero when 
i  =  j  or k or j  =  k, b u t equal to  1 o r — 1 when all th ree num bers are  different. 
If  the num bers are in ro tation , i.e. 1, 2, 3; 2, 3, 1; 3, 1, 2 the  value is + 1  
while, if they  are o u t of ro tation , the value is —1 .

W e assum e the electric vec to r to be representable by  a  p lane w ave whose 
planes of equal phase are taken  norm al to  the un it vec to r m  . T hen

E k =  E 0k eM i- Xinih) (2)

where Eok are constan ts representing  the m axim um  values of the field along 
the three rectangular coordinates an d  j  =  y /  —I . S ubstitu ting  (2) in the 
second of equations (1), noting th a t Eok are n o t functions of the space co
ordinates, we have

1 dH j _  JO} r „  lJuU—Xitlilv) /O'!y. , [ijkiEot iii\e . \o)
V ot v

In teg ra tin g  w ith respect to the tim e

II, =  -  \elkiEokni}eiwU- XiniM =  IIajeM ,- Zi’“ 'v). (4 )
v

Hence,

V
Ho, =  -[*,•*:,• £»*«(] (5)v

and  therefore the m agnetic vector is norm al to the p lane determ ined by 
E 0t an d  m .

N ext, using the first of equations (1),

dD i ,r d l l j  de
- Vtijk ——• — VeijhUo

ju[t~-xknklv]

di dxk ^  ■* dxk
(6)

V

In teg ra tin g  w ith respect to  time,

D i =  - l u ijk H 0 .n k}eM l- Iknk,v]. (7)
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Inserting the value of //<>,■ from (5), th is  equation  takes the form

and, in general,

V
D i  — ------- [e,-j k ( t j k i £ * » < )# * ] . ( 9 )

v 2

Expanding the inner parenthesis, we have the com ponents

(Ein-i — £¡»2)1; (£ j« i — Ein-i)2) (Eyi-i — ^ « 1)3 . (10)

Then

e»;t[(£a«j — £ « -2); ( £ « i  -  £ i» j) ;  ( £ 1^2 — £ h i) ]» a  gives 

F 2
A  = ---- 7 [(jE3i*i — E in ^ m  — (Ei 112 — A ih)n2\

ir

=  [(£3 «3 +  E2 «2 +  E\U\)ni — Ei(n\ +  «2 +  «3)]

F 2
•02 =  ——  [(£ 1  «2  — E vuiiH i — (E 2113 — £ 3  « 2)^ 3]

=  [ ( £ 3 ^ 3  -)- £ 2  « 2  4" £ i « i ) « 2  — £ 2 ( ^ 1  4~ m* 4~ « 3 )]

F 2
O3 — —— [ (£ 2^3 — E 3112)112 — (£ 3  »1 £ 1  >¿3)^ 1]

r

=  [ ( £ 3  «3 -(- £ » 2  4 * £ 1  U i)) i3 — £ ( m i  112  -f- »*)]■

Now, since n\ +  m2 +  n \ =  1 because n  is a  u n it vector, we have 

F 2
D i =  —  [£,• — (£■ Uj)nt] or —  D i — E t — (E , n ,)m  =  0. (12)v2 y -

This equation sta te s  th a t D i , £  an d  are in the sam e plane, H,- being 
normal to the p lane as shown by Fig. 1. T he energy flow vector

S i  =  % -e n tE jH t  ( 13)
47T

also lies in the p lane since it  is perpendicular to  £  and I I . I t  is a t  the sam e
angle £i vyith 11 th a t  £  is w ith  D. T h e  velocity  of energy flow is d/cos 6. T he 
energy velocity is called the ray  velocity and  the energy p a th  the ray  p a th . 

Next, from the rela tion  for a  m ateria l m edium , th a t
Ell*!* g f

D i =  K ijE j  o r conversely £  =  / £ £  (14)
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where K a  are the dielectric constan ts m easured a t  op tical frequencies and  
fin  are the im perm eability  constan ts determ ined from  the  relations

(15)

w here

fi Aji/ A K

K n K u K u

K u Kzz Kzz

K u Kzz Kzz

and  A’1 the determ inan t obtained by suppressing the j th row an d  i th column, 
we can elim inate from equation (12) and  obtain  

2

-ryi'Di =  8 u A  +  f i u D z  +  f i u D z  — ( E j n , ) n j 
V

— Do — 812 A  +  822 A  +  823 A  — ( E j  n f in z
V

2
tt,. D z  =  813 A  +  823 A  +  fin  Dz — (E jiifiiiz .
V

T his can be p u t in the form

(E jtij)n i =  A [ 8 u  — v^/V-] +  812A  +  813A

{Eflij) »2 =  finDi +  (822 -  d2/ F ) Z )2 -{- fiizDz

(EjUj)>h =  8 n A  +  823 A  +  {fizz — c2/ F 2)A -  

Solving for A , Dz and  D 3

A  =  [(fizz -  v*/V*)(fin ~  "N/V2) -  fiU lE p ijju  1

D z  =  [ { f i n  -  i * / V ° - ) ( f iz 3 -  t-2/ I / 2 )  -  8 n P / » / H

A  =  [(811 -  ^2/ F 2) (822 -  v-fV'-) -  fiU[Ejnj]nz.

Now, since D  an d  n are a t  r igh t angles,

D\)i\ -f- Dztiz T  Dztiz — 0 .

Hence,

0  =  [(822 -  is/ V 2)(fin  -  v*/V2) -  fiU n l

+  [{fin ~  ttyF*)G8,i ~  -  fiU n l

(16)

( 1 7 )

(18)

(19)

(20)

+  [{fin -  ^ /T -){ fizz  -  ^ / F 2) -  812)« I
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P L A N E  O F  
C O N S T A N T  

P H A S E

Fig. 1—Position of electric, magnetic and norm al vectors for an  electromagnetic plane
wave in a  crystal.

Fig. 2—R otated  axes and angles for relating them  lo unro tated  axes.

By choosing the original x, y , z  axes so th a t f e  =  0 «  =  =  0  ancl usin 8
the values =  |3i , /fe =  f t , fin  — f t  th is gives the equation

m
-5 +

2ni «3 =  0. ( 21)

ß i

For transm ission along the  X  axis »1 = 1 , »* = » 3 = 0  and  the two velocities 
are given by

i? =  fc V 2 =  b \  t'2 =  /3sF2 =  c2. (22)
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Sim ilarly the th ird  velocity v2 =  (h F 2 =  «2 can also be used and  equation 
(2 1 ) reduces to

111 +  5 - ^ - .  +  =  0. (23)a2 ~  v2 b2 — v2 c2 — v2

T his is a quadra tic  equation  for the  velocities v in term s of the principal 
velocities a, b and  c which are usually  taken  so th a t  a >  b >  c.

Solving for the velocities, we ob ta in  the qu ad ra tic  equation

D4 — v2[nl(b2 +  c2) +  nl(a?  +  c2) +  n l(a 2 +  Z>2)]
2 2 (24)

+  n\b2c2 +  n\a2c2 +  n\a2b2 =  0 .

L e tting  L  = n\(b2 — c2), M  =  ;/2(c2 — a2), N  = n \(a2 — b2) the solutions 
for the velocities become

2v =  nl(b2 +  c2) +  nl(c2 +  a2) +  »¡(a2 +  b*)
 ________________________________________________ • (2t>)

db V L -  +  M 2 +  N 2 -  2L M  -  2 L N  -  2M N

T his equation  can be p u t in to  a sim pler form  if we change to the coordinate 
system  shown by Fig. 2. H ere the ro ta ted  system  is related  to the original 
system  by  th ree angles 9, <p, \p. 9 is the angle betw een the  Z  axis an d  the 
Z  axis, <p is the angle the p lane containing Z  and Z  m akes w ith the X  axis 
while \p represents a  ro ta tion  of the prim ed coordinate system s ab o u t the 
Z  axis. T h e  direction cosines for the prim ed system  w ith  respect to  the 
norm al system  are designated b y  the m atrix

X  Y  Z

X
V
Z '

h  n ti n i (26 )
¿2 >«2 «2
6.1 WÎ3 >H

where, in term s of 9, <p an d  i>, these d irection cosines are,

( i  =  cos 9 cos <p cos \p — sin <p sin \p, 

n i\ =  cos 9 sin <p cos \p +  cos <p sin ip, ih  =  — sin 9 cos \p

12 =  — cos 9 cos <p sin ^  — sin p  cos v̂ ,

« 2  =  cos cos if/ — sin <p sin ÿ  cos 9, =  sin 9 sin \p

U  — cos <p sin 9, m 3 =  sin <p sin 9, n 3 — cos 9. (27)

If  we take ZJ as the d irection of the wave norm al, then  in equation  (25)

IL =  13 , I¡2 =  m 3 , »3 =  ll-,l
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and the equation  for the  velocities becomes

Iv =  a 2(sin2 <p sin2 0 +  cos2 (?) +  ¿2(cos2 <p sin2 0 +  cos2 (?) +  c" sin2 ( 
, /  £>2)2(cos2 6 cos2 <P +  sin2 <p)\ +  2 (a 2 -  ¿>2)(c2 -  ¿2)

(28)

sin2 0 (cos2 9 cos2 ¡p — sin2 95) +  (c2 — Z>2)2 sin4 g

A very  elegant construction  for the wave-velocities and  the  d irections of 
vibration is the F resnel index ellipsoid. Consider the ellipsoid

a?x2 +  b y  +  c2z2 =  1 (29)

Then Fresnel3 showed th a t, for an y  d iam etra l plane perpendicular to  the 
wave norm al, the two principal axes of the ellipse were the directions of the 
two perm itted  v ib rations, while the w ave velocities were the reciprocals of 
the principal semi-axes.

We wish to  show now th a t  th e  m axim um  and m inim um  values of the im
perm eability  constan ts  in a  p lane perpendicular to the d irection of the  
wave norm al determ ine the directions of v ibration  and  the values of the two 
velocities. T o  show th is we m ake use of the fact th a t  /3,-y is a second rank  
tensor and transform s according to the tensor transform ation  form ula

¿ a  =  P  P  h t  (30)d%k dxc

where the p a rtia l derivatives are the d irection cosines 

dx[ .
—  =  t i ,  —  =  m ,  ^ 7  =  n  1
d x i

dx'i „.va
■x- — (21 —  — m i ,  —  =  «2OX\

Ox»
j —  —  ( 3 , v— — P h ,  V— — n 3 •dxi dXi 0X3

Expanding equation  (30) the six transform ation equations become

0n  =  (i/3n +  2A?«i/3i2 ~F 2A«ii3i3 ~F +  2?»i»i/?23 ~F P1&33

d i 2 — C C/311 "F  { ( p i h  +  w i iO A s  ~F { ( p h  T" » iC )/3n  T" n i  1W2/322 

“F (iHpbl +  PpPll)^23 ~F n P H ^zz  

/3n = (1( 3/311 -F (Cwtj +  ?KiC)/3i2 +  {(p tz  +  KiO/3i3 +  mpnzBn  

+  (H1WI3 +  »hih)/3n  +  npizPzz (31)

0x [  =  

d .V2
m i ,

0x [

0X3

0x 2
1112 ,

0 X 2

0x 2 O X 3

OX-3 _  
0x 2

m ,
0 X 3  

O x 3

’ See for example “ Photoelaslicity,” Coker and Filon, Cambridge University Press, 
pages 17 and 18.



022 =  ¿2011 4“ 2C l̂hßl2 4“ 2('iUißu -f- »12022 4- 2ni2»2023 4" »2033

023 =  fatsßll 4“ (¿2wl3 4" »h('i)ßr> +  ((’■•Ah 4- ”2^)013 4- JWW3022

4“ ij»2» :j 4- »A»3/023 4" W2W3033

033 =  ¿3011 4" 2f3”230i2 4- 2 i3;;.30i3 4- »/3022 4~ 2wi3»3023 4" «30 33-

Now, if the axes refer to the  axes of a Fresnel ellipsoid, 0 u  =  0 i3 =  023 =  0 
and  one of the  im perm eability  constan ts for an y  direction, say 0 3 3 , can be 
expressed in  the form

033 =  ¿301 4“ >»302 4“ ” 303 (22)

If  r, which lies along Z '  of Fig. 2, is the rad ius vec to r of the F resnel ellipsoid, 
then the direction cosines ¿4 , ms and »3 are

x  y  z
Is  =  ms =  -  , ” 3 =  - .r r r

From  equation  (24) 0i =  a~/V2, 0» =  b-/V~, 03 =  e2/ F 2 an d  equation  (32) 
becomes

2rr2a' 2 2 , ,2 2 , 2 2 ,r V  ßss -  a x  4- b y  +  c z  =  1.

H ence the square of the radius vector of the Fresnel ellipsoid is 1/ F ' 0 33 
and  the radius vector of the im perm eability  ellipsoid agrees w ith  th a t  of the 
Fresnel ellipsoid. H ence, the directions of v ib ration  can  be determ ined  from  
the principal axes of the im perm eability  ellipsoid for an y  d iam etra l plane.

W hen light transm ission occurs along Z ' , the d irection  for m axim um  and 
m inim um  im perm eability  can  be ob ta ined  b y  eva lua ting  0 n  an d  deter
m ining the angle p  for which it has an extrem e value. In serting  the direction 
cosines A , »h an d  n 1 from equation (27), we find
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0 n  =  01

+

2 „ 2  2 , sin 2ip sin 2ip cos 6 . . .
cos a cos tp cos y  —   —   4 ~ sin tp sin 4/

•> „ . 2 - , , sin 2<p sin 2\p cos 6 , 2 • 2 ,
cos 6 sm tp cos \p 4 - ---------  „  r  cos tp sin <]/

(33)

4-  03 sin ' 6 cos' p.

D ifferentiating  w ith  respect to  p  and  se tting  the resu ltan t deriva tive  equal 
to  zero, the value of p  th a t  will satisfy  the  equation  is given by

, 0 , (02 — 0 i) sin 2<p cos dta n  ¿4/ —
(0i — 02) (cos2 0 cos2 tp — sin2 tp) 4- (03 — ß-i) sin2 6

1 . (3 4 )
— a ' )  sin 2 tp cos Q

{a- — b'2) (cos2 6 cos2 <p — sin2 tp) 4 * (c2 — b'2) sin2 6 '
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For a given value on the r igh t-hand  side there are two values of \p, 90° ap a rt, 
tha t will satisfy  the equation  an d  hence we have two directions of v ib ration  
a t right angles to  each o ther. In serting  (34) in (33) the  values of d n  and 
dn for these two directions are

2/3n =  /3i(sin2 <p sin2 0 +  cos2 0) +  /32(cos2 p  sin2 0 +  cos2 6) +  ds sin2 0

/ ( f t  -  f t ) 2 (cos2 0 cos2 <p +  sin2 sc)- +  2 ( f t  -  f t ) ( f t  -  f t )  
y  ■ sin2 6 (cos2 0 cos2 <p — sin2 <p) +  ( f t  — f t ) 2 sin4 0 .

Since f t  corresponds to  a2, etc., th is equation  agrees w ith th e  two velocities 
given in equation (28) an d  shows th a t  the directions of v ib ra tion  correspond 
with the m axim um  an d  m inim um  values of f t i .

I t  can also be shown th a t  the two directions of electric d isplacem ent co
incide w ith the two values of \p given by  equation  (34). T ransform ing  the 
electrical d isplacem ents to the X ',  Y ',  Z '  set of axes we have

D[ =  p  7ft +  ~  D . +  ^  7ft =  f 1D l +  m i 7ft +  n xD z
d X i  0 X 2  O X  3

£>' =  to* D i  +  ^  7ft +  ~  D s =  f t  A  +  m 2D» +  n , D t (35) 
3 * i  o x 2 o x »

D '3 =  p  D i +  ^  7ft +  A  =  f t  A  +  m 3Do +  n :tn 3.
O X  1 0 * 2  O X 3

Hence, inserting the values of A ,  A ,  A  from  equation  (18), we find

A  =  ( i ( 3{ f i2 — dn) 033 — dn) +  » h » i 3(iS i — dn) 0?3 — dn)

+  — dn) (ds ~  dn )

D o  =  (2( 3{f}2 — dn) C/33 — dn) — duXds dn)
(36)

+  iteiiiifii — d n )(d 2 ~  dn)

A  =  fs(d2 — dll)(d3 — dll) 4" ~  dll)(ds dll)

+  »»(di — dn ) (da ~  dn ).

From equation (20 ) w ith dn  =  d i3 =  da3 =  0 , i t  is ev iden t th a t  the  A  com 
ponent vanishes and  hence th e  two values of electric displacem ent lie in a 
plane perpendicular to Z ' . By inserting the values of d n  and  the  value of 
i  found from equation  (34) we find th a t D» =  0 and  hence the electric d is
placement lies along the directions of the g rea test value of d n  - Sim ilarly, 
from the second value of d ii > A  vanishes an d  hence the second wave is per
pendicular to  the first and  in the direction  of the sm allest value of d n  •
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I I I .  L o c a tio n  o f  O p t ic  A x e s  in  a  C r y s t a l

W hen the expression in the radical of equation  (28) vanishes the two 
velocities are equal and  an optic axis exists. Since the expression inside the 
radical can be w ritten

[(a2 — ft2) (cos2 0cos2 ip +  siivV) — (¿2 — e2)sin2 Of
(37)

— 4(a2 — b-)(c2 — b2) sin2 0sin2<p =  0

then, since the  square is alw ays positive and  since (a2 — Z>2) >  0  and 
(b2 — c2) >  0, the equation  can vanish  only if <p =  0. B u t <p — 0 indicates 
th a t the two optic axes always lie in a plane perpendicular to  the in te r
m ediate velocity  b. W ith  ¡p =  0 then  the square vanishes w hen

If (a2 — b2) <  (b2 — c-) the value of the ta n  6 is less th a n  u n ity  an d  the 
crysta l is called a positive crystal. F o r th is case the two axes approach  more 
closely the Z  axis having the velocity c th an  th ey  do the  X  axis. If 
(a2 — b2) >  (b2 — c2) the crysta l is negative.

If  a =  b or b — c the crystal has a single optic axis an d  is respectively a 
positive or negative uniaxial crysta l. F or the first case the  two velocities 
are given by

T he first velocity is th a t of the o rd inary  ray  while th a t of the second is th a t 
of the ex trao rd inary  ray. Since a >  c, the o rd inary  ray  will have a velocity 
greater th a n  the ex traord inary  ray  except along the optic axis where they 
are equal. Since c <  a, the m axim um  axis for an y  ellipse, form ed by  in te r
secting the Fresnel ellipsoid a t  an  angle to th e  op tic axis, will lie in  the plane 
form ed by  th e  norm al an d  the  c axis an d  hence the  d irection of polarization 
of the ex traord inary  ray  will lie in the  c, n  plane. T he polarization  of the 
ord inary  ray  will be perpendicular to th is plane.

If  b =  c the a axis is the optic axis and  the velocities of the  two ray s are 
again

H ence, when d=  90°, = 0°, the two velocities are equal an d  a is the optic
axis. In  th is  case the velocity of the ex trao rd inary  ray  is g rea ter th a n  th a t 
of the  o rd inary  ray  except along the a axis, an d  the  crysta l is a negative 
uniaxial crysta l. T he polarization  of the ex traord inary  ray  lies again  in the

tan" 6 = (38)

t'i =  a  =  b, v2 =  s / a 2 cos2 0 +  c2 sin2 6. (39)
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plane of the norm al an d  the optic axis while the ord inary  ray  is perpendicu
lar to it.

IV. D e r iv a t io n  o f t h e  E l e c t r o -o p t ic  a n d  P i io t o e l a s t ic  E f f e c t s

In a  previous paper4 and  in the  book “ Piezoelectric C rysta ls an d  T heir 
Application to  U ltrasonics” , D . V an N ostrand , 1950, it w as shown th a t  the 
electro-optic and photoelastic effects can be expressed as th ird  derivatives 
of one of the therm odynam ic po ten tia ls. P robab ly  the m ost fundam ental 
way of developing these p roperties is to  express them  in term s of the strains, 
electric d isplacem ents an d  the en tropy . F or viscoelastic substances it has 
been shown th a t  the photoelastic effects are d irectly  rela ted  to  the strains. 
In term s of the electric displacem ents, the  electro-optic constan ts do n o t 
vary m uch w ith  tem pera tu re  w hereas, if they  are expressed in te rm s of the 
fields, the constan ts of a ferroelectric type of crysta l such as K D P  increase 
m any fold near the Curie tem perature . T he en tropy  is chosen as the funda
m ental h ea t variable, since m ost m easurem ents are carried o u t so rap id ly  
th a t the en tropy  does n o t vary .

The therm odynam ic po ten tia l which has the  strains, electric displace
ments an d  en tropy  as the independent variables is the in te rna l energy U,
given by

dU  =  T a  d S n  +  E m - f v  +  0  (ja (4 i )
47r

where .S’,-, are  th e  strains, T a  the stresses, E m the fields, D m the electric dis
placements, 0  the tem peratu re  an d  a the  en tropy . In  th is equation  the 
strains S a  are defined in the tensor form

s» - î ( S + S ) (42)
where the u’s a re  the d isplacem ents along th e  th ree axis. In  the case of a 
shearing stra in  occurring when i  ^  j ,  th e  stra in  is only half th a t  usually  
used in engineering practice. In  order to avoid w riting the factor 1/ 47T, we 
use the variab le 8tn— Dm/ 4ir. T hen , from  (41),

dU  j? dU  n dU  t a i l
7 » - 9 V  e -  = w . ’ ' - * ■  <43)

Since, for m ost conditions of in terest, ad iaba tic  conditions prevail, we can 
set da equal to  zero an d  can develop the dependent variables, the fields and

1 “ First and Second Order Equations for Piezoelectric Crystals Expressed in Tensor 
Form,” W. P. M ason, B .S .T .J .,  Vol. 26, pp. 80-138, Jan., 1947.
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the  stresses in  term s of the independent variables, the stra in s an d  the elec
tric displacem ents. U p to  the second derivatives, these are

  d E m . d E m ~
m i  c  '•> ' ~W" on o o  ij oon

+
d E m 

d-SijdSn
2 d~ E m d~Em

^  ij qr 1  ̂0   ̂ç. “T" On à o
dSifdôn dS„ d50

+

,r  _  OTkC ç  i d T u l .
1 k l — - „ •Sij +  TT 0,i

OOii UVn

(44)

+  Y

r— ■*
d'TkC  c , 2d'TkC ç s , d 'T k l  j  j

^ d S i j d S ' J r  0  " r d S i f d S n  ”  ” â ê n d S o  "
+

F or the electro-optic and  photoelastic cases, the two tensors of in te rest are

& Tul =  d U  =
35„ dS0 dSkC dS„ dS0 dSkC 35<

¿T £ m

=  AtvmkCn

d3U
(45)

=  (47r ) r
dô,i 35» 35„, dd„dô0

F or the first p a rtia l derivatives, we have the values

dTk( __ 3“ U _  d E n
dYn ~  ~

d E m 
35^

dTkC _  n 
d S ^ i ~  C iikl ; d S k l  35n dSkC

4îrßmn

=  — hnkC

(46)

where c ’,k( are  the elastic stiffnesses m easured a t  co n stan t electric displace
m ent, hnkC are the piezoelectric constan ts th a t  relate the  open circuit voltages 
to the strains, and  ffltn are  the im perm eability  constan ts m easured for con
s ta n t strain .

W ith  these substitu tions an d  neglecting the o ther second p artia l deriva
tives, we have, from (44),

Em h m ij .5' ij -f- Z)n

Tkt =  c L t S i j  +  D„

' i o  i ^inno r-v
nn i H li jm n à  i j  i — ̂  *^o

h'ükC i tHkton Dn
~ 4 tt ^  ~  2 ..

+

(47)

T h is equation  shows th a t  there is a relation betw een the change in the im
perm eability  constan t due to stress in the first equation , an d  the electro
stric tive constan t in the second equation  th rough the  tensor m . These
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effects, however, have to  be m easured a t  the sam e frequency before equality  
exists.

To obtain  the changes in tire optical properties caused by the s tra in  and 
the electric displacem ent we have to determ ine the fields an d  displacem ents 
occurring a t  the high frequencies of optics. Even for piezoelectric v ib ra tions 
occurring a t  as high frequencies as they  can be driven by  the piezoelectric 
effect, these frequencies are sm all com pared to the optic frequencies /  and 
can be considered to be s ta tic  displacem ents or strains. H ence, w riting

where to =  2irf, the first of equation (47) can be w ritten in the  form

If we develop one of the fields, say E l , th is can be w ritten  in the form

where the first num ber of r refers to the field, the second to the op tical value 
of D  and the th ird  to  the  s ta tic  value of D. ITence, for the general case,

From the definition of the two tensors nix ¡no an d  rmno given b y  equation  
(45), we can show th a t there are relations betw een the various com ponents 
of the tensors. F o r the first tensor »»,•/„0 , since 5 ,7 =  S j ,  is a  sym m etrical 
tensor, then

E m =  E°m +  E m eiwl, D n = D°n +  D neiu‘

D„ =  D °0 +  D 0eiut, S,-j =  S h

(48)

E \ e =  [dn +  viijn Sij +  I'niD i -f- rm D z  +  r n 3Z):i]/7 1cJU

d- tdia 4* M ij i iS i j  -f- t l 2\D i  +  t l î ^ D ï  -f- r m D s lD z e 1 (49)

+  [dn  +  M ijuSij +  rm D i  +  ruzD* +  riwDilDze u

E m eiut =  D j wl [dmn +  +  rmnoD \ \ . (50)

(51)

From the definition of the tensor 0 in the form

(4 5 )

it is obvious th a t  we can in terchange the order of 5„ and  80 so th a t

M ijn o  W ijon
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Since ij and  no are reversible, i t  has been custom ary  to abb rev ia te  the  tensor 
by  w riting one num ber in place of the two in  the following form :

11 =  1; 22 =  2; 33 =  3; 12 =  21 =  6 ; 13 =  31 =  5; 23 =  32 =  4 (52)

Since the reduced tensor is associated w ith  the  engineering strains, i t  is 
necessary to  investigate the num erical relationships betw een the four in 
dex sym bols and the two index sym bols. F rom  equation  (48), when m  
?*■ n, the change in the im perm eability  co n stan t is given by

nii jm n S  j j  -f~ 'ffljimn S j i  — IH raS r  (55 )

Since S r = 2 S n  — 2S j i  we have the relation th a t

mumn = m rs(i, j ,  m , n  =  1 to  3, r, s, =  1 to  6 ) (54)

In  equation  (45) we canno t in general in terchange the order of i j  and  no 
since U  does n o t contain  p roduct term s of strains an d  electric displace
m ents and hence in general

Mrs m „ .  (55)

Hence in the m ost general case there a re  36 photoelastic constants. C rysta l 
sym m etries cu t down the num ber of constan ts as shown in a la te r section. 

T he tensor rmno defined in  equation (45) as

/ .  \2 d*U . .(4ir) rmno =  (56)
C/Ojn UOjx UOo

shows th a t we can in terchange the  order of m  an d  n  since 77 contains p roduct 
term s of Sm and 5 „ . Hence

fmno fnmo (57)

an d  this is usually replaced by  the two index sym bols

rqo =  rmno(m, n , o =  1 to  3; q =  1 to  6 ).

T he so called “ tru e ” electro-optic constan ts  are m easured a t  constan t
stra in  and  for th is case the m odifications in th e  im perm eability  constants 
are given b y  the equation

E m =  D n [(fmn + r smnoD 0]. (58)

Since in an d  n  are  interchangeable, the th ird  ran k  tensor is usually  replaced 
by  the two index sym bols

rm„0 — r qo{m, n, o =  1 to  3 ; q =  1 to  6 ). (59)

As discussed in the  nex t sections, these constan ts  can be determ ined by
applying an  electric field of a  frequency high enough so th a t  the principal 
resonances and  their harm onics canno t be excited b y  th e  applied  field, and 
m easuring the resulting  birefringence along definite d irections in  the crystal. 
O n the o ther hand  if we app ly  a  s ta tic  field to the crysta l, an  add itiona l effect 
occurs because the crysta l is stra ined  b y  the piezoelectric effect an d  this 
causes a  photoelastic effect in  add ition  to the  “ tru e ” electro-optic effect. A
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better designation for these effects is the electro-optic effect a t  co n s tan t 
strain and stress.

This la tte r effect can be calculated from  equation  (47) by  se tting  the 
stresses T u  equal to zero and  elim inating the S  a  strains. A fter neglecting 
second order corrections,

E m =  D neiut +  ( r smno +  D \
L \  ATCijkl /

(60)

Since hakl/cijkt =  g0 a , the o ther piezoelectric co n stan t rela ting  the open 
circuit voltage to the stress, the electro-optic effect a t  co n stan t stress can be 
written in the form

_T _  „S , 1>lijmngoij  
T vino ?mno I Z *47T

In terms of the two index sym bols

r  =  r\ 0 +  (62)
4  7T

r,

since it has been shown4 th a t  g0!J- =  gop/ 2 when i  j ,  an d  th e  tensor in  (61) 
has ij as com mon sym bols which involves the sum m ations of two term s,

The electro-optic effect is usually  m easured in term s of an applied  field. 
The change in the im perm eability  constan t /3f„„ for th is case can  be de
termined from the first equations (47), se tting  Tut equal to zero and  neglect
ing second order term s. M ultip ly ing  th rough by  the tensor K l p of the di
electric constan ts

Tfv =  E l K I p (63)

since the product Ko„i3oP =  1. In troducing  th is equation  into (58) we have

E m =  D n [ P L  +  fmnp KopEo] =  D nlP .L  +  4 ,» „ £ ° ] . (64)

where the new tensor zmno is equal to

Zmno ~~ fmnpEop • (65)

In terms of the two index sym bols

4 o =  rfiP K op ■ (6 6 )

in which the repeated index indicates a  sum m ation. T h e  difference betw een 
the electro-optical constan t a t  cons tan t stress expressed in term s of the field 
and the electro-optical constan t a t  constan t s tra in  is

r.r _  I m 'jmngoij jrT _  „S j_  j  (
¿ m n o  —  ¿ m n o  r   Z  J ^ o p  —  * m n o  I M i j m n U  p i j  \ V  i J

47T

since the piezoelectric constan ts  dv a  are related  to  the g constan ts b y  the 
equation

d pii =  (6 8 )
47T



In  term s of two index symbols

Zq0 =  4o  +  m padop(p, q =  1 to  6 ; o =  1 to 3) (69)

where a  repeated  index m eans a sum m ation w ith  respect to th is  index.
F inally  the  photoelastic effect is som etim es expressed in term s of the 

stresses ra th e r th a n  the strains. As can be seen from  equation  (47), the new 
se t of constan ts is

7Tptj =  MlprSrq (79)

where the .sv« are the elastic com pliances m easured a t  co n stan t electric dis
placem ent.

V . B i r e f r in g e n c e  A l o n g  A n y  D ir e c t io n  I n  t h e  C r y s t a l  a n d  

D e t e r m in a t io n  o f  t h e  E l e c t r o -o p t ic  a n d  

P h o t o e l a s t ic  C o n s t a n t s

If  we take axes along the  Fresnel ellipsoid when no stress or field is ap 
plied to the  crystal, the  result of the  electro-optic an d  photoelastic effects 
is to change th e  im perm eability  constan ts b y  th e  values

0n =  f t  +  Ai ; 022 =  02 +  A2 ; 0 33 =  0 3 4- A3
('1)

023 =  A4 ; 0 i3 — As ; 0 i2 — A s

where

Ai =  ZuEi -j- Z12-G2 d~ - 13E 3 4" W11S 1 4~ 1H12S 2 d-  WiiS’j d- v iu S 4
4" niisSa -f- ini$S$

A2 =  &1E 1 -f- Z22E2 d~ zizEs -{- MinSi +  VI22S 2 4~ M23S 3 4~ tti'ZiS4

d- ’»hsSs d- WI2&S5

A 3 =  z-s\E\ ZvaEi -f- z33£ 3 -f- viz\S\ 4* tnwSt -f- ftizzSz 4~ 7 » 3404 

4“ »73505 4~ »73606
(72)

A4 =  zpJZi -f- Z42-E2 d-  Z43E 3 -)■ ;«4i5i 4~ m aSs  4- »7.1303 4" »74404
4- »74505 4- nUeSe 

As = ZsiEl +  Z52-E2 +  Z53E3 4" »151-Si 4“ »15202 4" 7» 530 3 4" »75404 

4" »75505 4" 7»5«06 

As = ZeiEi 4- ZmE« 4* ZstEz 4~ mmSi »76202 4~ »hzSi 4~ »76404
4“ »76506 4" »76606 •

If  we tran sm it light along the  z ’ axis which, as shown b y  Fig. 2, m akes an 
angle of 6 degrees w ith  the z axis in a  plane m aking an  angle <p w ith  the xz 
p lane, the  birefringence can be calculated  as follows: K eeping z ' fixed and 
ro ta tin g  the  o ther two axes ab o u t z ' by  vary ing  the  angle p , one ligh t vector
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will occur when 0 n  is a  m axim um  ancl th e  o ther when 0 n  is a  m inim um . 
Using the transform ation  equations (31) and  the d irection  cosines of (27), 
we find th a t /3n is given by  the equations

f r i  =  0 ii
2 „ 2 2 , sin 2 tp sin 2 ip cos 6 , . 2 ■ 2 ,

cos 6 cos tp cos y/ —     +  sin tp sin ÿ

+  0 i2[sin 2<p cos 2ip — sin“ 9 sin 2<p cos' +  cos 9 sin 2tp cos 2<p]

+  0 n [ —sin 26 cos <(> cos' tp +  sin tp sin 0 sin 2\p] (73)

+ 02
2 „ ■ 2 2 , , cos 6 sin 2<p sin 2\p . 2 • 2 ,cos 9 sm  tp cos \p +      +  cos <p sin tp

dtp

+  0 jj[—sin 26 sin  ip cos2 tp — sin  6 cos <p sin 2tp] -f- 033 sin2 6 cos21p

d3\
Differentiating w ith  respect to tp an d  se tting  — - =  0, we find an  ex

pression for ta n  2tp in the form

— 0 ii  sin 2tp cos 6 +  2012 cos 6 cos 2tp
0 . +  2 0 i:! sin <p sin 6 -f- 0 2; cos 6 sin 2<p — 2 0 23 sin 6 cos tp , ,tan Ay/ — ---------       2------ ------------——- ^74J

0 n[cos" 6 cos tp — sin" tp] +  0 i2[(l +  cos' 6) sin 2<p\
— 0 i3 sin2 9 cos tp - f  0 22(cos2 6 s in2 tp — cos“ tp)

— 0 23 sin 26 sin tp +  0 33 sin 2 0

Inserting this value back in  equation  (73) we find th a t the two extrem e values 
of 0 ii are given by  the  equation

20 'n  =  2022 +  (0 u — 0 22)(cos- 6  cos2 tp +  sin2 ^ ) +  (0 33 — 022) sin2 6

— 0 i2 sin2 6 sin 2>p — 0 i3 sin 26 cos tp — fin  sin 26 sin tp

V

(011 —  022) 2( c o s 2 6 cos2 tp +  sin2 tp)2 - f  2 (0 n — 0 22)(0 33 —  022) sin2 6 X  

(cos2 9 cos2 tp — sin2 tp) +  (03j  — 022)2 sin4 9 — 2(0n — 022) X  

[0i2(sin 2tp sin2 0(cos2 6 cos2 tp +  sin2 tp) -f- 0n  sin 26 cos <pX 

(cos2 6 cos2 tp -+- sinfy) — 023 sin 26 sin tp( 1 +  cos2 tp sin2 0)]

+  2(033 — 022) sin2 0[0 i2 sin 2tp(l - f  cos2 6) — 0 «  sin 26 cos tp

— 023 sin 29 sin tp\ +  (2 0 i2)2[sin4 6 sin2 tp cos2 tp +  cos2 6\

— 4012 013 sin2 6 sin ^[cos2 6 cos2 tp -f- sin2 ^] — 4(0i2 023)

[sin 26 cos ip(sin2 tp cos2 0 +  cos2 tp)\ -f- (20i3)2 sin2 0 X

(cos2 6 cos2 tp + sin2 tp) — 4013 023 sin 2 tp sin4 9

+  (202s)2 sin2 6(cos2 6 sin2 tp +  cos2 tp

(75)



T h e birefringence in an y  direction  can be calculated  from  equation  (75); 
since 0 n  =  v l /V 2, i t  equals 1/m? w here mi is the index of refraction  corre
sponding to a  light wave w ith its  electric displacem ent in  the 0 'n  direction. 
Sim ilarly, for th e  second solution a t  r igh t angle to  the  first,

Æ  -  I  =  - ,  (16)
V  H 2

H ence if we designate the expression under the radical by  K» and  half the 
expression on the righ t outside the radical by  K i , we have

1 1  1 1 r -  / , «
2 4 “  2 —  K 1 ; o —  2 —  a / ^ 2  • ( 7 7 )

Ml M2 Ml M 2

Since ¡11 an d  M2 are very  nearly  equal even in the m ost b iréfringent crystal, 
we have nearly

3
I

M2 — Mi
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=  B  =  ~  V k 2 • (78)

F or special directions in the crystal, the expression for A' 2 simplifies very 
considerably. Along the  x, y  an d  z  axes, the values are

3 ______________________________

X, {tp =  0°, 0 =  90°); B x =  |  V ( f c  -  022)2 +  (2023)2

F , (<p =  90°, 9 =  90°); B v =  ^  V (0 n  -  ft,)* +  (2013)2 (79)

3

Z, (*> = 0°, 9 = 0°); V(fti -  022)2 +  (20J2)2-

I f  an y  na tu ra l birefringence exists along these axes, (2 0 23)2 will be very 
small com pared to this and

M3 ,  * M3 / !  1 \
73x — 9 (03 -  02 +  A3 — A2) — ( 2 — 2 + A 3 — A2 )

2  2  \ m c Mi. /

B v — ~  (0i — 03 +  Ai — Aj) =  ~  — 1  +  Ai — A3) (80)
2 2  \ M a  Me /

M3 v M3 / !  1 \
5* =  X  (01 -  02 +  a ,  -  As) =  -  -  -  -  +  A, -  A2 •

2  2  \ M a  Mb /

H ence, for th is case, m easurem ents along the three axes will tell the differ
ence betw een the three effects A i , A2 and A3 . To get absolute values requires 
a  d irect m easurem ent of the  index of refraction along one of the axes and 
its change w ith  fields or stresses. T h is is a considerably m ore difficult meas
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urement than  a  birefringence m easurem ent an d  requires the use of an  ac
curate interferom eter.

If, however, th e  Z  axis is a n  optic axis as it  is in  A D P, for example, an d  
Ax =  A2 =  0, a  birefringence occurs due to the term  /3i2 . As shown in tire 
next section, the electro-optic constan ts for A D P (tetragonal Aim) are z« 
and Ze3 . z63 occurs in  the  expression for 612 =  A6 , as can be seen from equa
tions (72), and  hence the birefringence along the Z  axis is

B z =  ^  =  ¡laZnsEa. (81)

The constants Zg3 an d  Zn have been m easured independently  by  W . L. Bond, 
Robert O’B. C arpenter, and  H an s Jaffe. P robab ly  th e  m ost accurate  m eas
urements, an d  the only  one published, are those of C arpen te r ,6 who finds 
that the indices of refraction  an d  the  Z63 an d  z.n constan ts for A D P  and  
KDP are in cgs units

Mo Me r6!xin7 nixto’
ADP 1.5254 1.4798 2.54 ±  0.05 6.25 db 0.1
K D P  1.5100 1.4684 3.15 ±  0.07 2.58 ±  0.05

An even larger constan t has been found for heavy  hydrogen K D P  by  Zwicker 
and Scherrer.6 T hey  find a t  20°C th a t r t! =  6  X  10-7. Using th is constan t, a 
half wave reta rda tion  for a X =  5461 A° m ercury  line occurs for a  vo ltage 
of 4000 volts.

For te tragonal crysta ls of these types the only photoeleastic co n stan t for 
the z axis is , an d  the birefringence for th is case is given by

B z =  MaWee-S'o (82)

W hen a  n a tu ra l birefringence exists for th e  crystal, m easurem ents of the 
other three effects A.i, A6 and  A6 can be m ade by  determ ining the b ire
fringence along o ther directions th an  the Fresnel ellipsoid axes. In  a  direction 
of Z ' lying in the X Z  plane <p — 0, 0 =  variable and

r  _  /  , / [ ( d n  -  f e )  cos2 0 +  (d33 -  f e )  sin2 0 -  /3U sin2 0}2 , s
" “  2 y  + [2(3W cos 0 +  2/323 sin 6]2.

When a natu ra l birefringence exists, th is reduces to

Bxy =  ^  (  2 — “ 2 +  Ai — A2̂  cos2 0
2 L\Ma Pb /

+  ( “ 5 — “ 2 +  A3 — A2 ) sin2 d — A6 sin 20 
\P c  R-b /  J

5 “The Electro-oplic Effect in Uniaxial Crystals of the T ype XlUPCq ” R obert O ’B,  
Carpenter, Jour. Opt. Soc. A m ., in course of publication.

8 Zwicker and Scherrer, B flv . Pltys. Acta., 17, 346 (1944).

(84)
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and  lienee, by  m easuring a t  45° betw een the two axes, one can evaluate the 
A5 term .

Sim ilarly, for the Y Z  plane, ip =  90°, 9 =  variable and

o  _  M3 . / [ — ( 0 n  — 0 22) +  (033 — ß-n) sin 2 0 — ß i3 sin  20]2 ,8 ,y
T y z  —  TT / W  _L_ fO /S .. n  __ 0 /5 ._  c í o  «12

3

B =  —uz  2

(86)

3

B  =  — 
2

(88)

2 y  +  [2/3i2 c o s  0 — 2 /5)3 sin 0]2.

Hence, when a n a tu ra l birefringence exists, we have

— \ ~ i  — ~2 +  Al — Ao )
_ \ M a  M6 /

-b \ 2 ”  2 ”b  A3 — } sin 0 — A4 sin 20 1.
\ M e  M& /  J

In  the X V  p lane 9=  90°, <p =  variable and

n _  M , / \ ( 0  11 — ^ 12) sin2 <p — (0 M — /S22) — 012 sin 2<p\: /071
x" 2 V  +  [2 /5)3 sin <p — cos ip]'.

T hen, for n a tu ra l birefringence,

Y 1 1 \  • 2I 2 — 2 d- A 1 — A2 ) sin ip
_ \ R a .  Mi. J

Z 1 1 \— I 2 — ° ~b A3 ■— A2 1 — Af, sin
\Vc Mi, /

H ence, w ith m easurem ents a t  45° between the axes and  w ith su itab ly  ap: 
plied fields an d  strains, the three effects A.( , A5 an d  A0 can be measured. 
Since th e  axes of the te st specim en are tu rned  w ith  respect to the X ,  Y  and 
Z  axes, su itab le transform ations of the  effects AL to A0 w ith  respect to the 
new axes will have to be m ade. These can be done as shown in reference (4) 
by  m eans of tensor transform ation  formulae.

A nother m ethod for m easuring the  constan ts in A4 , A5 , Ac is to measure 
the am oun t they  ro ta te  the axes of th e  F resnel ellipsoid. As an  example con
sider the Z\ 1 constan t of A D P. F or exam ple, if we look along the X  axis and 
app ly  a field in the sam e direction, then, in equation  (74), 9 =  90°, <p =  0 and

ta n  2iL =   ~ 20M - = x l zlL E i =  _  - ^ m I m ^ i- E i  (gy)
V  033 -  022 I  1  U  +  M c )U  -  Me)

2  2
Me M&

According to  C arpenter, the 241 electro-optic constan t of A D P is 6.25 X  10" 7 
in cgs un its , m» =  Ms =  1.5254; Me =  1.4798; hence the angle of ro tation  for 
a field of 30,000 vo lts per cen tim eter =  100 s ta t  volts cm is

ip — —2.25 X  10-3  rad ians =  7.7 m inutes of arc. (90)
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V I. E l e c t r o -o p t ic  a n d  P i io t o e l a s t ic  T e n s o r s  f o r  V a r io u s  

C r y s t a l  C l a s s e s

Since r„mo =  rnmo an d  zmno =  z„,„„ are th ird  rank tensors sim ilar to the 
hmij piezoelectric tensor, they  will have the  sam e com ponents for the various 
crystal classes. F or the tw en ty  crysta l classes th a t  show the electro-optic 
effect these tensors are given below. T hey  are given w ith the c ry sta l system  
they belong to, and  the  sym m etry  is designated  b y  the H erm ann-M augu in  
symbol. The last num ber of the subscrip t of s designates the direction  of the 
applied sta tic  field.

(91)

T r ic lin ic ; 1 Zll Z21 Z31 Z41 Z51 Zqi

Zl2 % 2 Z32 Z4 2 Z52 ZC2

Zl3 Z23 Z33 Z43 Z53 Z63

M o n o c lin ic ;  2 0 0 0 Z41 0 Zu

Zl2 Z22 Z32 0 0

0 0 0 Z43 0 Z63

M o n o c lin ic ;  2 =  m Zll Z-21 Z3 1 0 Z51 0

0 0 0 Z42 0 Z62

Zl3 Z23 Z33 0 Z53 0

O rth o rh o m b ic; 2 2 2 0 0 0 Z41 0 0

0 0 0 0 Z52 0

0 0 0 0 0 Z63

O rth o rh o m ic; 2 m m 0 0 0 0 Z&1 0

0 0 0 Z42 0 0

Zl3 Z23 Z33 0 0 0

T e tra g o n a l ; 4 0 0 0 Z41 Z51 ' 0

0 0 0 — Z51 Z41 0

Zl3 — Z13 0 0 0 Z63
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T etragonal; 4

T e trag o n a l; 42m

T etrag o n al; 422

T etragonal; 4m m

T rigonal; 3

T rigonal; 32

T rigonal; 3m

H exagonal ; 6

0 0 0

0 0 0

Zl3 Zl3 £33

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Zl3 Z13 Z3

Zll — Zll 0

— Z22 Z22 0

Zl3 Zl3 Z3

Zll — Zll 0

0 0 0

0 0 0

0 0 0

— ̂ 22 Z22 0

Z n Z13 Z33

Zu — Zll 0

— Z22 ZS2 0

0 0 0

Z41 Z51 0

Z51 — 241 0

0 0 0

Z u 0 0

0 Z41 0

0 0 Z$3

241 0 0

0 — 241 0

0 0 0

0 Z51 0

Z51 0 0

0 0 0

Z41 Z51 — Z22

Z51 — 241 — Zll

0 0 0

Z41 0 0

0 — 241 - Z l l

0 0 0

0 Z51 — Z22

zsi 0 0

0 0 0

0 0 — Z22

0 0 — Zll

0 0 0
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Hexagonal; 6 m 2 Zll - Z l l 0 0 0 0

0 0 0 0 0 - Z l l

0 0 0 0 0 0

Hexagonal; 6 0 0 0 Z41 Z51 0

0 0 0 Z51 — Z41 0

Zl3 Zl3 Z33 0 0 0

Hexagonal; 622 0 0 0 Z41 0 0

0 0 0 0 — Z41 0

0 0 0 0 0 0

Hexagonal; 6m m 0 0 0 0 Zsi 0

0 0 0 Z51 0 0

Zl3 Zl3 Z33 0 0 0

Cubic; 23 and  43m 0 0 0 Z41 0 0

0 0 0 0 Z41 0

0 0 0 0 0 Z41

The r tensor has sim ilar term s.
The photoelastic constan ts are sim ilar to the  elastic co n stan t tensors 

except th a t  m ra Z  m „  in  general. H ow ever, for the te tragonal, trigonal, 
hexagonal and  cubic system s, Pockels found th a t  m n = nu_\. T h is  follows 
from the transform ation  equations ab o u t the Z. axis which is the n  fold 
axes for these groups. F or a  ro ta tio n  of an angle 8 ab o u t Z , th e  d irection 
cosines are

.I dxi h =z
dxi

=  cos 6
dxi ■ n 

m i =  —  =  sin  6
dx->

dxi 
«1 =  r -  dX3

=  0

f d x '2l 2 =
OX 1

=  — sin 8
dxi am 2 =  —  =  cos 8
OX2

d x2 
«2 =  —  

8 X2
=  0 (92)

, d x '3 
— —

dxi
=  0

dx is n
m 3 — r— =  0 

dX2
dxz

n > =  aTs
=  1
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T ransform ing the two term s #«1122 =  m [2 and  » 4 »  =  «¡21 by  the  tensor 
transform ation equation

dxi dxj dxk dxt
M i j k C  r  “  r  "" f f l m n o p  

ÖXjti U%n ÖXq uXp
(93)

(94)

we find, for these two coefficients,

m [2 =  («in +  mn — 4»;«) sin2 8 cos2 8 -f- 2 («¡«2 — nim)

sin 6 cos3 8 +  2(i«Gi — «¡is) sin3 8 cos 8 -f- «¡12 cos4 8 +  mn sin4 9

«¡21 = (mn +  «¡22 — 4mm) sin2 8 cos2 8 -f- 2(»;10 — «¡62)

sin3 8 cos 8 -f- 2 («¡26 — »¡ei) sin 6 cos3 0 -f- «¡21 cos4 6 +  «¡12 sin4 8

If m\<i — «¡21 for all angles of rotation we must have

«¡16 +  ¡¡¡20 =  «¡61 ""t- «¡62

For all the classes that «¡12 =  m»\, either «¡20 =  —«¡16 and «¡g2 =  —mm or 
else «¡16 =  «¡26 =  «¡01 =  «¡62 =  0.

Now, if Z  is a four-fold axis, as it is in the tetragonal and cubic systems, 
then, for a 90° rotation, the value of mn  or «¡21 must repeat. From the first 
of (92) this means that

«¡12 =  «¡21 and «¡21 =  «¡12

For a trigonal or hexagonal system additional relations are obtained between 
«¡eo and »¡1 1 , «¡22 and mn in the usual manner. Hence the photoelastic matrices 
become, for the various crystal classes,

(95)
Triclinic 36 m u Ml 12 77/13 77/14 77/15 77/16 T he tr ten
C onstant sor is en

»121 77/22 77/23 77/24 77/25 77/26 tirely anal

m i 7/732 77/33 77/34 77/35 77/36 ogous

m i Ml 12 77/43 77/44 77/45 77/46

m i Mh2 77/53 77/54 77/55 77/56

m i 77/62 77/63 77/C1 77/65 77/66

Monoclinic m i Mil 2 77/13 0 77/15 0 The tv ten
20 Con sor is en
stan ts m i Ml-22 77/23 0 77/25 0 tirely anal

m i 77/32 77/33 0 77/35 0 ogous

0 0 0 77/44 0 77/46

m i 77/52 77/53 0 77/55 0

0 0 0 77/64 0 77/66



Ortho- 
rhombic 12 
Constants

Tetragonal 
4 ,4 ,4 /hi 9 
Constants

Tetragonal 
42»i, 422 
4mm, 
(4/m)mm  
7 Constants

Trigonal 
3,3 11 Con
stants

Trigonal 
32,3 in 
3(2/m) 8 
Constants
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1)1,1 »«12 >»13 0 0 0 T he x  ten
sor is en

1)hi »122 HI 23 0 0 0 tirely anal

»131 »»32 »133 0 0 0 ogous

0 0 0 111,, 0 0

0 0 0 0 »1.6 0

0 0 0 0 0 »16«

win »1,2 III 13 0 0 »116 T he x  ten
sor is en

»»I! inn »113 0 0 —1«16 tirely anal

«131 »131 »133 0 0 0 ogous

0 0 0 III,, 0 0

0 0 0 0 »in 0

met -  »161 0 0 0 »166

in it »112 »¡13 0

1)1,2 »1,1 »1,3 0

»111 »»31 »133 0

0 0 0 »in

0 0 0 0

0 0 0 0

»ill 1»12 »113 in n

1)1,2 »In 1»13 — »in

«131 »131 11)33 0

«III — »Ill 0 win

' HI52 1)112 0 — «15

0 0 0 «25

0

0

0

0

»in

0

-  »125 

»120 

0

«15

«II

» I ll

0

0

0

0

0

»i«

The it ten 
sor is en
tirely anal
ogous

0 T he 7T tcn-

0
sor is anal-
ogous ex-

n cept th a t
u 7T46 = 27T52
>«« 2 7T&6 = 27T41

7T66 —
>«41 (tth — 7Tl2)

>«11 —>«12

>«11 >«12 >«13 >«14 0 0

>«12 >«11 >«13 — >«14 0 0

>«31 >«31 >«33 0 0 0

>«41 — >«41 0 >«44 0 0

0 0 0 0 >«44 >«41

0 0 0 0 >«14
>W,r

The it ten
sor is ana
logous ex
cept th a t
IT56 =  2x41
X66 =
Xl 1 — X]2
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Hexagonal 
6, ó»»2 ,6 
622,6/»»;
6mm, — mm  m
6 Constants

Cubic Sys
tem 23,432
2 4
—3,43»»,—3- m m  m
3 C onstants

Isotropic 
Systems 2 
Constants

»»11 »»»12 »»13 0 0 0

»»»12 »»11 »»»13 0 0 0

»«31 >»»31 » !  33 0 0 0

0 0 0 » I « 0 0

0 0 0 0 I I I , , 0

0 0 0 0 0
»»»11 —  »»»12 

2

»»»11 »»»12 »»12 0 0 0

>»»12 » H u »»12 0 0 0

>»»12 »'»12 »»11 0 0 0

0 0 0 >»»« 0 0

0 0 0 0 111,1 0

0 0 0 0 0 111,1

»»III »»12 »»12 0 0 0

»»12 »«11 »>»12 0 0 0

»»12 >'»12 »>»11 0 0 0

0 0 0
»»11 — » ¡1 2  

2
0 0

0 0 0 0
»111 — »»»12 

2
0

0 0 0 0 0
»»¡11 — « ¡1 2  

2

The 7r ten
sor is anal
ogous ex
cept that
7T69 =
7TU —  7T12

The »r ten
sor is en
tirely anal
ogous 
(95)

T he tt ten
sor is anal
ogous ex
cept that
7TG6 =
701 — TTll

F rom  m easurem ent7 on the photoelastic effects a t  high pressure for cubic 
crystals, i t  has become ap p a ren t th a t  the  second derivatives of equation 
(44) are n o t sufficient to represent the experim ental results an d  derivatives 
up  to  the fourth  power should be included. T h is extension, however, is not 
considered in the p resen t paper.

V II. PlIOTOELASTICITY IN  ISOTROPIC M ED IA

T h e photoelastic effect in  isotropic solids has been used extensively in 
studying  the stresses existing in m achine p a r ts  an d  o ther pieces. F or this 
purpose a p lastic model cu t in  the  shape of the original is used an d  is loaded 
in a sim ilar m anner to  th a t  of the m achine p a r t to  be studied . Since stresses 
are applied, the in  photoelastic constan ts are m ost useful. I f  we look along

7 H . B. M aris, Jour. Optical Society of Amcr., Vol. 15, pp. 194-200, 1927.



the Z  axis, the last of equations (79) shows th a t  the birefringence is equal 
to

3

B z =  \  V ( f t  +  Ax -  f t  -  A,)* +  4(AeP (96)

Since, for an  isotropic substance /3i =  fa  , we have, a fte r substitu tin g  the  
value of Ai an d  A2 , w ith  the appropria te  photoelastic constan ts from  equa
tion (95), (last tensor):

3

B : =  |  ( i n  -  i r i * ) V ( r ,  -  T 2y  +  47V  (97)

If we transform  to axes ro ta ted  b y  an  angle 9 ab o u t Z , th e  values of T \\ 
and T u  are given by

T n  =  cos -0T X +  2 sin 9 cos 9T6 +  sin2 9T2
(98)

7722 =  sin 26T i — 2 sin 9 cos 9Ta +  cos 2d l \
If, now, we choose the  angle 9 so th a t  T n  is a  m axim um , we find

ta n  29 =  (99)
1 1 — I 2

Inserting th is value of tan  20 in  (98) we find

r'l =  +  i V m  -  T ,)2 +  4Tc2
(1 0 0)

r'2 = 7l- | Y-a -  i\/(ri -  r2)2 + 47V
and, hence,

T[ -  T[ =  V ( f i  -  ^ ) 2 +  4 T 62 (101)

Hence the birefringence obta ined  in  stressing a  m ateria l is p roportional to 
the difference in  the principal stresses. B y  observing the isoclinic lines of a 
photoelastic p icture, m ethods8 are available for determ ining the  stresses
in a model. A pho tograph9 of a stressed disk is shown by  Fig. 3. T h e  high
concentration of lines near the surface shows th a t  the shearing stress is 
very high a t  these points. By counting  the num ber of lines from  the  edge 
and knowing the stress op tical constan t, the  stress can be calculated  a t  any 
point.

If we apply  a single stress 7 \  , the birefringence is given b y  the  equation  

B ,  =  ( i  ( l u  -  7r iS) 7 \  (102)

8 Sec Photoelasticity, Coker and Filon, Cambridge U niversity Press, 1931.
9 This photograph was taken by  T , F. Osmer.
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Fig. 3—Photoelastic p icture of a disk in compression.

m easured in cm- per dyne. A convenient u n it for m ost purposes is one of 
10~13 cm2/d y n e ; if this is used, the stress optical coefficients of m ost glasses 
are from  1 to  10 and  m ost plastics are from 10 to 100. T his un it so defined 
has been called the “ B rew ster” . In  term s of the  B rew ster, the re ta rda tion  is

;• =  C T d  (104)

If  C  is m easured in Brew sters, d  in m illim eters and T  in bars (106 dynes 
cm2) then  r, as given b y  th e  form ula, is expressed in angstrom  units,
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In stead  of using the  constan ts x u an d  iri2 i t  is custom ary  to usé â  single 
constan t C given by

B  =  Me -  Ho =  r =  C T  (103)

where the constan t C  is called the relative stress op tical co n stan t an d  r the 
re ta rda tion . T he dim ensions of C are the reciprocal of a stress an d  are



T raveling-W ave T ubes
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[ S E C O N D  I N S T A L L M E N T ]

C H A P T E R  IV  

FILTER-TYPE CIRCUITS 
Syn o p sis  o f  C h a p t e r

A S ID E  F R O M  H E L IC E S , the circuits m ost com m only used in traveling- 
*  wave tubes are ite ra te d  or filter-type circuits, com posed of linear 

arrays of coupled resonan t slots or cavities.
Sometimes the geom etry  of such s tru c tu res  is sim ple enough so th a t  an 

approxim ate field solution can be ob ta ined . In  o the r cases, the behavior of 
the circuits can be inferred b y  considering th e  behavior of lum ped-circuit 
analogues, and  the  behavior of the circuits w ith  frequency can be expressed 
with varying degrees of approxim ation  in term s of param eters which can be 
computed or experim entally  evaluated .

In this chap te r the field approach  will be illu stra ted  for some very  sim ple 
circuits, and  exam ples of lum ped-circuit analogues of o the r circuits will be 
given. T he in te n t is to p resen t m ethods of analyzing circuits ra th e r  th an  
particular num erical results, for there are so m any  possible configurations 
that a com prehensive trea tm e n t would co n stitu te  a book in itself.

Readers in terested  in  a w ider a n d  m ore exact trea tm e n t of field solutions 
are referred to the lite ra tu re .1'2

fh e  circuit of Fig. 4.1 is one which can be trea ted  by field m ethods. T h is 
“corrugated w aveguide” ty p e  of circuit was first b rough t to  the  w rite r’s 
attention by C. C. C utler. I t  is com posed of a  series of parallel equally  spaced 
thin fins of height h p ro jecting  norm al to  a conducting  plane. T he case trea ted  
18 tha t of propagation  of a transverse m agnetic w ave, th e  m agnetic field 
being parallel to  the  length of the fins. I t  is assum ed th a t  the  spacing I  is 
small com pared w ith  a w avelength. In  Fig. 4.2, (3h is p lo tted  vs. Pah. H ere /3 
ls the phase constan t an d  /3o =  w /c is a phase constan t corresponding to  the 
velocity of light.

1 E. L. Chu and W. W. Hansen, “T he Theory of Disk-Loaded W ave Guides,” Journal 
vj Applied Physics, Vol. IS, pp. 999-1008, Nov. 1947.

*L. Brillouin, “ W ave Guides for Slow W aves,” Journal of Applied Physics, Vol. 19, 
PP. 1023-1041, Nov. 194S.
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F o r small values of doh, th a t  is, a t  low frequencies, very  nearly  d  =  d o ; 
th a t  is, th e  phase velocity  is very  near to  the velocity  of light. T h e  field 
decays slowly aw ay  from  the  circuit. T h e  longitud inal electric field is sm all 
com pared w ith  th e  transverse electric field. In  fact, as the  frequency a p 
proaches zero, th e  wave approaches a  transverse electrom agnetic wave 
traveling  w ith th e  speed of light.

A t high frequencies the w ave falls oil rap id ly  aw ay from  the circuit, and 
th e  transverse an d  longitudinal com ponents of electric field are alm ost equal. 
T he wave travels very  slowly. As the w avelength gets so sho rt th a t  the 
spacing I  approaches a  half w avelength  (fi( =  r )  the sim ple analysis given 
is no longer valid . A ctually , (3C =  x  specifies a  cutoff frequency; the circuit 
behaves as a  lowpass filter.

F igure 4.3 shows two opposed sets of fins such as those of Fig. 4.1. Such 
a  circu it p ropagates two m odes, a  transverse mode for which th e  longi
tud ina l electric field is zero a t  th e  p lane of sym m etry  an d  a  longitudinal 
m ode for w hich the  transverse  electric field is zero a t  the  p lane of sym m etry .

A t low frequencies, the longitud inal m ode corresponds to  the w ave on a 
loaded transm ission line. T he fins increase the capacitance betw een th e  con
ducting  planes to  w hich th ey  are a ttac h ed  b u t th ey  do n o t decrease the 
inductance. F igure 4.6 shows (3h vs. (30h for several ratios of fin height, h, 
to  half-separation , d. T h e  g rea ter is h /d , th e  slower is the w ave (the  larger 
is d/do).

T h e  longitud inal m ode is like a  transverse m agnetic w aveguide m ode; it 
p ropagates only a t  frequencies above a  cutoff frequency, which increases 
as  h /d  is increased. F igure 4.7 shows ¡3h vs. 13oh =  (co/c)h  for several values 
of h /d . T h e  cutoff, for w hich ¡3C =  r ,  occurs for a  value of (3oh less th a n  ir/2. 
T hus, we see th a t  the longitudinal m ode has a  band  pass characteristic . The 
behavior of the longitudinal m ode is sim ilar to th a t of a  longitudinal mode of 
the  w asher-loaded w aveguide shown in Fig. 4.8. T h e  circu it of Fig. 4.8 has 
been proposed for use in traveling-w ave tubes.

T h e  transverse m ode of the circu it of Fig. 4.3 can also exist in a  circuit 
consisting of strips such as those of Fig. 4.1 an d  an  opposed conducting 
p lane, as show n in Fig. 4.5. T h is circuit is analogous in  behavior to  th e  disk- 
on-rod circu it of Fig. 4.9. T h e  circu it of Fig. 4.5 m ay  be th o u g h t of as a 
loaded parallel s tr ip  line. T h a t  of Fig. 4.9 m ay  be th o u g h t of as a  loaded 
coaxial line.

W ave-analysis m akes it  possible to  evaluate fairly  accu ra te ly  the tran s
m ission properties of a  few sim ple s tructu res. H ow ever, ite ra te d  or repeating  
s tru c tu res  have certa in  properties in com m on: the p roperties of filter 
networks.

F or instance, a m ode of p ropagation  of the loaded w aveguide of Fig. 4.10 
or of the series of coupled resonators of Fig. 4.11 can be represented  ac
cu ra te ly  a t  a  single frequency b y  the  ladder netw orks of F ig. 4.12. F urthe r,
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if suitable lum ped-adm ittance netw orks are used to  rep resen t the ad m it
tances B i  an d  B%, th e  frequency-dependent behavior of the  s tru c tu res  of 
Figs. 4.10 an d  4.11 can be approxim ated.

I t  is, for instance, convenient to  rep resen t the sh u n t adm ittances B 2 and  
the series adm ittances B i  in  term s of a  “ longitud inal” ad m ittan ce  B an d  
a “ transverse” ad m ittan ce  B r ■ B L an d  B r are  adm ittances of sh u n t resonant 
circuits, as show n in Fig. 4.15, w here the ir rela tion  to  I h  an d  B ■> an d  a p 
proximate expressions for the ir frequency dependence are given. T h e  res
onant frequencies of B L an d  B T , th a t  is, an d  , have sim ple physical 
meanings. T hus, in  Fig. 4.10, is the frequency corresponding to  equal 
and opposite voltages across successive slots, th a t  is, th e  x  m ode frequency, 
wt  is the frequency corresponding to  zero slo t voltage an d  no phase change 
along the fdter, th a t  is, the  zero m ode frequency.

If u L is g rea ter th a n  wr , the phase characteristic  of th is lum ped-circuit 
analogue is as show n in  Fig. 4.17. T he phase shift is zero a t  th e  lower cutoff 
frequency u T an d  rises to  ir a t  the  upper cutoff frequency . I f  u T is g rea ter 
than u L , the phase sh ift s ta r ts  a t  —7r a t  the lower cutoff frequency coL and 
rises to zero a t  the  upper cutoff frequency «?-, as shown in Fig. 4.19. In  th is 
case the phase velocity  is negative. F igure 4.20 shows a  m easure of (E?/p-P) 
plotted vs. co for oiL >  wr  . T h is im pedance p aram ete r is zero a t  u T an d  rises 
to infinity a t  .

The structu re  of Fig. 4.11 can  be given a  lum ped-circuit equ ivalen t in a 
similar m anner. In  th is  case the rep resen ta tion  should be qu ite  accurate. 
We find th a t  <j>l  is alw ays g rea ter th a n  wj> an d  th a t  one universal phase curve, 
shown in Fig. 4.27, applies. A curve giving a m easure of (E 2/ f i2P) vs. fre
quency is shown in Fig. 4.28. In  th is case the  im pedance p aram ete r goes to 
infinity a t  bo th  cutoff frequencies.

The electric field associated  w ith  ite ra te d  s truc tu res does n o t v a ry  sinus
oidally w ith d istance b u t i t  can  be analyzed in to  sinusoidal com ponents. 
The electron stream  will in te rac t strongly  w ith the  circuit only if the  elec
tron velocity is nearly  equal to  the phase velocity  of one of these field com 
ponents. If  d is the phase shift p e r section an d  L  is the  section length, the 
phase constan t fim of a typ ical com ponent is

Pm =  (0 +  2 m x ) /L

where m  is a  positive or negative integer. T h e  field com ponent for which 
m =  0  is called the fundam ental; for o ther values of m  the  com ponents are 
called spatial harmonics. Some of these com ponents have negative phase 
velocities and some have positive phase velocities.

The peak field streng th  of a n y  field com ponent m ay  be expressed

E  =  — M (V /L )

Here V  is the peak gap voltage, L  is the section spacing an d  M  is a  function  
of P (or pm) an d  of various dim ensions. F o r the  electrode system s of Figs.
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4.29, 4.30, 4.31 an d  4.32 M  is given by (4.69), (4.71), (4.72) and  (4.73), 
respectively.

T h e  fac to r M  m ay  be indifferently  regarded  as a  fac to r by  w hich we 
m ultip ly  the a-c beam  curren t to give the induced cu rren t a t  the gap, or, 
as a factor by  which we m ultip ly  the gap voltage in ob ta in ing  the field. We 
can go fu rther, evaluate E 2/f32P  in  term s of gap voltage, an d  use M'2I o as the 
effective cu rren t, or we can use th e  cu rren t / o an d  tak e  th e  effective field in 
the im pedance param ete r as

E 1 =  M 2{ V / t y

I t  is som etim es desirable to m ake use of a  sp a tia l harm onic (m  ^  0) 
in stead  of a  fundam ental, usually  to ( 1) allow a  g rea ter resonato r spacing 
(2 ) to  obtain  a positive phase velocity  when the fundam en tal has a  negative 
phase velocity  (3) to  ob ta in  a  phase curve for which the phase angle is 
nearly  a constan t tim es frequency; th a t  is, a  phase curve for which the group 
velocity  does no t change m uch w ith frequency and hence can be m atched 
by  the electron velocity  over a  considerable frequency range. F igure 4.33 
shows how 8 +  2ir (the  phase shift per section for m  — 1) can be nearly  a 
co n stan t tim es co even when 0 is no t.

1-1 K

Fig. 4.1—A corrugated or finned circuit with fillcr-like properties.

4.1 F ie l d  S o l u t io n s

An approxim ate field analysis will be m ade for two very  sim ple two- 
dim ensional structu res. T h e  first of these, which is show n in Fig. 4.1, is 
em p ty  space for y  >  1 an d  consists of very  th in  conducting  p a rtitio n s in the 
y  d irection from y  =  0 to  y  — — It; the partitio n s are connected together 
by  a conductor in the z  d irection  a t  y  = — It. These conducting  partitions 
are spaced a d istance (  a p a r t in  the z direction. T h e  s tru c tu re  is assum ed to 
ex tend  infinitely in  the + .'f  and  — x  directions.

In  our analysis we will in itially  assum e th a t the w avelength of the propa
g ated  w ave is long com pared w ith C. In  th is case, the  effect of the partitions 
is to p reven t the existence of an y  y  com ponent of electric field below the z 
axis, an d  the conductor a t  y  =  — h m akes the z com ponent of electric field 
zero a t  y  — —z.

In  some perfectly  conducting  struc tu res the w aves propagated  are either 
transverse electric (no electric field com ponent in the direction  of propaga
tion, th a t  is, z d irection) or transverse m agnetic (no m agnetic field com
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ponent in the z  d irection). W e find th a t  for the s tru c tu te  under consideration 
there is a transverse m agnetic solution. W e can take it e ither on the basis 
of other experience or as a  resu lt of hav ing  solved the problem  th a t  the 
correct form for the  x  com ponent of m agnetic field for y  >  0  is

H r =  (4.1)

Expressing the electric field in term s of the curl of the m agnetic field, we have

. 0H z O ily
ju e E i  =  —  -  ■' =  0

Oy Oz

LMix Ollz
jweE,, =  ..................

dz Ox

( 4 . 2 )

E,j =  — u  I I0e ~ (4.3)
we

O ily 01! x  . .
jcceEz =  —- £  —  (4.4)

Ox Oy

j  ^  IIoei~yv~m
C06

We can in tu rn  express 1IX in term s of E u and  E.

OEz 0 
Oy Oz

E z =  _ j - L z r 0«l- w - jW (4.5)
we

. OEz OEy , .
- jw ix lh  =  —  -  — (4.6)

This leads to  the  relation

/32 — 7 2 =  wVe (d.7)

Now, is the velocity  of light, and w divided by  the  velocity  of light
has been called do , so th a t

d 2 -  7 2 =  do2 (4.8)

Between the partitions, the field does no t vary  in the z  direction. In  an y  
space between from  y  =  0  to  y  =  — It, the app rop ria te  form  for the m agnetic 
field is

H . - H , ™ M z + E (4,9)
cos poh

From this we ob ta in  by  m eans of (4.4)

E z =  _  i g o 77QSin £o(y +  /0  (410)
we COS P o ll

Application of (4.6) shows th a t  th is is correct.
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N ow, a t  y  =  0 we have ju s t above the  boundary

E z =  - j  1  Ih e ~ ißz 
0)6

(4.11)

T h e  fields in the p articu la r slo t ju s t below the  boundary  will be in phase 
w ith  these (we specify th is b y  adding a  fac to r exp — j/3z to  4.10) an d  hence 
will be

E z =  IIoe~ißz tan/Soh 
coe

F rom  (4.11) an d  (4.12) we see th a t  we m u st have

doh ta n  doh — y h

(4.12)

(4.13)

0.2 t.O 1.24  0 .6  0 .8
A ) h

Fig. 4.2—The approxim ate variation of the phase constant /3 w ith frequency (propor
tional to /3oh) for the circuit of Fig. 4.1. The curve is in error as fit approaches ir, and there 
is a cutoff a t 0 t  =  7r.

Using (4.8), we ob ta in

ßh = A zßo h  

cos do h
(4.14)

In  Fig. 4.2, (Hi has been p lo tted  vs /30li, which is, of course, proportional to 
frequency. T his curve s ta r ts  o u t as a s tra ig h t line, d  =  do ; th a t  is, for low 
frequencies the speed is the  speed of light. A t low frequencies th e  field falls 
off slowly in the y  d irection, an d  as the frequency approaches zero we have 
essentially  a  p lane electrom agnetic wave. A t h igher frequencies, (3 >  (lo, 
th a t  is, the w ave travels w ith  less th a n  the speed of light, an d  the  field falls 
off rap id ly  in the y  direction. A ccording to  (4.14), d  goes to  infinity 
a t  do/* =  k / 2 .

As a  m a tte r  of fact, th e  m atch  betw een the  fields assum ed above an d  below 
th e  boundary  becomes increasingly bad as /3C becomes larger. T he m ost rapid
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alteration we can have below the  boundary  is one in  w hich fields in  a lte rn a te  
spaces follow a  +  — p a tte rn . T hus, the rap id  varia tio n s of field above
the boundary  pred ic ted  b y  (4.14) for values of fioh w hich m ake j31 g rea ter 
than 7r canno t be m atched  below the boundary . T he frequency a t  which 
f i t  =  7T constitu tes the cutoff frequency of the stru c tu re  regarded as a  filter. 
There is ano ther pass band  in  the region x  <  f ioh  <  3 t / 2, in  w hich the ra tio  
of E  to I I  below the  b oundary  has the  sam e sign as the  ra tio  of E  to  I I  above 
the boundary.

A more elaborate m atch ing  of fields would show th a t  our expression is 
considerably in  error n ea r cutoff. T his m a tte r  will n o t be pursued  here; the 
behavior of filters near cutoff will be considered in  connection w ith  lum ped 
circuit representations.

We can ob ta in  th e  com plex pow er flow P  b y  in teg rating  th e  P oyn ting  
vector over a  p lane norm al to  the z  d irection in  the region y  >  0. L e t us 
consider the pow er flow over a  d ep th  W  norm al to  th e  p lane of th e  paper.

We will express th is  in term s of E  th e  m agnitude of the z  com ponent of 
the field a t  y  — 0, which, according to  (4.5), is

We notice th a t  th is im pedance is very  sm all for low frequencies, a t  which

Then

P  =  U  /  ( E XI1* -  E y l i t )  dx d y  
I  j  o Jo

(4.15)

Using (4.1) an d  (4.3), we ob ta in

(4.16)
1 I l l ß W
4 we7

E = ? - H o (4.17)

(4.18)

(4.19)

(4.20)
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the  velocity  of the wave is high, an d  the field extends far in the  y  direction 
an d  becom es higher a t  high frequencies, where the velocity  is low an d  the 
field falls off rapidly.

W e will nex t consider a  sym m etrical a rray  of two opposed sets of slots 
(P'ig. 4.3) sim ilar to  th a t  shown in Fig. 4.1. Tw o m odes of p ropagation  will 
be of in terest. In  one the field is sym m etrical a b o u t the axis of physical 
sym m etry , an d  in the o ther the fields a t  positions of physical sym m etry  are 
equal an d  opposite.

In  w riting the equations, we need consider only  half of the  circuit. I t  is 
convenient to  take the  z axis along the boundary , as shown in Fig. 4.4.

t
h

4 - ? y y y y / / / / / /
z d  •

f -
h

JL_
F i g .  4 . 3 — A  d o u b le  f in n e d  s t r u c t u r e  w h i c h  w i l l  s u p p o r t  a  t r a n s v e r s e  m o d e  (n o  lo n g i

t u d in a l  e le c t r ic  f ie ld  o n  a x i s )  a n d  a  lo n g i t u d i n a l  m o d e  (n o  t r a n s v e r s e  e le c t r ic  f ie ld  o n  a x i s ) .

I ¿.¿L ¿.¿.¿.¿.¿.z
F i g .  4 . 4 —- T h e  c o o r d in a t e s  u s e d  in  c o n n e c t io n  w i t h  t h e  c i r c u i t  o f  F i g .  4 . 3 .

This p u ts  the axis of sym m etry  a t  y  =  + d ,  an d  the slots ex tend  from  y  =  0 
to y  =  —h.

F or negative values of y, (4.9), (4.10), (4.12) hold.
L e t us first consider the case in which the fields above are opposite to  the 

fields below. T his also corresponds to  w aves in a series of slots opposite a  con
ducting  plane, as shown in Fig. 4.5. In  th is case the  ap p ro p ria te  form  of the 
m agnetic field above the b oundary  is

cosh 7  (d — y )  -  j/iz
H x = Ho . .

cosh y d

From  M axw ell’s equations we then  find

ß lr cosh y (d  — y)  - a .

(4 .21)
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77 _  „• T  77 sinh t (^  -  y)J  ■«-» 0 i jcue cosh 7 a

«  =  d 2 -  7 2 

At y =  0 we have from  (4.23) an d  (4.12)

E z =  - j  -1 Ih e ~ ipz ta n h  77/ 
coc

E z =  - j  Hoe~iPz ta n  do/i

Hence, we m ust have

7/7 tan h  ((777/7)7 /7) =  do/' ta n  do/'

(4.23)

(4.24)

(4.25) 

(4.12)

(4.26)

F ig .  4 . 5 — T h e  t r a n s v e r s e  m o d e  o f  t h e  c i r c u i t  o f  F i g .  4 . 3  e x i s t s  in  t h is  c i r c u i t  a ls o .

Here we have added param eter, (d/li).  F o r an y  value of d/h ,  we can obta in  
7/7 vs doh] an d  we can ob ta in  fill in term s of 7/7 by  m eans of 4.24

fih =  ((7 /i) ' +  (do/') ) 1 (4.27)

We see th a t for sm all values of fioh (low frequencies)

7 2 =  (Ji/d) do (4.2S)

fi =  fio
h -f- d 1/2

(4.29)

If we examine Fig. 4.5, to  which th is applies, we find (4.28) easy to explain. 
At low frequencies, the  m agnetic field is essentially  co n stan t from  y  =  d 
to y  -  —h} and  hence the inductance is p roportional to  th e  height h +  d. 
The electric field will, however, extend only from y  =  0  to  y  =  d; hence 
the capacitance is p roportional to 1/d.  T he phase co n stan t is p roportional 
to V l C ,  and hence (4.29). A t higher frequencies the  electric and  m agnetic 
fields vary  w ith y  an d  (4.29) does n o t hold.

We see th a t (4.26) p red ic ts infinite values of 7  for fill =  r / 2 .  As in th e  
previous cases, cutoff occurs a t  f i t  =  x.
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As an  exam ple of the phase characteristic  of the circuit, ph  from  (4.26) 
and (4.27) is p lo tted  vs fioh- for h /d  =  0, 10, 100 in  Fig. 4.6. T he curve for 
li/d =  0 is of course the sam e as Fig. 4.2.

I f  we in teg rate  P oyn ting ’s vec to r from  y  =  0 to  y  =  d  an d  for a  distance 
W  in  the  * direction, an d  m ultip ly  by  2 to  tak e  th e  pow er flow in  th e  other 
half of the circuit in to  account, we obta in

E V P  = vVT< («0)

O 0.2 0.4 0.6 0.8 1.0 (.2 1.4 1.6
y30h

F i g .  4 .6 — T h e .  v a r i a t i o n  o f  0  w i t h  f r e q u e n c y  ( p r o p o r t io n a l  t o  f}<¡h) f o r  t h e  t r a n s v e r s e  
m o d e  o f  t h e  c i r c u i t  o f  F i g .  4 . 3 .  A g a i n ,  t h e  c u r v e s  a r e  in  e r r o r  n e a r  t h e  c u t o f f  a t  01 =  r .

A t very  low frequencies, a t  which (4.28) an d  (4.29) hold, we have 

E ' / P - P  =  ( y / p o p 3) ( d / W )  V i ¡ A  

E ' / p - p  = ( h /d ) 112 (1 +  d / k ) w  ( d / W )  V /V e

A t high frequencies, for w hich y d  is large, (4.30) approaches 5- of the  value 
given by  (4.20). T here  is tw ice as m uch pow er because there are two halves 
to  the  circuit.

L e t us now consider the case in which the field is sym m etrical an d  E z does 
no t go to  zero on the axis. In  th is case the app rop ria te  field for y  >  0 is

Hx = II0 -  y) e~& (4.32)
sinh- 7 a
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Proceeding as before, we find

y  h
— do h ta n  do h (4.33)

ta n h  {(d /h )  yh )

We see th a t, in  th is case, for sm all values of y h  we have

doh tanh  doh = It/d  (4.33a)

There is no transm ission a t  all for frequencies below th a t  specified by  (4 .3 3 ). 
As tire frequency is increased above th is  lower cutoff frequency, y h  and  
hence (Hi increase, an d  approach  in fin ity  a t  do/« = ir/2 . A ctually , of course, 
the upper cutoff occurs a t  fiC = tt. In  Fig. 4.7 0h  is p lo tted  vs do// for h /d  — 0,

I30 h
I ’ ig .  4 . 7 — T h e  v a r i a t i o n  o f  (3 w i t h  f r e q u e n c y  ( p r o p o r t io n a l  t o  (3oh) f o r  t h e  lo n g i t u d i n a l  

m o d e  o f  th e  c i r c u i t  o f  F i g .  4 . 3 .  T h i s  m o d e  h a s  a  b a n d  p a s s  c h a r a c t e r i s t i c ;  t h e  b a n d  n a r r o w s  
a s  th e  o p e n in g  o f  w i d t h  2 d  i s  m a d e  s m a l l  c o m p a r e d  w i t h  t h e  f in  h e i g h t .  A g a i n ,  th e  c u r v e s  
a re  in  e r r o r  n e a r  t h e  u p p e r  c u t o f f  a t  01 — ir .

10, 100. This illu stra tes how the  b and  is narrow ed as the opening betw een 
the slots is decreased.

By the m eans used before we ob ta in

£ 2/ d 2P  =  (2 /do  iF X y /d ) 3

We see th a t th is goes to  in fin ity  a t  y d  — 0. F or large values of y d  i t  be
comes the same as (4.30).

4-2 P r a c t ic a l  C ir c u it s

Circuits have been proposed or used in  traveling-w ave tubes which bear 
a close resemblance to  those of Figs. 4.1, 4.3, 4.5 and  which have very  sim ilar
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properties3. T hus F ield4 describes an  ap e rtu red  disk s tru c tu re  (Fig. 4.8) 
which has band-pass properties very  sim ilar to the sym m etrical mode of the 
circu it of Fig. 4,3. In  th is case there is no m ode sim ilar to  the o ther mode, 
w ith  equal an d  opposite fields in the two halves. F ield also shows a disk-on- 
rod s tru c tu re  (Fig. 4.9) and  describes a tube using it. T h is s tru c tu re  has low

i n g .  4 .8 — T h i s  lo a d e d  w a v e g u i d e  c i r c u i t  h a s  b a n d - p a s s  p r o p e r t i e s  s i m i l a r  to  t h o s e  o f 
F i g .  4 .7 .

F i g .  4 .9 — T h i s  d i s k - o n - r o d  c i r c u i t  h a s  p r o p e r t i e s  s i m i l a r  t o  t h o s e  o f  F i g .  4 .6 .

(a) (b)
F i g .  4 . 1 0 — A  c i r c u i t  c o n s i s t i n g  o f  a  r id g e d  w a v e g u i d e  w i t h  t r a n s v e r s e  s lo t s  o r  r e s o n a to r s  

in  t h e  r id g e .

pass properties vert1 sim ilar to  those of the circuit of F ig . 4.5, which are 
illu stra ted  in Fig. 4.6.

F igure 4.10 shows a  som ew hat m ore com plicated  circuit. H ere we have a 
rectangular waveguide, show n end  on in a of Fig. 4.10, loaded b y  a  longi
tud ina l ridged po rtion  R.  In  b of Fig. 4.10 we have  a  longitud inal cross sec-

s F .  B .  L l e w e l l y n ,  U. S. Patents 2 , 3 6 7 , 2 9 5  a n d  2 ,3 9 5 ,5 6 0 .
* L e s t e r  M .  F i e l d ,  " S o m e  S l o w - W a v e  S t r u c t u r e s  t o r  T r a v e l i n g - W a v e  T u b e s , ”  Proc. 

I.R.E.,  V o l .  3 7 ,  p p .  3 4 - 4 0 ,  J a n .  19 4 9 .
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tion, showing regularly  spaced slots S  cu t in the ridge R.  T he slots 5  m ay be 
thought of as resonators.

Figure 4.11 shows in cross section a circuit m ade of a num ber of axially 
symmetrical ree n tra n t resonators R ,  coupled by sm all holes I I  which a c t as 
inductive irises.

I t would be very  difficult to app ly  M axw ell’s equations d irectly  in de
ducing the perform ance of the struc tu res shown in Figs. 4.10 and  4.11. 
Moreover, it is ap p a ren t th a t we can radically  change the perform ance of

F ig .  4 . 1 1 — A  c ir c u i t  c o n s i s t i n g  o f  a  n u m b e r  o f  r e s o n a t o r s  i n d u c t i v e l y  c o u p le d  b y  m e a n s  
o f h o les.

F ig .  4 . 1 2 — L a d d e r  n e t w o r k s  t e r m in a t e d  in  x  ( a b o v e )  a n d  T  ( b e lo w )  h a l f  s e c t io n s .  S u c h  
n e tw o rk s  c a n  b e  u s e d  in  a n a l y z i n g  t h e  b e h a v i o r  o f  c i r c u i t s  s u c h  a s  t h o s e  o f  F i g s .  4 . 1 0  
a n d  4 : 1 1 .

such structures by  m inor physical a lte ra tions as, by  changing the iris size, 
or by using resonant irises in the circuit of Fig. 4.11, for instance.

As a m atte r of fact, it is no t necessary to solve M axw ell’s equations afresh 
each time in order to  und erstan d  the  general properties of these and  o ther 
circuits.

4.3 L u m p e d  I t e r a t e d  A n a l o g u e s

( onsider the ladders of lossless adm ittances or susceptances shown in 
Fig. 4.12. Susceptances ra th e r  th an  reactances have been chosen because the
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elem ents we shall m ost o ften  encounter a re  sh u n t resonan t n ea r the fre
quencies considered ; the ir susceptance is near zero an d  changing slowly but 
the ir reactance is near infinity.

I f  these ladders are continued  endlessly to  the  rig h t (or te rm inated  in a 
reflectionless m anner) an d  if a  signal is im pressed on the  left-hand  end, the 
voltages, cu rren ts  an d  fields a t  corresponding po in ts in  successive sections 
will be in  the  ra tio  e x p (- r )  so th a t  we can w rite  the  voltages,

V n =  Vo c~nr (4.35)

If  the adm ittances V 1 an d  F 2 are  pure susceptances (lossless reactors), I1 
is e ither purely  real (an exponential decay w ith  d istance) o r p u rely  im aginary 
(a pass band). In  th is  case T is usually  replaced by  j/3. In  order to avoid 
confusion of no ta tion , we will use j6  instead , and  w rite for the lossless case 
in  the  pass band

Vn =  Vo e~in0 (4.35a)

T h u s, 9 is the phase lag in rad ians in going from  one section to the next. 
In  term s of the  susceptances,*

cos 9 =  1 +  Bo/21h  (4.36)

W e will henceforw ard assum e th a t  all elem ents a re  lossless.
Tw o characteristic  im pedances are associated w ith such ite ra te d  networks. 

If  the  netw ork s ta r ts  w ith  a  sh u n t susceptance B \ /2 ,  as in a of Fig. 4.12, then 
we see the m id-shun t characteristic  im pedance K r

K t  =  2 ( - B 2(Bo +  4 B i ) ) ~ m  (4.37)

If  the netw ork s ta r ts  w ith a  series susceptance 2B\  we see the mid-series 
characteristic  im pedance K t

K t =  ± ( l / 2 B i) ( - B 2 +  4 B i ) / B ^  (4.38)

H ere  th e  sign is chosen to  m ake th e  im pedance positive in  th e  pass band.
W hen such netw orks a re  used as circuits for a  traveling-w ave tube, the 

vo ltage acting  on the  electron stream  m ay be the  voltage across Bo or the 
vo ltage across B \  o r the  voltage across som e capacitive elem ent of B 2 or
B i . W e will wish to  relate th is  peak  voltage V  to  the  pow er flow P.  If  the
voltage across Bo ac ts  on the  electron stream

V - /P  =  2 K r (4.39)

If  the voltage across Y x ac ts  on the  electron stream

V  =  I / jB x

*  T h e  r e a d e r  c a n  w o r k  s u c h  r e la t i o n s  o u t  o r  lo o k  t h e m  u p  in  a  v a r i e t y  o f  b o o k s  o r  h a n d 
b o o k s .  T h e y  a r e  in  S c h e l k u n o f f ’s  E l e c t r o m a g n e t i c  W a v e s .
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where I  is th e  cu rren t in  B i

P  =  | P  | K t /2

and hence

V y P  =  2 / B J K t (4.40)

V y p  =  - A ( B i / B / ) ( - B i ( B i  +  A B /) )~ ^  (4.41)

vyp  = - 2 ( B 2/ B 1) K t (4.42)

Here the sign has been chosen so as to  m ake V 2/ P  positive in the pass band.
Let us now consider as an  exam ple tire s tru c tu re  of Fig. 4.10. W e see th a t 

two sorts of resonance are  possible. F irs t, if a ll the  slots are  shorted , o r if no 
voltage appears betw een them , we can have a resonance in which the field 
between the top  of the  ridge R  and  the top  of the w aveguide is co n s tan t

F i g .  4 . 1 3 — A  l a d d e r  n e t w o r k  b r o k e n  u p  i n t o  ir  s e c t io n s .

all along the  length, an d  corresponds to  th e  cutoff frequency of the  ridged 
waveguide. T here  are no longitudinal cu rren ts (or only small ones near the- 
slots S)  and  hence there is no voltage across the  slots an d  the ir adm ittance  
(the slot dep th , for instance) does n o t affect the frequency of th is  resonance. 
Looking a t  Fig. 4.12, we see th a t  th is corresponds to a  condition in which 
all shunt elem ents are open, o r B 2 =  0. W e will call the  frequency of th is 
resonance u T , the T  s tand ing  for transverse.

There is ano ther sim ple resonance possible; th a t  in  w hich the fields across 
successive slots are equal an d  opposite. Looking a t  Fig. 4.12, we see th a t  
this means th a t  equal cu rren ts flow in to  each sh u n t elem ent from  the  two 
series elem ents w hich are connected to it. W e could, in  fact, d ivide th e  n e t
work up  into unconnected ir sections, associating w ith  each series elem ent of 
susceptance B \  half of the susceptance of a sh u n t elem ent, th a t  is, B 2/ 2, 
a t each end, as show n in Fig. 4.13, w ithou t affecting the  frequency of th is 
resonance. This resonance, then, occurs a t  the frequency wj, (L  for longi
tudinal) a t  which

B ,  +  B i /A  =  0. (4.43)

W e have seen th a t  tire transverse resonan t frequency, u r , has a  clear 
meaning in connection w ith  th e  s tru c tu re  of Fig. 4.10; i t  is (except for sm all
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errors due to  s tra y  fields near the slots) the cutoff frequency of the wave
guide w ithou t slots. D oes the  longitudinal frequency w,, have a  simple 
m eaning?

Suppose we m ake a model of one section of the struc tu re , as shown in 
Fig. 4.14. C om paring th is w ith b of Fig. 4.10, we see th a t  we h av e  included 
the section of the ridged portion  betw een two slots, and  one half of a slot 
a t  each end, an d  closed the  ends off w ith  conducting p la tes C. T h e  resonant 
frequency of th is m odel is cu/., the  longitudinal resonan t frequency defined 
above.

W e will thus liken the  s tru c tu re  of Fig. 4.10 to  the  filter netw ork of Fig.

F i g .  4 . 1 4 — A  s e c t io n  w h i c h  w i l l  h a v e  a  r e s o n a n t  f r e q u e n c y  c o r r e s p o n d in g  to  t h a t  fo r  jt 
r a d i a n s  p h a s e  s h i f t  p e r  s e c t io n  in  t h e  c i r c u i t  o f  F i g .  4 . 1 0 .

0 T  0------ !-------B ,  I o  o
B c = B | + ^  ^ C l  g j  B t  =  B ^  r ^ p C f  g

B u = 2 C l (cU-£Ul ) Bt = 2C t (oi-£Ut)

F i g .  4 . 1 5 — T h e  a p p r o x i m a t e  v a r i a t i o n  w i t h  f r e q u e n c y  ( o v e r  a  n a r r o w  b a n d )  o f  th e  
lo n g i t u d in a l  (Br)  t r a n s v e r s e  (B r ) s u s c e p t a n c e s  o f  a  f i l t e r  n e t w o r k .

4.12, and  express th e  susceptances B i an d  B i  in term s of two susceptances 
B t  and  B tj associated w ith  the transverse an d  longitudinal resonances and 
defined below

B T =  B* (4.44)

B,.  =  B ,  +  B i /A  (4.45)

A t the transverse resonan t frequency wT , B r =  0 , an d  a t  the longitudinal 
resonan t frequency toi., B =  0 . So far, th e  lum ped-circuit representation
of the  s truc tu re  of Fig. 4.14 can be considered exact in th e  sense th a t at
an y  frequency we can assign values to  B r and  B which will give the  correct 
values for 0 an d  for V2/ P  for the vo ltage across either the  sh u n t or the series 
elem ents (whichever we are in terested  in).
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We will go fu rth e r an d  assum e th a t near resonances these values of B r 
and B ,, behave like the  adm ittances of sh u n t resonant circuits, as ind icated  
in Fig. 4.15. C ertain ly  we are righ t by  our definition in saying th a t  B T =  0 
a t u T , and B tj =  0 a t  w /,. W e will assum e near these frequencies a linear 
variation of B r  and  B  L w ith  frequency, w hich is very  nearly  tru e  for sh u n t 
resonant circuits nea r resonance*

B r  =  2Cr(u  -  U r )  (4.46)

B l =  2 C l (u  — u i )  (4.47)

Here CT can m ean twice the p eak  stored  electric energy p er section length 
for unit peak  voltage betw een the  top  of the guide an d  the to p  of the  ridge R  
when the structu re  resonates in the transverse mode, and  C L can m ean twice 
the stored energy p er section length  L  for un it peak voltage across the  top

Fig. 4.16—Longitudinal and transverse susceptances which give zero radians phase 
shift at the lower cutoff (w = ur) and r  radians phase shift at the upper cutoff (u = ojjJ.

of the slot when th e  s tru c tu re  resonates in  th e  longitudinal mode.
In terms of B r  and  B , expression (4.36) for the  phase angle 6 becomes

4B l  -j- B r , ,
cos 8 =  — — — (4. 48)  

4 Jljl — -#r

We see im m ediately th a t  for real values of 6 (cos 9 <  1), B T and  B,, m ust 
have opposite signs, m aking  the  denom inator g rea ter th a n  th e  num era to r.

Figure 4.16 shows one possible case, in w hich u r  <  wj.. In  th is  case the
pass band (9 real) s ta r ts  a t  the lower cutoff frequency u  =  u T a t  w hich B r
is zero, cos 8 =  1 (from (4.48)) an d  9 = 0 ,  an d  extends up to  the  upper 
cutoff frequency co =  u t, a t  which B lt =  0, cos 9 =  — 1 and  6 = t .

* In case the filter has a large fractional bandwidth, it may be worth while to use the 
accurate lumped-circuit forms

Bt — — oi7,/w) (4.46a)
Bl — wlCl(co/wl — ul/w) (4.46b)
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T h e shape of the phase curves will depend on the relative ra tes of varia
tion of B r and  B,,  w ith  frequency. A ssum ing the linear varia tions w ith fre
quency of (4.46) an d  (4.47) the  shapes can be com puted. T h is has been done 
for C J C r  — 1, 3, 10 an d  the  results are shown in Fig. 4.17.

Fig. 4.17—Phase shift per section, 0, vs radian frequency u for the conditions of Fig. 4.16.

Fig. 4.18—Longitudinal and transverse susceptances which give —tt radians phase 
shift at the lower cutoff (« = &>t) and 0 degrees phase shift at the upper cutoff (<v = wr)- 
This means a negative phase velocity.

I t  is of course possible to  m ake oiL >  oiT ■ I n  th is case the s ituation  is as 
shown in Fig, 4.18, th e  pass band  ex tending  from  oiL to  oiT • A t co =  w i, 
cos 0 =  — 1, 0 =  —ir. A t a  =  , cos 0 = 1  an d  0 = 0 .  In  Fig. 4.19, as
sum ing (4.46) and  (4.47), 0 h as  been p lo tted  vs oi for C L/ C T — 1, 3, 10 .

T h e  curves of Figs. 4.17 and  4.18 are n o t exact for an y  physical structure 
of the  type shown in Fig. 4.10. In  lum ped circuit term s, th ey  neglect coupling
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between slots. T h ey  will be m ost accurate  for s tru c tu res  w ith slots longitu
dinally far a p a r t com pared w ith  the  transverse dim ensions, and  least ac
curate for s tru c tu res  w ith slots close together. T h ey  do, how ever, form  a 
valuable guide in  understand ing  the  perform ance of such struc tu res an d  in 
evaluating th e  effect of the ra tio  of energies stored  in  th e  fields a t  the two cu t
off frequencies.

i  i f *   ̂^ —̂ ase s^ t Per secd°n, vs radian frequency, w, for the conditions of Fig

I t  is m ost likely th a t  the  voltages across the slots would be of m ost in ' 
terest in connection w ith  the circuit shown in Fig. 4.10. W e can rew rite 
(4.41) in term s of B T a n d  B L

V  / P  =  2(1 -  AB l/ B t) { - B t B l) w  (4,49)

We see th a t V'i/ P  goes to 0 a t  B T =  0 (to =  oiT) an d  to  in fin ity  a t  B L =  0 
(« =  u L). In  Fig. 4.20 assum ing (4.46) an d  (4.47), (V 2/ P ) ( w LC lo)tC t ) is 
plotted vs to for C L/ C T = 1 , 3 , 10 .

L et us consider an o th er circuit, th a t  show n in Fig. 4.11. W e see th a t  th is 
consists of a num ber of resonators coupled together inductively. W e m ight 
draw the equivalent circuits of these resonators as shown in Fig. 4.21. H ere 
L and C are the effective inductance an d  the effective capacitance of the 
resonators w ithout irises. T h ey  are chosen so th a t  the  resonan t frequency 
«o is given by

coo — ' s / L C (4.50)
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an d  the varia tion  of gap susceptance B  w ith frequency is

d B /d u  =  2 C (4 .51)

T h e arrow s show directions of cu rren t flow when the  cu rren ts in th e  gap 
capacitances are  all the sam e.

Fig. 4.20—A quantity proportional to (E?/fFP) vs <j for the conditions of Figs. 4.16 
and 4.17.

k  k  c k

Fig. 4.21—A representation of the resonators of Fig. 4.11.

W e can now represent the circuit of Fig. 4.11 by in terconnecting  the 
circuits of Fig. 4.21 by m eans of inductances L \ ,  of Fig. 4.22. T his gives a 
su itab le representation , b u t one which is open to  a m inor objection: the 
gap capacitance does not appear across e ither a sh u n t or a series arm .

I t  is im portan t to notice th a t  there is ano ther equally  good representa
tion, an d  there are probably  m any  m ore. Suppose we draw  the resonators as 
shown in Fig. 4.23 instead  of as in Fig. 4.21. T h e  inductance L  an d  capaci
tance C  a re  still p roperly  given by 4.50 ancl 4.51. W e can  now  interconnect 
the resonators inductively  as show n in Fig. 4.24.

W e should no te one thing. In  Fig. 4.21, the cu rren ts which are to  flow in 
the com mon inductances of Fig. 4.22 flow in opposite directions when the
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gap currents are in the sam e directions. In  the  rep resen tation  of Fig. 4.23 
the currents w hich will flow in the com m on inductances of Fig. 4.24 have 
been drawn in opposite directions, an d  we see th a t  the cu rren ts in the  gap 
capacitances flow a lte rn a te ly  up an d  clown. In  o ther words, in Fig. 4.24, 
every o ther gap appears inverted . T h is can be taken in to  account by adding 
a phase angle — ir to  9 as com puted  from  (4.48).

2 L  2 L  2 L  2 L  2 L  2 L

O o o o o o
Fig. 4.23—Another representation of the resonators of Fig. 4.11.

2 L  2  L 2 L  2 L  2 L  2 L

Fig. 4.24—Figure 4.23 with inductive coupling added. 

La La t-Mb
— ni-

(a) m  (b) m
I'ig. 4.25—A T — ir transformation used in connection with the circuit of Fig. 4.24.

Now, the T  configuration of inductances in a of Fig. 4.25 can be replaced 
by the it configuration, b of Fig. 4.25. Im agine I  and  I I  to be connected 
together and a voltage to  be applied  betw een them  and  I I I .  W e sec th a t

U  =  L a +  2L Ma (4.52)

Imagine a voltage to  be applied  between I  an d  I I .  W e see th a t

1/La  =  1 / U  +  2 / i  m  (4.53)

If I'M a «  L a , then  Lb will be nearly  equal to  L a and  L Mb »  L b .
By means of such a l  — it transform ation  we can redraw  the equivalen t 

circuit of Fig. 4.24 as show n in Fig. 4.26. T he series susceptance B \  is now
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th a t  of L \ , an d  the  sh u n t susceptance is now th a t  of the  sh u n t resonant 
circuit consisting of C2 (the effective capacitance of the  resonators) an d  Z,2 .

Fig. 4.26—The final representation of the circuit of Fig. 4.11.

Fig. 4.27—The phase characteristic of the circuit of Fig. 4.11.

T he transverse resonance, B 2 =  0, occurs a t  a  frequency

COy — V"C2 £ 2

N ear th is frequency th e  transverse  susceptance is given by

B t — 2C2(co '— COt)

T h e  longitudinal resonance occurs a t  a  frequency 

ml

and  near ,
IC 1L 1L 2I  (L \  -f- 2 L2) 

B l  — C2(w — w¿)

(4.54)

(4.55)

(4.56)

(4.57)

These are ju s t the  form s we found in  connection w ith the  s tru c tu re  of Fig. 
4.10; b u t we see th a t, in  th e  case of the circu it of Fig. 4.11, th e  effective 
transverse  capacitance is alw ays tw ice the  effective longitud inal capacitance 
(Cl/ C t =  1 /2  in  Fig. 4.19), an d  th a t o,y. >  oir  for a tta in ab le  volum e of ¡n-
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We obtain 9 vs w b y  adding  — tr to  the phase angle from  4.48, using (4.55)
and (4.57) in ob ta in ing  B r an d  B h ■ T he phase angle vs. frequency is shown
in Fig. 4.27. As the  irises are m ade larger, the bandw id th , <aL — , becomes
larger, largely by  a decrease in co  ̂ .

The voltage of in te res t is th a t  across C2 , th a t is, th a t  across the gap. 
From (4.37), (4.44), (4.45), (4.55) an d  (4.57) we ob ta in

V - /P  =  2 / ( — B tB i,)u- (4.58)

V ' / P  =  — « ) ( w — ut))~ ii~ (4.59)

This goes to  infin ity  a t  b o th  to =  an d  w — o>T ■ I n  Fig. 4.28, 
{V'-/P)Ci -\/(jiLwr is p lo tted  vs to. T h is curve represents the perform ance of 
all narrow band  s tru c tu re s  of the type shown in  Fig. 4.11.

CO ^  CO[_
F ig .  4 .2 8 — A  q u a n t i t y  p r o p o r t io n a l  t o  (E?/{PP) f o r  t h e  c i r c u i t  o f  F i g .  4 . 1 1 ,  p lo t t e d  v s  

ra d ia n  f r e q u e n c y  w .

In  a stru c tu re  such as th a t  shown in Fig. 4.11, there is little  coupling 
between sections which are n o t ad jacen t, and  hence th e  lum ped-circuit 
representation used is p robab ly  qu ite  accurate, an d  is certa in ly  m ore ac
curate than  in s tru c tu res  such as th a t  shown in Fig. 4.10.

Other s truc tu res could be analyzed , b u t i t  is believed th a t  the  exam ples 
given above ad equate ly  illu stra te  the  general procedures w hich can be 
employed.

4.4 T r a v e l i n g  F i e l d  C o m p o n e n t s

Filter-type circuits produce fields which are certa in ly  n o t sinusoidal w ith  
distance. Indeed, w ith  a s tru c tu re  such as th a t  shown in Fig. 4.11, the elec
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trons are acted  upon only w hen th ey  are very  near to  the  gaps. I t  is possible 
to  analyze the  perform ance of traveling-w ave tubes on th is  basis“. T h e  chief 
conclusion of such an  analysis is th a t  h ighly  accu ra te  results can be obtained 
b y  expressing the  field as a  sum  of traveling  w aves an d  tak in g  in to  account 
only  the  w ave which has a phase velocity  n ea r to  th e  electron velocity . Of 
course th is is sa tisfac to ry  only if the  velocities of th e  o th e r com ponents are 
qu ite  different from  the electron velocity  ( th a t is, d ifferent by  a fraction 
several tim es the gain param ete r C).

As a n  exam ple, consider a  traveling-w ave tube in  which th e  electron  stream  
passes th rough tu b u la r  sections of rad ius a, as show n in Fig. 4.29, and is 
ac ted  upon by  voltages appearing  across gaps of leng th  C spaced L  apart.

[* - L  ► )<  L  > )*  L  > |

-»I l|*- -»111*- -»III*- -*1 I U-
V n -t  V n W i+l V n + 2

F i g .  4 . 2 9 — A  s e r i e s  o f  g a p s  i n  a  t u b e  o f  in s id e  r a d i u s  a.  T h e  g a p s  a r e  C lo n g  a n d  a re  
s p a c e d  L  a p a r t .  V o l t a g e s  Vn , e t c . ,  a c t  a c r o s s  t h e m .

A w ave travels in  som e so rt of s tru c tu re  an d  produces voltages across the 
gaps such th a t  th a t  across the  u-th gap, V,  is

V n =  V 0e - jn0 (4.60)

where n  is an y  integer.
W e analyze th is field in to  traveling-w ave com ponents w hich v a ry  with 

distance as cxp(-j(3mz) where

(3m — (fi +  2 m x ) / L  (4.61)

where m  is an y  positive or negative in teger. T hus, the  to ta l field will be

E =  E  E m =  E  A m e ~ ^ z I o h mr) (4.62)
7«*=—CO » 1= —=0

y m2 =  P J  -  (3o2 (4-63)

H ere  Io(ymr) is a m odified Bessel function , an d  y m h as  been chosen so that
(4.62) satisfies M axw ell’s equations.

s J .  R .  P i e r c e  a n d  N e l s o n  W a x ,  “ A  N o t e  o n  F i l t e r - T y p e  T r a v e l i n g - W a v e  A m p l i f ie r s , ”  
Proc. I.R.E.,  V o l .  3 7 ,  p p .  6 2 2 - 6 2 5 ,  J u n e ,  1 9 4 9 .
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We will evaluate the  coefficients by  the  usual m eans of F ourier analysis.
Suppose we let 2 =  0 a t  the  cen ter of one of th e  gaps. W e see th a t

/ Li 2 oo .L l  2
E E *  dz — E / A mA * J o ( y mr) dz

L l 2 »«=>—oo J— l I 2

00

=  2  'fm /l * l l ( y mr )L
m = —oo

All of the term s of the  form  E mE p , /> ^  ?« in teg ra te  to  zero because the 
integral contains a  te rm  exp(-j’27r(/> — m )/L ) z .

Let us consider the field a t  the radius r. T h is is zero along the  surface of 
the tube. W e will assum e w ith  fair accuracy th a t  i t  is constan t an d  has a 
value — V / t  across the gap. T h u s we have also a t  r =  a,

/ ¡.I 2 oo . ¿ I  2
E E *  dz =  -  ( V / t )  E h { y ma) dz

• L/2 m— oo J—(!2

=  -  ( V / 0  E  ( A l ) I 0( y m a )  ( ...............   )
w=-co \  7p /

(4.65)

We can rew rite th is

L'~ E E *  dz =  -  ( V / t )  E  A * I 0( y ma) (4.66)
L l / 2 oo ^L

By comparison w ith  (4.64) we see th a t

A m =  — ( F /L ) (  sin (j3mt / 2 ) / I o ( y a ) )  (4.67)

This is the m agnitude of the ;« th  field com ponent on the  axis. T h e  m agn itude 
of the field a t  a radius r would be Io{yf) tim es this.

The quan tity  fim£ is an  angle which we will call 0a , the gap angle. U sually 
we are concerned with only  a  single field com ponent, an d  hence can m erely 
write 7  instead of y m ■ T hus, we say th a t  the m agnitude E  of the  travelling  
field produced by a voltage V  ac ting  a t  in tervals L  is

E  =  —M { V / L )  (4.68)

u  -  S i M 2! (4.69)
{dg/ 2) I 0(ya)

Og =  (3( (4.70)

The factor M  is called th e  gap  fac to r o r the  m odulation  coefficient*. 
For slow waves, 7  is very  nearly  equal to  ¡3, and  we can replace y r  an d  7 a
by (3r and \3a. F o r u n a tten u a te d  waves, M  is a real positive num ber; and,

* This factor is often designated by 0, but we have used 13 otherwise.
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for th e  slowly vary ing  w aves w ith  w hich we deal, we will alw ays consider 
M  as a  real num ber.

T he gap fac to r for some o ther physical arrangem ents is of in te rest. A t a 
d istance y  above the  tw o-dim ensional a rra y  of str ip  electrodes shown in 
Fig. 4.30

M
sin (6g/2 ) -yy

(dg/ 2)
(4 .71)

F i g ,  4 . 3 0 — A  s e r i e s  o f  s lo t s  60 r a d i a n s  lo n g  s e p a r a t e d  b y  w a l l s  L  lo n g .

F i g .  4 . 3 1 — A  s y s t e m  s i m i l a r  t o  t h a t  o f  F i g .  4 . 3 0  b u t  w i t h  t h e  a d d i t i o n  o f  a n  o p p o se d  
c o n d u c t in g  p la n e .

(4.72)

I f  we ad d  a conducting  plane a  a t  y  =  h, as in  Fig. 4.31,

M  =  s i n  ( ° S / 2 )  sinh y ( h  -  y )
(dg /2 ) sinh  y h

F or a  sym m etrical tw o-dim ensional array , as show n in Fig. 4.32, with a 
separation  of 2 h  in  the y  direction  an d  the  fields above equal to  th e  fields 
below

M
sin ( f ig /2) cosh y y  

(6g/2 ) cosh y h
(4.73)

4 .5  E f f e c t i v e  F i e l d  a n d  E f f e c t i v e  C u r r e n t

In  Section 4 .4  we have expressed a  field com ponent or “effective field” 
in  term s of circuit vo ltage b y  m eans of a  gap-fac to r or m odula tion  coeffi-
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cient M.  This enables us to  m ake calculations in term s of fields an d  cu rren ts 
at the electron stream .

The gap fac to r can be used in  ano ther way. A  vo ltage appears across a 
gap, and the electron stream  induces a cu rren t a t  the  gap. A t th e  electron 
stream the power P i , p roduced in  a  d istance L  b y  a convection cu rren t 
i  with the same z-varia tion  as th e  field com ponent considered, ac ting  on the  
field com ponent is

P i  = —E i* L

+  (M V )i*
(4.74)

n ? 7
—>-

/ /I
<-Sg

Fig. 4.32—A system of two opposed sets of slots.

At the circuit we observe some im pressed cu rren t I  flowing ag a in st the  
voltage V  to  produce a  pow er

P 2 =  V I*  (4.75)

By the conservation of energy, these tw o powers m u st be the  sam e, an d  we 
deduce th a t

I*  =  M i*  (4.76)

or, since we take M  as a  real num ber

/  =  M i  (4.77)

Thus, we have ou r choice of m aking  calculations in term s of th e  beam  
current and a field com ponent o r effective field, or in  term s of circu it vo ltage
and an effective cu rren t, an d  in  either case we m ake use of th e  m odulation
coefficient M .

Our gain p aram eter C3 will be

C3 =  i y / L )  -M 2I  o /8/S2 F 0
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w here V  is circu it voltage. W e can regard this in  tw o ways. W e can  think 
of — ( V / L ) M  as the  effective field a t  the location  of the  cu rren t / 0 , or we 
can th in k  of M'2I a as th e  effective cu rren t referred to  the  circuit.

I f  we have a  b road  beam  of electrons an d  a co n s tan t cu rren t density  / o 
we com pute (essentially  as in  C h ap te r I I I )  a  value of C3 by  integrating

w here da is an  elem ent of area. W e can th in k  of the resu lt in  term s of an 
effective field E e

w here a  is th e  to ta l beam  area, an d  a  to ta l cu rren t a J 0 , or we can th ink  of 
th e  integral (4.77) in term s of an  effective cu rren t h  given by

an d  the  voltage a t  the circuit.
Of course, these sam e considerations app ly  to  d is trib u ted  circuits. Some

tim es it is m ost convenient to  th ink  in term s of the to ta l cu rren t and an 
effective field (as we did in connection w ith  helices in C hap te r I I I )  and 
som etim es it is m ost convenient to th ink  of the field a t  the circuit and an 
effective cu rren t. E ith e r  concept refers to the  sam e m athem atics.

4 .6  H a r m o n ic  O p e r a t io n

Of the field com ponents m aking  up  E  in  (4 .62) i t  is custom ary  to  regard 
the  »i =  0  com ponent, for which 13 = Q/L, as the. fundam ental  field com
ponent, and  the o ther com ponents as harmonic com ponents. These are some
tim es called Hartree harmonics. I f  the electron speed is so ad ju sted  th a t the 
in te rac tion  is w ith  the  m  =  0  o r fundam en tal com ponent we have funda
m ental opera tion ; if the  electron speed is ad ju sted  so th a t  we have interac
tion  w ith a harm onic com ponent, we have harm onic operation .

T here  are several reasons for using harm onic operation  in connection 
w ith  filter-type circuits. F o r one th ing  the  fundam en tal com ponent may 
appear to be trave ling  backw ards. T hus, for circuits of the  type  shown in 
Fig. 4 . 1 1 ,  we see from  Fig. 4 .2 7  th a t  9 is alw ays negative. Now , in  term s of 
the  velocity v

an d  if 6 is negative, ;> m ust be negative. H ow ever, consider the  m  =  1 
com ponent

(4.79)

(4.80)

ß  = o)fv — 6 / L (4.81)

ß  =  w/ v =  (2tt +  9 ) /L (4.82)
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We see th a t, for th is com ponent, v is positive.
The in teraction  of electrons w ith  backw ard-traveling  field com ponents 

will be considered la ter. H ere it  will m erely be said th a t, in o rder to  avoid 
interaction w ith  w aves traveling  in  bo th  directions, one m u st avoid having 
the electron speed lie near bo th  the speed of a  forw ard com ponent an d  the 
speed of a backw ard com ponent.

In order th a t th e  fundam ental com ponent be slow, 8 m ust be large or L  
must be small. T he largest value of 0 is th a t  near one edge of the band , where 
8 approaches x . T hus, the  largest fundam ental value of ¡3 is ir /L ,  an d  to  m ake

F i g .  4 . 3 3 — T h e  v a r i a t i o n  o f  p h a s e  w i t h  f r e q u e n c y  f o r  t h e  f u n d a m e n t a l  (0  t o  x  o v e r  t h e  
b a n d ) a n d  a  s p a t i a l  h a r m o n i c  ( 2 x  t o  3 x  o v e r  t h e  b a n d ) .  T h e  d o t t e d  l in e s  s h o w  w d i v i d e d  
b y  th e  e le c t r o n  v e l o c i t y  f o r  t h e  t w o  c a s e s .  F o r  a m p l i f i c a t i o n  o v e r  a  b r o a d  b a n d  t h e  d o t t e d  
c u r v e  s h o u ld  n o t  d e p a r t  m u c h  f r o m  t h e  f i l t e r  c h a r a c t e r i s t i c .

13 large w ith m — 0 we m u st m ake L  small and p u t the  resonators very  close 
together. This m ay  be physically  difficult o r even impossible in tubes for 
very high frequencies. T he a lte rn a tiv e  is to  use a harm onic com ponent, 
for which 0 =  (2« w  +  9)/L .

Another reason for using harm onic operation  is to  achieve b road-band  
operation. T he phase of a  filter-type circuit changes b y  x  rad ians betw een 
the lower cutoff frequency on and  the upper cutoff frequency tuof. Now , 
for the wave velocity  to  be n ea r to  th e  electron velocity  over a  good p a r t 
of the band, f3 m ust be nearly  a  co n stan t tim es to. F igure 4.33 shows how 
this can be approxim ately  tru e  for the  m  — 1 com ponent even w hen i t  ob
viously won’t be for the  m =  0 or fundam ental com ponent. Sim ilarly, for 
a filter with a narrow er fractional bandw id th  an d  hence a  steeper curve of 
8 vs co, a larger value of m  m igh t give a nearly  co n stan t value of v.

t  T h e  p h a s e  o f  s o m e  f i l t e r s  c h a n g e s  m o r e  t h a n  t h is ,  b u t  t h e y  d o n ’ t  s e e m  g o o d  c a n d i d a t e s  
or t r a v e l i n g - w a v e  t u b e  c i r c u i t s .
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C H A P T E R  V 

GENERAL CIRCUIT CONSIDERATIONS

S y n o p s is  o f  C h a p t e r

IN  C H A P T E R S  I I I  A N D  IV , helices and  filte r-type circuits have  been 
considered. O ther slow-wave circuits have been proposed, as, for in

stance, w ave guides loaded continuously  w ith  d ielectric m ateria l. One may 
ask w hat the  best type  of circu it is, or, indeed, in ju s t w hat w ay do bad  cir
cuits differ from  good circuits.

So far, we have as one criterion  for a good c ircu it a high impedance, 
th a t  is, a  h igh value of E?/fi2P.  I f  we w an t a b road-band  am plifier we must 
have a  co n stan t phase velocity; th a t  is, /3 m u st be p roportional to  frequency. 
T hus, tw o desirable circu it p roperties a re : high im pedance an d  constancy 
of phase velocity .

Now, E 2/ 0 2P  can be w ritten  in the  form

E /firP  =  & /p W v „

where IF  is the stored energy per u n it length  for a field s tren g th  E ,  and v, 
is the  group velocity.

One w ay of m aking E-[$-P  large is to  m ake the  stored  energy for a given 
field s treng th  sm all. In  an  electrom agnetic w ave, half of the  sto red  energy 
is electric an d  half is m agnetic. T hus, to  m ake the to ta l sto red  energy for a 
given field s tren g th  sm all we m u st m ake the energy sto red  in  the electric 
field sm all. T h e  energy stored  in th e  electric field will be increased by the 
presence of m ateria l of a high dielectric constan t, or by  the  presence of large 
opposed m etallic surfaces, as in the circuits of Figs. 4.8 an d  4.9. T hus, such 
circuits are poor as regards circu it im pedance, how ever good th ey  m ay  be in 
o the r respects.

If the  stored  energy' for a given field s treng th  is held constan t, E / 8 'P  
m ay  be increased by  decreasing th e  group velocity. I t  is the  phase velocity 
v w hich should m atch  the  electron speed. T he group velocity  v g is given in 
term s of the  phase velocity' by' (5.12). W e see th a t  the  group velocity' may 
be m uch sm aller th a n  th e  phase velocity' if —dv/dai is large. I t  is, for in
stance, a  low group velocity' near cutoff th a t  accounts for the  high imped
ance regions exhibited  in  Figs. 4.20 an d  4.28. W e rem em ber, however, 
th a t,  if the phase velocity  of th e  circuit of a traveling-w ave tube  changes 
w ith  frequency, the  tu b e  will have a narrow  bandw id th , an d  th u s the high
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impedances a tta in e d  th rough  large values of — dv/du  a re  useful over a  n a r
row range of frequency only.

If we consider a  b road  electron stream  of cu rren t density  J 0 , the  h ighest 
effective value of 2i-//32P , and  hence the h ighest value of C, will be a tta in ed  
if there is cu rren t everyw here th a t  there is electric field, an d  if a ll of the 
electric field is longitudinal. T h is leads to  a lim iting value of C, w hich is 
given by (5.23). T here  \ 0 is the  free-space w avelength. T h e  nearest p rac tica l 
approach to  th is condition is perhaps a  helix of fine wire flooded inside and 
outside w ith electrons.

In  m any cases, i t  is desirable to  consider circuits for use w ith  a narrow  
beam of electrons, over w hich the field m ay be taken  as constan t. As the 
helix is a com m on as well as a  very  good circuit, i t  m igh t seem desirable 
to use it as a s tan d ard  for com parison. H ow ever, the  group velocity  of the 
helix differs a  little  from  the  phase velocity , an d  it seems desirable in stead  
to use a sort of hypo the tical circuit o r field for w hich the  sto red  energy is 
almost the sam e as in  the  helix, b u t for which the group velocity  is th e  sam e 
as the phase velocity . T h is has been referred to  in  th e  tex t as a  “ forced 
sinusoidal field.” In  Fig. 5.3, (E2/f}2P ) 113 for the forced sinusoidal field is 
compared w ith  (E2//32P ) U3 for the helix.

Several o ther circuits are com pared w ith  th is : the circu lar resonators of 
Fig. 5.4 (the square resonators of F ig. 5.4 give nearly  the sam e im pedance) 
and the resonan t quarte r-w ave an d  half-w ave wires of Figs. 5.6 an d  5.7. 
The com parison is m ade in  Fig. 5.8 for th ree  voltages, w hich fix th ree phase 
velocities. In  each case i t  is assum ed th a t  in  some w ay the  group velocity  
has been m ade equal to  th e  phase velocity . T hus, th e  com parison is m ade on 
the basis of sto red  energies. T h e  field is taken  as the  field a t  rad ius a (cor
responding to  the  surface of the helix) in  the case of the  forced sinusoidal 
field, and a t  the  po in t of h ighest field in  the case of the  resonators.

We see from Figs. 5.8 an d  5.3 th a t a helix of sm all radius is a  very  fine 
circuit.

In  circuits m ade up of a  series of resonators, the  group velocity  can  be 
changed w ithin wide lim its b y  vary ing  the coupling betw een resonators, as 
by pu tting  inductive or capacitive irises betw een them . T h u s, even cir
cuits w ith a  large sto red  energy can  be m ade to  have a  high im pedance by 
sacrificing bandw idth .

The circuits of Fig. 5.4 have a  large sto red  energy because of th e  large 
opposed surfaces. T h e  wires of Fig. 5.6 have a sm all s to red  energy asso
ciated entirely  w ith  “ fringing fields” ab o u t th e  wires. T h e  narrow  strip s  of 
1'ig- 5.5 have abou t as m uch sto red  energy betw een th e  opposed flat su r
faces as th a t in the  fringing field, an d  are ab o u t as good as the  half-w ave 
wires of Fig. 5.7.

An actual circuit m ade up  of resonators such as those of Fig. 5.4 will be
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worse th a n  Fig. 5.8 implies. T hus, there is a decrease of (F?/p2P y 13 due to 
wall thickness. T hickening the  flat opposed walls of the resonators decreases 
the spacing between the  opposed surfaces, increases the  capacitance and 
hence increases the stored  energy for a given gap voltage. In  Fig. 5.9 the 
fac to r /  by  w hich (E2/(32P ) in is reduced is p lo tted  vs. the  ra tio  of the wall 
thickness / to  th e  resonator spacing L.

T here is a fu rth e r reduction  of effective field because of the electrical 
length, 9 in  radians, of the space betw een  opposed resonator surfaces. 
T h e  lower curve in Fig. 5.10 gives a fac to r by  which (E?/f?P)w  is reduced 
because of this. If  th e  resonator spacing, 0t in  rad ians, is g rea ter th a n  2.33 
rad ians, i t  is b est to  m ake the opening, or space betw een th e  walls, only 
2.33 rad ians long b y  m aking the  opposed disks form ing the walls very 
thick.

T here  is of course a fu rth e r loss in effective field, bo th  in  th e  helix and in 
circuits m ade up  of resonators, because of the falling-off of the  field toward 
the center of the apertu re  th rough which the electrons pass. T h is was dis
cussed in  C h ap te r IV.

F inally , i t  should be po in ted  o u t th a t  th e  fraction  of th e  sto red  energy 
dissipated  in losses during each cycle is inversely p roportional to  the <3 of 
the  circuit or of the resonators form ing it. T he d istance the  energy travels 
in a cycle is p roportional to the  group velocity . T hus, for a given Q the sig
nal will decay m ore rap id ly  w ith  d istance if the group velocity  is lowered 
(to increase Er/fPP).  E quations (5.38), (5.42) and  (5.44) p erta in  to  a ttenu 
ation  expressed in term s of group velocity. T he tab le  a t  the  end of the 
chap te r shows th a t a circuit m ade up of resonators an d  having a low enough 
group velocity  to  give it  an  im pedance com parable w ith  th a t  of a helix can 
have a very  high a tten u a tio n .

5.1 G r o u p  a n d  P h a s e  V e l o c it y

Suppose we use a b road video pulse /*'(/), contain ing rad ian  frequencies 
p  ly ing in the  range 0  to  p a , to  m odulate  a radio-frequency signal of radian 
frequency u  which is m uch larger th a n  p 0 , so as to  give a radio-frequency 
pulse /( /)

the  functions F(t)  an d  / ( / )  are  ind icated  in  Fig. 5.1.
F(l),  which is a real function  of tim e, can be expressed by  m eans of its 

Fourier transform  in term s of its  frequency  com ponents

(5.1)

(5.2)
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Here A(p)  is a com plex function  of p, such th a t  A ( — p) is the com plex con
jugate of A{p)  (th is assures th a t  F(t) is real).

W ith F(t) expressed as in (5.2), we can rew rite (5.1)

/ V 0
A (p)eiia+r)t d p

Vn
(5.3)

Now, suppose, as ind icated  in  F ig. 5.2, we app ly  the r-f  pulse /( / )  to  the 
input of a transm ission system  of leng th  L  w ith  a phase co n stan t /3 which

r i g .  5 . 1 — A  r a d i o - f r e q u e n c y  p u l s e  v a r y i n g  w i t h  t im e  a s  j y ) .  m e  e n v e lo p e  v a r i e s  w i t n  
t im e  a s  F(l). T h e  p u ls e  m i g h t  b e  p r o d u c e d  b y  m o d u l a t i n g  a  r a d i o - f r e q u e n c y  s o u r c e  
w ith  F(t).

P H A S E  C O N S T A N T  f l ( u i )

F (t )_

f ( t ) '

L- J

G ( t )

g(t)

F ig .  5 .2 — W h e n  th e  p u l s e  o f  F i g .  5 . 1  i s  a p p l i e d  t o  a  t r a n s m is s io n  s y s t e m  o f  l e n g t h  L 
a n d  p h a s e  c o n s t a n t  /3(w) ( a  f u n c t io n  o f  u),  t h e  o u t p u t  p u l s e  g(t) h a s  a n  e n v e lo p e  G(t).

is a function of frequency. L e t us assum e th a t  the system  is lossless. I h e  
output g(l)  will th en  be

r  P  o

g(0  =  / A ( p ) e 3
J - po

_/((«+p) t—ßL) dp (5.4)

We have assum ed th a t  pa is m uch sm aller th an  w. L e t us assum e th a t  over 
the range co — p0 to  to -f- p 0 , f) can be adequate ly  represented  by

a  co

In this case we ob ta in

g ( 0  =  f  ° A (p)
I-P  0

The envelope a t  the  o u tp u t is

G (0  =  f P° A ( p )  eM , - (9fi,du)L)
J—P 0

gjpU—idßldw) L) ^ p

d p

(5.5)

(5.6)

(5.7)
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B y com paring th is  w ith  (5.2) we see th a t

G{1) =  F (5.8)

In  o ther w ords, the  envelope a t  the o u tp u t is of the sam e shape as a t  the 
in p u t, b u t arrives a tim e r  la te r

T his velocity  is called the  group velocity , because in  a sense i t  is the  veloc
ity  w ith  which the group of frequency com ponents m aking  up  th e  pulse 
trave ls dow n the circuit. I t  is certa in ly  the  velocity  w ith  which th e  energy

serve physically  th a t,  if a t  one tim e th is energy is a t  a  position x,  a  time I 
la te r  i t  is a t  a position  x  +  v„l.

I f  the  a tten u a tio n  of the transm ission  circu it varies w ith  frequency, the 
pulse shape will becom e d is to rted  as the  pulse travels an d  the  group  velocity 
loses its clear m eaning. I t  is unlikely, how ever, th a t  we shall go fa r wrong 
in  using th e  concept of group velocity  in  connection w ith  ac tu a l circuits.

W e have  used earlier the  concept of phase velocity , w hich we have desig
n a ted  sim ply as v. In  term s of phase velocity ,

W e see from  (5.10) th a t  in  term s of phase velocity  v the  group velocity 
vg is

F o r in te rac tion  of electrons w ith  a  w ave to  give gain in  a traveling-wave 
tube, th e  electrons m u st have a velocity  near the phase velocity  v. Hence, 
for gain over a  b road  band  of frequencies, v m u st n o t change w ith  frequency; 
an d  if v does n o t change w ith  frequency, then , from  (5.12), vB =  v.

W e no te  th a t  tire various harm onic com ponents in  a  filte r-type circuit 
h av e  different phase velocities, som e positive a n d  some negative . T h e  group

(5.9)

T h is implies th a t  i t  trave ls w ith  a  velocity  v„

(5.10)

sto red  in  the  electric and  m agnetic fields of the  circuit trave ls; we could ob-

(5.11)
v

(5.12)
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velocity is of course the sam e for all com ponents, as th e y  are all aspects of 
one wave. R ela tion  (4.61) is consisten t w ith  th is:

=  (0 +  2 m r ) / L  (4.61)

1 /Vq =  d0m/do) =  (dO/dco)/L (5.13)

5.2 G a in  a n d  B a n d w id t h  i n  a  T r a v e l in g -W a v e  T u b e

We can rew rite the im pedance p aram ete r E 2/0 - P  in  term s of stored  
energy per un it length IV for a field s treng th  E,  an d  a  group velocity  v„ . 
If IF is the stored  energy p er u n it length , the  power flow P  is

P  =  W va (5.14)

and, accordingly, we have

ET-/0°-P = Er/0-Wi't, (5.15)

And, for the gain p aram eter, we will have

C  =  (P ? / 0 W v ay i 3(Io/8Vo)m  (5.16)

For example, we see from  Fig. 4.20 th a t  E 2/0 -P  for the circu it of F ig. 4.10 
goes to infinity  a t  the  upper cut-off. F rom  Fig. 4.17 we see th a t  dd/du,  
and hence l / v g , go to  infin ity  a t  the  upper cutoff, accounting  for the infinite 
impedance. W e see also th a t  dO/dw goes to  in fin ity  a t  the  lower cutoff, b u t 
there the slot voltage an d  hence the  longitudinal field also go to  zero an d  
hence E 2/@-P does n o t go to in fin ity  b u t to  zero instead.

In the case of the circuit of Fig. 4.11, the  gap voltage an d  hence th e  longi
tudinal field are finite for un it sto red  energy a t  bo th  cutoffs. As dd/du  is 
infinite a t  bo th  cutoffs, V - / P  an d  hence Er/0-P  go to infinity  a t  bo th  cu t
offs, as shown in Fig. 4.28.

To get high gain  in  a  traveling-w ave tube  a t  a  given frequency an d  v o lt
age (the phase velocity  is specified by  voltage) we see from  (5.16) th a t  we 
must have either a  sm all stored energy per un it length for un it longitudinal 
field, or a small group  velocity , v a .

To have am plification over a  b road  band  of frequencies we m u st h av e  the 
phase velocity v su b stan tia lly  equal to  the electron velocity  over a b road  
band of frequencies. T h is m eans th a t  for v ery  broad-band  operation , v 
must be substan tia lly  co n s tan t and  hence in  a b road-band  tube  the  group 
velocity will be su b stan tia lly  the sam e as the  phase velocity.

If the group velocity  is m ade sm aller, so th a t  th e  gain is Increased, the 
range of frequencies over w hich the  phase velocity  is near to  the  electron 
velocity is necessarily decreased. T hus, for a given phase velocity , as the  
group velocity is m ade less the  gain  increases b u t the  bandw id th  decreases.

Particular circuits can be compared on the basis of (E2/02P ) and band
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w idth . W e have discussed the im pedance and  phase or velocity  curves in 
C hap ters I I I  an d  IV . F ield1 has com pared a coiled w aveguide s tru c tu re  with 
a  series of ap e rtu red  disks of com parable dim ensions. B o th  of these struc
tu res  m u st have ab o u t the sam e stored  energy for a  given field strength. 
H e  found the  coiled w aveguide to  have a low gain an d  b ro ad  bandw idth 
as com pared w ith the ap e rtu re d  disks. W e explain th is b y  saying th a t  the 
p a rticu la r coiled w aveguide he considered had  a higher group velocity  than 
d id  the  apertu red  disk struc tu re . F u rth e r, if th e  coiled w aveguide could be 
a lte red  in  some w ay so as to  have the  sam e group velocity  as th e  apertured 
disk s tru c tu re  it  would necessarily have  substan tia lly  th e  sam e gain and 
bandw idth .

In  an o th er instance, M r. O. J . Zobel of these L aborato ries eva lua ted  the 
effect of b road-band ing  a filte r-type circuit for a traveling-w ave tube  by 
/«-derivation. H e found the  sam e gain for an y  com bination  of m  and  band
w idth  which m ade v =  v„(dv/du  =  0). W e see th is is ju s t a particular 
instance of a  general rule. T h e  sam e th ing  holds for an y  ty p e  of broad- 
banding, as, by  harm onic operation.

5.3 A C o m p a r is o n  o f  C ir c u it s

T h e group  velocity , th e  phase velocity  an d  the ratio  of the  tw o are param 
eters which are often  easily controlled, as, b y  vary ing  th e  coupling between 
resonators in a filter com posed of a series of resonators. M oreover, these 
param ete rs can often  be controlled w ithou t m uch affecting the sto red  energy 
per u n it length. F or instance, in a  series of resonators coupled by  loops or 
irises, such as the circu it of Fig. 4.11, th e  sto red  energy is n o t m uch affected 
by  the  loops or irises unless these are v ery  large, b u t the  phase an d  group 
velocities are  g rea tly  changed b y  sm all changes in coupling.

L et us, then , th in k  of circuits in term s of stored  energy, and  regard the 
phase an d  group velocities an d  the ir ra tio  as ad ju stab le  param eters. We 
find th a t, when we do th is, the re  a re  n o t many'- essentially  different configura
tions w hich prom ise to  be of m uch use in traveling-w ave tubes, and  it is 
easy  to  m ake com parisons betw een extrem e exam ples of these configura
tions.

5.3a Uniform Current Density throughout Field

Suppose we have a uniform  cu rren t density  Jo  w herever the re  is longi
tud ina l electric field. W e m igh t approxim ate th is case b y  flooding a helix 
of very  fine w ire w ith  cu rren t inside an d  outside, o r by  passing current 
th rough  a series of f la t resonators whose walls were grids of fine wire.

1 L e s t e r  M .  F i e l d ,  “ S o m e  S l o w - W a v e  S t r u c t u r e s  f o r  T r a v e l i n g - W a v e  T u b e s , ”  Proc. 
I.R.E.,  V o l .  3 7 ,  p p .  3 4 - 4 0 ,  J a n u a r y  19 4 9 .
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In  the la tte r  case, if resonators h ad  parallel walls of very  fine m esh norm al 
to the direction of electron m otion the re  w ould be substan tia lly  no tran s
verse electric field. All th e  electric field representing  sto red  energy would 
act on the electron stream . In  th is  case, we would have

w =  i J  E 2 d l  (5.17)

Here dS  is an  elem entary  area  norm al to  the  direction  of propagation . W  
given by this expression is the  to ta l electric an d  m agnetic sto red  energy 
per un it length. W here E  is less th an  its  peak value, the  m agnetic  energy 
makes up the difference.

In  evaluating E 2I<> in (5.16) we will have  as a n  effective value

( E h ) el[ =  Jo j  E d Z  (5.18)

Hence, we will have for the  gain p aram ete r C

(5.19)

I t  is of in te rest to p u t th is  in  a slightly  d ifferent form . Suppose X0 is the 
free-space w avelength. T hen

-  =  —  -  (5.20)
v Ao v

where c is the velocity  of ligh t

c =  3 X  10in cm /sec =  3 X  10s m /sec

F urther, we have  for synchronism  betw een the  electron velocity  Uo 
and the phase velocity  v

'J =  277 Vo (5.21)

Also

c =  1/

e =  l /c 's / ju /e  (5.22)

■y/mA =  577 ohm s
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Using (5.20), (5.21), (5.22) in  connection w ith  (5.19), we ob ta in

q  — oV /3
\  \6 rc v„  )  (5.23)

=  11.16 ( / o V A „)1/3

W e have in (5.23) an  expression for the gain param ete r C  in  case longi
tu d in a l fields only  are p resen t an d  in case there is a uniform  cu rren t density 
Jo  w herever there is a  longitudinal field.

In  a  num ber of cases, as in  case of a  large-diam eter helix, o r of a  resonator 
w ith  large apertu res, the  stored  energy due to  the  transverse field is about 
equal to th a t due to  the longitudinal field and C will be 2~ I/3 tim es as great 
as tire value of C  given by  (5.23). T hus, the value of C given by (5.23), or 
even 2~1/3 tim es th is, represen ts an  u n a tta in ab le  ideal. I t  is nevertheless 
of in te rest in indicating  how lim iting behavior depends on various param e
ters. F o r instance, we see th a t  if th e  w avelength X0 is m ade shorter, a  higher 
cu rren t density  m ust be used if C  is n o t to  be lowered; for a  constan t C 
the cu rren t density  m ust be such as to  give a  constan t cu rren t through a 
square a  w avelength on a side.

In  the  tab le  below, some values of C  have been com puted from  (5.23) 
for various w avelengths an d  cu rren t densities. T h e  broad-band  condition 
of equal phase and  group velocities has been assum ed, and  the  voltage has 
been taken  as 1,000  volts.

W a v e le n g th \ A m p/cm 2 
Cm \

5 .0 6 0 . 1 3 0

.5 . 0 1 3 .0 2 8

F or larger voltages, C will be smaller. C  can of course be m ade larger by 
m aking the group velocity  sm aller th a n  the phase velocity.

Of course, if the  electron stream  does n o t pass th rough  some portions of 
the  field, C  will be sm aller th an  given by  (5.23). C  will also be less if there 
are “harm onic” field com ponents which do n o t v a ry  in th e  z  d irection as 
exp(juz/v).

5.3b Narrow Beams

Usually, no a tte m p t is m ade to  fill the  en tire  field w ith  electron flow even 
though  th is is necessary in getting  a  large value of C  for a  given current 
density . In stead  a narrow  electron beam  is sho t th rough a  region of high
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field. We then wish to  re la te  the  peak  field streng th  to  th e  stored energy in 
comparing various circuits.

Let us first consider a  helically conducting  sheet of radius a. T h e  upper 
curve of Fig. 5.3 shows {E?/(PP)w (v/c)w  vs. /3a. In  ob ta in ing  th is  curve it 
was assumed th a t v <5C c, so th a t  y  can be taken  as equal to  ¡3. T h e  field E  
is the longitudinal field a t  the surface of the helically conducting cylinder. 
Figure 5.3 can be ob ta ined  from  Fig. 3.4 by  m ultip ly ing F{ya) by  (.h ( y a ) ) w  
to give a curve valid  for the field a t  r =  a.

The helix has a  very  small circum ferential electric field which represents 
“useless” stored energy. T he lower curve of Fig. 5.3 is based on the  stored  
electric energy of an  axially  sym m etrical sinusoidal field im pressed a t  the 
radius a .f  T h is field has no circum ferential com ponent b u t is otherw ise the

fia
Fig. 5.3—The impedance param eter (E?/iPP)113 compared for a helically conducting 

sheet (A ) and a  forced sinusoidal field (2J) with a  group velocity equal to the phase ve
locity. The helix has a higher impedance because the phase velocity is higher than the 
group velocity by a radio shown to the power by curve C.

same as the electric field of the  helix (again assum ing v <3C c). W e can im agine 
such a field propagating  because of an  inductive sheet a t  the rad ius a, 
which provides stored m agnetic energy enough to  m ake the  electric and 
magnetic energies equal. T h e  q u a n tity  p lo tted  vs. (3a is (E1/f32P ) l,z (v/c)113 
( v „ / i  >)m .

The forced sinusoidal field is no t the field of some p articu la r circuit for 
which a certain  group velocity  va corresponds to a given phase velocity  v. 
Hence, the factor ( v j v ) 113 is included in  the  ord inate, so th a t  the curve will 
be the same no m a tte r  w h a t group  velocity  is assum ed. F o r th e  helically 
conducting sheet, a  definite group velocity  goes w ith  a  given phase velocity. 
In Fig. 5.3, the  o rd inate  of the curve for the  helically conducting  sheet 
does not contain the  fac to r (i'ffA ')1/3. H> for instance, we assum e vg =  v

t  S e e  A p p e n d i x  III .
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in  connection w ith  the  curve for the  forced sinusoidal field, th en  the two 
ord inates are bo th  (E2/ f f ’P ) 1/3 (v/c)113 an d  the curve for the sheet is higher 
th a n  th a t  for th e  forced field because, for the helically conducting  sheet

T

4 V

sct
CL
CL
T

Fig. 5.4—Pillbox and rectangular resonators. W hen a num ber of resonators are coupled 
one to the next, a filter-type circuit is formed.

Vg < v for sm all values of ya.  C urve C shows (v/v0)lli 
)  )  for the sheet vs. IS a. Aside from  the influence of group

velocity , we m ight have expected the curve for the 
sheet to be a little  lower th a n  th a t  for the forced field 
because of the energy associated w ith th e  transverse 
electric field com ponent of the  sheet. This, however, 
becom essm all in com parison w ith the  transverse mag
netic  com ponent when ® «  c, as we have assumed.

V arious o ther circuits will be com pared, using 
the  im pressed sinusoidal field as a  so rt of standard 

| F g | of reference.
I  -.1  y i '  One of the circuits w hich will be considered is a

series of flat resonators coupled together to  make a 
filter. F igure 5.4a shows a series of very  th in  pill
boxes w ith  walls of negligible thickness. A small cen
tra l hole is provided for the  electron stream , and the 
field E  is to  be m easured a t  the  edge of th is  hole. 
T h e  d iam eter is chosen to  ob ta in  resonance a t a 
w avelength X0 . F igure 5.4b shows a sim ilar series 
of flat square resonators.

F o r the round  resonators i t  is found th a t*

( E t / p p y i *  =  5.36 (v/c)113 (v/vg)1'3 (5.24)

for th e  square resonators*

(E - /pP y< 3 =  5.33 (v/c)113 Cv/vgy 3 (5.25)

F o r practical purposes these a re  negligibly different.
* See Appendix I II .

° '0?a°A' 
Fig. 5.5— Resonators 

w ith the opposing paral
lel surfaces reduced to 
lower stored energy and 
increase impedance.



G E N E R A L  C I R C U I T  C O N S ID E R A T IO N S 229

Suppose we w an ted  to  im prove on such circuits by  reducing the  stored  
energy. An obvious procedure w ould be to  c u t aw ay m ost of th e  flat opposed 
surfaces as shown in Fig. 5.5. T h is reduces the energy sto red  betw een the 
resonator walls, b u t results in energy storage outside of the open edges, 
energy associated w ith  a “ fringing field.”

Going to an  extrem e, we m igh t consider an  a rray  of closely spaced very  
fine wires, as show n in Fig. 5.6. H ere there are no opposed fla t surfaces, 
and all of the electric field is a  fringing field; we have 
reached an irreducible m inim um  of stored  energy in 
paring down the resonator.

The structure of Fig. 5.6 has n o t been analyzed 
exactly, bu t th a t of Fig. 5.7 has. In  F ig. 5.7, we have 
an array of fine, closely spaced half-w ave wires be
tween parallel planes.* T his should  have roughly 
twice the stored energy of Fig. 5.6, and  we will esti
mate ( E r / ^ P ) 113 for Fig. 5.6 on th is basis. W e obtain  
in Appendix I I I :

For the half-wave wires, FiS- 5.6r Ouartcr-wave
wires, which have a  m in-

( E ? / p p y n  =  6.20 (v/va)m  (5-25) iraum ot slored cncrgy' 

and hence for the quarter-w ave wires, approxim ately

(.& /F -P )1'3 =  7.81 (v/vsy n  (5.26)

As we have no ted , (v/c),  which appears in  the expression for (E?/f?P)w  
for the sinusoidal field im pressed a t  radius a and  in (5.24) an d  (5.25), is a

r f T
IF

............ ......

___ 0̂ __2 1
Fig. 5.7-—Half-wave wires betw een parallel planes. The stored energy can be calculated 

for this configuration, assum ing the wires to be very fine. The circuit does n o t propagate a 
wave unless added coupling is provided.

function of the accelerating  voltage. F igure 5.8 m akes a  com parison be
tween the sinusoidal field im pressed a t  a  rad ius a, curve A ; the  fla t resona
tors, cither circular or square, B ;  th e  half-w ave wires, C ; a n d  the  quarte r-

* There is no transverse m agnetic wave propagation along such a  circuit unless extra 
coupling or loading is provided. Behavior of nonpropagating circuits in the  presence of an 
electron stream is considered in Section 4 of C hapter XIV .
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w ave wires C ' . In  all cases, it is assum ed th a t  the  coupling is so adjusted  as i 
to  m ake (v„/v) =  1 (broad-band  condition).

W hat so rt of inform ation can we get from  the  curves of Fig. 5.8? Con
sider the curves for 1,000 volts. Suppose we w an t to  cu t down the  opposed 
areas of resonators, as ind icated  in  Fig. 5.5, so as to m ake them  as good as 
half-w ave wires (curve C). T he edge capacitance in  Fig. 5.5 will be about 
equal to th a t for quarter-w ave wires (curve C'). C urve C' is ab o u t 3.7 times 
as high as curve B ,  an d  hence represents only  ab o u t (1 /3 .7 )3 =  .02 as much 
capacitance. If  we m ake the  opposed area  in Fig. 5.5 ab o u t .01 th a t  in  Fig. j 
5.4a or b, the capacitance* betw een opposed surfaces will equal the  edge |

Fig. 5.S—Comparisons in term s of impedance param eter of an  impressed sinusoidal 
field (4 ) , circular resonators (B),  half-wave wires (C) and  quarter-w ave wires (C') assuming 
the group and phase velocities to equal the electron velocity. T he radius of the impressed 
sinusoidal field is a.

capacitance an d  the to ta l stored  energy will be twice th a t  for quarter-wave 
wires, or equal to  th a t  for half-w ave wires. T h is  area  is shown approxi
m ate ly  to  scale rela tive to  Fig. 5.4 in F ig. 5.5. T hus, a t  1,000 volts the 
resonan t strip s  of Fig. 5.5 a re  ab o u t as good as fine, closely spaced half
w ave wires.

Suppose again  th a t  we wish a t  1,000 volts to  m ake the gain of the  reso
nato rs of Fig. 5.4 (or of a coiled w aveguide) as good as th a t  for a  helix with 
0a  =  3. F or 0a  =  3 th e  helix curve A  is ab o u t 3.2 tim es as high as the resona-

* This takes into account a  difference in field distribution— th a t in Fig. 5.4b.



G E N E R A L  C I R C U I T  C O N S ID E R A T IO N S 231

tor curve B. As (£ 2//32P ) I/3 varies as (i>/n0) 1/3, we m ust a d ju s t the  coupling 
between resonators so as to m ake

v„ = v / (3 .2 )3 =  .031 v

in order to  m ake {E2/(32P ) W the sam e for the  resonators as for the  helix. 
From (5.12) we see th a t  th is m eans th a t a change in frequency by a  frac
tion .002 m ust change v by  a fraction .06. O rdinarily , a  fractional varia tio n  
of v of -b.03 would cause a very  serious falling off in  gain. A t 3,000 m e the 
total frequency varia tion  of .002 tim es in v would be 6  me. T his is then  a 
measure of the  bandw id th  of a series of resonators used in  place of a  helix 
for which 13a =  3 an d  ad ju sted  to give th e  sam e gain.

Fig. 5.9—The factor /  by which (EP/jPP)1/3 for a  series of resonators such as those of 
t'ig. 5.4 is reduced because of wall thickness t, in relation to gap spacing L,

5.4 P h y s ic a l  L im it a t io n s

In Section 3.3b the resonators were assum ed to  be very  th in  an d  to  have 
walls of zero thickness. Of course the walls m u st have  fin ite thickness, and 
it is im practical to  m ake the resonators extrem ely thin. T h e  wall thickness 
and the finite tran s it tim e across the resonators bo th  reduce E 2/f3‘2P.

5.4a Effect of Wall Thickness

Consider the resonators of Fig. 5.4. L e t L  be the spacing betw een resona
tors (1 / L  resonators per u n it leng th), and  t be th e  wall thickness. T hus, the 
gap length is (L  — /). Suppose we keep L  an d  the vo ltage across each
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resonator constan t, so as to keep the field constan t, b u t v a ry  I. T h e  capaci
tance will be p roportional to  (L  — /)" ' and, as the stored  energy is the 
voltage squared tim es th e  capacitance, we see th a t  (E~/f3~P) 1/3 will be re
duced b y  a fac to r / ,

/  =  (1 -  t / L ) w  (5.27)

T h e  factor /  is p lo tted  vs. l / L  in Fig. 5.9.

F i g .  5 . 1 0 — T h e  lo w e r  c u r v e  s h o w s  t h e  f a c t o r  b y  w h ic h  EJ/JPP i s  r e d u c e d  b y  g a p  le n g th . 
0 in  r a d i a n s .  I f  th e  g a p  s p a c in g  is  g r e a t e r  t h a n  2 . 3 3  r a d i a n s ,  i t  i s  b e s t  t o  m a k e  t h e  g a p  2 .3 3  
r a d i a n s  lo n g .  T h e n  t h e  u p p e r  c u r v e  a p p l ie s .

5.4b Transit T im e

As it  is im practical to m ake the resonators infin itely  th in , the re  will be 
som e tra n s it angle 6 g across the  resonator, where

6 „ =  $1  (5.28)

H ere I  is the  space betw een resonato r walls, or, the length  of the gap. 
If  we assum e a  uniform  electric field betw een walls, the  gap  fac to r M, 
th a t  is, the ratio  of peak energy gained in electron vo lts to peak resonator
voltage, o r the  ra tio  of the  m agn itude of th e  sinusoidal field component
produced to  th a t  which would be produced by  the  sam e num ber of infinitely 
th in  gaps w ith  the  sam e voltages, will be (from  (4.69) w ith  r =  a)

=  sin (0„ /2) 29)
OJ  2
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For a series of resonators 0 „ long w ith  infinitely  th in  walls E 2/f32P  will be 
less than the values given by (5.24) and  (5.25) b y  a  fac to r M'm . T h is  is 
plotted vs. 0„ in Fig. 5.10.

5.4c Fixed Gap Spacing

Suppose it  is decided in  advance to  p u t only one gap in a  length specified 
by the transit angle d i . H ow  wide should th e  gap be m ade, an d  how  m uch 
will E/jp-P  be reduced below the  value for very  th in  resonators an d  infi
nitely th in  walls?

Let us assum e th a t  all the  stored energy is energy stored  betw een parallel 
planes separated  by  the  gap  thickness, expressed in  rad ians as 6 or in d is
tance as L

6t =  01  

0„ = 0 L

Here I  is the gap spacing an d  L  is the spacing betw een resonators.
From Section 4.4 of C h ap te r IV  we see th a t  if V  is the  gap  voltage, the 

field strength  E  is given by

E  = M V / L

The stored energy per u n it length , W ,  will be

W  =  W 0V 2/P L  (5.30)

Here W 0 is a co n s tan t depending on the  cross-section of the  resonators.
Thus, for un it field s treng th , the sto red  energy will be

W  =  W o L / U P
(5.31)

W  =  T !M 0 ,/O (0 o/ 2 ) y s i n W 2 )

We see th a t W 0 is m erely th e  value of W  when 6, =  0„ and  da =  0 , or, 
for zero wall thickness an d  very  th in  resonators. T hus, the ra tio  W / W 0 re 
lates the actual sto red  energy per u n it length  per u n it field to  th is  op tim um  
stored energy for resonators of the sam e cross section.

For Oi <  2.33, IV /W o  is sm allest (best) for 9„ =  0t (zero wall th ickness).
For larger values of 6 t , th e  op tim um  value of 0„ is 2.33 rad ians a n d  for
this optim um  value

(IF o /JF )1« =  (1.45O/0<)1/3 (5.32)

If Si <  2.33, i t  is th u s  b est to  m ake d„ = 6t . T hen  ( E / p 2P ) m  is re
duced by the fac to r [s in (0 /2 )/(0 /2 )]2/3, which is p lo tted  in Fig. 5.10. If 
St >  2.33, it is best to  m ake 6 =  2.33. T hen  (E2/(32P ) 113 is reduced from  the
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value for th in  resonators w ith  infinitely  th in  walls by  a  fac to r given by
(5.32), which is p lo tted  vs. 0< in  Fig. 5.10.

If there are edge effects, the op tim um  gap spacing and  the reduction in 
(E l/ f i2P ) 1/3 will be som ew hat different. H ow ever, Fig. 5.10 should  still be a 
useful guide.

In  case of wide gap separation  (large 6t), there would be some gain in 
using ree n tra n t resonators, as show n in Fig. 4.11, in order to  reduce the 
capacitance. How  good can such a  s tru c tu re  be? C ertain ly , i t  will be worse 
th an  a  helix. Consider m erely the  sections of m etal tube  w ith  short gaps, 
which surround the electron beam . T h e  sho rter the  gaps, the  g rea ter the 
capacitance. T h e  space outside the  beam  has been capacitively  loaded, 
which tends to reduce the im pedance. T h is capacitance can be though t of 
as being associated with m any  sp a tia l harm onics in the electric field, which 
do n o t con tribu te  to  in te raction  w ith the  electrons.

5 .5  A t t e n u a t io n

Suppose we have a circu it m ade up  of resonators w ith specified unloaded 
(F t  T h e  energy lost per cycle is

W L =  2t W s/ Q  (5.33)

In  one cycle, however, a signal m oves forw ard a d istance L,  where

L  = v0/ f  (5.34)

T he fractional energy loss per un it distance, which we will call 2a, is

2 . - * ^  (5 ,5 )

whence

* ■ (5J6)

So defined, a  is the a tten u a tio n  constan t, and the am p litude will decay 
along the  circuit as e x p (—az).

T h e  w avelength, X, is given by

X =  v / f  =  2tv/ u3 (5.37)

T h e  loss per w avelength in  db is

db /w ave leng th  =  20 logio exp(aX)

d b /w av e len g th  =  ^  ^

t  D i s r e g a r d i n g  c o u p l in g  lo s s e s ,  t h e  c i r c u i t  a n d  t h e  r e s o n a n l o r s  w i l l  b o t h  h a v e  th is  
s a m e  Q.



We see th a t, for given values of v and  Q, decreasing the  group velocity, 
which increases E-//32P, also increases th e  a tten u a tio n  per w avelength.

5.5a Attenuation of Circuits

For various struc tu res, Q can be eva lua ted  in  term s of surface resistiv ity , 
R, the intrinsic resistance of space, y / ¡ i / t  =  377 ohms, an d  varous o ther 
parameters. F or instance, SchelkunofP gives for the  Q of a pill-box resona
tor

O =  (5 39)
1 +  a /h

Here a is the rad ius of the  resonator an d  h is th e  height. If  we express the 
radius in term s of the resonan t w avelength X0 (a =  1.2Xo/ir), we ob ta in

p  =  * ( V ^ / R ) W c )  ( 5 4 0 )

(1  +  h /a ) n

Here n  is the num ber of resonators per w avelength  (assum ing th e  walls 
separating the  resonators to  be of negligible th ickness); th u s

n  =  h / \  =  (h /\o)(c /v)  (5.41)

From (5.40) and  (5.38) we ob ta in  for a  series of pill-box resonators

d b /w ave leng th  =  8.68(2?/■y / t i /e ) ( c /v „ ) ( l  +  h /a )n  (5.42)

In Appendix I I I  an  estim ate of the  Q of an  a rray  of fine half-w ave p ara l
lel wires is m ade by  assum ing conduction  in one direction  w ith a  surface
resistance R. O n th is  basis, Q is found to be

Q = ( V W e / R ) ( v / c )  (5.43)
and hence

db /w ave leng th  =  27. 3 { R / y / n / e ) ( c / v 0) (5.44)

For non-m agnetic m ateria ls, surface resistance varies as the square root 
of the resistivity  tim es the frequency. T h e  tab le  below gives R  for copper 
and db/w avelength  for pill-box resonators for h /a  «  1 (5.42) and  for wires 
(5.44) for several frequencies

f , m e  R ,  O h m s  ( d b / w a v e l e n g t h ) /  (c/v0)
P i l l - b o x  R e s o n a t o r s  W ir e s

3 ,0 0 0  . 0 1 4 2  3 . 3  X  I O ^ k  1 0 . 3  X  I t ) - 1
10 .0 0 0  .0 2 6 0  6 .0  X  l O " 4«  1 8 . 1  X  1 0 ~ 4
3 0 .0 0 0  .0 4 5 0  1 0 . 4  X  1 0 - J «  3 2 . 6  X  1 0 - ‘

In Section 3.3b a  circuit m ade up of resonators, w ith a  group velocity  
.031 times the phase velocity, was discussed. Suppose such a circuit were 

2 E le c t r o m a g n e t ic  W a v e s ,  S .  A .  S c h e l k u n o f f ,  V a n  N o s t r a n d ,  1 9 4 3 .  P a g e  2 6 9 .

G E N E R A L  C I R C U I T  C O N S ID E R A T IO N S  235



236 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

used a t  1,000 vo lts (c/v  =  16.5), were 40 w avelengths long, an d  h ad  three 
copper resonators per w avelength. T h e  to ta l a tten u a tio n  in db is given below

f, me A ttenuation, db
3 ,0 0 0  2 1

1 0 .0 0 0  3 8
3 0 . 0 0 0  6 7
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C H A P T E R  V I

THE CIRCUIT DESCRIBED IN TERMS OF 
NORMAL MODES

S y n o p s i s  o f  C h a p t e r

IN C H A PT E R  I I ,  the  field produced by  the  cu rren t in the electron stream , 
which was assum ed to  v ary  as exp (—P i), was deduced from  a sim ple 

model in which the electron stream  was assum ed to  be very  close to an  a r 
tificial line of susceptance B  an d  reactance X  per u n it length. Following 
these assum ptions, the vo ltage per u n it length was found to  be th a t  of 
equation (2.10) and  the field E  in  the z d irection  would accordingly be T 
times this, or

E  =  i (6 .1)

Here we will remember that Pi is the natural propagation constant of 
the line, and K  is the characteristic impedance.

We further replaced K  by a quantity
E r / p P  =  2 K  (6.2)

where E  is the field produced b y  a power flow P,  an d  /3 is th e  phase constan t 
of the line. F or a lossless line, P i is a  pure im aginary  and

/32 =  - P i  (6.3)

From (6.1) and (6.2) we obtain
=

2(P? -  P2)

To the w riter i t  seems in tu itive ly  clear th a t  the deriva tion  of C hap te r 
II is correct for w aves w ith  a phase velocity  sm all com pared w ith  the
velocity of light, an d  th a t  (6.4) correctly  gives the p a r t of th e  field asso
ciated w ith the excita tion  of the circuit. H ow ever, i t  is clear th a t  there are 
other field com ponents excited; a  bunched electron stream  will produce a 
field even in the absence of a  circuit. F u rth e r, m any  legitim ate questions 
can be raised. F or instance, in C h ap te r I I  capacitive coupling only was 
considered. W h a t ab o u t m u tu a l inductance betw een the  electron stream  
and the inductances of the line?
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T h e best procedure seems to  be to  analyze th e  s ituation  in a  w ay we know 
to be valid, and  then to m ake such approxim ations as seem reasonable. One 
approxim ation  we can m ake is, for instance, th a t  the  phase velocity  of the 
w ave is qu ite  sm all com pared w ith  the  speed of light, so th a t

I rh  I2 »  |3o =  (u>/c) 2 (6.5)

In  th is chap te r we shall consider a lossless circuit which suppo rts  a  group 
of transverse m agnetic m odes of w ave propagation . T h e  finned stru c tu re  of 
Fig. 4.3 is such a circuit, and  so are the circuits of Figs. 4.8 and  4.9 (assum
ing th a t  the fins are so closely spaced th a t  the circuit can be regarded as 
sm ooth). I t  is assum ed th a t  w aves are excited in  such a circuit b y  a current 
in th e z  d irection vary ing  w ith  d istance as exp (— I'z) and  d istribu ted  normal 
to the z  d irection as a  function of x  an d  y, J  (x , y).  Such a cu rren t might 
arise from  the bunching a t  low signal levels of a  b road  beam  of electrons 
confined by  a strong  m agnetic field so as n o t to  m ove appreciab ly  normal 
to  the z direction.

T h e  s tru c tu re  considered m ay  suppo rt transverse electric w aves, b u t these 
can  be ignored because they  will n o t be excited b y  the  im pressed current.

In  the absence of an  im pressed curren t, an y  field d is tribu tion  in  the  struc
tu re  can be expressed as the  sum  of excitations of a  num ber of pairs of nor
m al m odes of propagation . F or one p articu la r pa ir of modes, th e  field dis
tribu tion  norm al to the  z  d irection  can be expressed in  term s of a function 
7rn(a*, y)  an d  th e  field com ponents will v a ry  in  th e  z d irection  as exp(=fcr„z)- 
H ere the -f- sign gives one m ode of the p a ir  an d  th e  — sign th e  other. If 
F„ is real the m ode is passive; the field decays exponentially  w ith  distance. 
I f  r „  is im aginary  the m ode is active; the field p a tte rn  of the m ode propa
gates w ithou t loss in th e  z d irection.

A n im pressed cu rren t which varies in  the z  d irection  as ex p (— Tz) will 
excite a  field p a tte rn  which also varies in  th e  z  d irection as ex p (—Tz), and 
as some function of x  an d  y  norm al to  the z  direction. W e m ay, if we wish, 
regard th e  varia tion  of the field norm al to  the z  d irection  as m ade up  of a 
com bination  of the field p a tte rn s  of the  norm al m odes of p ropagation , the 
p a tte rn s  specified by  the functions tt„(x , y). N ow , a p a tte rn  specified by 
x„(.v, y)  coupled w ith  a varia tion  ex p (± F „z ) in the z  d irection satisfies 
M axw ell’s equations and th e  boundary  conditions im posed b y  the  circuit 
w ith  no im pressed curren t. If, how ever, we assum e th e  sam e varia tion  with 
x  an d  y  b u t a  varia tio n  as ex p (— Tz)  w ith  z, M axw ell’s equations will be 
satisfied only  if the re  is an im pressed cu rren t hav ing  a  d istribu tion  normal 
to  the z  d irection which also can be expressed by  the  function  irn(.T, y).

Suppose we ad d  up th e  various forced m odes in  such relative strength 
and  phase th a t  the to ta l of the im pressed cu rren ts associated w ith  them  is 
equal to the  ac tu a l im pressed curren t. T hen , th e  sum  of the  fields of these
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modes is the ac tua l field produced by  the ac tu a l im pressed cu rren t. T he 
field is so expressed in (6.44) where the  cu rren t com ponents J n are defined 
by (6.36).

If it is assum ed th a t  there is only one m ode of propagation , and  if i t  is 
assumed th a t the field is co n stan t over the electron flow, (6.44) can be p u t 
in the form shown in (6.47). F or w aves w ith  a  phase velocity  sm all com pared 
with the velocity of light, th is reduces to  (6.4), which was based on the  sim ple 
circuit of Fig. 2.3.

Of course, ac tu a l circuits have, besides the one desired ac tive  m ode, an  
infinity of passive m odes and  perhaps o ther ac tive  m odes as well. In  C h ap te r 
VII a way of tak ing  these in to  account will be po in ted  out.

Actual circuits are certa in ly  n o t lossless, an d  the fields of the helix, for 
instance, are no t purely  transverse m agnetic  fields. In  such a  case it  is p e r
haps simplest to  assum e th a t  the m odes of p ropagation  exist an d  to  cal
culate the am oun t of excita tion  by  energy transfer considerations. T h is has 
been done earlier1, a t  first sub jec t to the error of om itting  a te rm  which 
later2 was added. In  (6.55) of th is chap ter, (6.44) is reexpressed in a form  
suitable for com parison w ith  th is earlier work, and  is found to  agree.

M any circuits are n o t sm ooth in  the z  direction. T he w riter believes th a t 
usually small error will resu lt from  ignoring this fact, a t  least a t  low signal 
levels.

6.1 E x c it a t io n  o f  T r a n s v e r s e  M a g n e t i c  M o d e s  o f  P r o p a g a t i o n  b y  

a L o n g i t u d i n a l  C u r r e n t

We will consider here a  system  in which the n a tu ra l m odes of p ropagation  
are transverse m agnetic waves. T h e  circuit of Fig. 4.3, in which a slow wave 
is produced by  finned structu res, is an  exam ple. W e will rem em ber th a t  the 
modes of p ropagation  derived in  Section 4.1 of C hap te r IV  were of this 
type. We will consider here th a t  an y  s tru c tu re  the circuit m ay have (fins, 
for instance) is fine enough so th a t  the circuit m ay  be regarded as sm ooth 
in the z direction.

Any transverse electric m odes which m ay exist in the  s tru c tu re  will no t 
he excited by  longitud inal curren ts, an d  hence m ay  be disregarded.

The analysis presen ted  here will follow C h ap te r X  of Schelkunoff’s 
Electromagnetic W aves.

The divergence of the m agnetic field H  is zero. As there is no z  com ponent 
of field, we have

! J .  R .  P ie r c e ,  “ T h e o r y  o f  t h e  B e a m - T y p e  T r a v e l i n g - W a v e  T u b e , ”  Proc. I.R.E.,  V o l .
:^PP- 1 1 1 - 1 2 3 ,  F e b r u a r y ,  19 - 17 .
‘  J -  R .  P ie r c e ,  “ E f f e c t  o f  P a s s i v e  M o d e s  in  T r a v e l i n g - W a v e  T u b e s , ”  Proc. I.R.E.,  

3 6 ,  p p .  9 9 3 - 9 9 7 ,  A u g u s t ,  1 9 4 8 .
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^ 5  +  ^  =  0  (6 .6)
da; ay

T his will be satisfied if we express th e  m agnetic  field in term s of a “ stream 
function” , 7r

H x =  ^  (6.7)
ay

I I V =  -  ^  (6.8)
dx

t  can be identified as th e  z  com ponent of the  vec to r p o ten tia l (the vector 
p o ten tia l has no o ther com ponents).

W e will assum e tv to  be of the form

tv =  tv (x, y)e~lz (6.9)

H ere tv (:r, y)  is a  function  of x  an d  y  only, which specifies th e  field dis
tribu tion  in an y  x, y  plane.

W e can app ly  M axw ell’s equations to ob ta in  the electric fields

d llz  dHy .
-r--------- 7— =  JueEx
dy  dz

U sing (6.7) an d  (6 .8 ), an d  replacing d ifferentiation  w ith respect to  z  by 
m ultip lication  by  — T, we find

E ,  =  £  £  (6 .10 )
0)6 O X

Sim ilarly

E , - E £ (6 .11)
coe ay

W e see th a t  in  an x, y  p lane, a p lane perpendicular to  the direction  of propa
gation , the  field is given as the  g rad ien t of a  scalar po ten tia l V

V  =  ( —j T / M j t  (6.12)

T h is is because we deal w ith  transverse m agnetic waves, th a t  is, w ith  waves 
which have no longitudinal or z  com ponent of m agnetic field. T hus, a  closed
p a th  in an  .r, y  p lane, which is norm al to th e  d irection  of propagation , will
link no m agnetic flux, and  the  in tegral of th e  electric field a round  such a 
p a th  will be zero.

W e can app ly  the curl rela tion  and  ob ta in  E z

dITy d H x .
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Applying M axw ell’s equations again, we have

t)Ez d E y . TT
  —  =  J U f l l l x

y  Z (6.15)

we dy \ d x 2 d y2)  we dy  dy

This is certainly tru e  if

0  +  ^ - - < r  ’ +  )& *  (6.16)

/So — wVTte =  w/ c (6.17)

We find th a t this satisfies the  o ther curl E  relations as well.
From (6.16) an d  (6.14) we see th a t

E m =  ( - j / « e ) ( r *  +  $ ) * ( * ,  y)e~Tz (6.18)

For a given physical circuit, i t  will be found th a t  there a re  certa in  real 
functions Trn(x, y)  w hich are zero over the  conducting  boundaries of the 
circuit, assuring zero tan g en tia l field a t  the surface of th e  conductor, and  
which satisfy (6.16) w ith  som e p articu la r value of T, which we will call F n . 
Thus, as a p articu la r exam ple, for a  square w aveguide of w idth  W  some 
(but not all) of these functions are

Trn(x t y)  =  cos (n iry /W )  cos (n irx /W )  (6.19)

where n is an integer. W e see from  (6 .10), (6.11) and  (6.18) th a t  th is m akes 
Ex , E y and E z zero a t  th e  conducting  walls x  =  ± T F /2 , y  =  d b IF /2 .

Each possible real function  tt„(x, y)  is associated w ith  tw o values of 
i’n , one the negative of the o ther. T he r n’s are the n a tu ra l p ropagation  
constants of the norm al m odes, an d  the  7r„’s are the functions giving the ir 
field d istribution in  th e  x, y  p lane. T h e  7r„’s can be shown to be orthogonal, 
at least in typ ical cases. T h a t  is, in teg rating  over the region in the  x, y  
plane in which there is field

/ / *•„(*, y) 7rm(x, y)  d x  d y  -  0 
J  J  (6 .20)

n  5̂  m

For a lossless circuit the  various field d istribu tions fall in to  two classes: 
those for which F„ is im aginary , called active m odes, which represen t 
waves which p ropagate w ithou t a tten u a tio n ; an d  those for w hich Tn is 
real, which change exponentially  w ith  am plitude in the  z  d irection  b u t do 
not change in phase. T he la tte r  can be used to  represen t the d istu rbance 
111 a  waveguide below cutoff frequency, for instance.
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I f  r „  is im aginary  (an active m ode) the power flow is real, while if r„  is 
real (a passive m ode) the pow er flow is im aginary  (reactive or “w attless” 
power).

T h e  sp a tia l d is tribu tion  functions r n and  the  corresponding propagation 
constan ts F„ are  a m eans for specifying the  electrical p roperties of a physical 
s tru c tu re , ju s t as a re  the  physical dim ensions which describe the  physical 
s tru c tu re  and determ ine the various 7r„’s and  F„’s. In  fact, if we know the 
various tt^’s an d  F„’s, we can determ ine the response of th e  s tru c tu re  to an 
im pressed cu rren t w ith o u t d irec t reference to  th e  physical dimensions.

In  term s of the 7r„’s an d  r » ’s, we can represen t an y  unforced disturbance 
in the circuit in the form

XX(-':, y)U»«-1"1 +  Bnc nZ] (6 .2 1)
«

H ere A  „ is the com plex am plitude of the w ave of the wth sp a tia l distribu
tion traveling  to  the right, and B n the complex am plitude of the wave of 
the sam e spa tia l d istribu tion  traveling  to  the left.

I t  is of in te rest to  consider the pow er flow in term s of the  am plitude, A„ 
or B n . W e can ob ta in  the  pow er flow P  by  in teg rating  th e  P oyn ting  vector 
over the p a r t  of th e  x, y  p lane w ith in  the  conducting boundaries

p P - f f E X H U s

(6 .22)

ï  / / <£-
I I*  -  E y l l* )  d x  dy

B y expressing the  fields in  term s of the  stream  function, we ob ta in

p  =  a  »a : -jr,
2coe //

d tr„ y  /  d y ,
d x )  \<9y

d x  d y  (6.23)

W e can transform  th is  b y  in teg ra ting  by  p a rts  (essentially Green’s 
theorem ). T hus

I” »*• 4, =  » .  " •  "  -  i .  U (6.24)
J i ,  O X  O X  O X  x i J r ,  OX~

H ere xu and  x->, th e  lim its of in tegration , lie on  the conducting  boundaries 
w here =  0, and  hence the first term  on the righ t is zero. D oing the same 
for th e  second term  in (6.23), we ob ta in

(6-25)
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By using (6.16), we ob ta in

1\  =  / l „ A t  ( ^ j  (r2„ +  Pa) J l  (* n) * d x d y  (6.26)

I t  is also of in te rest to  express the z  com ponent of the  n th  m ode, E zn , 
explicitly. F or the  w ave traveling  to  the  rig h t we have, from  (6.18),

E zn =  A n  ( F ;  +  $ ) * „ ( * ,  y)  (6.27)

Let the field a t  some p articu la r position, say, x  =  y  =  0, be E zno . T hen  

, _  jtoeEzn0 .
(r; +  /3o) #n(o, o)

and from (6.26)

P .  =  { E M ) / /  !* .(« , ? ) f  *  i y  (6.29)

We can rew rite this

= 27r2n(0 , 0)(r2n +  ffo)

( - r 2„ ) / \  , . . n , ^ , r r  ^  , (6 .3 0 )->«rB( - r 2) JJ [#„(*, y)]2 d.r <fy

For an active m ode in a lossless circuit, F„ is a  pure im aginary , and the 
negative of its square is th e  square of the  phase constan t. T hus, for a p a r
ticular mode of p ropagation  we can identify  (6.30) w ith the  circuit param e
ter & / P P  which we used in C h ap te r II .

Let us now im agine th a t  there is an  im pressed cu rren t J  which flows in 
the z direction and has the  form

/  =  J  (x, y)e~ J  (6.31)

According to M axw ell’s equations we m ust have

dHi  -  dUx =  j m E z +  J  (6.32)
dx dy

Now, we will assum e th a t  the  fields are given by  some overall s tream  func
tion 7t which varies w ith  x  and y  an d  w ith  z  as exp (— Tz).

In term s of th is function t ,  I I x , IIy an d  E x , E u will be given by  relations
(6-7), (6.8), (6.10), (6.11). H ow ever, the relation  used in ob ta in ing  E z is
not valid in th e  presence of the  convection current. In stead  of (6.16) we 
have
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A gain applying the relation

d E z dE„
i  -, =  —jw p H ,dy dz

we obtain
d~TT , ć)V

(6.34)

W e will now divide bo th  tt an d  J  in to  th e  sp a tia l d istribu tions charac
teristic  of the norm al unforced modes.
L e t

J  (x, y)  =  E  JrArn(x, y)  (6.35)

/ /  J(x,  y)irn(x, y) d x d y  
Jn  =     (6.36)

J J  [#»(£, y)]2 d x  d y

T his expansion is possible because the  7r„’s are orthogonal. L e t

#  =  e r " E CnTTn(x, y)  (6.37)

H ere there is no question  of forw ard and  backw ard  w aves; the  forced ex
cita tion  has the sam e z-d istribution  as the  forcing curren t.

F or th e  wth com ponent, we have, from  (6.16),

+  dJtn ( x ,y )  =  _ ( r ,  +  ßlHn(X)  0 (6.38)
oo:- dy-

From  (6.34) we m u st also have

ç  / d ^ J x ,  y) d27r„(.v, y)
dx3 dy-  /  (6.39)

67,1(1 ß o ) ^ n ^ X j  y) J n ^ n ( . X , y)

Accordingly, we m ust have

r; -  r
T h e overall s tream  function is thus

Cn =  (6.40)

tt =  e-1 '2 E  (6.41)
V  n  -  r 2

F rom  (6.33) an d  (6.34) we see th a t

E z =  3 ?  ( r -  +  $ ) *  (6.42)
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So

e ,  =  é~Tz E r^)’ y ) J n  <6-43>

E z = <Tr‘ E (6.44)
coe 1 „ — I

6.2 C o m pa r iso n  w it h  R e s u l t s  o f  C h a p t e r  II

Let us consider a case in w hich there is only one m ode of propagation, 
characterized by  t i (x , y ), IL , and  a case in which the  cu rren t flows over a  
region in which 7ri(:c, y)  has a  constan t value, say, f i (0 ,  0). T h is corre
sponds to the case of the transm ission line which was discussed in C hapter 
II.

We take only the te rm  w ith  th e  subscrip t 1 in  (6.44) an d  (6.30). C om bin
ing these equations, we ob ta in  for the field a t  0 , 0

T l j . J f l H x ,  y )Ÿ  d x  d y  (6  45)

(6.46)

(r? +  /3§) 2*x(0, 0 )
We have from (6.36)

j  _  7Tl(0, 0)

f f  y)Y dx dy

From (6.45) and  (6.46) we ob ta in

,  f f 1 +  A t & M j ' - ' .  (M 7 )
2(r! +  /3o)(r? -  r2)

Let us com pare th is w ith  (6.4), w hich cam e from the transm ission line 
analogy of C hapter I I ,  identifying E z and  J  w ith E  an d  i. W e see th a t, 
for slow waves for which

/3o «  | r*  | (6.48)

0o «  | r  | (6.49)

(6.47) becomes the sam e as (6.4). I t  was, of course, under the  assum ption
that the waves are slow th a t  we ob ta ined  (2.10), which led to  (6.4).

6.3 E x p a n s io n  R e w r i t t e n  in  A n o t h e r  F o rm

Expression (6 .4 4 ) can be rew ritten  so as to  appear qu ite  different. W e 
can write

r2 +  ¡31 = r2 -  r2„ +  r2 +



T hus, we can rew rite the expression for E z as

E , -  e~T‘ ((-jM£  (1’’-

V " ” (6.50)

+  0 ‘A»e) JL  n(x, y ) J nj

T h e second term  in the b rackets is ju s t j/toe tim es the  im pressed current, 
as we can see from  (6.35). T h e  first term  can be rearranged

(-;/««) (r* +  (3o)Jn

( —.//« « )(r ;  +  /3o) f f  irn(x , y ) J (x ,  y) d x  d y  (651)
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ff [#»(*, y ) \2 d x  dy

Referring back  to (6.29), let T„ be tw ice the pow er P n carried by  the 
unforced mode when the field s treng th  is

| E zno j =  1 (6.52)

Further, le t us choose th e 7f„’s so th a t, a t  some specified position, x  =  y  =  0,

n(0, 0) =  1 (6.53)

T hen

T ” =  j,2 ̂  p i ff [tr„(;v, y ) \2 d x  d y  (6.54)

Using this in connection w ith (6.51), we ob ta in

I r T,7rn(;v, y) ff tt„ ( x ,  y ) J (x ,  y )  d x  d y
E z =  e~r

T n( I '2„ — F2)

+  ( j /o ie ) j ( x ,  y)

(6.55)

An expression for th e  forced field in  term s of the p aram eters of the nor
m al m odes was given earlier1’“. In  deriving th is expression, the  existence of 
a  se t of m odes was assum ed, an d  the  field a t  a  p o in t was found as an in
tegral over the d istu rbances induced in the circuit to  the righ t and to the 
left an d  p ropagated  to th e  po in t in question. Such a deriva tion  applies for 
lossy an d  m ixed waves, while th a t  given here applies for lossless transverse- 
m agnetic waves only.
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The earlier deriva tion 1 leads to  an  expression identical w ith (6.55) except 
that appears in place of 'f'„ . In  th is earlier derivation  a  sign was im 
plicitly assigned to the d irection  of flow of reactive pow er (which really 
doesn’t flow a t  all!) b y  saying th a t  the  reactive power flows in the direction  
in which the am plitude decreases. If  we had  assum ed the reactive power to 
flow in the d irection  in  w hich the am plitude increases, then, w ith  the  sam e 
definition of 'I'„ , for a passive mode th* would have been replaced by  —T * 
which is equal to 'I',, (for a passive mode, T„ is im aginary).

In  deriving (6.55), no such am bigu ity  arose, because the  pow er flow was 
identified w ith the com plex P oyn ting  vec to r for th e  p articu la r type  of wave 
considered. In  any  prac tica l sense, 'I' is m erely a  p aram eter of the circuit, 
and it does not m a tte r  w hether we call Im  ' f  reactive power flow to the righ t 
or to the left.

The existence of a  deriva tion  of (6.55) n o t lim ited in its  app lication  to 
lossless transverse m agnetic waves is valuable in  th a t p rac tica l circuits often 
have some loss and  often  (in the case of the helix, for instance) p ropagate 
mixed waves.

6.4 I t e r a t e d  St r u c t u r e s

M any circuits, such as those discussed in C hap ter IV , have s tru c tu re  in 
the z direction. Expansions such as (6.55) do not s tric tly  app ly  to such s tru c 
tures. We can m ake a  plausible argum ent th a t  they  will be a t  least useful 
if all field com ponents except one differ m arkedly  in  propagation  constan t 
from the im pressed curren t. In  th is case we save the one com ponent which 
is nearly in synchronism  w ith the im pressed cu rren t an d  hope for the  best.
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A P P E N D IX  I I I

STORED ENERGIES OF 
CIRCUIT STRUCTURES

A3.1 F o r c e d  S in u s o id a l  F i e l d

I f  v c, th e  field can be very  nearly  represen ted  inside th e  cylinder of 
radius a by

T/ _  V — __ —j&z I'D

an d  outside by

Inside

V  =  Vo (2)
A  ( 7  a )

1 7  =  ( 3 )

(4)

O utside

t  -  P m  r *  (5)dr A 0(/3a)

7T  =  (6)

Because there is a  sinusoidal v aria tio n  in the 2 direction, the average stored 
electric energy per un it length  will be

1IT =  Q ( | )  l _ o i(E rm, , f  +  {Ezm^ ) ‘\{2rrr dr) (7)

H ere E r max and E z max are  m axim um  values a t  r =  a. T he to ta l electric 
plus m agnetic stored  energy will be twice this. T h is  gives
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w  =
h a f [ l l - h U .  , K o K
27 2 [ T 21 0

+
/r 2"Ao

A?

IF
7rt7g r I i  K i

7 2 L / o  A n

(e 7/32a )i/3 = (c/*)I/* (* /0 1/*

ZT

120

« , A"i
* • ( â + if ..

1/3

(8)

(9)

A3.2 P i l l -B o x  R e s o n a t o r s

Schelkunoff gives on page 268 of E lectrom agnetic  W aves an  expression 
for the peak electric energy stored  in a pill-box resonator, which m ay  be 
written as

.135 tr e aViE?

Here a is the radius of the resonator and li is the axial length. F or a series 
of such resonators, the peak stored  electric energy per u n it length, which is 
also the average electric plus m agnetic energy per un it length, is

W  =  .135 x  e a2Er

For resonance

Whence

And

(10)

(11)

(1 2 )

(13)(E r/fP P )'13 =  5.36 (v /v ,)1'3 (v /c )m

The case of square resonators is easily w orked out.

A3.3 P a r a l l e l  W i r e s

Let us consider very  fine very' closely spaced half-w ave parallel wires w ith  
perpendicular end plates.

If z is m easured along the wires, an d  y  perpendicu lar to z and  to  the 
direction of p ropagation , the field is assum ed to  be

2ir
E z =  E  cos f3xc " cos —  z

AO

T ' T ' • n  2  7TE,j =  E  sin (0.re cos —  s
aq

(14)

Here the +  sign applies for y  <  0  and  the — sign for y  >  0 . W e will then 
find tha t
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e t f X
W  =  2 W e  =  [  e ~ -ßv d y

2 Jo . *
(15)

W  = ' E e '

and
( E ' / p P ) 113 =  6.20 (V » i) 1/3 0 6)

T h e  surface charge density  a on one side of the a rray  of wires (say, y  >  0)
is given by  the y  com ponent of field a t  y  — 0 .

2tt
a =  tE y = eE  sin fix  cos —  z (17)

Ao

T his is re la ted  to the  cu rren t I  (flowing in  the  z  d irection) per u n it distance 
in the  x  d irection  by

dl  = -* 1  (18)
dz dl

From  (18) an d  (17) we ob ta in  for the cu rren t on one side of the  a rray

/  =  E  sin fix  sin ™  z  (19)
2 ?r ao

If we use the fac t th a t <d\o/2ir — c  an d  c e  =  I / 's / /¿ /e ,  we ob ta in

/  =  sin /3x sin —  z  (20)
V  /x /f Ao

I f  R  is the surface resistiv ity  of either side (y >  0, y  <  0) of the wires, when
the  wires a c t as a resonato r (a stand ing  wave) the  average pow er lost per
u n it length for bo th  sides is

P  =  1 R \„ £ 7 ( m A )  (21)

In  th is  case the  stored  electric energy is half the  value given by  (15), and 
we find

0  =  ( V m A /A )  (v/ c)  (22)



Factors Affecting Magnetic Quality*
B y  R .  M .  B O Z O R T H

IN T H E  p repara tion  of m agnetic m ateria ls for p rac tica l use it  is im por
tan t to know how to ob ta in  products of the best q uality  an d  uniform ity. 

In the scientific s tu d y  of m agnetism  the goal is to understand  the relation 
between the s tru c tu re  and  com position on the one h an d  and the m agnetic 
properties on the o ther. F rom  bo th  standpo in ts i t  is necessary to  know  the 
principal factors which influence m agnetic behavior. These are briefly 
reviewed here.

The properties depend on chem ical com position, fabrication  an d  heat- 
treatment. Some properties, such as sa tu ra tion  m agnetization , change only 
slowly with chem ical com position an d  are usually  unaffected by  fabrication  
or heat trea tm en t. On the con trary , perm eability , coercive force and  hystere
sis loss are highly sensitive and show changes which are extrem e am ong all 
the physical properties. P roperties m ay th u s be divided in to  struclure- 
sensilivc and structure-insensitive groups. As an  exam ple, Fig. 1 shows m ag
netization curves of perm alloy a fte r i t  has been (a) cold rolled, (b) annealed 
and cooled slowly, an d  (c) annealed  an d  cooled rapidly . T h e  m axim um  
permeability varies w ith  the trea tm e n t over a  range of ab o u t 20  fold, while 
the saturation induction  is the  sam e w ithin a few per cent. S truc tu re  sensi
tive properties such as perm eability  depend on sm all irregularities in atom ic 
spacings, which have little  effect on properties such as sa tu ra tio n  induction.

Some of the m ore com m on sensitive an d  insensitive properties a re  listed 
in Table I. T he principal physical and  chem ical factors which affect these 
properties are listed in colum n 3. T heir various effects will now  be briefly 
discussed and illustrated .

Phase Diagram

Some of the m ost d rastic  changes in  properties occur when the  fabrication  
or heat trea tm en t has b rough t ab o u t a  change in  stru c tu re  of the m aterial. 
For this reason the phase d iagram  or constitu tional diagram  is of the u t
most im portance in relation  to  the p repara tion  and  properties of m agnetic 
materials. As an exam ple consider the phase diagram  of the b inary  iron- 
cobalt alloys of Fig. 2. H ere the various areas show the phases, of different
, * T h i s  a r t ic le  i s  t h e  s u b s t a n c e  o f  C h a p t e r  I I  o f  a  b o o k  e n t i t le d  “ F e r r o m a g n e t i s m ”  to  
he p u b lis h e d  e a r l y  in  1 9 5 1  b y  D .  V a n  N o s t r a n d  C o m p a n y ,  I n c .

2 5 1
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com position or struc tu re , which are stab le  a t  the  tem peratu res an d  com
positions ind icated . T h e  a  phase has the body-centered-cubic c rysta l struc
tu re  characteristic  of iron. A t 910°C it  transform s in to  th e  face-centered 
phase 7 , an d  a t  1400° into the S phase, which has the sam e stru c tu re  as the 
a  phase. A t ab o u t 400°C cobalt transform s, on heating , from  the e phase 
(hexagonal s tru c tu re ) in to  the  7  phase.

F IE L D  S T R E N G T H ,  H ,  IN O E R S T E D S

F i g .  1 — E lT e c l  o f  m e c h a n ic a l  a n d  h e a t  t r e a t m e n t  o n  t h e  m a g n e t i z a t i o n  c u r v e  o f  70 
p e r m a l l o y  ( 7 0 %  N i ,  3 0 %  F e ) .

T a b l e  I

Properties Commonly Sensitive or Insensitive to Small Changes in Structure, and Some of the 
Factors which Effect Such Changes

S tructu re-In sensitive  P roperties S tructu re-S ensitive
P roperties

F acto rs  Affecting the 
P roperties

I , , S a t u r a t i o n  M a g n e t i z a t i o n n. P e r m e a b i l i t y C o m p o s i t io n  ( g r o s s )
0, C u r i e  P o i n t l i e  C o e r c i v e  F o r c e I m p u r i t i e s

X , , M a g n e t o s t r i c t i o n  a t  S a t u r a t i o n I l 'd  H y s t e r e s i s  L o s s S t r a i n
K ,  C r y s t a l  A n i s o t r o p y  C o n s t a n t T e m p e r a t u r e  

C r y s t a l  S t r u c t u r e  
C r y s t a l  O r ie n t a t io n

T h e do tted  lines ind icate the Curie po in t, a t  which the m ateria l b e c o m e s  

non-m agnetic.
In  betw een the  areas corresponding to  the  single phases a , 7 , 8 and t 

there are tw o-phase regions in which two cry sta l s tru c tu res  co-exist, some 
of the c rysta l grains hav ing  one s tru c tu re  an d  o thers the  o ther. Such a two- 
phase stru c tu re  is usually  ev iden t upon m icroscopic or X -ray  examina-
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( b o d y - c e n t e r e d )  a ,
^  MAGNETIC 
TRANSFORMATION DISORDERED

7  ( f a c e - c e n t e r e d )

MAGNETIC 
TRANSFORMATION ,

cc + 7

cSni ,gt " 3 ^ l f h o t o m ic r ° g r a P h s  r e m a l l o y  ( 1 2 %  C o ,  1 7 %  M o ,  7 1 %  F e )  s h o w in g  th e  p r e -  
P a t io n  o f  a  s e c o n d  p h a s e  in  t h e  s p e c im e n  c o n t a i n i n g  a n  e x c e s s  o f  c a r b o n  ( 0 .0 6 % )  

r t e s y  o f  E .  E .  T h o m a s .  M a g n i f i c a t i o n :  ( a )  5 0  t im e s ,  ( b )  2 0 0  t im e s .

7  +  MELT

0 . 0 2 %  CA R B O N  0 . 0 6  %  C A R B O N

I R O N - C O B A L T -M O L Y B D E N U M

+  MELT

4 0  5 0  6 0  7 0  8 0  9 0  CO
P E R  CENT COBALT

F i g .  2 — P h a s e  d i a g r a m  o f  i r o n - c o b a l t  a l l o y s .

T----------T
+  MELT

ATOMIC PE R  CENT COBALT 
10 2 0  3 0  4 0  5 0  6 0  7 0  8 0

MELT
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tion. M icrophotographs of a single-phase alloy and  a  tw o-phase alloy of 
iron-cobalt-m olybdenum  are reproduced in Fig. 3 (a) and  (b).

T h e  diagram  of Fig. 2 shows several k inds of changes th a t affect the mag
netic properties. A t (a) the m ateria l becomes non-m agnetic on heating, 
w ithou t change in phase. A t (b) there is a  change of phase, bo th  phases

F i g .  4 — E f f e c t  o f  p h a s e  t r a n s f o r m a t i o n  o f  c o b a l t  o n  m a g n e t i z a t i o n  w i t h  a  c o n s ta n t  
f ie ld  o f  1 5 0  o e r s t e d s .  B o t h  p h a s e s  m a g n e t i c .  Masumoto.

F i g .  5 — P h a s e  t r a n s f o r m a t i o n  in  i r o n - c o b a l t  a l l o y  ( 5 0 %  C o ) .  H i g h - t e m p e r a t u r e  p h ase  
is  n o n - m a g n e t ic .

being m agnetic. F igure 4 shows the  changes in m agnetic properties that 
occur during th is la tte r  transition ; th ey  are due p a r tly  to  the high local 
stra in s th a t result from  the change in struc tu re , and  p a rtly  to  the difference 
in  the  crysta l s truc tu res of the two phases. A t (c) there is a  change from a 
ferrom agnetic to  a  non-m agnetic phase, an d  Fig. 5 shows the rap id  change 
in m agnetization th a t  occurs when the  tem peratu re  rises in th is area. At
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(d) the a  phase becomes ordered on cooling, i.e., the  iron and cobalt a tom s 
tend to d istribu te them selves regularly  am ong the  various atom  positions 
so that each atom  is surrounded b y  a tom s of the o ther kind. T h is phenom e
non is especially im p o rta n t in connection w ith  the properties of iron-alum i- 
num and m anganese-nickel alloys.

The transition a t  (e) is en tirely  in the non-m agnetic region b u t it has 
its influence on the properties of iron a t  room tem peratu re . I f  iron is cooled 
very slowly through (e), the  in te rna l strains caused by the change in s truc
ture will be relieved b y  diffusion of the m etal atom s, b u t if the  cooling is too 
rapid there will n o t be sufficient tim e for s tra in  relief. P ractically  th is m eans 
that to obtain high perm eability  in  iron it m ust be annealed  for some tim e 
below 900°C, or cooled slowly th rough th is tem peratu re  so th a t diffusion 
will have time to occur. In  m ost ferrom agnetic m ateria ls diffusion occurs 
at a reasonably rap id  ra te  only a t  tem peratu res above ab o u t 500 to  600°C.

10 3 x

v>D

CD
-£o
¡~
oDO
z

FIELD S T R E N G T H ,  H ,  IN O E R S T E D S  

F i g .  6— E f f e c t  o f  t e n s io n  o n  t h e  m a g n e t i z a t io n  c u r v e  o f  6 8  p e r m a l l o y .

The effect of a  hom ogeneous strain  on the  m agnetization  curve can be 
observed in a  sim ple w ay, as b y  applying tension to an  annealed  wire and 
then measuring B  and  II. T he effect of tension on some m ateria ls is to 
increase the perm eability  an d  on o ther m ateria ls to  decrease it, as shown 
m Fig. 6 . Compression usually causes a  change in the  opposite sense.

The internal stra in s resu lting  from  plastic deformation of the m ateria l, 
brought about by  stressing beyond the elastic lim it, as by  pulling, rolling 
or drawing, alm ost alw ays reduce the perm eability . T h e  m ateria l is then  
under rather severe local strains sim ilar to  those p resen t a fte r phase change, 
and these strains are d ifferent in m agnitude and  direction  in d ifferent places 
m the m aterial an d  have qu ite  d ifferent values a t  po in ts close together. 
Strains of this kind can usually  be relieved by annealing; therefore, m etal 
that has been fabricated  b y  p lastic  deform ation is custom arily  annealed  to 
raise its perm eability. F igure 1 shows the  effect of annealing a  perm alloy 
strip th a t has been cold-rolled to  15 per cen t of its original thickness.
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T he temperature also is effective in changing perm eab ility  and o ther prop
erties, even when no change in phase occurs. F igure 7 shows the rapidity 
w ith  which the in itial perm eability  decreases as the Curie po in t is ap
proached. F or th is m ateria l, Ferroxcube I I I ,  a  zinc m anganese ferrite 
(ZnMnFe.|Os), the Curie p o in t is n o t far above room  tem perature .

T he effect of im purities m ay  be illu stra ted  by the  B  vs I I  curves for iron 
containing various am oun ts of carbon. C urve (a) of Fig. 8  is for a mild 

^2000 
>
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<
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2 20 40 60 80 100 120

T EM P E RAT URE  IN DEGREES CENTIGRADE

F i g .  7 — V a r i a t i o n  o f  i n i t i a l  p e r m e a b i l i t y  o f  F e r r o x c u b e  3 ,  s h o w in g  m a x im u m  a t  tern- 
p e r a t u r e  j u s t
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F IE L D  S T R E N G T H ,  H ,  IN O E R S T E D S

F i g .  8 — E f f e c t  o f  i m p u r i t i e s  o n  m a g n e t i c  p r o p e r t i e s  o f  i r o n .  A n n e a l i n g  a t  14 0 0 ° C  in 
h y d r o g e n  r e d u c e s  t h e  c a r b o n  c o n t e n t  f r o m  a b o u t  0 .0 2  p e r  c e n t  t o  le s s  t h a n  0 .0 0 1  p e r  cent.

steel having 0 .2  per cen t carbon, (b) is for the iron com m only used in elec
trom agnetic a p p a ra tu s— it contains ab o u t 0 .0 2  per cen t carbon and is an
nealed a t  ab o u t 900°C. W hen th is sam e iron is purified by  hea ting  for several 
hours a t  1400°C in hydrogen, the carbon is reduced to less th an  0.001 per 
cen t an d  o ther im purities are  rem oved, and  curve (c) is obtained.

F inally , Fig. 9 shows th a t  large differences in perm eability  m ay be found 
by  sim ply vary ing  the direction o f measurement of the m agnetic p ro p e r t ie s  

in  a  single specim en. T h e  m ateria l is a single crysta l of iron containing about 
4  per cen t silicon, and the  directions in  which the p roperties are measured
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are [100] (parallel to one of the crysta l axes), and  [111] (as far rem oved as 
possible from an  axis). T h e  m agnetic properties in the  two directions are 
different because d ifferent “ views” of the atom ic arrangem en t are ob 
tained in the two directions.

P r o d u c t io n  o f  M a g n e t ic  M a t e r i a l s

In the preparation  of m agnetic m ateria ls for either labora to ry  or com m er
cial use there are m any  processes which influence the chem ical and physical

INTRIN SIC INDUCTION, B - H ,  IN G A U S S ES

t i g .  9  D e p e n d e n c e  o f  p e r m e a b i l i t y  o n  c r y s t a l l o g r a p h i c  d i r e c t io n .  Williams.

structure of the product. T he selection of raw  m ateria ls, the m elting  and 
casting, the fabrication and  the h ea t trea tm en t, are  all im p o rta n t and m ust 

e carried out with a proper knowledge of the m etallu rgy  of the m ateria l. A 
Jr>e description of the com m on p rac tices is now given. F or fu rth e r  dis
cussion the reader is referred to m ore detailed  m etallurgical books and  a r
ticles.
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M elting and Casting

F o r experim ental investigation  of m agnetic m ateria ls  in  the  laboratory, 
the  raw  m ateria ls easily ob ta inab le on the m ark e t a re  generally  satisfactory. 
W hen high p u rity  is desirable specially p repared  m ateria ls an d  crucibles 
m ust be used an d  the atm osphere in  con tac t with the m elt m u st be con
trolled. T he im purities th a t  have the g rea test influence on th e  magnetic 
properties of high perm eability  m ateria ls are the  non-m etallic elements,

F i g .  1 0 — I n d u c t i o n  f u r n a c e  d e s ig n e d  f o r  s m a l l  m e l t s  in  c o n t r o l le d  a t m o s p h e r e ,  a s  de
s ig n e d  b y  J .  H .  S c a f f  a n d  c o n s t r u c t e d  b y  t h e  A j a x  N o r t h r u p  C o m p a n y .

particu la rly  oxygen, carbon an d  sulfur, and  the presence of these impurities 
is therefore w atched  carefully an d  the ir analyses a re  carried  o u t w ith  special 
accuracy. Im purities are likely to  change in im p o rtan t respects during the 
m elting an d  pouring on account of reactions of the  m elt w ith  the atmos
phere, the slag or the  crucible lining, or because of reactions tak ing  place 
am ong the  constituen ts of the m etal.

M elting  of sm all lots (10 pounds) is best carried  o u t in a  high-frequency 
induction  furnace. F igure 10 shows such a furnace designed for m elting ten 
to fifty  pounds, and casting b y  tilting  the  furnace, the whole operation  being
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carried out in a  controlled atm osphere. H igh-frequency cu rren ts (usually 
1,000 to 2,000  cycles/sec b u t som etim es m uch higher) are passed through 
the water-cooled copper coils, an d  the a lte rn a tin g  m agnetic field so produced

t i g .  1 1 — A r c  f u r n a c e  f o r  l a r g e  c o m m e r c i a l  m e l t s .  C o u r t e s y  o f  J .  S .  M a r s h  o f  t h e  B e t h l e -  
C]n  S t e e l  C o m p a n y .

heats the charge by  inducing eddy curren ts in it. Crucibles are usually  com
posed of alum ina or m agnesia.

On a commercial scale m elts of silicon-iron are usually  m ade in the open
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h ea rth  furnace, in  which pig-iron an d  scrap are refined and  ferro-silicon 
added. T h e  furnace capacity  m ay be as large as 100 tons. Som etim es silicon- 
iron, an d  usually iron-nickel alloys, are m elted  in the arc furnace, in 
am ounts vary ing  from  a few tons to  50 tons. A pho tograph  of such a fur
nace, in the position of pouring, is shown in Fig. 11. T he h ea t is produced 
in the arc  d raw n betw een large carbon electrodes im m ersed in the  metal, 
the cu rren t som etim es rising to  over 10,000 am peres. B y  tipp ing  the fur
nace th e  m elt is poured in to  a ladle, and  from  th is it is poured in to  cast-iron 
m olds th rough  a valve-controlled hole in th e  ladle bo ttom . Special-purpose 
alloys, including perm anen t m agnets, are p repared  com m ercially in high-

T a b l k  I I

Heals of Formation and Other Properties of Some Oxides (Sachs and Van Horn')

Oxide
H e a t of form ation 
(K iio-cal per gram  

atom  of m etal)
M elting  P o in t (°C) D ensity  (g/cm>)

C a O ................................................... 152 >2500 3 .4
B e O .................................................... 144 >2500 3 .0
M g O ................................................. 144 2800 3.65
l . i . , 0 ................................................... 141 >1700 2 . 0
A 1 20 3 ................................................. 127 2050 3 .5
V 20 2 ................................................... 116 1970 4 .9
T i O a ................................................... 109 1640 4 .3
N a » 0 ................................................. 101 * 2.3
S i 0 2 .................................................... 95 1670 2.3
B A ............................ 94 580 1 .8
M n O ................................................. 91 1650 5 . 5
Z r O a ................................................... 89 2700 a .  a
Z n O ................................................... 85 * 5 .5
P A ................................................... 73 * 2 .4
S i A .................................................. 6 8 1130 6.95
I 'e O .................................................... 6 6 1420 5 .7
N i O .................................................... 5S * * 7.45

* S u b l im e s .
* *  D e c o m p o s e s  b e f o r e  m e l t in g .

frequency induction furnaces or in arc furnaces in quan tities ranging from a 
fraction  of a ton to  several tons.

Slags are com m only used w hen m elting  in  air, bo th  to  p ro tec t from oxi
dation  and  to  reduce the am ounts of undesirable im purities. Com mon pro
tective coverings are m ix tures of lime, m agnesia, silica, fluorite, alumina, 
and borax in  vary ing  proportions. In  com m ercial p roduction  different slags 
are used a t  d ifferent stages, to  refine the m elt; e.g., iron oxide m ay be used 
to  decarburize and  basic oxides to  desulfurize.

M elting  in vacuum  requires special technique th a t  has been described in 
some deta il by  Y ensen .1 Com m ercial use has been described by  Rohn2 and 
o th e rs .3 M elting  in hydrogen has been used on an  experim ental scale in both

1 T .  D .  Y e n s e n ,  Trans. A .I.E .E .  3 4 .  2 6 0 1 - 4 1  ( 1 9 1 5 ) .
2 W .  R o h n ,  H e r a e u s  V a c u u m s c h m e l z e ,  A l b e r t i s ,  H a t i a u ,  3 5 6 - 8 0  ( 1 9 3 3 ) .
3 VV. H e s s e n b r u c h  a n d  K .  S c h i c h t e l ,  Zeits. f .  Metallkunde 3 6 ,  1 2 7 - 3 0  ( 1 9 4 4 ) .
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high-frequency and  resistance-w ound furnaces. In  com m ercial furnaces R ohn 
has used hydrogen an d  vacuum  a lte rna te ly  before pouring, for purification 
in the melt, in low-frequency induction  furnaces having capacities of several 
Ions.

Just before casting a m elt of a  high-perm eability  alloy such as iron nickel, 
a deoxidizer m ay  be added, e.g. alum inum , m agnesium , calcium  or silicon, 
in an am ount averaging around  0.1 per cent. T he efficacy of a  deoxidizer is 
measured by its  h e a t of form ation, and  th is is given for the common ele-

T E M P E R A T U R E  IN D E G R E E S  C E N T I G R A D E  

F ig . 1 2 — S o lu b i l i t y  o f  s o m e  g a s e s  in  i r o n  a n d  n ic k e l  a t  v a r i o u s  t e m p e r a t u r e s .  Sieverts.

ments in Table I I ,  taken  from  Sachs an d  Van H o rn .4 Also several ten th s  of a 
per cent of m anganese m ay  be p u t in to  coun terac t the sulfur so th a t  the 
material m ay be more readily  w orked; the m anganese sulfide so form ed col
lects into small globular m asses which do n o t in terfere seriously w ith  the 
magnetic or m echanical properties of m ost m aterials.

Ordinarily a  q u an tity  of gas is dissolved in m olten m etal, an d  th is is likely 
to separate during solidification and  cause unsound ingots. T h e  solubilities 
of some gases in  iron an d  nickel have been determ ined by  S ieverts6 and 
others and are given in Fig. 12, adap ted  from  the com pilation by  D ushm an .e 
I he characteristic decrease of so lubility  during freezing is ap p aren t. M ost

( 19 10 )  ^ a c ' l s  anc* R - V a n  H o r n ,  P r a c t i c a l  M e t a l l u r g y ,  A m .  S o c .  M e t a l s ,  C l e v e l a n d

5 A - S i e v e r t s ,  Z eils .f . Melallkunde 2 1 ,  3 7 - 4 6  ( 1 9 2 9 ) .
S . D u s h m a n , V a c u u m  T e c h n i q u e ,  W i l e y ,  N e w  Y o r k  ( 1 9 4 9 ) .



262 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

of the gases given off by  m agnetic m etals during heating  are formed from 
the im purities carbon, oxygen, n itrogen  and  sulfur; CO is usually  given off 
in g rea test am oun t from  cast m etal, and  some N 2 an d  H* are also found. 
Refining of the m elt is therefore of obvious advan tage, and  the furnace of 
Fig. 10 is especially useful for th is purpose.

Sm all ingots are som etim es m ade by  cooling in the crucible. Usually, 
however, ingots are poured in to  cast iron m olds for subsequent reduction 
by  rolling, etc.; perm anen t m agnet o r o ther m ateria ls are often cast in sand

Fig. 13—Design of rolls in  a  blooming mill for ho t reduction of ingots to rod. Carnegie 
Illinois Sled Corp.

in shapes which require only nom inal am ounts of m achining or grinding 
for use in ap p a ra tu s  or in testing . Special techniques are used for specific 
m aterials.

O ther considerations im p o rta n t in the m elting an d  pouring of ingots are 

proper m ixing in th e  m elt, the tem peratu re  of pouring, mold construction, 
inclusions of slag, segregation, shrinkage, cracks, blow holes, etc.

Fabrication

M agnetic m ateria ls require a wide v arie ty  of m odes of fabrication, which 
can best be discussed in  connection w ith the specific m ateria ls. The methods 
include h o t and  cold rolling, forging, swaging, draw ing, pulverization, elec
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trodeposition, and  num erous operations such as punching, pressing and 
spinning. In  the com m ercial fabrication  of ductile m ateria l i t  is common 
practice to s ta r t  the reduction  in a breakdow n or bloom ing m ill (Fig. 13) 
after heating the ingot to  a high tem pera tu re  (1200° to  1400°C). L arge ingots, 
of several tons w eight, are often led to the  m ill before they  have cooled 
below the proper tem peratu re . T h e  reduction  is continued as the  m etal 
cools, in a rod or flat rolling mill, depending on the desired form  of the final 
product. When the thickness is decreased to  0,2 to 0.5 inch th e  m ateria l has 
usually cooled below the  recrystallization  tem peratu re . Because of the diffi
culty in handling h o t sheets or rod  of sm all thickness, they  are rolled a t  or 
near room tem perature, w ith  in te rm ed ia te  annealings if necessary to  soften 
or to develop the p roper structu re . In  experim ental work, rod is often 
swaged instead of rolled.

In recent years the ou tstand ing  trends in  m ethods of fabricating  m ateria ls 
have been tow ard the construction  of the  m ultiple-roll rolling mill for roll
ing thin strip, and  the  continuous str ip  m ill for high-speed production  on 
a large scale. Figure 14 shows the principle of construction  of a typical 4-high 
mill ((a) and (b)), and  of two special m ills ((c) and (d)). In  the 20-high 
Rohn' mill and 12-high Sendzim ir8 m ill the two w orking rolls are quite 
small (0.2 to one inch in d iam eter). T hese are each backed by  two larger 
rolls and these in tu rn  by  o thers as indicated. In  the R ohn mill (c), power is 
supplied to the two sm allest rolls and the  final bearing surfaces are a t  the 
ends of the largest rolls. In  the Sendzim ir m ill (d) the power is supplied to 
the rolls of in term ediate  size an d  the  bearing surfaces are d is trib u ted  along 
the whole length of the largest rolls so th a t  no appreciable bending of the 
rolls occurs. T he sm all rolls reduce the thickness of th in  stock w ith g rea t 
efficiency, and the idling rolls perm it the applica tion  of high pressure. 
In the Steckel mill power is used to pull the sheet through the rolls, which 
are usually 4-high w ith  sm all w orking rolls.

The continuous str ip  m ill is an  arrangem ent of individual mills such th a t 
the strip is fed continuously from  one to  an o th er an d  m ay  be undergoing 
reduction in thickness in several m ills sim ultaneously. F igure 15 shows a 
mill of this kind, used for cold reduction, w ith  6  individual m ills in tandem .

For magnetic testing  num erous form s of specim ens are  required  for v a ri
ous kinds of tests; these include strips for s tan d ard  tests  for transform er 
sheet, rings or parallelogram s for conventional ballistic tests, “pancakes” 
of thin tape spirally w ound for m easurem ent by  a lte rn a tin g  curren t, ellip
soids for high field m easurem ents, an d  m any  others. T h e  various form s are

W - R o h n ,  H e r a c u s  V a c u u m s c h m e l z e ,  A l b e r t i s ,  H a n a u ,  3 8 1 - 7  ( 1 9 3 3 ) .
1 -  s e n d z im ir ,  Iron and, Steel Engr. 2 3 ,  5 3 - 9  ( 1 9 4 6 ) .
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required  to s tu d y  or elim inate the effects of eddy-currents, demagnetizing 
fields and  directional effects an d  to sim ulate the use of m ateria l in apparatus. 
M ost of the needs arizing in com m erce an d  in experim ental investigation 
are filled by  s trip s  o r sheets of thicknesses from  0 .0 0 2  inch to 0 .1  inch from

(a) 4 - H I G H  M IL L ,  S ID E  V IE W

“E li]  d d
( b )  4 - H I G H  M IL L ,  E N D  V IE W

(c) 2 0 - H I G H  R O H N  M IL L  ( d )  1 2 -H IG H  S E N D Z IM IR  M IL L

Fig. 14—Arrangement of rolls in mills used for reduction of thin sheet: (a) and (l>) con
ventional 4-high mill; (c) Rohn 20-high; (d) Sendzimir 12-high.

which coils can be w ound or p a r ts  cu t, by  rods from  w hich relay  cores or 
o the r form s can be m ade, b y  pow dered m ateria l used for pressing into cores 
for coils for inductive loading, an d  by  castings fo r p e rm anen t m agnets or 
o the r objects which m ay  be m achined or ground to final shape.



F i g .  1 5 — C o n t in u o u s  s t r i p  m il l  d e s ig n e d  f o r  l a r g e  o u t p u t ,  h a v i n g  6  i n d i v i d u a l  m i l l s  in  t a n d e m . C o u r t e s y  o f  C .  W . S t o k e r  o f  C a r n e g i e  I l l i n o i s  
S t e e l  C o r p .
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Eeal-Trealmenl

H igh  perm eability  m ateria ls are annealed  prim arily  to  relieve the  internal 
stra in s  in troduced  during  fabrication . On the  co n tra ry  p erm an en t magnet 
m ateria ls  are h ea t-trea ted  to  introduce s trains b y  p rec ip ita ting  a  second 
phase. H ea t- tre a tm en ts  are decidedly characteristic  of the  m ateria ls and 
the ir in tended  uses and are best discussed in deta il in connection w ith  them.

F i g .  1 6 — S o m e  c o m m o n  h e a t  t r e a t m e n t s  f o r  m a g n e t i c  m a t e r ia l s .

Figure 16 shows some of the  com m onest trea tm en ts  in the  form  of tempera
ture-tim e curves. T h e  purpose of these various heating  an d  cooling cycles, 
an d  typ ical m ateria ls sub jected  to  them , m ay  be listed as follows:

(1) Relief of in te rnal s tra in s due to  fabrication  or phase-changes (furnace 
cool). M agnetic iron.

(2) Increase of in te rna l stra in s  by  p rec ip ita tion  hardening  (a ir quench 
an d  bake). Alnico ty p e  of p e rm anen t m agnets.



(3) Purification b y  con tac t w ith hydrogen or o the r gases. Silicon-iron 
(cold rolled), hydrogen-treated  iron, Superm alloy.

There are also special trea tm en ts, such as those used for “doub le-treated” 
permalloy, “m agnetically  annealed” perm alloy, and  perm invar.

Occasionally it  is necessary to homogenize a  m ateria l by  m ain ta in ing  the
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P E R  C E N T S I L I C O N  IN IRON 
. I ' g . 1 7 — V a r ia t io n  o f  s o m e  p r o p e r t i e s  o f  i r o n - s i l i c o n  a l l o y s  w i t h  c o m p o s i t io n :  B , ,  s a t u r a 

tion in t r in s ic  i n d u c t io n ;  0 , m a g n e t i c  t r a n s f o r m a t i o n  p o i n t ;  p , e l e c t r i c a l  r e s i s t i v i t y ;  p m, 
m a x im u m  p e r m e a b i l i t y  a s  d e t e r m in e d  b y  M i s s  M .  G o e r t z .

temperature ju s t below the freezing p o in t for m any  hours. H ea t- tre a tm en ts  
also may affect grain  size and  crysta l o rien tation .

furnaces for h ea t-trea tin g  have various designs th a t will n o t be considered 
uere. A modern im provem ent h as  been the use of globar (silicon carbide) 
heating elements th a t  perm it trea tm e n t a t  1300 to  1350°C in an  atm osphere 
of hydrogen or air.
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F u rth e r  discussion of “ M etallu rgy  an d  M agnetism ” is given in an  excel
len t sm all book of th is title  by  S tan ley .9

E f f e c t  o f  C o m p o s it io n

Gross Chemical Composition

T h e effect of com position on m agnetic properties will now be considered, 
using as exam ples the m ore im p o rtan t b inary  alloys of iron w ith silicon,

z
o

F i g .  1 8 — V a r i a t i o n  o f  B ,  a n d  0 w i t h  t h e  c o m p o s i t io n  o f  i r o n - n i c k e l  a l lo y s .

nickel or cobalt, on which are based the m ost useful and in teresting  mate
rials. T he iron-silicon alloys are used com m ercially w ithou t additions, the 
iron-nickel and  iron-cobalt alloys are m ost useful in the te rn ary  form; and 
m any  special alloys, for exam ple m aterial for perm anen t m agnets, contain 
four or five com ponents.

F igure 17 shows four im p o rtan t p roperties of the iron-silicon alloys of low 
silicon conten t, a fte r th ey  have been h o t rolled and  annealed. T he commer
cial alloys (3 to 5%  silicon) are the m ost useful because they  have the best

3 J .  K .  S t a n l e y ,  M e t a l l u r g y  a n d  M a g n e t i s m ,  A m . S o c .  M e t a l s ,  C l e v e l a n d  ( 19 4 9 ) .
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combination of properties of various kinds. T he properties shown in the 
figure are im portan t in determ ining the best balance: the  m axim um  per
meability, nm, only ind irectly  (it is a good m easure of hysteresis loss and 
maximum field necessary in  use), and  the Curie po in t, 6, only in a  m inor 
role. The sa tu ra tion  B s , perm eability , and  resistiv ity  p, should all be as 
high as possible. B s , 0 an d  p a re  s tru c tu re  insensitive, and  v ary  w ith com
position in a characteristically  sm ooth w ay, p rac tica lly  independent of 
heat treatm ent; ¡xm depends on h e a t trea tm e n t (strain), im purities and 
crystal orientation. T here  a re  no phase changes to  give sudden changes with 
composition of p roperties m easured a t  room  tem peratures.

F ig . 19  - V a r ia t io n  o f  s a t u r a t i o n  m a g n e t o s t r i c t i o n ,  X ,,  a n d  c r y s t a l  a n i s o t r o p y ,  K ,  w i t h  
the c o m p o sit io n  o f  i r o n - n i c k e l  a l l o y s .

Some of the properties of the iron-nickel alloys are given in  Figs. 18 and 
19. l'he change in phase from  a  to 7  a t  ab o u t 30 per cen t nickel is responsible 
for the breaks a t  this com position. T he perm eabilities, p0 an d  pm , (Fig. 20) 
show characteristically the effect of h e a t trea tm en t. T he m axim a are closely 
related to the points a t  which the sa tu ra tio n  m agnetostriction , X , , and  crys
tal anisotropy, K , pass th rough  zero (Fig. 19).

Additions of m olybdenum , chrom ium , copper an d  o ther elem ents are 
made to enhance the desirable p roperties of the iron-nickel alloys.

The iron-cobalt alloys, some p roperties of which are shown in Fig. 21, are 
usually used when high inductions are advantageous. T h e  unusual course ofo  o

ic saturation induction curve, w ith  a  m axim um  grea ter th an  th a t  for any  
other material, is of obvious theoretical and practical im portance. T he sud-
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PER CENT COBALT IN IRON

F i g .  2 1 — V a r i a t i o n  o f  B ,  a n d  9 o f  i r o n - c o b a l t  a l l o y s  w i t h  c o m p o s it io n .
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den changes in  the C urie po in t curve are associated w ith a, y  phase boun
daries, as m entioned earlier in th is chapter. Tire peak of the perm eability  
curve (Fig. 22) occurs a t  the  com position for which atom ic ordering is stable 
at the highest tem peratu re  (see also Fig. 2). T he sharp  decline near 95 per 
cent cobalt coincides w ith  the phase change y,e a t  th is com position. A ddi
tions of vanadium , chrom ium  an d  o ther elem ents are used in  m aking com
mercial ternary  alloys.

Some useful alloys based on the  b inary  iron-silicon, iron-nickel and  iron- 
cobalt alloys are described in  T ab le I I I .

The hardening of m ateria l resulting  from  the p recip ita tion  of one phase in 
another is often used to  advan tage  when m agnetic hardness (as in per
manent m agnets), or m echanical hardness, is desired. T o illu stra te  th is

PE R  C E N T  CO BALT IN IRON

l 'ig .  2 2 — V a r i a t i o n  o f  p e r m e a b i l i t y  a t  II  =  1 0  o e r s t e d s ,  a n d  o f  t h e  c r i t i c a l  t e m p e r a t u r e  
o f o rd e rin g , w i t h  th e  c o m p o s it io n  o f  i r o n - c o b a l t  a l l o y s .

process consider the  b inary  iron m olybdenum  alloys, a  p a rtia l phase d ia
gram of which is given in Fig. 23. T he effect of the boundary  betw een the 
a and a  +  e fields is shown by  the varia tion  of the properties with composi- 
tion (Fig. 24a). S atu ration  m agnetization  an d  Curie p o in t are  affected b u t 
little, the principle change in  the form er being a  slight change in the slope 
of the curve a t  the com position a t  which the  phase boundary  crosses 500°C, 
the tem perature below which diffusion is very  slow. T he Curie po in t curve 
has an almost im perceptible break  a t  the com position a t  w hich the phase 
boundary lies a t  the Curie tem perature . T h e  changes of m axim um  per
meability and coercive force are m ore drastic; drops rap id ly  as the am oun t 
°f the second phase, t, increases and produces m ore an d  m ore in te rna l strain  
(Fig- 24b), and H c increases a t  the sam e tim e. T he experim ental points 
correspond to a  m oderate ra te  of cooling of th e  alloy a fte r annealing.



T a b l e  I I I

Some Properties of Some Useful Alloys Based on the Fe-Si, Fe-Co and Fc-Ni Binary Systems

N am e Com position (P er cent) H ea t T rea tm en t
In itia l 

Pe rmeabil-iLj, nv
M axim um  
P erm eab il

ity , Hm
Coercive 

Force, lie 
(oersteds)

S a tu ra tion  
Induction , 

B.  (gausses)

Curie 
P o in t, 0

r c )

H o t  r o l le d  S i l i c o n  I r o n ____
G r a i n  O r ie n t e d  S i l i c o n

4 S i ,  9 6 F e 8 0 0 ° C 5 0 0 * 7 0 0 0 0 . 5 1 9 7 0 0 6 9 0

I r o n ................................................. 3 S i ,  9 7 F e 1 2 0 0 ° C 1 5 0 0 * 4 0 0 0 0 0 . 1 5 2 0 0 0 0 7 0 0
S e n d u s t ............................................. 9 S i ,  8 5 F e ,  5 A 1 C a s t 3 0 0 0 0 12 0 0 0 0 0 . 0 5 10 0 0 0 5 0 0
4 5  P e r m a l l o y * * .......................... 4 5 N i ,  5 5 F e 1 2 0 0 ° C ,  H : 3 5 0 0 5 0 0 0 0 0 . 0 7 16 0 0 0 4 4 0

4 - 7 9  P e r m a l l o y ........................... 7 9 N i ,  1 7 F e ,  4 M o 1 1 0 0 ° C 2 0 0 0 0 10 0 0 0 0 0 . 0 5 8 7 0 0 4 2 0
M u m e t a l .......................................... 7 5 N Í ,  1 8 F e ,  2 C r ,  5 C u 1 1 7 5 ° C .  H 2 2 0 0 0 0 10 0 0 0 0 0 . 0 5 6 5 0 0 4 3 0
S u p e r m a l l o y . ................................ 7 9 N i ,  1 6 F e ,  5 M o 1 3 0 0 ° C ,  F T 1 0 0 0 0 0 10 0 0 0 0 0 0 . 0 0 2 8 0 0 0 4 0 0
P e r m e n d u r . ................................... 5 0 C o ,  5 0 F e 8 0 0 ° C 8 0 0 5 0 0 0 2 . 0 2 4 5 0 0 9 8 0
2 V - P e r m e n d u r ............................ 4 9 C o ,  4 9 F e ,  2 V S 0 0 ° C 8 0 0 4 5 0 0 2 . 0 2 4 0 0 0 9 8 0
H i p e r c o ............................................. 3 4 C o ,  6 4 F e ,  l C r S 5 0 ° C 6 5 0 10 0 0 0 1 . 0 2 4 2 0 0 —

* M e a s u r e d  a t  B  =  2 0  i n s t e a d  o f  B  =  0 .
* *  S i m i l a r  a l l o y s :  H i p e n i k ,  N i c a l o i ,  4 7 5 0  a l l o y ,  a n d  o t h e r s .
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W hen the am o u n t of the second phase is considerable (as in  the  15% Mo 
alloy) i t  is com mon practice to  quench the alloy from  a tem peratu re  a t  which 
it  is a  single phase (e.g. 1100 or 1200°C) an d  so m ain ta in  i t  tem porarily as 
such, and then  to  h e a t i t  to  a  tem pera tu re  (e.g., 600°C) a t  which diffusion 
proceeds a t  a  m ore p rac tica l ra te . D uring  the  la tte r  step  th e  second phase 
separates slowly enough so th a t  i t  can easily be stopped  a t  the  optimum 
poin t, a fte r a  sufficient am oun t has been p rec ip ita ted  b u t before diffusion 
has been p erm itted  to  relieve the  stra in s caused by  the  precipitation. A 
conventional h ea t trea tm e n t for p recip ita tion-hardening  of th is  kind, used 
on m any  p erm anen t m agnet m ateria ls, has a lready  been given in  Fig. 16.

In  some respects the  developm ent of atom ic order in  a  s tru c tu re  is like 
the  p recip ita tion  of a  second phase. W hen sm all portions of th e  material 
becom e ordered an d  neighboring regions are still d isordered, severe local 
stra in s m ay be se t up  in the sam e w ay th a t  they  are during the precipitation 
hardening  described above. T he trea tm e n t used to establish high strains is 
the sam e as in the  m ore conventional p rec ip ita tion  hardening. T h e  decom
position  of an  ordered s tru c tu re  in  the iron-nickel-alum inum  system  has 
been held responsible, b y  B rad ley  and  T ay lo r ,10 for the good permanent 
m agnet qualities of these alloys.

Some of the com m on p erm anen t m agnets, h ea t trea ted  to  develop in
te rna l s tra in s b y  p rec ip ita tion  of a  second phase, o r b y  the  developm ent ol 
atom ic ordering, are described in T able IV.

T h e  changes in  properties to  be expected when the  com position varies 
across a  phase boundary  of a  b inary  system  are shown schem atically  by the 
curves of Fig. 25.

Im purities

T h e principle of p rec ip ita tion  hardening, as ju s t  described, applies also 
to the lowering of perm eability  b y  the presence of accidenta l impurities. 
F or exam ple, the  solubilities of carbon, oxygen and  nitrogen in  iron, de
scribed b y  the curves of Fig. 26, are quite sim ilar in form  to  the  curve sep
a ra tin g  the a  an d  a  +  e areas of the iron-m olybdenum  system  of Fig. 2 3 ;  

the chief difference is th a t  the scale of com position now corresponds to con
cen tra tions usually  described as im purities. One expects, then, th a t the 
presence of m ore th a n  0.04 per cen t of carbon in iron will cause the perme
ab ility  of an  annealed  specim en to  be considerably  below th a t  of pure iron. 
T he am oun t of carbon p resen t in  solid solution will also affect the m a g n e t i c  

properties.
Because the  am ounts of m ateria l involved are sm all, i t  is difficult to carry 

o u t well defined experim ents on the effects of each im purity , especially m

10 A .  J .  B r a d l e y  a n d  A .  T a y l o r ,  Proc. Roy. Soc. ( L o n d o n )  1<56, 3 5 3 - 7 5  ( 1 9 3 8 ) .
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Some Useful Permanent Magnets and Their Properties

N am e Com position (P e r cent)* Fabrication H e a t T rea tm en t He B ,

C a r b o n  S t e e l .................................. l M n ,  0 . 9 C H R ,  P M Q 8 0 0 5 0 1 0 0 0 0

T u n g s t e n  S t e e l ............................. 5 W ,  0 . 3 M n ,  0 . 7 C H R ,  P M Q 8 5 0 7 0 1 0 3 0 0

C h r o m iu m  S t e e l .......................... 3 . 5 C r ,  0 . 3 M n ,  0 . 9 C H R ,  P M Q 8 3 0 6 5 9 7 0 0

C o b a l t  S t e e l .................................... 3 6 C o ,  4 C r ,  S W , 0 . 7 C H R ,  P M Q 9 5 0 2 4 0 9 5 0 0

R e m a l l o y  ( C o m o l ) .................... 1 7 M o ,  1 2 C o H R ,  P M Q 1 2 0 0 ,  B 7 0 0 2 5 0 1 0 5 0 0

A l n i c o  2 .............................................. 1 2 C o ,  1 7 N i ,  1 0 A 1 ,  6 C u C ,  G A 1 2 0 0 ,  B 6 0 0 5 5 0 7 2 0 0

A ln ic o  5  .............................................. 2 4 C o ,  1 4 N i ,  8 A 1 ,  3 C u C ,  G A 1 3 0 0 ,  * * B 6 0 0 5 5 0 1 2 5 0 0

A l n i c o  1 2 ........................................... 3 5 C o ,  I S N i ,  6 A 1 ,  8 T i C ,  G C a s t ,  B 6 5 0 9 5 0 5 8 0 0

A l c o m a x ............................................. 2 5 C o ,  l l N i ,  8 A 1 ,  6 C u C ,  G A 1 3 0 0 ,  * * B 6 0 0 5 5 0 1 2 5 0 0

V i c a l l o y ............................................... 5 2  C o ,  1 0 V C ,  C r ,  P M B 6 0 0 3 0 0 8 8 0 0

C u n i f e .................................................. 2 0 N i ,  6 0 C u C ,  C r ,  P M B 6 0 0 5 5 0 5 4 0 0

P l a t i n u m - C o b a l t ........................ 7 7 P t ,  2 3 C o C ,  C r ,  P M Q 1 2 0 0 ,  B 6 5 0 2 6 0 0 4 5 0 0

S i l m a n a l ............................................. 8 7 A g ,  9 M n .  4 A 1 C ,  C r ,  P M 6 0 0 0 f 5 5 0

* R e m a i n d e r  i r o n
Q — q u e n c h e d  f r o m  in d i c a t e d  c e n t i g r a d e  t e m p e r a t u r e  i n  o i l  
A — c o o le d  in  a i r  f r o m  in d i c a t e d  t e m p e r a t u r e  
B — b a k e d  a t  i n d i c a t e d  t e m p e r a t u r e  
H R — h o t  r o l le d  
C R — c o ld  r o l le d  
P M — p u n c h e d  o r  m a c h in e d  
C — c a s t

G — g r o u n d
* *  C o o le d  in  m a g n e t i c  f ie ld  
t  C o e r c i v e  f o r c e  f o r  I  =  0  
H — h a r d  
1 3 — b r i t t l e
D — d u c t i l e  o r  m a l le a b le  
S — s t r o n g

M echanical
P roperties

H ,  S  
H ,  S  
H ,  S  
H ,  S  
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H ,  B  
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F i g .  2 5 — D i a g r a m s  i l l u s t r a t i n g  t h e  c h a n g e s  in  v a r i o u s  p r o p e r t i e s  t h a t  o c c u r  w h en  a 
s e c o n d  p h a s e  p r e c i p i t a t e s .

the absence of d istu rb ing  am oun ts  of o ther im purities. Two examples of the 
effect of im purities will be given, in add ition  to  Fig, 8 . In  Fig. 27 Yensen and 
Ziegler11 have p lo tted  th e  hysteresis loss as dependent on carbon c o n t e n t ,  

11 T .  D .  Y e n s e n  a n d  N .  A .  Z i e g l e r ,  Trans. Am. Soc. Metals 2 4 ,  3 3 7 - 5 8  ( 1 9 3 6 ) .
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the curve giving the m ean values of m any  determ inations. T h e  hysteresis 
decreases rapidly a t  sm all carbon contents, when these are of th e  order of 
magnitude of the solid solubility  a t  room  tem perature .

F ig . 2 6 — A p p r o x i m a t e  s o l u b i l i t y  c u r v e s  o f  c a r b o n ,  o x y g e n  a n d  n i t r o g e n  in  i r o n .

F ig .  2 7 — E f f e c t  o f  c a r b o n  c o n t e n t  o n  h y s t e r e s i s  in  i r o n .  Yensen and Ziegler.

Ciofh12 has purified iron from  carbon, oxygen, n itrogen an d  sulfur by  
beating in pure hydrogen a t  1475°C, and  has m easured the  perm eability

1! P - P - C io f f i ,  Phys. Rev. 39, 3 6 3 - 7  ( 1 9 3 2 ) .
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a t  different stages of purification. T ab le  V shows th a t  im purities of a few 
thousand ths of a  per cen t a re  qu ite  effective in  depressing the maximum 
perm eab ility  of iron.

C arbon  and nitrogen, p resen t as im purities, are  know n to cause “aging” 
in  iron— th a t is, the  perm eability  an d  coercive force of iron containing these 
elem ents as im purities will change gradually  w ith  tim e when maintained 
som ew hat above room  tem perature . As an  exam ple, a  specim en of iron was 
m ain ta ined  for 100 hours first a t  100°C, then  150°C, then  100°C, and  so on.

T a b l e  V

Maximum permeability of Armco iron with different degrees of purification, cfecled by heal 
treatment in pure hydrogen at 1475°C for the limes indicated (P. P . Cioffi).

A n a l y s e s  f r o m  R .  F .  M e h l  ( p r i v a t e  c o m m u n i c a t io n  t o  P .  P. C io f f i ) .

T im e  o f T reatm en t 
in  H ou rs /im

C om position in P e r  C ent

C s O N M n P

0 7 0 0 0 0 . 0 1 2 0 . 0 1 8 0 . 0 3 0 0 . 0 0 1 8 0 . 0 3 0 0 .0 0 4
i 1 6 0 0 0 .0 0 5 . 0 1 0 .0 0 3 . 0 0 0 1 — —
3 3 0 0 0 0 .0 0 5 .0 0 6 .0 0 3 . 0 0 0 3 — —
7 7 0 0 0 0 .0 0 3 — .0 0 3 . 0 0 0 1 — —

1 8 2 2 7 0 0 0 .0 0 5 < . 0 0 3 .0 0 3 . 0 0 0 1 . 0 2 8 .0 0 4

P r e c i s i o n  o f  a n a l y s i s ....................... . 0 0 1 .0 0 2 .0 0 2 . 0 0 0 1

T h e corresponding changes in  coercive force are given in  th e  diagram  of 
Fig. 28. A change of ab o u t 2-fold is observed.

S o m e  I m p o r t a n t  P h y s i c a l  P r o p e r t i e s

T here  are m any physical characteristics th a t  are im p o rta n t in  the study 
of ferrom agnetism  from  bo th  th e  prac tica l an d  the theoretical p o in t of view. 
These include the resistiv ity , density , a tom ic d iam eter, specific heat, ex
pansion, hardness, elastic lim it, p lastic ity , toughness, m echanical damping, 
specim en dim ensions, and  num erous others. In  a  different category  m ay be 
m entioned corrosion, hom ogeneity  an d  porosity . M ost of these properties 
are best discussed in connection w ith  specific m ateria ls o r properties; only 
th e  m ost im p o rtan t characteristics will be m entioned here. A tab le of the 
atom ic w eights an d  num bers, densities, m elting  points, resistivities and 
coefficients of therm al expansion of the m etallic elem ents, is readily  avail
able in the M etals H andbook.

D issolving a sm all am oun t of one elem ent in ano ther increases the re
sistivity of the la tte r. T o  show th e  rela tive effects of various elements, the 
com m on b in a ry  alloys of iron an d  of nickel are  shown in Figs. 29 and 30. 
F rom  a  theoretical s tan d p o in t i t  is desirable to  understand  (1) th e  relatively
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high resistivity of the ferrom agnetic elem ents com pared to  the ir neighbors 
in the periodic tab le an d  (2 ) the relative am ounts by  which the resistiv ity  
of iron (or cobalt or nickel) is raised b y  a  given atom ic percentage of v ari
ous other elements. F rom  a p rac tica l standpo in t, a  high resistiv ity  is usually

AGING TEMPERATURE IN DEGREES CENTIGRADE

TIM E  IN HOURS

F ig .  2 8 - E f f e c t  o f  n i t r o g e n  i m p u r i t y  o n  t h e  c o e r c i v e  f o r c e  o f  i r o n  a n n e a le d  s u c c e s s i v e l y  
a t  10 0  a n d  1 5 0 <>C .

PER CENT OF ALLOYING ELEM ENT IN IRON

F ig . 2 9  D e p e n d e n c e  o f  r e s i s t i v i t y  o n  t h e  a d d i t i o n  o f  s m a l l  a m o u n t s  o f  v a r i o u s  e le m e n t s  
to iro n .

desirable in order to  decrease the eddy-curren t losses in  the m ateria l, and 
so decrease the power w asted  an d  the lag in  tim e between the cause and 
effect, for example, the tim e lag of operation  of a  relay.

Knowledge of the atomic diameter is im p o rta n t in considering the effects
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PER CENT OF ALLOYING ELEM ENT IN N IC K EL  

F i g .  3 0 — R e s i s t i v i t y  o f  v a r i o u s  a l l o y s  o f  n ic k e l .

F i g .  3 1 — A t o m i c  d i a m e t e r  o f  v a r i o u s  m e t a l l i c  e le m e n t s .
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of alloying elem ents, an d  values for the  m etallic and  borderline elem ents are 
shown in Fig. 31. M ost of the  values are sim ply the d istances of nearest 
approach of a tom s in  the elem ent as it exists in the stru c tu re  stable a t  room 
temperature. A tom ic d iam eter is especially im p o rtan t in theory  because the 
very existence of ferrom agnetism  is dependen t in a  critical w ay on the  d is
tance between ad jacen t atom s. T h is has been discussed m ore fu lly  in  a 
previous paper .13

Even when no phase change occurs in a  m etal, im p o rtan t changes in  struc
ture occur during fabrication  an d  h e a t trea tm en t, and  these are com pli
cated and im perfectly understood. W hen a single c rysta l is elongated by  
tension, slip occurs on a lim ited num ber of c rysta l planes th a t  in general 
are inclined to the axis of tension. As elongation proceeds, the planes on 
which slip is tak ing  place tend  to tu rn  so th a t  they  are less inclined to  the 
axis. In this w ay a definite crystallographic d irection  approaches parallelism

t i g .  3 2 — T h e  p r e f e r r e d  o r i e n t a t i o n s  o f  c r y s t a l s  in  n ic k e l  s h e e t  a n d  w i r e  a f t e r  f a b r i c a t i o n  
an d  a f t e r  r e c r y s t a l l iz a t io n .

with the length of the  specim en. In  a sim ilar b u t m ore com plicated way, 
any of the usual m ethods of fabrication cause the m any  crysta ls of w hich it 
is composed to assum e a  non-random  d istribu tion  of o rientations, often 
referred to as preferred or special orientations, or textures. Some of the tex
tures reported for cold rolled an d  cold draw n m agnetic m ateria ls are given 
in Table VI, taken from th e  com pilation by  B a rre tt .14 T he orien tations of 
the cubes which are the crystallographic un its  are shown in Fig. 32 (a) an d  
(c) for cold rolled sheets and  cold draw n wires of nickel.

Since the m agnetic p roperties of single crysta ls depend on crystallographic 
direction (anisotropy), the properties of polycrystalline m ateria ls in which 
there is special o rien tation  will also be d irection-dependent. In  fac t it is 
difficult to achieve iso tropy in an y  fabricated  m ateria l, even if fabrication  
m \ol\es no more than  solidifying from  the m elt. T h e  relief of the in ternal

“ R .  M .  B o z o r t h ,  Bell Sys. Tech. Jl. 1 9 ,  1 - 3 9  ( 1 9 4 0 ) .
“ * B a r r e t t ,  S t r u c t u r e  o f  M e t a l s ,  M c G r a w  H i l l ,  N e w  Y o r k  ( 1 9 4 3 ) .



strains in a  fabricated  m etal by  annealing proceeds only  slowly a t  low 
tem peratu res (up to 600°C for m ost ferrous m etals) w ithou t noticeable grain 
grow th or change in grain  orien tation , an d  is designated  recovery. T h e  prin
ciple change is a  reduction  in the am plitude of in te rna l strains, an d  th is can 
be followed q u an tita tiv e ly  by  X -ray  m easurem ents. N ea r the  po in t of com
plete relief d istinc t changes occur in bo th  grain size an d  grain  orientation, 
an d  the m ateria l is said to recrystallize. A t higher tem peratu res grain growth 
increases m ore rapidly . T h e  specific tem peratu res necessary for bo th  re
covery an d  recrystallization  depend on th e  am o u n t of previous deformation, 
as shown in Fig. 33. Special orien tations are also presen t in fabricated  mate
rials a fte r  recrystallization , an d  some of these are  listed in T able V I and  illus
tra te d  for nickel in Fig. 32 (b).

As an  exam ple of the dependence of various m agnetic properties on direc
tion, Fig. 34 gives d a ta  of D ah l an d  Paw lek15 for a 40 per cen t nickel iron

T a b l e  V I

Preferred Orientations in Drawn Wires and Rolled Sheets, Before and After Recrystalliza- 
lion, and in Castings ( BarrettH)

T h e  r o l l i n g  p la n e  a n d  r o l l i n g  d i r e c t i o n ,  o r  w i r e  a x i s ,  o r  d i r e c t io n  o f  g r o w t h ,  a r e  d e s ig n a te d
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M eta l

D raw n w ires Rolled Sheets
As

S tructu re
As D raw n Recrys-

tallizcd As Rolled R ecrystallized
Cast

B C C [1101

[111] a n d  
[100]

[110] ( 0 0 1 ) ,  [110] a n d  
o t h e r s  

(0 0 1 )
( 1 1 0 ) ,  [112] a n d  

o t h e r s

(001) ,  15° t o  
[110]

( 1 0 0 ) ,  [001]

[100]

C o b a l t ..........
N i c k e l .

H C P
F C C

alloy reduced 9S.5 per cen t in area by  cold rolling an d  then  annealed at 
1100°C. A fter fu rth e r cold rolling (50 per cen t reduction) the properties 
are as described in  Fig. 35.

T h e  m echanical p roperties o rd inarily  desirable in  p rac tica l m aterials are 
those which facilita te  fabrication. M ild  steel is often  considered as the 
nearest approach to an ideal m ateria l in  th is respect. Silicon iron is limited 
b y  its  brittleness, which becomes of m ajo r im portance a t  a b o u t 5 per cent 
silicon; th is is shown b y  the curve of Fig. 36. Perm alloy is “ tougher” than 
iron or m ild steel an d  requires m ore pow er in  rolling and  m ore frequent 
annealing betw een passes when cold-rolled, b u t can be cold-worked to smaller 
dim ensions. If  m ateria ls have insufficient stiffness or hardness, parts of 
ap p a ra tu s  m ade from  them  m ust Ire handled  w ith  care to avoid  bending 
an d  consequent lowering of the perm eability . I f  the hardness is too great 
the  m ateria l m ust be ground to  size. T h is is the case w ith  some permanent 
m agnets.

15 O . D a h l  a n d  F .  P a w l e k ,  Zeiis. f .  Metallkunde 2 8 ,  2 3 0 - 3  ( 1 9 3 6 ) .
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C O E R C IV E  F O R C E ,  H 0 , IN O E R S T E D S

( n 3  L- ------------------1-----------------------1______________!_____________J_____________I______________I______________ I_____________ I
XIO.O 7 . 5  5 . 0  2 . 5  0  2 . 5  5 . 0  7 . 5  10 .0  XIO3

RE S ID U A L  IN D U C T IO N ,  B r ,  IN G A U S S E S
■lT L 1___________ I__________ I__________ I___________ 1___________I___________l

4 0  3 0  2 0  10 0  10 2 0  3 0  4 0
P E R M E A B IL I T Y ,  f l ,  ( F O R  M EDIU M F I E L D S )

Pig- 3 4 - ~ y a r i a l i o n  o f  m a g n e t i c  p r o p e r t i e s  w i t h  t h e  d i r e c t io n  o f  m e a s u r e m e n t  in  a  s h e e t  
ro n -n ic k e l a l l o y  ( 4 0 %  N i )  s e v e r e l y  r o l le d  ( 9 8 . 5 % )  a n d  a n n e a le d  a t  1 1 0 0 ° C .

The effect of size of a m agnetic specim en is often  of im portance. T his is 
"ell known in the s tu d y  of th in  film s, an d  fine powders in  which the sm allest

o  5 10 !5  2 0  3 0  5 0  7 5
P E R  CE NT REDUCTION IN T H IC K N E S S

F ig . 3 3  D e p e n d e n c e  o f  t h e  g r a i n  s iz e  o f  ir o n  o n  t h e  a m o u n t  o f  d e f o r m a t i o n  a n d  o n  th e  
te m p e ra tu re  o f  a n n e a l .  Kenyon.

90°
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dim ension is ab o u t 10~ 4 cm  or less. M an y  studies have been m ade of thin 
electrodeposited an d  evaporated  films. G enerally it  is found th a t  the per
m eability  is low and  the coercive force high. T h e  in te rp re ta tio n  is uncertain

90°

i_________ i_________ i_________i_________ i_________i_________ i_________ i_________ i_________ i_________i_________ i------------ 1 ,
t 0 3 X lS  10 5  0  5  10 ¡5 X 10

R E S ID U A L IN D U C T IO N , B r ,  IN G A U S SE S
|________ 1________ 1________ 1_______1________ |__________ |________ 1_______ 1_________ I________1_______ 1_______ I

1 50 100 5 0  0  5 0  100  150
IN IT IA L  P E R M E A B IL IT Y , /10 

i i_________ i_________ |_______ i_________ |___________ i_________ l________I__________ I________ I________ I______— I .
103 X 3  2 1 0  1 2  3X10

M AXIM UM  PE R M E A B IL IT Y ,

F i g .  3 5 — P r o p e r t i e s  o f  t h e  s a m e  m a t e r i a l  a s  t h a t  o f  F i g .  3 4 ,  a f t e r  i t  h a s  b e e n  rolled, 
a n n e a le d ,  a n d  a g a i n  r o l le d .

F i g .  3 6 — - V a r ia t io n  o f  t h e  b r e a k i n g  s t r e n g t h  o f  i r o n - s i l ic o n  a l l o y s ,  s h o w in g  th e  o n set of 
b r i t t le n e s s  n e a r  4  p e r  c e n t  s i l ic o n .

because it  is difficult to  separate  the  effects of stra in s an d  air gaps from the 
in trinsic effect of thickness, though  it  is know n th a t  each one of these vari
ables has a definite effect. As one exam ple of the m any  experiments, 'vc
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will show here the effect of th e  thickness of electrodeposited films of cobalt. 
Magnetization curves are  shown in Fig. 37 according to  previously un
published work of th e  au thor.

FIELD S T R E N G T H ,  H ,  IN O E R S TE D S

t i g .  3 7 — D e p e n d e n c e  o f  t h e  m a g n e t i z a t i o n  c u r v e s  o f  p u r e  e le c t r o d e p o s i t e d  c o b a l t  f i lm s  
on th e  t h ic k n e s s .

( i  m i c r o n  =  t o - 4  c m ) 

t ig .  3 8  D e p e n d e n c e  o f  c o e r c iv e  f o r c e  o n  t h e  p a r t i c l e  s iz e  o f  M f i B i  p o w d e r .  Guillaud.

I be high coercive force ob ta ined  in fine powders by  G uillaud16 is one of
die most clear cu t exam ples of the in trinsic effect of particle  size. T h e  coer-
® e lorce increases by  a factor of 15 as the size decreases to  5 X  10-4  cm 
(Fig. 38).

! S C . G u i l la u d , T h e s i s ,  S t r a s b o u r g  ( 1 9 4 3 ) .



286 B E L L  S Y S T E M  T E C H N I C A L  J O U R N A L

Properties AJfected by M agnetization

In  add ition  to the m agnetization , o ther p roperties are changed by  the 
d irec t application  of a m agnetic field. Some of these, an d  the  am ounts by 
w hich they  m ay be changed, are as follows:

L eng th  an d  volum e (m agnetostriction) (0.01% )
E lectrical resistiv ity  (5% )
T em p era tu re  (m agnetocaloric effect; h e a t of hysteresis) (1°C) 
E lastic  constan ts (20 per cent)
R o ta tio n  of p lane of po larization  of ligh t (K err an d  Faraday 

effects) (one degree of arc)
I n  add ition  to these properties there are o thers th a t  change w ith tem

pera tu re  because the  m agnetization  itself changes. T h u s there is “anoma
lous” tem pcrature-dependence of:

Specific h ea t 
T herm al expansion 
E lectrical resistiv ity  
E lastic  constan ts 
Therm oelectric force 

an d  of o ther p roperties below the Curie p o in t of a  ferrom agnetic material, 
even w hen no m agnetic field is applied.

Also associated w ith  ferrom agnetism  are galvanom agnetic, chemical and 
o ther effects.
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Measurement M ethod fo r  Picture Tubes. M . W . B a l d w i n .1 Electronics, 
V. 22, pp. 104-105, N ov., 1949.

Diffusion in  B inary A lloys . f  J . B a r d e e n .1 Phys. Rev., V. 76, pp . 1403- 
1405, Nov. 1, 1949.

A b s t r a c t —D arken  has given a phenom enological theory  of diffusion in 
binary alloys based on the assum ption  th a t  each constituen t diffuses inde
pendently relative to  a fixed reference fram e. I t  is shown th a t  diffusion via 
vacant lattice sites leads to  D ark en ’s equations if i t  is assum ed th a t  the 
concentration of v acan t sites is in therm al equilibrium . G rain boundaries 
and dislocations m ay ac t as sources an d  sinks for v acan t sites an d  a c t to 
maintain equilibrium. T h e  m odifications required  in the equations if the 
vacant sites are no t in equilibrium  are discussed.

Variable Phase-Shift Frequency-Modulated Oscillator. 0 .  E , d e  L a n g e .1 
I.R.E., Proc., V. 37, pp . 1328-1331, N ov., 1949.

A b s t r a c t —T he theory  of operation  of a  phase-shift type of oscillator is 
discussed briefly. T h is oscillator consists of a  b road-band  am plifier, the o u t
put of which is fed back to the inpu t th rough  an electronic phase-shifting 
circuit. The instantaneous frequency is controlled b y  the phase sh ift th rough 
this latter circuit. T ru e  F M  is ob ta ined  in  th a t  frequency deviation  is 
directly proportional to  th e  instan taneous am plitude of the m odula ting  sig
nal and substantially  independen t of m odulation  frequency.

A practical oscillator using th is circu it a t  65 me is described.
Erosion of Electrical Contacts on M ake.}  L. H . G e r m e r 1 an d  F. E . H a 

w o r th .1 Jl. Applied Phys., V. 20, p p . 1085-1108, N ov., 1949.
A b s t r a c t ’—W hen an  electric cu rren t is established by  bringing two elec

trodes together, they  necessarily discharge a  capacity . Unless the cu rren t 
which is set up is above 1 am pere, the erosion w hich is produced in a low 
voltage circuit is appreciable only w hen th e  capacity  is of appreciable size 
and when it is discharged very  rap id ly  by an  arc. W hen the arc occurs, its 
energy is dissipated alm ost en tirely  upon the positive electrode and , when 
the circuit inductance is sufficiently low, m elts o u t a  c ra te r in te rm ed ia te  in 
volume between the volum e of m e ta l which can be m elted  by  the energy

'  B  t T ” ' 1 * ^ ' S a r ' l c ' c  m a ^  ° h l a ' nccl  o n  r e q u e s t  to  t h e  e d i t o r  o f  th e  B . S . T . J .
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an d  th a t w hich can be boiled. Some of the m elted m etal lands on the nega
tive electrode and, w ith repe tition  of the phenom enon, results in a mound 
of m etal transferred  from the anode to  the cathode. T h is  transfer, which is 
abou t 4 X  10-14 cc of m etal per erg, is the erosion w hich occurs on the 
m ake of electrical contacts.

T h e  arc voltage is of the order of 15. If the in itia l circuit potential is ‘ 
m ore th a n  ab o u t 50 volts, there m ay be m ore th a n  one arc discharge, suc
cessive discharges being in opposite directions an d  resulting  in  the transfer 
of m etal in opposite directions— always to  the electrode which is negative.

T he occurrence of an  arc is dependent upon the condition of th e  electrode 
surfaces an d  upon th e  circuit inductance. F or “ inactive” surfaces an arc 
does no t occur for inductances g rea ter th a n  ab o u t 3 m icrohenries. Platinum 
surfaces can be “ ac tiv a te d ” b y  various organic vapors, an d  in  the active 
condition  they  give arcs even w hen the  circuit inductance is greater than 
th is lim iting  value by  a factor of 103.

The Conductivity of Silicon and Germanium as Affected by Chemically In
troduced Im purities. G. L . P e a r s o n .1 P ap er presen ted  a t  A. I. E . E ., Swamps- 
co tt, M ass., Ju n e  20-24, 1949. Included  in  com pilation on semiconductors. 
Elec. Engg., V. 6 8 , pp. 1047-1056, D ec. 1949.

A b s t r a c t — Silicon an d  germ anium  are sem iconductors whose electrical 
properties are highly dependen t upon  the  am oun t of im purities present. , 
F o r exam ple, the  in trinsic conductiv ity  of pure silicon a t  room temperature 
is 4 X  10-6  (ohm  cm )-1  an d  the add ition  of one boron a to m  for each million 
silicon a tom s increases th is to  0.8 (ohm  cm )-1, a factor of 2 X  105.

A lthough such im p u rity  concentra tions are too w eak to  be detected by 
s ta n d a rd  chem ical analysis, the  use of rad ioactive tracers an d  the Hall 
effect has m ade it possible to  m ake q u an tita tiv e  m easurem ents a t  impurity 
concentrations as sm all as one p a r t  in 5 X  108.

Silicon an d  germ anium  are elem ents of the fourth  group of the periodic 
tab le  w ith  the  sam e crysta l s tru c tu re  as d iam onds and  they  have respec
tively  5.2 X  1022 an d  4.5 X  10” atom s per cubic cen tim eter. T he addition 
of im purity  elem ents of the th ird  group such as boron or alum inum  gives 
defect or p -type conductiv ity . E lem ents from the fifth  group such as phos
phorous, an tim ony  or arsenic give excess or n -type conductiv ity .

T h e  conductiv ity  a t  room  tem peratu re , where it  has been shown that 
each im p u rity  atom  contribu tes one conduction charge, is given by equa
tion  (1) where N  is the num ber of solute atom s per cubic centim eter.

<r =  A +  BN. 0)
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The constants A and  B for the various alloys investigated  are given in the 
following table:

Alloy A B

Si -j- B 4 X 10-° 1 .6  X  10- "
Si -b P 4 X KP« 4 .8  X 10- "
Ge +  Sb 1.7 X 10- J 4 .2  X 10->6

Equation (1) applies to  solute atom  concentra tions as high as 5 X  1019 
per cc. At higher concentrations the m obilities are lowered due to  increased 
impurity scattering so th a t  the com puted  conduction is higher than  the 
measured.

Microslruclures of Silicon Ingots .f  W. G. P f a m n 1 an d  J. IT. S c a f f .1 

Metals Trans., V. 185 (J l . M etals, V. 1) pp. 389-392, June , 1949.
Increasing Space-CIiarge W aves.] J . R . P i e r c e .1 J l. A pplied  Pliys., V. 20, 

pp. 1060-1066, N ov. 1949.
A b s t r a c t —An earlier paper presen ted  equations for increasing w aves in 

the presence of two stream s of charged particles having different velocities, 
and solved the equations assum ing the  velocity  of one group of particles to 
be zero or small. N um erical solutions giving the  ra te  of increase and  the 
phase velocity of the  increasing wave for a w ide range of p aram eters, cover
ing cases of ion oscillation and  double-stream  am plihcation , are p resen ted  
here.

Traveling-Wave Oscilloscope. J . R . P i e r c e .1 Electronics, V. 22, pp. 97-99, 
Nov., 1949.

A b s t r a c t —This paper describes a  1,000  vo lt oscilloscope tube w ith  a 
traveling-wave deflecting system . T he tube is su itab le for viewing periodic 
signals with frequencies up  to  500 m e. A signal of 0.037 vo lt in to  75 ohm s 
deflects the spot one spo t d iam eter. A few m illiw atts in p u t gives a good 
pattern, so th a t the tube can be used w ithou t an  am plifier. I he p a tte rn  is 
viewed through a six ty  pow er microscope.

P-type and N -lype Silicon and the Formation of Photovoltaic Barrier in  
Silicon Ingots.f  J . H . S c a f f ,1 IT. C. T i i e u r e r e r 1 and  E. E . S c h u m a c h e r .1 

Metals Trans., V. 185 (Jl.  M etals, V. 1) pp. 383-388, Jan ., 1949.
longitudinal Noise in  A ud io  Circuits. H . W . A u g u s t a d t 1 an d  W. F . 

K a n n e n b e r g .1 A udio  Engg., V . 34 , p p .  2 2 -2 4 , 4 5 , Jan ., 1950.
Transistors. J. A . B e c k e r .1 C om pilation of th ree papers presen ted  a t 

A. 1. E. E. m eeting Sw am pscott, M ass., June  20-24, 1949. Elec. Engg., 
V- 69, pp. 58-64, Jan ., 1950.

t  A reprint of this article m ay be obtained on request to the editor of the B.S. I .J.
1 B.T.L.
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A pplication of Thermistors to Control Networks.f  J. H . B o l l m a n 1 and 

J. G. K r e e r .1 I .  R . E ., Proc., V. 38, pp. 20-26, Jan ., 1950.
A b s t r a c t — I n  connection w ith the application  of therm istors to  regulat

ing an d  indicating  system s, there have been derived several relations be
tw een curren t, voltage, resistance, an d  power which determ ine the electrical 
behavior of the therm istor from  its various therm al an d  physical constants. 
T h e  com plete differential equation  describing th e  tim e behavior of a di
rectly  h ea ted  therm istor has been developed in  a  form  which m ay be solved 
by  m ethods appropria te  to  the problem .

Sensitive Magnetometer fo r  Very Sm all A reas.f  D . M . C h a p i n .1 Rev. Sci. 
Instrum ents, V. 20, pp. 945-946, D ec., 1949.

A b s t r a c t — A v ib ra ting  wire system  for m easuring w eak m agnetic fields 
is described for use in very  small spaces. Q uartz  crysta ls are used for drivers 
to  get sufficient velocity  w ith  v ery  sm all displacem ents. T o  ad just the 
driv ing voltage to  correspond exactly  to  the n a tu ra l crysta l frequency, the 
c ry sta l is also used to  regulate the  oscillator.

M ethod o f Calculating H earing Loss fo r  Speech fro m  an Audiogram .f H. 
F l e t c h e r .1 Acoustical Soc. A m ., J l .,  V. 22, pp. 1-5, Ja n ., 1950.

A b s t r a c t —T h e question  frequen tly  arises, C an one com pute the hearing 
loss of speech from  th e  audiogram  an d  th u s m ake it  unnecessary to make a 
speech te s t a fte r  the  hearing loss for several frequencies has been recorded. 
This paper shows th a t  th is can be done b y  tak ing  a  w eighted average of the 
exponentials of the  hearing  loss a t  each frequency. Or if f t  is the hearing 
loss for speech an d  pi th e  hearing  loss a t  each frequency,

1 0 w./io> =  j G 1 0 W 10)df

T h e  w eighting fac to r G w as determ ined  b y  F le tcher an d  G alt from  thresh
old m easurem ents of speech com ing from  filter system s. As specifically 
applied  to  the  case of hearing  loss a t  the  five frequencies 250, 500, 1000, 
2000 an d  4000 cps, the  above eq u a tio n  is app rox im ate ly  equ ivalen t to

f t  =  - 1 0  log [.01 X  10“ Wl/10) +  .13 X  10_  032/10>
+  .40 X  1 0 - ™  +  .38 X  1 0 ~ ™  +  -08 X  l O ^ ' 10'

w here f t  is hearing loss a t  250 cps 
f t  is hearing loss a t  500 cps 

is hearing loss a t  1000  cps 
f t  is hearing loss a t  200 0  cps 
f t  is hearing loss a t  4000 cps

f  A reprint of this article m ay be obtained on request to the editor of the B.S. T.J.
1 B .T.L.
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Designing for A ir  P urity . A. M . H a n f m a n n .2 Heating &  Ventilating, V. 
47, pp. 59-64, Jan ., 1950.

Reciprocity Pressure Response Formula W hich Includes the Effect o f the 
Chamber Load on the M otion o f the Transducer D iaphragm s. f  M . S. H a w l e y .1 

Acoustical Soc. A m ., J l .,  V. 22, pp . 56-58, Ja n ., 1950.
A b s t r a c t —In  order to  reduce th e  effects of w ave m otion in the  coupling 

chamber to perm it reciprocity  pressure response m easurem ents to  h igher 
frequencies, only two of the  th ree  transducers involved are coupled a t  a 
time to the cham ber. G iven for these conditions is a  deriva tion  of th e  p res
sure response form ula w hich includes the effect of the  cham ber load on the 
motion of the transducer d iaphragm s.

Theory of the “Forbidden” (222) Electron Reflection in  the D iam ond Struc
ture,f R. D. H e id e n r e ic h .1 Pleys. Rev., V. 77, pp. 271-283, Jan . 15, 1950.

A b s t r a c t—T h e dynam ical o r w ave m echanical theory  of electron diffrac
tion is extended to include several d iffracted  beam s. In  the Brillouin zone 
scheme this is equ ivalen t to  te rm inating  the inciden t c rysta l w ave vector 
at or near a zone edge or com er. T h e  problem  is th en  one of determ ining the  
energy levels and  w ave functions in the  neighborhood of a  corner. T he solu
tion of the Schrödinger equation  near a  zone corner is a linear com bination 
of Bloch functions in  w hich th e  w ave vectors are determ ined b y  the  boundary  
conditions and the requ irem en t th a t  the  to ta l energy be fixed. T h is leads to  
a multiplicity of w ave vectors for each d iffracted  beam  giving rise to  in te r
ference phenom ena an d  is an  essential fea tu re  of th e  dynam ical theory .

At a Brillouin zone edge form ed b y  boundaries associated w ith  reciprocal 
lattice points S and  0  the  o rthogonality  of the u n pertu rbed  w ave functions 
in conjunction w ith  the  periodic p o ten tia l requires th a t  ano ther recipro
cal lattice point A be included in  th e  calculation. T h e  indices of A m ust be 
such that (AiA2A3) =  (S1S2S3) — (gig2g3)- T h e  p ertu rb a tio n  a t  th e  zone edge 
results in non-zero am plitude coefficients Cg, Cs an d  Cj for the  d iffracted 
waves irrespective of w hether or n o t th e  stru c tu re  factor for A , s o r g v a n 
ishes. This is the basis of the explanation  of the  (2 2 2 ) reflection an d  since it 
arises through p ertu rb a tio n  a t  a  B rillouin zone edge or com er th e  te rm  
perturbation reflection” is advanced  to  replace th e  com m only used “fo r

bidden reflection.”
Hie octahedron form ed by  the (222 ) Brillouin zone boundaries exhibits 

an array of lines due to  in tersections w ith  o ther boundaries to  form  edges, 
fhis array of lines is called a “p ertu rb a tio n  g rid” and  the  condition for the 
occurrence of a  (2 2 2 ) reflection is sim ply th a t  the  incident w ave vec to r 
terminate on or near a grid line. N um erical in tensity  calculations are  pre-

j g H e P f t o t  o f  th is  a r t i c l e  m a y  b e  o b t a i n e d  o n  r e q u e s t  t o  t h e  e d i t o r  o f  t h e  B . S . T . J .

M V . E .' C o .
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sented  w hich show th a t  a strong  (222 ) can be accounted  for by  the dynamical 
theory.

A n im pedance netw ork  m odel is briefly discussed w hich m ay  aid in quali
ta tiv e  considerations of the  dynam ical theory  for the case of several 
d iffracted waves.

Determination o f g-Values in  Paramagnetic Organic Compounds by Micro
wave Resonance. A. N . H o l d e n ,1 C. K i t t e i ,,1 F. R . M e r r i t t 1 and  W. A. 
Y a g e r .1 L e tte r  to  the E d ito r, Phys. Rev., V. 77, pp. 146-147, Jan . 1, 1950.

Nonlinear Coil Generators of Short Pulses, f  L . W. H u s s e y .1 I .R .E ., Proc., 
V. 38, pp. 40-44, Jan ., 1950.

A b s t r a c t — Small perm alloy coils and  circuits have been developed which 
produce pulses well below a  te n th  of a  m icrosecond in  du ra tio n  w ith repeti
tion  ra tes up  to a  few megacycles.

T he construction  of these coils is described. Low pow er circuits are di
cussed su itab le for d ifferent types of drive an d  different frequency ranges.

Subjective Effects in  B inaural Hearing. W . K o e n ig .1 L e tte r  to  the Editor, 
Acoustical Soc. A m ., J l ., V. 22, pp. 61-62, Jan ., 1950.

A b s t r a c t — E xperim ents w ith  a b inau ra l telephone system  disclosed some 
rem arkab le properties, n o tab ly  its ab ility  to  “ squelch” reverberation and 
background  noises, a s  com pared to  a system  having  only  one pickup. No 
explanation  has been found for th is subjective effect. I t  was also discovered 
th a t  a  w ell-know n defect in the directional discrim ination  of binaural sys
tem s was rem edied b y  a  m echanical arrangem en t which ro ta ted  the pickup 
m icrophones as the listener tu rned  his head.

Corrosion Testing o f Buried Cables. T . J . M a i t l a n d .3 Corrosion, V. 6 , pp- 
1-8, Jan ., 1950.

40AC1 Carrier Telegraph System . A. L. M a t t e .1 Tel. &  Tel. Age, No. 2, 
pp . 7-9, Feb., 1950.

Giving N ew  L ife  to Old Equipm ent. P . H . M i e l e .3 Bell Tel. Mag., V. 25, 

pp. 154-163, A utum n, 1949.
Thermionic Em ission of T h in  F ilm s o f A lka line Earth Oxide Deposited b)' 

Evaporation, f  G. E . M o o r e 1 a n d  H . W. A l l i s o n .1 Phys. Rev., V. 77, PP- 

246-257, Jan . 15, 1950.
A b s t r a c t — M onom olecular films of BaO or SrO were deposited by evap

o ration  on clean tungsten  or m olybdenum  surfaces w ith  precautions to elimi
n a te  effects caused by  excess m etal of the  oxide or by  heating. Thermionic 
emissions of the sam e order of m agnitude as from  com mercial oxide cathodes 
have been obta ined  from  these system s. T h e  resu lts can be explained quali
ta tive ly  b y  considering the adsorbed molecules as oriented  dipoles. A l t h o u g h

f  A reprint of this article m ay be obtained on request to the editor of the B .S.l J-
1 B . T . L .
3 A. T. & T .
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the results m ay suggest a  possible m echanism  for a po rtion  of the  emission 
from thick oxide cathodes, there exist serious obstacles to such th in  film 
phenomena as a com plete explanation.

Long Distance, F inds the W ay. W . H . N u n n .3 Bell Tel. M ag., V. 28, pp. 
137-147, A utum n, 1949.

Private L ine Services fo r  the A viation Industry . PI. V. R o u m f o r t .3 Bell 
Tel. Mag., V. 28, pp. 1-65-174, A utum n, 1949.

Growing and Processing of Single Crystals o f M agnetic M etals.f  J. G. 
W a l k e r , 1  H, J. W i l l i a m s 1 an d  R . M . B o z o r t i i . 1 Rev. Sci. Instrum ents, 
V. 20, pp. 947-950, D ec., 1949.

A b s t r a c t —-Single crysta ls of nickel, cobalt and  various alloys are grown 
by slow cooling of th e  m elt. T h ey  are oriented  by  op tical m eans an d  b y  
X-rays, and ground to  the  desired shape using the  technique described.

A Look Around— and Ahead. L . A. W i l s o n .3 Bell Tel. M ag., V. 28, pp. 
133-136, A utum n, 1949.

t  A  re p r in t  o f  t h is  a r t i c l e  m a y  b e  o b t a i n e d  o n  r e q u e s t  to  t h e  e d i t o r  o f  t h e  B . S . T . T .
1 B .T .L ,
1 A . T .  &  T .
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