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ON SOME PROPERTIES OF RESIDUALLY  
FINITE GROUPS*

Sum m ary. We collect known properties of residually finite groups 
and show th a t the question of A. Shalev has a positive answer for 
residually finite groups.

O P E W N Y C H  W Ł A S N O Ś C IA C H  G R U P  R E Z Y D U A L N IE  
S K O Ń C Z O N Y C H

Streszczenie. Przedstaw iam y znane własności grup rezydualnie 
skończonych (inaczej: skończenie aproksymowalnych) i pokazujemy, że 
w tej klasie grup problem  A. Shaleva m a rozwiązanie.

1. P ro p erties  o f  residually  fin ite  groups

By we denote th e  family of all subgroups of finite index in a group G:

Wo = {H \ H  < G, \ G : H \ <  oo}.
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The set 91g depends on the group G  and always contains it. If there  is 
no other subgroup we call TIg singular. For exam ple for finitely generated 
infinite simple group, is singular (a simple group has no proper norm al 
subgroups, hence from  Lemma 1(3) below, has no proper subgroups of finite 
index). We note the  following properties:

L em m a 1.

1. Let G be a finitely generated group. Then the number o f  subgroups of  
G having any fixed finite index n is finite (M. Hall, see [7]).

2. The set TIg is closed under finite intersections. An  intersection of an 
infinite number o f  subgroups in Ttg does not belong to TIg-

3. Every H  £ f^G contains a normal subgroup o f G o f finite index in G, 
and hence G posses a finite homomorphic image.

Proof. 2. By Theorem  of Poincare [12, 1.3.12] a finite intersection of 
groups in D3g is a group in TIg- To prove the second p a rt we assum e th a t an 
intersection of an  infinite family has a finite index -  flsgs H s = K ,  |Sj =  oo. 
Since \G : K \ = |G : H S\\HS : K |, then  |G : H s \ divides |G : K \.  Thus there 
is only a finite num ber of divisors of |G  : K |, and for each divisor, say dt , 
by (1) there  is only a finite num ber of groups of index d,. This implies th a t 
|S'| <  oo, which is a contradiction.
3. By T heorem  of M. Hall [7, 4.7] every subgroup H  €  9Ig contains a norm al 
subgroup N  < G, N  £  TIg (the intersection of conjugates). Since for such 
a subgroup N  there  exists a hom om orphism  ip such th a t Kerp> — N ,  then 
Gv is fin ite .m



On some properties of residually finite groups 35

T h e o re m  1. Properties o f subgroups in fHp fo r  a free finitely generated 
group F(see [7, 1,3]):

1. I f  F  is free o f finite rank >  1 and H  £  91^, then H  has finite rank 
and:

ra n k(H )  — 1
\ F : H \

ra n k(F )  — 1

2. Let A  be a finite subset of F  and K  be a finitely generated subgroup 
of F  disjoint from A. Then K  is a free factor of a subgroup H £ 
disjoint from A.

3. I f  a finitely generated subgroup K  o f F  contains a non-trivial normal 
subgroup o f F , then K  has a finite index in F .

4. Every non-trivial finitely generated normal subgroup of F  is in 9V-

5. I f  H  is a finitely generated subgroup o f a free group F  which has 
a non-trivial intersection with every non-trivial normal subgroup of 
F , then H  is in

6. I f  H  has a finite index in a free group F , then H  has a non-trivial 
intersection with every non-trivial subgroup of F .

T h e o re m  2. For a group G the following conditions are equivalent:

1. For every nontrivial g £  G there exists H  £ TIg , H  < G such that 
g & H .

2. The intersection of all subgroups in 9!g is trivial.

3. For every two different elements g ,h  £ G there exists a homomorphism
with a finite image, such that gv hv .
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4- For every nontrivial g G G there exists a homomorphism  cp o f G, with 
a finite image, such that gv 7  ̂ 1 .

5. A group G is isomorphic to a subcartesian product o f its fin ite quotient 
groups.

Proof. We show the  equivalence in several steps:

1. (1) « ( 2 )
If all subgroups intersect in the  unity, then for every elem ent g G G  there 
exists a t least one subgroup N  not containing g. By (3) in Lem ma 1 there 
exists H  < N ,  H  <G and g H  as required. Conversely, if for every element 
g there exists a subgroup in 91 g which does not contain g, then all subgroups 
in fRc can intersect only in unity.

2 . ( 1 )  » ( 4 )
Let (1 ) holds. Since every norm al subgroup is a kernel of a certain  hom o
m orphism , then  Vp G G, 3p, g £  K e r p , which means th a t gv /  1 and (4) 
holds. Conversely, let V<7, 3p, gv 1, \Gifi\ <  0 0 . Then Gv ~  G / K e r p ,  g $  
K e r p  G TIg- We pu t H  :=  Kemp  and (1) holds.

3. (3) » ( 4 )
(4) follows im m ediately if substitu te  h by 1 in (3). Conversely, if we take 
gh~ l instead of g in (4), we obtain  th a t {gh~l Y  1, and hence gv ^  h v as 
required.

4. (2) ^ ( 5 )
Let H l G TIg, * € I. We define a hom om orphism  p  of G  into a cartesian 
product of its finite quotient groups in the following way: Vg € G, g —» 
(g H i ,g H 2, . . . ) .  T hen G v is a subcartesian  product of finite quotient groups 
of G. We shall prove th a t if (2) holds, then p  is a m onom orphism . Let 
gv = h v , then  {gh~l )v — 1 , so (gh~l H x,gh~ xH 2, . . . )  =  ■ ■.), which

implies th a t Vi, gh ~ l G Hi. Since fltfeTtG ^  = t îen =  which 
m eans, th a t p  is an injection, as required. Conversely, let G v be a subcarte
sian p roduct of G /H i,  H{ <3 G , Hi G 9Tg- Then Kemp  =  n Wi€qrjG H ,. Since
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p  is an injection then  K e r p  =  1 and hence the intersection of norm al sub
groups in 9!g is trivial, which means th a t the intersection of all subgroups 
in 91g is a lso tr iv ia l..

D e f in it io n  1. A group G is called r e s id u a l ly  f in ite  i f  it satisfies one 
o f the properties given in Theorem 2.

E x a m p le  1. A finite group is residually finite. Let G be finite. Taking 
ip = id in (3) we obtain that G is residually finite.

E x a m p le  2. Let G  =  (x ) be an infinite cyclic group. So G is isomorphic 
to Z. Then Mg E Z, Bn € N  such that (g , n ) =  1, which means that g n Z . 
Since Z / n Z  =  Z n and \Zn\ =  n, then G satisfies (1) in Theorem 1 and 
hence is residually finite.

Now we give a few properties known from the  literature  about classes of 
groups which are residually finite and then  about a subclass of residually 
finite groups.

L e m m a  2.

1. An  extension o f a residually finite group by a finite group is a residually 
finite group [6].

2. A subgroup o f a residually finite group is a residually finite group [6].

T h e o re m  3. Classes of residually finite groups:

1. Every free group is residually finite (see [12, 6.1.9]).

2. (Finitely generated free)-by-cyclic groups are residually finite [2],

3. Every finitely generated nilpotent group is residually finite [6]. 
Infinitely generated ones do not have to be residually finite -  
e.g. a group o f type Cp°° fo r  any prime p is not residually finite.
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4■ Finitely generated soluble groups are not necessarily residually f i 

nite [1].

5. Every finitely generated abelian-by-nilpotent group is residually finite. 
In particular, f.g. metabelian groups are residually finite [6].

6. Every finitely generated complex linear group is residually finite [4]-

T h e o r e m  4. ( P r o p e r t i e s  o f  re s id u a l ly  f in i te  g ro u p s ) .
Let G be any residually finite group and G fg be a finitely generated residually 
finite group. Then:

1. A u t(G fg )  is residually finite (Baumslag, see [7, 4-&])-

2. Gfg is hopfian (M al’cev, see [7, 4-10]).

3. A semidirect product o f G /g by G is residually finite (M al’cev, [9]).

4■ I f  G is n-Engel, then it is nilpotent [15, 1.2].

5. I f G  satisfies a positive law, then it is nilpotent-by-(finite exponent) [3].

6. There exists a group G which gives a negative answer to Burnside  
problem [5]: Are finitely generated periodic groups finite?

We show below th a t the question of A. Shalev has positive answer in the 
class of residually finite groups.

2. C ollapsing  groups problem

By a p o s it iv e  r e la t io n  on k variables X i , . . . , x j t  (k -ary relation) we 
m ean a relation of th e  form

u ( x i , . . . , x fc) =  v ( x i , . . . , x fc), (1)
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where th e  different words u and v are w ritten  w ithout negative powers of 
variables.

We say th a t relation (1) is a positive law (a sem igroup identity)
in a set (a group etc.) S  if it holds when substitu te  any elements in S for 
variables x \ , . . . ,  Xk-

A group G  is called n-collapsing if VS1 =  {<7i,<72, • • • i9n)i9 i  £ G 
(n fixed), |5 n | <  |S |n. A group is called collapsing if there exists n such 
th a t the  group is n-collapsing.

In [14] A. Shalev posed a question if a collapsing group satisfies a positive 
law. Combining this w ith Corollary C [14] we obtain  th a t the question has 
a positive answer for residually finite groups. Here we give the  proof of that 
fact (om itted  in the  article). We use a result in [14] (cf. Theorem  B).

T heorem  5. There exist functions k ,c  such that every finite group T  
which is n-collapsing possesses a nilpotent normal subgroup N  such that:
(1) e x p (T /N )  divides k ( n ) and
(2) every 2-generator subgroup o f N  is nilpotent of class at most c(n).

Positive laws defining nilpotent groups were found by M al’cev [8]. We 
use here the  positive laws given in [10]. In order to s ta te  this laws, we define 
a sequence of words P, in the variables x, y, zi,  z2, . . .  inductively:

P i(x ,y )  = xy, P2( x , y , z i )  = P i(x , y ) z 1P1(y, x),

P t+ i(x , y, z u  . . .  ,Zi) = P i(x , y, z u  . . . ,  z,_-1)ztP l(y, x , z l t . . . ,  z ^ i ) .

A group is n ilpoten t of class a t m ost c if and only if it satisfies the  positive 
law:

P c( z , y , z i , . . . , z c- i )  =  Pc( y , x , z i , . . .  ,z c_ i).

The above law implies a nontrivial binary positive law if we pu t 1 for all z,:

Pc(x ,y ,  1,1, . . . , 1 ) =  P c( y , x , l , l , . . . , l ). (2)
c —1 c - 1
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Now we prove:

T h eorem  6. A residually finite collapsing group G satisfies a positive 
law o f the type Pc( x k, y k, 1 , 1 , . .  . , 1 ) =  Pc{yk, x k, l ,  1 , . . . ,  1).

c— 1 c—1

Proof. Let H  < G,  H e  TIg- If G  is n-collapsing, then  every one of 
its subgroups and hom om orphic images is also n-collapsing [14]. So G / H  is 
finite and n-collapsing. We denote T  :=  G / H .  Then by Theorem  5., T  con
tains a norm al subgroup, every 2-generator subgroup of which is n ilpo tent of 
class a t m ost c, where c depends on n only and hence the  norm al subgroup 
in T  satisfies the  law (2). Again by Theorem  5., the  quotient of T  by this 
norm al subgroup has exponent dividing k , where k  depends on n only. This 
implies th a t for every H  < G, H  €  TIg, G / H  satisfies the  binary  positive 
law:

Pc(xk , yfc, 1 , 1 , . . . ,  1) =  Pc{yki 1) 1| • ■ •, !)•
^  ' V  ^  S*1 -« v *  S

C—1 C—1
Since G  is residually finite, then  by property  (5) in Theorem  1. it is a 

subcartesian  p roduct of the finite groups G / H , each of which satisfies the 
same law. So G  also satisfies the  same positive law as required .m
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S treszczen ie

G rupa G nazyw a się kolapsująca (collapsing), jeżeli:

3 n  V S  =  f a l , # ,  - • ■ ,9n}, 9i e  G, |S n | <  |S |n .

W [14] A. Shalev postaw ił pytanie, czy grupa kolapsująca musi spełniać 
tożsam ość półgrupow ą. Udowadniamy, że rezydualnie skończona grupa ko
lapsująca spełnia nietryw ialną tożsam ość postaci:

Pc{xk , y k, 1 , 1 , . . . , ! ) =  Pc(yk , x k , 1,1,
C— 1 c— 1

gdzie Pi definiuje się indukcyjnie [10]:

Pi {x , y )  = xy,  P2(x ,y ,Z i )  = P i ( x ,y ) z 1P 1(y ,x ) ,

P i+ i  ( x ,  y ,  Z \ , . . .  , 2 ; )  =  P f x ,  y ,  Z \ , . . . ,  z , _ i ) z iP { (y , x ,  Z i , .  . . ,  2 { _ i ).
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