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ERGODITY OF PARTICULAR OSCILLATING
PROCESS

Summary. The paper deals with the time-continuous, non-Mar-
kov, oscillating process. We are interested in the existing conditions
and the form of its ergodic distribution.

ERGODYCZNOSC PEWNEGO PROCESU OSCYLUJACEGO

Streszczenie. Tematem pracy jest proces oscylujacy z ciagtym
czasem. Proces nie jest markowowski. Interesujg nas warunki istnienia
oraz postac jego rozktadu ergodycznego.

Let {a.}“ ! and be two sequences of random variables. Assume
that all these variables be indepedent. Variables a, have the same distribu-
tion Vi. Variables k, are non-negative and have the same distribution Wi-
Let us create stochastic process £i(t),t ~ 0, as follows:

tfI(t) n 0

6(0 = - (£1a”> Mo = max{" >0:{CK"0>» E =°)
= 1=
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Denote:

rify) = mi{t:6 (t) < -y}, 71(y) = - 6 (n(y)) - v, y” o.

Process 6 (0 is defined in similar way. We have another two sequences of
random variables {AOiSi i {A-}* ! . Assume that all mentioned variables
are independent, /?, have the same distribution V2, A are non-negative and
have the same distribution W2. Similarly for t ~ O

(*) n

6(0 = £ A, N2(0 = max{n>0:£ A< <}
1=1 t=i
r2(x) = inf{i :6 (0 > *}, 72(z) = 6 (r2(*)) ~ X "N o0.

Our main purpose is to check limit peculiarities of process G(0> 2 ~ 0)
defined as follows:

6(0 + 2 for 0 < t < n(z),
6(0 - 60 - Ti(0) - 7i(2) for ri(2) M t < Ti(z) + r2(7i(z2)),
Ct2(7i(D)0 - ri(0 - t2(7i(2))) for ri(0 + t2(7i(2)) < <

For 2 < 0 the definition is analogous.

In articles [1,4,6] their authors have dealt with oscillating random walk
with one switching point. The article [5] deals with more complicated prob-
lem - random walk with two switching points. The time-continuous process
when switching takes place with one stochastic process with independent
increments to another has been described in [2]. In this article we consider
the time-continuous process in which switching takes place between two
non-Markov processes. The switching point is zero. General idea of exam-
ination of the processes of this kind has been taken from [2], but specific
character of this process has caused important changes. Here are main the-
orem.
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Theorem 1. If positive parts of the distributions V\ and V2 have
non-zero absolutely continuous components and:

0 < E(ai), 0< E(/3i), E(Ki) < o0, "(A,) < oo,
E(af) < oo, E($) < oo,
then for every x there exists a limit:
hm P((z(t) < x)
and it does not depend on z.

Proof of this theorem will be conducted in two stages. First, the existence
of this limit will be proven with weaker assumptions and for less complex
version of the process (z(t). Let variables a- and /¢ be non-negative with
distributions Fj and F2. Then the Theorem 2 is true.

Theorem 2. If distributions F\ and F2 have non-zero absolutely con-
tinuous components and:

E(aR) < oo, E(/3?) <00, £(«e°) <00, F(A,) < oo,
then for every x there exists a limit:
tl.ino P(sz(t) < z)
and it does not depend on z.

Proof of theorems. Theorem 1 will be the corollary from the Theo-
rem 2, which will be proven. Firstly let us make some considerations and
prove some lemmas. Let B be the Borel set from (0,00). For non-negative
y denote By — {x :x —u + y,u € B}. Let us find distribution 7i(y). We
can write equation:

y

p{I\{y) eB} = F1(By)+ 1 P{ii{y - u) e B}YdFI(u).
0
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This renewal equation has solution as follows:

y
P{li(y) e B) = Fi(By) + f Fi(By-u)dHi(u),
0
where H, = £ “=1 ¢, T, F{* = Fu Ftn+1)*= F1* F?\ Similarly:
P{72(x) e B} = F2(Ex) + | F2(Bx-u)dH2(u),
0
Function under last integrate has finite total variation. Distribution F2
has finite average which we denote m2, and absolutely continuous component
causes that distribution is not lattice. From main renewal theorem we have:

Jig P{72(x) € B} = lefoFZ(Bu)du.
0

Denote this limit by y(B). Function <p(B) is Borel maesure on (0,00) and
¥>((0,00)) = 1.

Lemma 1. If non-negative distribution F2 has absolutely continuous
component then for every fixed 0 < e < 1 we can find k such that for every
positive x and every Borel set A from (0,00):

F(AY< A =* p{72(*) e A) ~ 1-

Proof of Lemma 1. For convenience we will be using 7,F, H instead
of 72,F2,H2. Assume that for certain e exists sequences x*, Ak such that:

* pM x k) e Ak} > 1-~.

We can establish that x* has a limit (perhaps 00). Denote Bn = UStLn At
B = n*“ i PneThe following relation is true:

@ @ |

*><E")« 5% = A
k=n k=n L L
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thus:
¥>(£“) —e 0, V{B) =0.

Next for n ~ k we have:
P{7(xfc) € Bn} > P{7(x®H) ¢ Ak} > 1-

so for every n P{7(xjt) GP”} —t 1 with ft —oo0.

There are two possibilities: xk — oo or xf — x0. In the case when
Xc — 00 we see that ~(P") —Ilim”~oo0 P{7(zjc) € 5"} = 1 It is in conflict
with <p(Pn) —0.

And now xk —x0. Let us write F in form sum of components (absolutely
continuous, discrete, singular) F = Fc+ Fd + FO. Denote by Pc{7 (x) Gd}
this part of distribution P{7(x) G A} which comes into existence only due
to component Fc, i.e.

Pe{7(x) G A} = FQAX) + J Fc(Ax-u)dHc(u).
0
Hc is renewal function for Fc. Function Pc{7 (x) G A} is continuous with
respect to, x, moreover Pc{7(x) G A} » P{7(x) G A] and Pc{7(r) G
R+} = a > 0. Due to fI" being decreasing we have two possibilities mutually
excluding. First one is that for any m Pc{7 (x0) ¢ P+ \ P78 = b > 0. Hence
with fc —» o0o:

P{7(x*) c F+\ PTG} " Pc{7(xf) 6 R+\ P7} —>h.

It is in conflict with P{7(x*) ¢ P+\ P70 —>0. The second possibility is
that P{7(x0) G R+ \ Bn} — O for every n. We thus infer that P{7 (x0) &
P} = a and next that set B has positive Lebesgue measure. But <p(B) = 0
implicates gc(B) = 0 where:
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- EoFc(Au)du.

m°o

Vgs)

Hence we obtain that B has Lebesgue measure zero. It is impaossible..

Lemma 2. Under conditions from Theorem 2:

[e]e]

sup / ZP{A(U) £ dZ} < 0o0.
u?Ob

Proof of Lemma 2. Denote Hit) = H(t) + 1,H(t) ~ 0. Let us fix u
and make calculations:

J 2P{Mu) €413 =0 P{i(u) A )d1 =

0 0

S - Rl 4u- ))R{G = ] ] (1- F2)dd(H() - H{u) :

00 O u-t

= (H(t) - H(u)) J 1- F(z))dzV - j(H[t) - H(u))(1- F(u - t))dt =

u—t ~ 0

= H(u)j(1- F(z))dz- j H(u-t)~ H(u))(1- F(t))dt =
u 0
(. u

-u - F(z))dz +j (H(u) - - 0)(1- F(i))rfL

T/ 00 00
As you know —fU is bounded. Next u /(1 —F(z))dz ~ f z(1—(z))dz »

1(‘)2(1 - F(z))dz which is finite. And lastly from main renewal theorem

H(u) —H(u —0 ~ at + band it implicates that last integrate is finite..

Denote by u0 —0,u2, ... the moments when process (z(t) comes back
on positive half-plane. Let us create Markov chain Xn —(z(vn)-
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Lemma 3. Markov chain Xn is ergodic and for its stationary measure
T+ the true is that:

J zir+{dz} < oo.

Proof of Lemma 3. Let us write formula for conditional distribution
for chain Xnm
P{Xi+1€ B\xi = x} =J P{7i(x) Gdu}P{"2(u) GB} = Q(x, B).
0
Function Q complies with Doeblin condition when the measure occuring in
this condition is pwhich was denoted earlier. The true is:

Q{x,B) =J P{7j Gdu}P{j2(u) GB} » 1- ~ =6

for certain natural k and every e G (0; 1) if <p(B) ~ » mWe yet have to prove
the existence of the average. For stationary distribution we have n+(A) =

0o

/ Q(u, A)n+{du} hence, in accordance with Lemma 2

00 00 00

Jzm{dzy =111 Gdz}P{xi{u) Gdv}n+{du} »
0 0O

oo

Nosup [ zP{"2(v) Gdz} »~ oo,
>0J

Proof of Theorem 2. Let us create the process rjz as follows: yz(t) =
Cz(ui)i ui ™ t < Vi+H- The process rfz is a semi-Markovian one with imbeded
Markov chain x> Denote by Q(t,x,B) transition function of this process.
Let be Qi(t, x, B) = Q(t, x, B) and:

t oo

Qnti(™ —3 X) dy'jQnft AU 12
00
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0o

R(ds,z,dy) = ~ Qn{ds, z,dy).
=

Assume also that x ~ 0. Then:

P{(z(t) » z} = -P{6(0 +z " x} + j R(ds,z,dy)P{fl{t - s) + y ™ x}.
00

We will use now more general version of the main renewal theorem (see [7]):

Theorem 3. If transition function Q (t,x,B) complies with the three
following conditions:

1) Function Q(x,B) = Q(o00,x, B) complies with Doeblin condition,

2) m+ = f xn+{dx} < oo where n+ is stationary distribution for Q(x, B),
0

3) Q(t,x, B) is not lattice,

then for any non-negative function g(t,y),t ~ o,y " 0, immedi-
etely integrated in Riemann sense with respect to t for any y such that
f n+{dy} f g(t,y)dt < oo, true is:

0 0

t oo ~ 00 00
hm J J R(ds,z,dy)g(t - s,y) = — J tt+{dy}J g(t,y)dt.
00 m+ 0 0

Proof. We will prove, that Theorem 3 implicates Theorem 2. Three
conditions, which are mentioned earlier, are complied. It is a consequence
of assumptions and considerations made above. We will prove that function
P{£i(t) +y ™ x} is immediately integrated in Riemann sense. This function
is decreasing, thus to be ordinary integrated is sufficient. We have:

o 0o

J M6(0 +y A xydt <) AM{6(0 +) N aopdt M) PYri(y) M t}dt =
0 0

(0]
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= E(ri(y)) =E(Ki)(H!I(y) + 1) * cy + d,

what arises from Wald identity and propetries of renewal function. This and
Lemma 3 implicates also that:

— 1 n+{dy} ] P{(i(t) + y A x}dt < oo.

m+ 0 0
All of conditions of Theorem 3 are complied. Then, because of P{£i(i) +2 "
x} —0 with t -* 00, we obtain:

n (e]e) @0

. A _ . N
tI_LrgOP{Cz(t) X} ey n+{dy} J P{Ei(t) + y N x}dt.
0 0
Theorem 2 for non-negative X is proven. We can prove existence of the
limit for negative x in the same way by taking Markov chain in points where
process comes back to negative half-plane.m

Proof of Theorem 1. We will assymilate process (2(i) to less com-
lex version which was consider in Theorem 2. For that purpose we will use
ladder random variables. For random walk generated by {o,} first ladder
height we denote by Ai, and first ladder index by I\. Ladder height num-

ber k can be pictured in form Ax+ ... -f A* independent random variables
with distribution like Ax. Ladder index number k can be pictured in form
li + ... + Ik independent random variables with distribution like I\. For
random walk generated by {/?,} we denote in similar way Bland J,. Denote
h h+h Ji
K\ =Y Kmika2= Y etc-1= 1,2,3,.... Similarly: Aj = ~ Am,
771—1 m —1\-f1 771=1
JI+ 32
Ny = Y Am, etc. In our situation sequences Ai,K{ P, , A, are the se-
m—Jl¢1

quences of indepedent random variables with the same distributions which
we denote by Fi, G\, F2, G2. Moreover true is E(A2) < 00, E(Bf) < 00,
what arises from existence of the third moments for a,, (3{, and E (KI) < 00,
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E(A,) < oo. It is clear that distributions Fx, F2 have absolutely contin-
uous components. Therefore in identicall way we introduce Markov chain
and prove Lemmas 1, 2, 3. Similarly we introduce process rjz(t), transition

function Q(t, x, B). Here for x ~ 0 we have:
P{Cz(t) » x} = P{6(0 + r 7 x,rUJ'In£i(u) + 2> 0}+

+ J[ J[ R(ds,2,dy)P{"(t - s) +y " x,UnJE_nS £i(u) +y > 0}.
00
As has been done before we use Theorem 3. All three conditions, mentioned

there, are complied. Similarly:

oo oo

J P{Ci(t) + y » x,minfi(i) + y ~ 0}dt ~ J P{ry) ~ t}dt =

0 0

= Einiy)) = E(Ki)(Hi(y) + 1) * cy + d,
[ {dy} [ P{"(t) + y~ x,min”(i) +y ~ 0}dt < oo,
b b
and function P{Ci(t)+y * x, minu<t£i(t) +y ~ 0} isimmediately integrated

in Riemann sense. Thus:

m

lim p{cz(t) > x} =

t—too

= — f 7*{dy} [ P{Ci(t) +y > x, min*x(i) + y ~ 0}dt.
"0 0
We finish the proof for negative x like for the less complex process..
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Streszczenie

Btadzeniem przypadkowym nazywamy cigg postaci £n = au + ct2+ ... +
an, gdzie {oa, a2, ...} jest ciggiem niezaleznych zmiennych losowych o jedna-
kowym rozktadzie. Btgdzenie przypadkowe jest tancuchem Markowa o do-
brze poznanych wiasnosciach. W [1,4,6] byt rozpatrywany nowy rodzaj
btagdzenia przypadkowego, w ktérym rozkiad skoku w chwili n zalezy od
znaku £,,. Mamy wtedy (n+1 = £n+ a,-, jezeli > 0, oraz £n+1 = h + (3},
jezeli (n < 0, gdzie {ai,a2,...}, {(3\./?2,...} sa niezaleznymi ciggami nie-
zaleznych zmiennych losowych o jednakowym rozkiadzie w kazdym ciggu.
Taki rodzaj btgdzenia nazywamy oscylujgcym biadzeniem przypadkowym.
W tym artykule wprowadzamy analog z ciggtym czasem oscylujacego big-
dzenia przypadkowego. Skoki procesu £(t) majg miejsce w momentach od-

nowy ij,t2,..., gdy ((t) jest w dodatnej potptaszczyznie, lub w momentach
odnowy s1,s2,. . gdy ((t) jest w ujemnej pGiptaszczyznie. Procesy odnowy
ti,t2,. . Si,s2,.. *sg generowane przez dwa ciagi nieujemnych niezaleznych

zmiennych losowych {«m}, {A}. W artykule znajdziemy warunki wystar-
czajace do ergodycznosci procesu £(i) oraz wzo6r okreslajacy jego rozkiad
ergodyczny.



