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ON A PPL IC A T IO N  OF FINITE M ARKOV  
CHAINS TO E N C O D IN G  OF AUDIO DATA

Sum m ary. This paper presents convenient method for encoding 
digital audio data using basic properties of discrete Markov chains. 
The main idea is to find the “easy calculable” prognosis function and 
encoding the set of data as the differences from prognosis.

O Z A ST O SO W A N IU  SK O Ń C Z O N Y C H  Ł A Ń C U C H Ó W  
M A R K O W A  D O  K O M P R E SJI D A N Y C H  A U D IO

Streszczenie. Artykuł prezentuje metodę kompresji cyfrowych da­
nych audio opartą na algorytmie wykorzystującym własności łańcu­
chów Markowa.
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1. In trod u ction

Let Xk  for k = 1 , 2 , . . .  be the finite homogeneous Markov chain with the 
state space { 1 , . . . ,  N }.  We make no assumption on the initial distribution 
(it may be stationary). The transition probabilities are:

Pij -  F r{X k = j \ X k-!  = i} for k = 2 , 3 , . . .

and create the transition matrix:

(  P n P 21 P31  ■ ■ P N l  ^

P l 2 P 22 P 32 ■ P N 2

T  = P l 3 P 23 P 3 3  ’ ‘ P N 3

\  P i n P 2 N P 3 N  ■ • P n n  /

After [1] we use the conditional entropy of X

ff,- = ff(Gfc|* fc_i = o  = -  £  wiiogpy.
j= l,...,N

where Gk is probability event which shows the state where Xk  is in. In the 
case when Xk  is stationary, the entropy of the whole chain is given by:

H  = E ff(G t |X t . ,  = . ')  =  -  £

where pt =  Pr{Ad =  ¿}. Our case of interest is to encode data using binary 
numbers, so the base of logarithm in all formulas will be equal 2 .

Suppose th a t N  = 2m. If the method of writing the information of states 
of X n uses “plain” binary code, for encoding the data at n points we need 
nm  binary digits. As shown in [1], for e > 0 fixed there exist 2nH binary 
sequences, for which the probability of appearance will be equal to 1 — e. 
Such 2nH sequences may be encoded using nH  binary digits. Since H  <
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logiV =  m, this gives us the m / H  profit in request for number of digits 
with rather great probability. The general theorem on encoding of Markov 
chains gives the upper bound for efficiency of this method in term  of entropy.

The method for constructing of economical code and calculating its effi­
ciency explicitly is to make the binary trees. The most popular and conve­
nient m ethod for constructing the binary tree was given by Huffman in [2]. 
This algorithm is also described in standard handbooks for data compres­
sion. The detailed description of it with implementation may be found in [4]. 
In later part of our paper we assume that all binary trees are constructed 
using Huffman’s method.

For the sequence of realisations of independent, identically distributed 
random variables this gives the most efficient and easy “decodable” code.

2. B ase  a lgorithm

Let us have the realisation x k for k = 1 of Markov chain X k-
The base algorithm is constructed as follows: the first observation is writ­
ten unchanged, the all following are considered in terms of translation of 
the previous ones. Thus we have N  conditional probability distributions 
Pij for i =  1 , . . . ,  N.  Even if these are unknown, we may use the sample 
probabilities:

„ _  # { x k -  j ,  x k- 1  =  i] k =  2 , . . . ,  n}
PtJ =  i]k = 2 , . . . , n }

for i =  1 , . . . ,  N ,  where the denominator is positive. Otherwise the state i 
may be om itted. For all substantial i we construct the binary tree, which 
encodes the transitions from the state i to each of N. The process of decoding 
the data consists of browsing through the appropriate tree for current state 
Xk = i, finding the given binary code and writing the value of x k+i = j , 
where j  is the state corresponding to such code.
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The procedure described above is tim e efficient, but requires some space 
for storing all N  (or a few less then N )  binary trees. Each of them  may 
be of length up to N .  The way to simplify this method is to consider the 
properties of stationary Markow chain in some special case. Let us write the 
state Xk  =  j  as AT-i +  r =  i + r, so r will be the translation term  of j  in 
relation of i. Suppose th a t the transition probabilities pij depend only on 
r =  j  — i. Thus we may write qr =  Pi,i+r - Note that such Xk  does not satisfy 
our assumption, since its state space is infinite. The conditional entropy of 
Xk  simplifies to:

9rlogÇr ,
r£D

where D  is the set of all possible translations and Hi does not depend on
i. The best m ethod for encoding information on such Markov chain is to 
construct the common binary tree for probabilities qr. It requires th a t D 
should be finite. Obviously the procedure described above does not work in 
our case, when we have N  states. However it gives the idea to simplifícate 
the algorithm. From sequence of realisation of Xk  we compute the sample 
probability distribution of translations:

=  # { * t  -  =  r; k =  2 ........n } '

The common binary tree for translations may then be created using proba­
bilities defined above. When it is done the total length of data  encoded using 
this m ethod may be easily evaluated. If lr is the number of binary digits 
needed for describing the translation by r, the n — 1 observations occupy:

N - 1
( i V - 1 ) £  qrlr.

r= —N + 1

Adding a few digits for writing the state of x\  and some space for storing the 
binary tree with its description we get the to tal length of encoded data. For 
given set of data  this lets us to compute the estim ated compression ratio.
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3. G en era lization

Now we assume that Xk  is generalized Markov chain, where Xk+i de­
pends not only on the previous value, but also on a fixed number d of pre­
vious ones. Based on this model the theoreticaly best method for encoding 
information on this chain is to find N d conditonal probability distributions 
and to construct the binary tree for each of them. In practical applications 
this method fails for small d and moderately large N  because the calculat­
ing the N d+1 probabilities and storing N d binary trees requires too much 
resources. Considered the difficulties described above we use another, sim­
pler method. We build the function Xk+\ = f ( Xk ,  X k - i , . . . ,  Xk-d+1) which 
have to satisfy following property: the entropy of probability distribution of 
difference Xk+i — Xk+i is minimal possible. This function of d variables is 
called prognosis.

For d =  2 the simple method of prognosing in the case, when we are 
concerned with audio data is to use linear prognosis Xk+i — 2Xk — X k - i ,  
which corresponds to drawing the straight line on the plot of Xk vs. k through 
the points (k — l,ccfc_i), (k,Xk) and taking its vertical coordinate for k +  1 . 
This prognosis seems good, since the original audio signal is continuous.

In general the entropy of distribution of Xk+i — Xk+i is quite difficult to 
analyse and will be replaced by its variance, the standard measure of disper­
sion for random variables, since it may be analysed using algebraic methods. 
Theorem 1. lets us create linear unbiased prognosis with minimal variance 
(UMVP) for the sequence of random variables consisting of deterministic 
trend and stochastic noise. In some special cases it corresponds to general­
ized Markov chain model and may be useful in application to encoding of 
digital audio data.

Consider the sequence Xk = 5Zi=i a ifi(k)  -f Yk- Let [ / i , . . . ,  / s] denotes 
the linear space generated by f i , . . . ,  f 3 and / ‘bO denotes the function with 
translation in argument, so k ) =  f ( k  +  q).
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T heorem  1 . Let us have:

Xk =  'tcx,fi(k) +  Yk
1=1

where Yk is non-degenerated, stationary sequence of random variables with 
E Yk =  0, Cov(Yk,Y k+j)  =  t j, are linear independent, and let
f t(q) e  [ fu  ••■,/ .] for  every integer q. Then for given positive integer p we
have:

0

( \

0i

\  0d- 1  /

=  r - 1F T( F r - 1F T) - 1/ ,

where:

M p ) \ A ( o )  . • / . ( - ¿ + 1 )  \

L  =
h  (p)

F  =
/ j ( 0 )  ■ • f 2 {—d  +  1)

v / . ( p )  ) v / - ( 0 )  . • f s { ~ d  +  1 )  j

r  =

d- 1

To 71
7i To

Td-l
ld-2

\  ld - i  ld - 2  ■■■ To /

gives LJMVP X k+P =  ^ 2  0 j X k- j , in the sense that
j =o

i E X k+p = E X k+p 
I V a r X k+p —>■ mm . ( 1 )

Proof. Since E Y k = 0 and / i , . . . , / s are linear independent, E X k+p
d- i

E X k+p is equivalent to 0j f i (k -  j ) =  /,■(& +  p) for /c >  d, i =  1 , . . . ,  s.
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Assuming tha t f ^  € [ / i , . . . ,  f a] for every integer q, the values of / ,  in equal­
ities above may be taken at any d consecutive integers, say —¿ + 1 , . . .  ,0. For

d- i

Xk+p unbiased, VarXk+p = Y .  =  PTT/3. Thus (1) is equivalent
«5=0

to:
I F (L = L
|  /3t T/3 —> min.

( 2)

Since T is positive definite as covariance matrix, our goal is to find local min­
imum of quadratic form subject to linear equality constraints. The problem 
may be solved by using Lagrange multiplayers. Let us put A =  (Ai, . . . ,  AS)T. 
Then differentiating by /3, we have:

F§_ — /
2T(3 -  F t A =  0. (3)

Writing:

f 2r | - F T \ ( §_ ) / o \
A = — — « ï  = — « /  = —

1 F 1 o ) v A ) 1 /  /
we may write (3) in short form — / .  Let us search for A  1 in form:

(  B  | - C T \
A - 1  =  -

C  I D\ /
From:

/  2 r  

V F
follows:

0  )  \  C  I D

f 2 T B - F t C = 1 
- 2 T C t  -  F TD = 0 
F B  = 0 

- F C T =  - I

\  ̂ I  1 0  \

/ < 0  1 I  /
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This system of m atrix  equations may be solved for C as follows:

2 b  = r - ^ i  + i ^ c ) ,  
o = F r - 1 + ( F r - ^ c ,  
c  = - ( F r - 1F T) -1F r - 1,

- c T =  r - 1F T( F r - 1F T) -1.

Calculating ¡3 =  A-1 /  leads us to the resu lt..

The simple heuristic linear prognosis described at the beginning of this 
section may now be obtained from Theorem 1., for d =  1 by assuming 
f i (k)  = l , / 2 (fc) =  k , and 7 0  =  l , 7 i =  0. The linear prognosis for polynomial 
trends of higher orders in some special cases can be evaluated in explicit form 
using the properties of differences of AT. At first note, tha t for the linear 
prognosis AT+i =  2 AT — AT-i we have:

X k+i -  X k+1 = (X k+1 -  X k) -  (X k -  AT_0 (4)

and this correction term  may be expressed as second difference of sequence 
AT, in the sense of following definition.

D efin ition  1. X ^  is called the s-th order difference of sequence X k if

y ( ° )  _  y A k ~  A k,

X l ‘> =  X F 1» -  for  > 1 .

R em ark  2. X tk‘) = ¿ ( - l ) ' Q x t - j . .

These properties of differences of AT give us the simple m ethod for con­
structing linear prognosis by generalizing (4).
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Definition 2. - X ^  is called the s-th order linear prognosis if

X m  -  = x & .  (5)

R e m a rk  3. For f i (k)  =  A;1-1, i =  1 , . . .  ,s ,  X ^  is UMVP.

P ro o f. The s-th  order difference of the polynomial of order less or equal 
to s — 1 is constant zero, so the difference Xk+\ — X{+i has zero mean. Since 
{1 , k , . . .  , k s~1} are linear independent, such unbiased prognosis is unique 
and must be optim al..

In the later case we may write (3j =  (—1)J' (j+j) for j  =  0 , . . . ,  s — 1.
Note, th a t prognosis discribed above for integer valued data always give 

integer valued prognosis. This is very useful in using them  for encoding 
digital data  sequences.

4. N u m erica l exam ples

In later part of our paper we consider the results of application of this 
method in encoding digital audio data. Such data are created by sampling 
the analog signal at regular times and storing the values scaled to appropri­
ate digital measurement. In practical applications the sampling rate is equal 
to 44.1 kHz or 48 kHz for high quality data. The encoding of digital acoustic 
data in telecommunication (i.e. speech) requires much lower rate, typically 
8 kHz and the data may be compressed using some lossy techniques. Since 
our goal is to store the data without losing the quality, we assume the sam­
pling rate to be rather high. The number of states in the set of digital audio 
data is the power of 2 , usualy 2 8 or 2 16.

Figure 1 presents the typical audio waveform (16 bit, 44.1 kHz), which 
includes 139 observations. It is the part of longer set of data (27450 obser­
vations), the next calculations are based on.
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Below several results of numerical computation of entropy are presented. 
They concern sample probability distributions of Xk and differences for var­
ious prognosis based on the data presented above. The sample entropy of 
this sequence is equal to 5.85189. Figure 2 presents the sample probabilities 
for the states of Xk-

Fig. 2
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Figure 3 presents the sample probabilities for the differences Xfc+i — xj^j 
The sample entropy for this distribution is equal to 4.75102.

Fig. 3

Table 1 presents the similar results for various degrees of polynomials 
and numbers of observations the prognosis were based on.

Table 1
Sample entropies for various prognosis coefficients

Base
functions

Number 
of obs.

Prognosis
coefficients

Sample entropy 
of differences

{ l , k } 2 (2 ,-1 ) 4.75102
{ l , k } 3 ( i . l . - l )  ' 5.07537
{1 ,*:} 4 (1 , | , 0 . - | ) 5.2712

{1, A:, k 2} 3 (1 ,3 .-3 ) 5.20793
{ 1  , k , k 2} 4 (i. 2 5 3 \V 4 j 4 5 4) 4 ) 5.31193
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These results of numerical computation show that in general the prog­
nosis based on the model with polynomials with added independent random 
variables is a good way to reduce the entropy of sample probability distri­
bution for typical audio data. However, the increasing of number of base 
functions, as well as the number of observations concerned do not improve 
quality of this method. The best results were obtained using the simple 
linear prognosis based on two observations.

Now we present the results of computations for three sets of audio data 
using only simple linear prognosis. Obviously at some points the prognosed 
value was out of possible range (1  thus it was truncated. In each
case the binary tree for sample distribution of differences was created. Then 
the size of set of encoded data was calculated and compared with those 
generated by popular compression utilities. The compression ratio is given 
as the percentage of original data size.

Table 2
Human voice, 44.1 kHz, 16 bit, mono, 7 526 268 bytes

Tool Compr. data 
size (bytes)

Compr.
ratio

arj 2 . 2 0 6  646 733 88.314%
pkzip 2.04g 6  644 330 88.282%

rar 2 .0 6  659 710 88.486%
rar 2 .0  

(multimedia compr.) 4 733 234 62.889%

our method 4 960 539 65.909%
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As we can see, assuming the specific structure of digital audio data we 
obtain the radically better ratios, when using standard tools. The exten­
sion is required for stereo data, which may be treated as the realisation of 
two-dimensional stochastic chain (Ab,k, Ad./t)- Fortunately both its compo­
nents are corralated, so we may concern (Ad,* — X 2 , k , X i^ ) ((Ad^ — X 2,k 
is called “separacy channel”) instead of original channels, which lets us get 
additional profit, as shown in Tables 3, 4.

Table 3
Instrum ental music, 48 kHz, 16 bit, stereo, 15 963 676 bytes

Tool Compr. data Compr.
size (bytes) ratio

arj 2 . 2 0 14 345 202 89.862%
pkzip 2.04g 14 360 284 89.956%

rar 2 . 0 14 341 546 89.839%
rar 2 . 0  

(multimedia compr.) 9 267 589 58.054%

our method 8  521 336 53.379%

5. F inal rem arks

The possible way to improve the algorithm based on Theorem 1. is 
to consider the other sets of base functions, i.e. trigonometric ones. The 
quasi-periodical nature of audio data suggests this m ethod as promising. In 
this case the Fourier transformation may be useful to detect the base fre­
quencies. Another way is to concentrate on the covariance function 7 , and 
search for the convenient method of estimating it for given set of audio data. 
Such problems will be considered in future.
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Table 4
Instrum ental music, 44.1 kHz, 16 bit, stereo, 16 575 712 bytes

Tool Compr. data Compr.
size (bytes) ratio

arj 2 . 2 0 14 965 025 90.282%
pkzip 2.04g 14 979 212 90.368%

rar 2 . 0 14 963 643 90.274%
rar 2 . 0  

(multimedia compr.) 9 962 447 60.103%

our method 9 443 341 56.970%
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S treszczen ie

Artykuł prezentuje metodę kompresji cyfrowych danych audio opartą na 
algorytmie wykorzystującym własności łańcuchów Markowa. Główna idea 
polega na wyznaczeniu łatwej do obliczenia funkcji prognozującej, a następ­
nie kodowaniu zbioru danych jako odchyleń od prognozy. Funkcja progno­
zująca jest dobierana tak, aby rozkład odchyleń od prognozy miał możliwie 
małą entropię. Zamieszczone wykresy przedstawiają próbkowe rozkłady od­
chyleń dla przykładowego zbioru danych audio. Uzyskane wyniki porównano 
z osiągnięciami popularnych programów kompresujących.


