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UNIQUE PRODUCT ELEMENTS*

S u m m a ry . Any group G  th a t can be given a right order will be 
a unique p roduct group. W hat is not known is, if G  is a unique product 
group, can G  be given a right order. The purpose of this paper is to 
study  the  unique product groups in order to gain more inform ation 
about the  s truc tu re  of the group and, also, to see w hat the  additional 
conditions can be added so as to  have a right order. N otation used: 
Let G  be a group and let A  and B  be its subsets. A B  =  {ab \ a € 
A , b € B } ,  A  =  {a | a G A}.  For singleton set {g} = B  we write Ag  
instead A {g}.  For the em pty set 0 we define A0 =  0. Let F (G )  denote 
the  semigroup of all finite nonem pty subsets of G  w ith m ultiplication 
defined above. |A| denotes the cardinality of the set A.

U .P . IL O C Z Y N

S tre sz c z e n ie . Z każdą grupą G  m ożna związać półgrupę F  (G) 
złożoną ze skończonych podzbiorów G, z działaniam i danym i wzo
rami: A  - B  — {a ■ b ; a £  A, b G B }.  W  półgrupie F  (G) badam y naj
m niejszą przechodnią relację wyznaczoną przez warunek: A  ~  B,  gdy 
A-C  =  B -C  dla pewnego C  €  F(G ).  Pokazujemy, że relacja ta  je st kon- 
gruencją w F(G ).  Niestety, kongruencja ta  nie zawsze jest skracalna.

‘ Supported by K BN grant No 2 1115 91 01.
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W  podzbiorach A  £  F (G )  wyróżniam y elem ent a u p e l  spełniający 
warunek: A  - B  ^  (A \{a} ) ■ B  dla każdego B  £ F  (G). Badam y wła
sności algebraiczne grup u p e l , w których każdy podzbiór zaw iera upel 
elem ent. K lasa takich grup leży pomiędzy grupam i uporządkowanym i 
a u .p .  g ru p a m i.

l .U p e l  e lem en ts

Recall th a t a group G  is said to  be a unique product group (u.p.-group) 
if, given any A, B  £ F (G ),  there  exists a t least one elem ent x £ G  th a t  has 
a unique representation  in the  form  x  =  ab w ith a £ A  and b £ B  i.e. there 
exists a £ A such th a t A B  7  ̂ (A \{a} )B .

D e f in it io n  1 .1 . Given a non-empty subset A  o f  G, a u n iq u e  p r o d u c t  
e le m e n t fo r  A  (  u p e l  )  is an element x  o f A  with the property: fo r  any 
C  £  F (G ),  (A \{ x } )C  /  A C . A group G is said to be u p e l  g ro u p  i f  each 
non-em pty finite subset contains an upel element.

It is clear th a t  for each group G  its element x  is an upel for {x}. The 
condition th a t C  is finite in the definition of upel group appears since if H  
is a nonidentity  subgroup of G  then  H  contains no upel elements.

T h e o r e m  1 .2 . Let A  be a subset o f  the group G, x  £ A  and B  =  A \{x} . 
Then the following conditions are equivalent:

i) The element x  is not an upel fo r  A;

ii) The semigroup generated by x  B  contains e;

in) The semigroup generated by B x ~ 1 contains e;

iv) The element gx  is not upel fo r  gA, fo r  each g £ G;
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v) There exists g £  G, such that gx is not an upel fo r  gA;

vi) I f  D is a subset o f  G containing A, then x  is not an upel fo r  D;  

vii) The element gx  is not upel fo r  D A , fo r  each g £  D  £ F  (G).

P ro o f ,  i ) => i i ) Suppose for x to  be a non-upel for A. By definition 
A C  =  B C  for some C  £  F(G ).  Choose ci £ C . Then let c2 £ C  and b2 £ B  
be such th a t xcx =  b2c2. Note th a t ^  c2 and Ci = x ~ 1b2c2. Let c3 £ C  
and 63 £ B  be such th a t xc2 =  &3c3, c2 ^  c3 and c2 =  x _ 163c3. Continue this 
process to  ob ta in  xc,- =  6l+iĈ +1, c, 7  ̂ C{+ 1 and c, =  x - 16,+iC,+1. Since C  is 
finite, a t some po in t c,- =  Cj where i < j .  Since Ck 7  ̂ Ck+ 1 a t each stage the 
num ber of steps m ust be at least two. We s ta rt the  process over w ith c, and 
continue to  Cj (i is where the repetition occurred w ith the  following j ) .

x Ci  — 1 c,-(-1 , C{ 7- \ and c, x b,-^\C,^\,

XC,+1 — ^t+2^'i+2) ct+i 7  ̂ *--1+2 and c,' — x jx  b,^2^1+2 5
xcj_i =  bjCj, Cj_i 7  ̂ Cj and c, =  (x - 16,+iX- 1f>,+2 . . .  x ~ lb: )cj.

Therefore e =  x _ 1 6,+1x _ 16,+2 . . .  x _16j is the nontrivial word w ith the  mini
mal length expression being x _16,+iX_16,+2.

ii) =>• i n ) Suppose th a t the semigroup generated by x ~ l B  con
tains e. Then e =  x ~ 1b1x ~ 1b2 . . .  x ~ l bj for some 6* £ B.  Now e = 
b ix_1b2 . . .  x ~ l b jx~1 is an element of the  sem igroup.generated by Z?x-1 . No
tice the  length of the  expression is such th a t j  > 2.

T he proof of im plication Hi) ii) is similar to  the  above.

ii) i) Suppose th a t the semigroup generated by x ~ l B  contains e. 
Then e =  x _161x _162 . . .  x ~ l bj for some b £ B. Let:

C  =  {e =  x ~ l bxx ~ l b2 . . .  x -16j, x ~ xb2 . . .  x ~ l b j , . . . ,  x _1fej}.

Then x C  C B C ,  so A C =  B C  and hence x is no upel for A.
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i ) => iv) Let g £  G. If C  is a set w ith A C  = B C  then:

g A C  = g B C  = g ( A \  {x}) C  = (gA  \  {<7*}) C.

Hence gx  is not upel for gA.
Suppose th e  sem igroup generated by x ~ l B  contains e. Since sets x ~ l B  

and (gx) 1 g B  are equal and by i) ga is not an upel for gA.

T he im plication iv) => v) is clear and the  proof of v) => i) is sim ilar to 
the above.

u )  => vi) If e is an elem ent of the  semigroup generated by x ~ l B  so it is 
an elem ent of the  sem igroup generated by x -1 (D \  { x } ) . Hence x is not an 
upel for D.

T he im plication vi)  =>• i) is clear.

iv) vi)  => vii)  Let g G D  6  F  (G). By iv) the  elem ent gx  is not upel 
for gA. Since g A  C D A  so by vi)  the  element gx  is no t upel for D A .

T he im plication vii)  => i) is clear.„

T he above theorem  im m ediately yields the  following corollaries:

C o ro l la ry  1 .3 . The upel condition is left right symmetric. Hence for  
example x is non upel fo r  A  i f  and only i f  there exists C  G F (G ) such that 
C A  =  C (A \{g } ) .

C o ro l la ry  1 .4 . A group G is torsion-free i f  and only i f  each its subset 
of cardinality 2 contains upel element.

As we will show in Proposition  4.3 there exists a torsion-free group and 
its subset of cardinality  3 w ithout upel elements.

Now we will describe some group-theoretic properties of the  class of upel 
groups.
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P r o p o s i t io n  1.5. The class o f upel groups contains the class o f right 
ordered groups and is contained in the class o f u.p. groups.

P ro o f .  Let A  be a nonem pty finite subset of a right ordered group G. 
Then by the  proof of Lemma 13.1.7 from [5] the  m axim al and minimal 
element of A  are upels for A. It is clear th a t upel groups are u .p .-groups.B

L e m m a  1 .6 . Let G be a group. Then the following conditions are equiv

alent:

i) G is an upel group;

ii) Every finitely generated subgroup of the group G is an upel group;

in) Every nonidentity finitely generated subgroup o f the group G can be 
mapped homomorphicaly onto a nonidentity upel group.

P ro o f .  T he im plications i) =>• ii) =>• in )  are obvious.

in )  =>• i) Let A  be a finite subset of G. P roof by induction on cardinality 
of A.

a) | A| =  1 then  x  is the upel element of {x}.

b) Assume th a t every subset of cardinality less, then  n contains an upel 
element. Let |A| =  n. Since A  contains an upel elem ent iff g A  contains 
an upel elem ent for g 6 G, so we can assume e £  A. Let H  = <  A  > be 
a subgroup generated by A  and let <j) : H  -> U be a homom orphism 
onto a non-trivial upel group U. Let x  6 A  be such th a t <f>(x) is 
upel for 4>{A). Set B  =  {a £ A\<j>{a) =  <j>{x)}. Since |£ |  <  \A\, so 
B  contains an upel element b. Since e and b £ A  so the  group H  is 
generated by th e  set b~l A. Hence w ithout loss of generality we can 
assum e th a t b = e. Now <f>(b) = e €  U is an upel elem ent of 4>{A). 
We will show th a t e is an upel for A.  Suppose e =  a ia 2 . . .  a< for some
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a, £ A. T hen e =  d>(a1)^ (a 2) . . .  4>{at). Since e =  </>(&) is an upel for
<t>(A) so by T heorem  1.2.ii, </>(a,) =  e, for all i. Now a,- £ B  and e is an
upel for B  so a,i =  e, for all i. Hence by Theorem  1.2.ii, e is an upel
for A .m

T he following theorem  shows us th a t properties of the  class of upel 
groups are sim ilar to properties of classes of right ordered groups and of 
classes of u.p. groups, (cf. [5]).

T h e o r e m  1 .7 . The class o f  upel group is closed under extensions, direct 
products and coproducts.

P ro o f .  Let H  be a norm al subgroup of a group G such th a t H  and 
G / H  are upel groups. Let S  be a subgroup of G. If S  (f. H  then  S / S  H  ~
(S  ■ H ) / H  is nontriv ial upel group. If S  C H  then  S  is an upel group.
Therefore by Lem m a 1.6, G  is an upel group.

ii) If i f  is a nontriv ial subgroup of direct p roduct of groups then  H  can 
be m apped hom om orphicaly onto nontrivial subgroup of some factor. Hence 
Lem ma 1.6 yields th e  result.

iii) C oproducts. Let us first consider the case of two factors G * H . Let 
\ G * H  —> G x  H  be  the hom om orphism  given by f>(g) — G  for g£  G

and d>(h) = h for h £  H .  According to ([3] Theorem  3 in A ppendix) ker^> 
is a free group. Since free groups are ordered so they are upel. By i) and ii) 
G * H  is an upel group. By induction this result holds for direct coproduct of 
any finite num ber of groups. B ut every finitely generated subgroup of n*G  
is contained in a coproduct of finitely m any factors. Thus by Lem m a 1.6 the 
result is p roved ..

Let G  be a right-ordered group and let A  £ F (G ).  As we have shown 
in P roposition  1.5 the  m axim al and the  m inim al elem ent of A  are upels. In 
fact we have:
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T h e o r e m  1 .8 . Let G be an upel group and let A  6 F (G ). I f  |A| >  2 
then A  contains at least two upel elements.

P ro o f .  Suppose A  has only one upel element x. Let us consider the 
element y~ 1z  €  A_1A — D. \ i  z  ^  x  then y~ 1z  is not upel for D  by 
Theorem  1.2.vii. If y ^  x  then y~ l z  is not upel for D  since the  upel condition 
is left right sym m etric. If A  contains the additional element t ^  z then 
z ~ l z — t~ l t is no t upel for D .m

2. R ela tion s in th e  sem igroup o f su b sets

We need the  following definition to  describe some connections between 
conditions upel and right-ordered.

D e f in it io n  2 .1 . Let A  and B  be some subsets o f a group G. We set 
A y  B  if  A =  B  or B  =  A \{x} , where x is a non-upel fo r  A. We say that 
A is above B  i f  there exists a sequence:

A  =  Aq y  Ai y  A 2 A^ — B

of subsets Ai o f  G. Let ~  be a relation on the set o f  all subsets o f G defined 
by: A  rsj B  i f  there exists subset D o f G such that D is above A and B .

E x a m p le  2 .2 . Let G  be a right ordered group and let 6 F(G)  be 
such th a t A ~  B  then  m axim al and minim al elements of A are maximal 
and m inim al elements of B.  It is sufficient to prove it in the  case A y  B. 
But then B  — A \{x} . Since x  is non-upel it can ’t be m axim al nor minimal.
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L e m m a  2 .3 . Let A, B  and C  are non-empty subsets o f a group G. Then:

i) I f  A  y B  then A  U C y  B  U C ;

ii) I f  A  is above B  then A \J  C  is above B  U C ; 

in) I f  A  ~  B  then {A  U C) ~  (B  U C);

iv) I f  A  ~  B  and A  C C  C B  then C  ~  B;

v) I f  A , B  and C  are finite and C A  =  C B  or A C  — B C  then A  ~  B.

P ro o f ,  i ) Suppose A  y  B. If A  = B  then  A l)  C  y  B  Li C . l i  B  =  A \{x} 
then  / l U C  =  B U C ' o r B u C l =  / l U  C \{ x } . Since x  is not an upel for A 
so by Theorem  1.2.vi x  is not an upel for d U C .  Hence A  U C  >- B  U C.

ii) Suppose A  is above B.  T hen there exists a sequence:

A  =  Ao y  A i  y  A 2 y  . . .  y Ak — B  

of subsets A  of G. By i ):

A u C  = A 0 u C y A i U C y A 2 u C y . . . y A k [ J C  = B \ J C .

Hence A  U C  is above B U C .

in )  Suppose A  ~  B. Then there exists a subset D  of th e  group G  such 
th a t D  is above A  and B. By ii) D  U C  is above A  U C  and B  Li C.

For iv)  we use in ) .  Now C  =  d U C ~ B u C  =  B,  thus, C  ~  B.

v) If C A  = C B  for some C  € F (G )  then C A  — C (A  U B ) = C B  so we 
can assum e th a t B  C A. Let A  = B  U {a i, a2, . . .  a n}. Note th a t:

C B  = C { B L i { a i }) = C { B L i { a i ,a 2})

— C  (B  U { a i ,a 2, • • •, a n}) =  C A .
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Each of the  sets differ by one non-upel element from  the  previous, thus we 
get:

A y  5  U {fli} y  B .

Therefore A  ~  B.  Similarly we can prove th a t A C  =  B C  implies A  ~  B .m

C o ro lla ry  2 .4 . Let A  and B \ ,  B 2 , . . . ,  B n are subsets o f G such that 
A  ~  B{, fo r  i < n. Then there exists M  above A  and all B f s .

P ro o f .  The definition im m ediately follows case n — 1. Suppose n >  1. 
By induction there exist subsets M  and N  of G, such th a t M  is above A 
and B,, for i < n, and N  is above M  and B n. Hence N  is above A  and all 
B f s . .

It is easy to  see th a t if A, B  C G, A ~  B and A  (E F (G )  implies B  6 
F(G ).  Hence we will also use ~  for relation on F(G).

T h e o re m  2 .5 . The relation ~  is the equivalence relation generated by 
y  on the set o f all non-empty subsets o f G. Furthermore ~  is a congruence 
on the semigroup F (G ) with multiplication defined in the introduction.

P ro o f .  It is clear th a t A  ~  A  and th a t A  ~  B  implies B  ~  A. Corol
lary 2.4 yields transitiv ity . Now we will show th a t if A, B  and D  €  F(G )  and 
A  ~  B  then A D  ~  B D .  It is sufficient to  proof th a t in the  case A  is above B. 
Let A  = A 0 y  A i y  A 2 y  . . .  >- Ak — B .  If it is shown th a t A ,D  ~  A l+iD, 
then A D  ~  B D  will follow by transitivity . By Corollary 1.3 there  exists 
Y  € F (G )  such th a t V A  =  Y A {+ Therefore Y A \D  — YA{+\D .  Thus, by 
lem m a 2.3.v) A ,D  ~  A i+iD.  Similarly, D A  ~  D B .m

R e m a rk . Any semigroup has a minim al cancellative congruence 
[1, page 14]. Lemma 2.3.v) yields th a t ~  is contained in the m inim al can
cellative congruence pc on F(G).  If G  is abelian then the  congruence ~  is
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the  sam e as p° and is given by: A  ~  B  if A C  =  B C  for some C  £  F(G)  
(see [7]). We will show in Corollary 4.7, there exists a group T such th a t ~  
is not cancellative congruence on F ( r ) .

3. O rdered groups

Let G  be a  group w ith a partia l right order. It is well known th a t the 
set S  — {g  £ G  | G  >  e} is a subsem igroup of G, such th a t S  D S ~ l =  {e}. 
Conversely if S  is a subsem igroup of G  w ith property  S  fl 5 _1 =  {e}, then 
we can associate a partia l right order on G  by, x  <  y if y x ~ l £  S .  Such 
sem igroup we will call o rd e r in g  s e m ig ro u p . The ordering sem igroup S  is 
a r ig h t  o r d e r  if th e  order associated w ith S  is linear which is equivalent to 
S  U S ~ l =  G.

P r o p o s i t io n  3 .1 . Let S  be a subsemigroup o f the group G, such that 
e £ S. Then e is an upel o f  S  if f  S  is ordering semigroup.

P ro o f .  Suppose s is non-identity  elem ent of S O S -1 . T hen e is a non-upel 
for the  set { e , s , s -1 } C S. Hence e is a non-upel for S. If e is a non-upel 
for S  then  by Theorem  1.2 e =  s i s 2 . . . s n for some s, £ 5 \{ e } . Hence 
Sj 1 =  s 2 • • ■ sn £ S' n  S  h B

D e f in it io n  3 .2 . Let A  be a non-empty subset o f  a group G. We say that 
the element x  is a s t r o n g  u p e l  fo r  A  i f  a ^  A* — T1 { B  C G  | B  ~  A } i.e. x 
belongs to the intersection o f the equivalence class o f A  under  ~ .

P r o p o s i t io n  3 .3 . Let x be an element o f a subset A  o f  the group G. If 
x is a strong upel fo r  A  then A  is an upel fo r  A.
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P ro o f .  Let a£  A, Since A  y  A \ {x} if and only if x is non-upel for A  so 
each strong upel elem ent is an upel.B

E x a m p le  3 .4 . Let A be a subset of a right ordered group {G <}. Then 
a m inim um  and m axim um  elements of A are strong upels for A.

E x a m p le  3 .5 . Let G = <  x, y \ y~ 1x y  =  x -1 >  and A =  {e, y2, x, xy~2}. 
We claim th a t e is upel for A bu t e is not strong upel for A. It is easy to see 
th a t the group generated by A is com m utative. Suppose e =  y277*x<(xy_2)i , 
m  >  0 ,i  >  0 ,A: >  0. Then m =  =  i =  0. But since e — y ~ 1y 2y~1
so y is not upel for A U {y} and A U {y} >- A. Now e = x y x y ~ 2y im
plies {e, y, y2, x, xy -2 } >- {y ,y 2, x, xy -2 }. We obtain  A =  {e, y2, x, xy -2 } ~ 
{y, y2, x, x y -2 }. Hence e is not a strong upel for A.

T h e o re m  3 .6 . Lei G be a group and let A  £  F{G). Then:

i) I f  G is torsion free and |A| =  1 then the unique element o f A  is strong 
upel;

ii) I f  G is an upel group and |A| >  2 then A  contains at least two strong 
upel elements.

P ro o f ,  i) Suppose B  £ F (G )  is such th a t B  y  A. Then B  = A or 
B  = {a, 6} y  A  =  {a} for some non-upel element b. Then Theorem  1.2 
implies e =  (6_1a )n , for some integer n. Since G  is torsion free a = b.

ii) Since A is finite there exist sets B \ ,  B 2 , ■ ■ ■, B n related  w ith A such 
th a t A =  L?i n  B 2 H . . .  fl B n. By Corollary 2.4 there exists M  £ F (G )  above 
all B f s .  By Theorem  1.8 M  contains two upel elements x and y. Now it is 
sufficient to  prove th a t x and y are upels for each B.  Let M  = A 0 y  Ai y  
A 2 y  .. ■ y  Ak = Bj ,  for some j .  By induction x and y are upels for all At- 
and hence for Bj.  Therefore x ,y  £ A*.m
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T h e o r e m  3 .7 . Let G  be a torsion free group and S  its maximal ordering 
semigroup. Then the following conditions are equivalent:

i) S  is a right order;

ii) x y  £  S  implies x  £ S  or y  £ S ;

in) x  $  S  implies x  is an upel fo r  S  U {x};

iv) x  0  S  implies x  is a strong upel fo r  S  U {x}/

v) e is a strong upel fo r  S .

P ro o f .  i ) => ii) Suppose x  and y are not in S.  T hen x x , y  1 £ S .  We 
have (x y )-1 =  y -1 x -1 £ S  which implies xy ^  S.

ii) =>• in )  Let x be a non-upel for S  U {x}. By Theorem  1.2 there  exist 
x i, x 2, . . . ,  xn £ S \  {x} such th a t x -1 x ix -1 x 2, . . . ,  x -1 xn =  e. This equation 
tells us th a t  e is not an  upel for {x, x i, x 2, . . . ,  xn}. Since e £  S  is a non-upel 
for S  so x _1 ^  S.  Now x x _1 =  e £ S  so by ii) x £ S.

Hi) =>• v) By iii) if M  is a subset of G  such th a t M  y  S  then  M  — S. 
Hence if M  is above S  then  M  — S.  Let A  ~  S. T hen S  is above A. Let 
S  = A 0 y  A i y  A 2 y  . . .  y  Ak — A. B y  induction e is an upel for all A, 
and hence for A. Therefore e is a strong upel for S.

v ) => i) Since S  is an ordering semigroup for G , we need only to  show th a t
S  U 5 _1 =  G. Let b £  S  U 5 -1 . Let Si = S  < S  U {6} >  be the  subsem igroup
of G  generated by S  and b. Since S  is m axim al we have th a t Si is not an or
dering sem igroup for G. Thus we can w rite e = 6_1y16_1y2, . . .  ,6_1y„, where 
y, £ S .  This equation  tells us th a t b is no t upel for the  set {6, yl5 y2, . . . ,  yn}. 
It yields S  U {6} >- S. Using the  same procedure for 6-1 , we can get 
{z i ,  z2, . . . ,  zt } C S  such th a t 6-1 is not upel for {b~1, z 1, z 2, . . . ,  z t j .  It yields 
B  =  5,U {6}U {6-1 } >- S U { b } >~ S. B ut B  y  B \ { e }  so 5  ~  # \{ e }  contrary 
to  v).
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i ) => i v ) Suppose <  is a right order associated w ith S.  Let x (£ S. Then 
x < e and x is a m inim um  element of S  U {x}. Hence x is a strong upel for 
S  U {x}.

T he im plication iv) in )  is obvious.m

T h e o r e m  3 .8 . Let G be a group and let P  be the positive cone o f a par
tial right-order on G. Then the following condition are equivalent:

i) The partial right-order P  can be extended to a right-order on G;

ii) I f  A  =  {j/i, j/2, . . . ,  yn} € F(G ), then there exist e =  ±1  such that 
the semigroup generated by B  =  {P, y\ x, ye22, . . . ,  y*"} is an ordering 
semigroup;

Hi) I f  A  =  {j/i j Vii ■ ■ • ,Vn} €  F(G ), then there exist e =  ±1 such that e is 
an upel fo r  B  =  {P, y[l , y 2 , . . . ,  y£"}/

iv) I f  A  =  {yi , y2,- • • >Vn} €  F(G ), then there exist e =  ±1  such that e is 
a strong upel fo r  B  =  {P,  y \ x, y \2, . . . ,  y*n}.

P ro o f ,  i) => iv) Let P  be the semigroup of non-negative elements of G. 
Let us choose e such th a t x e £ P . Then e is a m inim um  elem ent of:

B =  {Piy{\yE22,---,yn}-

Hence e is a strong upel for B.

T he im plication iv) ^  Hi) is obvious.

Proposition 3.1 im m ediately yields im plication iii) => ii).

T he conditions ii) and i) can be seen to be equivalent by realizing th a t 
they are restatem ents of the conditions given in [4] Theorem  7.6.1.—
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T h e o r e m  3 .9 . Let G be a torsion-free group. Then the following con
ditions are equivalent:

i) For each A  £  F (G ) every upel fo r  A  is a strong upel fo r  A;

ii) For each A  £  F (G ) every upel for  A  is a maximal element in some 
right order on G;

in) Every partial order in G can be extended to a right order.

P ro o f .  T he im plication ii) =>• i) is obvious.

i ) => in )  Suppose by contradiction there exists a m axim al ordering semi
group S  which is not ordering semigroup. Then S  D S ~ l =  {e} and  there 
exists b £  S  U S ' 1 such th a t the  semigroups T  generated by S  U {6} \  {e} 
and generated  by S  U {6-1 } \  {e} contain e Hence there exists a finite subset 
A of S' such th a t A  U {6} ~  A  and A  U ~  A. Let M  be above A  U {6} 
and A  U {&-1 }. Now M  ~  A  and e is not upel for M . So e is an upel for A 
and it is an not strong upel for A.

iii) =>■ ii) Suppose th a t the group G  satisfies condition in )  and  let x  be 
an upel elem ent of th e  subset A  of G. By Theorem  1.2 th e  subsemigroup 
generated by A x ~ l is an ordering semigroup. We extend it to  the right order 
P and we define th is order by:

x < V 4=4> x y ~ x £ P.

Let 6 £ A, then  h r -1 £ P  so b < x. Hence x  is the m axim al elem ent of A .u

T he class of groups satisfying condition iv) is investigated in [4] chap
ter 7.6. For exam ple R hem tulla ([4] Corollary 7.6.5) has shown th a t this 
class contains all torsion-free locally n ilpo ten t groups.
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4. E xam p les

In this section we illustrate theory of unique product on the example of 
the well known group:

. 1 0  0   1 0  — 0r  = <  x, y | x y x = y  , y x y — x  >  .

L e m m a  4 .1 . ([5] Lemma 13.3.3) Let H  be a subgroup of  T generated 
by { x 2, y2, (xy)2}. Then H  is normal free abelian subgroup o f T of rank 3 
with T / H  the Klein four  group. Furthermore T is a torsion free group but 
not right orderable.

Promislow has found a subset S  of T of cardinality 14 such th a t all 
m ultiplicities in S S  are larger then 1. It shows th a t G  is not u.p. group 
(see [6]).

L e m m a  4 .2 . Let {e, a, 6, c} be a coset representatives o f  H  in T. Then:

— 1 l 2  l - 2a b a =  o

P ro o f .  Let b =  xh, h 6 H . Then b2 =  x 2’ for some integer i. Similarly 
(yh)2 =  y2j and (x y h )2 = {xy)2k. Since all cases are similar we will give 
the proof only for the  case a =  xyy, g G H, and b =  xh.  Now a~ 1b2a =  
g~ ly ~ 1x ~ l x 2,xyg  =  x -2* =  b~2.u

P r o p o s i t io n  4 .3 . The group T is not upel. Furthermore the set {e , x, y} 

contains no upel element.

P ro o f .  F irst we show th a t y is not upel for {e, x, y}. By Theorem 1.2 it is 
sufficient to  show th a t the  subsemigroup generated by y and y-1x contains 

e. But:

y -1 y_1xy_1y_1xy_1xy-1y_1xy-1 =  x 2yxy ~ 2x y  =  x 2y x 2y~ l =  e.
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Sim ilary x  is non-upel since x  and y play sym m etric role. Furtherm ore e is 
non-upel since e =  x y y x y x x y .m

For describing properties of ~  in T we will use the transfer m ap. Pick 
coset representatives { x i , X 2 , x 3, x 4} for H  in T. If g is in T, we construct 
4 * 4  m onom ial m atrix  by placing XigxJ1 in the  Ith row and j ih column 
if th a t elem ent is in H  and by placing 0 there otherwise. This induces an 
injective hom om orphism  from T to the  group of m atrices w ith precisely one 
nonzero entry, an elem ent of H, in each row and column. T he transfer map 
T  : G —> H  is go tten  by taking the product of the  nonzero entries of the 
„m onom ial” representation. T  is hom om orphism  and is independent of coset 
representatives (see [2]).

L e m m a  4 .4 . (c f  [2] Theorem 23) Let T  : T H  be the transfer map. 
Then T ( G)  = {e}.

P ro o f .  We will show th a t generators of T belong to  the  kernel of the 
transfer m ap. Indeed using for coset representatives {e, x , y , x y }  we obtain:

T( x )  = e x x ~ x • x x e  ■ y x ( x y ) ~ x ■ (x y ) x y ~ x =

=  x x y x y ~ l x ~ x x y x y ~ l = x 2y x 2y ~ x =  e

and:
T(y)  = eyy~ l ■ x y ( x y ) ~ x ■ yye ■ ( x y ) y x ~x = e.u

L e m m a  4 .5 . Let  A  =  { e , x , y , x y }  be coset representatives fo r  H  in T. 
Let B  = A A ~ X. I f  D  € F(G) ,  is such that B  C D then B  ~  D.

P ro o f .  Let D — B  U {d1;d2, • ■ • , dn}- By Lemma 4.4, for each d £ D 
the elem ent T  (d~x) =  e belongs to  the semigroup generated by B  and d. 
According to  Theorem  1.2 we get B  ~  B  U {d}. Continuing this process we 
obtain:

B ~  B U { ¿ i }  ~  B U {di, d2}  ~  ~  B U  {d j, d2) • • ■, d„} =  D.m
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T h e o re m  4 .6 . The relation ~  in the semigroup F ( T )  has the following 
description: A  ~  D if  and only i f  |A| >  2 and \D\ > 2 or \A\ = \ and 
A  = D.

P ro o f .  Since G  is torsion free prove of the  case |A| =  1 is the  same as
in Theorem  2.5. Let \A\ > 2. It is sufficient to prove th a t A  ~  B ,  where B
is the set from Lem m a 4.5.

Step  1: A  =  {e ,a }, a £  H. Analysis similar to  th a t in Lemma 4.2 and 
according to  Lem ma 4.5 we get A  ~  {e, a , 6} for some b £ (H  U Ha). Con
tinuing this process we obtain  A  ~  {e ,a ,6}  ~  {e ,a ,6 , c}, where {e,a, 6, c} 
is a coset representatives of H  in I \  Now after few steps we get A  ~  B.

Step  2: A  = h = x 2ty2k(x y )2' € H  and suppose t > 0. Then
equality e =  (x~ l h )2x 2~it implies A  ~  {e, h, x} .  Now A  ~  { e , h , x }  ~  B  
follows by the  same m ethods we used to  prove step 1.

Step 3: General case. Let |A| >  2. Then there exist g E T such th a t
{e,a} C Ag. Now, by steps 1 and 2, { e , r }  ~  B  ~  B  U Bg.  This gives
{5 -1 ,agf-1 } ~  B g ~ l U B. We thus get:

A  =  ag~1} U A  ~  B g ~ l U B  U A  ~  B .m

C o ro lla ry  4 .7 . ~  is not a cancellative congruence on F(T) .  Further
more every cancellative congruence on F (T ) is universal.

P ro o f .  Let r  be a cancellative congruence on F (T ). Then for 6 
F(F) ,  \C\ >  2, then  \AC\ > 2 and \BC\ >  2. Now A C  r B C  implies A r B , 
hence r  is universal.„

C o ro lla ry  4 .8 . T U {0} and F ( T ) /  ~  are isomorphic semigroups.

C o m m e n ts .  Let G  be a group generated by two elements x and y. 
Theorem  3.8 yields th a t if two words w( x , y )  and u(x,y)  are relations in G
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then  G  can not be right ordered. If in the  group G  two words ( x , y )  and 
v / ( y , yx )  are relations then  e and y  are non-upels for the  set A  = {e , x , y } .  
Hence, by T heorem  1.8, G  is not upel group. We know th a t the  group G 
given on generators x  and  y  w ith defining relations:

2 2 3  3  - 1  - 2  2 - 3  3x y x  y x  y = x  yx  y x y = e ,  

can not be right ordered bu t it is a candidate for an upel group.
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S treszczen ie

Z każdą grupą G  m ożna związać półgrupę F  (G ) złożoną ze skończonych 
podzbiorów G , z działaniam i danym i wzorami:

A  - B  — {a ■ b \ a G A, b G B }  .

W półgrupie F  (G ) badam y najm niejszą przechodnią relację wyznaczoną 
przez warunek: A  ~  B,  gdy A  C  =  B  ■ C  dla pewnego C  G F(G) .  Po
kazujemy, że relacja ta  jest kongruencją w F(G) .  Niestety, kongruencja ta 
nie zawsze jest skracalna -  podajem y przykład grupy, w której półgrupa 
ilorazowa F ( G ) /  ~  jest izomorficzna z pólgrupą G  z dołączonym  zerem. 
W podzbiorach A  G F( G)  wyróżniamy element a u p e l spełniający waru
nek: A  ■ B  /  (A \{a} ) • B  dla każdego B  G F  (G).  Pokazujemy, że klasa 
grup u p e l , w których każdy podzbiór zawiera u p e l elem ent, leży pomiędzy 
grupam i uporządkowanym i a u .p .  g ru p a m i. K lasa ta  jest zam knięta na 
iloczyny podproste i rozszerzenia. Pokazujemy ponadto , że każdy podzbiór 
upel grupy zawiera co najm niej dwa upel elementy.


