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UNIQUE PRODUCT ELEMENTS*

Summary. Any group G that can be given a right order will be
a unique product group. W hat is not known is, if G is a unique product
group, can G be given a right order. The purpose of this paper is to
study the unique product groups in order to gain more information
about the structure of the group and, also, to see what the additional
conditions can be added so as to have a right order. Notation used:
Let G be a group and let A and B be its subsets. AB = {ab \a €
A, b€ B}, A = {a|a GA}. Forsingleton set {g} = B we write Ag
instead A{g}. For the empty set 0 we define A0 = 0. Let F(G) denote
the semigroup of all finite nonempty subsets of G with multiplication
defined above. |A| denotes the cardinality of the set A.

. ILOCZYN

Streszczenie. Z kazdg grupg G mozna zwigza¢ poigrupe F (G)
ztozong ze skonczonych podzbioréw G, z dziataniami danymi wzo-
rami: A-B —{amb; af£ A, bGB}. W poétgrupie F (G) badamy naj-
mniejsza przechodnig relacje wyznaczong przez warunek: A ~ B, gdy
A-C = B-C dlapewnego C € F(G). Pokazujemy, ze relacja ta jest kon-
gruencjg w F(G). Niestety, kongruencja ta nie zawsze jest skracalna.
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W podzbiorach A £ F(G) wyrd6zniamy element a upel spetniajacy
warunek: A -B ~ (A\{a}) mB dla kazdego B £ F (G). Badamy wia-
snos$ci algebraiczne grup upel, w ktoérych kazdy podzbi6ér zawiera upel
element. Klasa takich grup lezy pomiedzy grupami uporzgdkowanymi
au.p. grupami.

l.Upel elements

Recall that a group G is said to be a unique product group (u.p.-group)
if, given any A, B £ F(G), there exists at least one element x £ G that has
a unique representation in the form x = ab with a £ A and b £ B i.e. there
exists a £ A such that AB 7" (A\{a})B.

Definition 1.1. Given a non-empty subset A of G, aunique product
element for A (upel ) is an element x of A with the property: for any
C £ F(G), (A\{x})C / AC. A group G is said to be upel group if each
non-empty finite subset contains an upel element.

It is clear that for each group G its element x is an upel for {x}. The
condition that C is finite in the definition of upel group appears since if H
is a nonidentity subgroup of G then H contains no upel elements.

Theorem 1.2. Let A be asubset ofthe group G, x £ A and B = A\{x}.
Then the following conditions are equivalent:

i) The element x is not an upel for A;
ii) The semigroup generated by x B contains e;
in) The semigroup generated by Bx~1 contains e;

iv) The element gx is not upel for gA, for each g £ G;
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v) There exists g £ G, such that gx is not an upel for gA;
vi) If D is a subset of G containing A, then x is not an upel for D;

vii) The element gx is not upel for DA, for eachg £ D £ F (G).

Proof, i) == ii) Suppose for x to be a non-upel for A. By definition
AC = BC for some C £ F(G). Choose ci £ C. Then letc2£ C and b2£ B
be such that xcx = b2c2. Note that A c2and G = x~1b2c2. Let c3 £ C
and 63 £ B be such that xc2= &c3, c2” c3and c2 = x_163c3. Continue this
process to obtain xc- = 6l+iC™+1, ¢, 7 G+1 and ¢, = x-16,+iC,+1. Since C is
finite, at some point ¢- = G where i <j. Since Ck 72 Ck+1 at each stage the
number of steps must be at least two. We start the process over with ¢, and
continue to G (i is where the repetition occurred with the following j).

xci — lc(L, o 7- \ and c, X b,-MCAH,
XCHL —M+2Ni+2)  ct+i 77 H+2 and ¢'— X jx  b,"27+25
xcj_i = bjCj, Ci_i ™™g and c,= (x-16+iX-1f+2... x~1b:)cj.

Therefore e = x_16,+1x_16,+2... x_16j is the nontrivial word with the mini-
mal length expression being x_16,+iX_16,+2.

ii) =» in) Suppose that the semigroup generated by x~IB con-
tains e. Then e = x~1blx~1b2... x~Ibj for some 6 £ B. Now e =
bix_1b2... x~Ibjx~1is an element of the semigroup.generated by Z?x-1. No-
tice the length of the expression is such that j > 2.

The proof of implication Hi) ii) is similar to the above.

i) i) Suppose that the semigroup generated by x~I1B contains e
Then e = x_161x_162... x~Ibj for some b £ B. Let:

C = {e = x~lbxx~1b2... x-16j, x~xb2... x~1bj,..., x_1fej}.

Then xC C BC, so AC = BC and hence x is no upel for A.
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i)=iv) Letg £ G. If C is a set with AC = BC then:
gAC =gBC =g (A\ {x})C = (gA \ {*}) C.

Hence gx is not upel for gA.
Suppose the semigroup generated by x~IB contains e. Since sets x~1B
and (gx) 1gB are equal and by i) ga is not an upel for gA.

The implication iv) =>v) is clear and the proof of v) =>1i) is similar to
the above.

u) =>vi) If e is an element of the semigroup generated by x~IB so it is
an element of the semigroup generated by x-1 (D\ {x}). Hence x is not an
upel for D.

The implication vi) ==1i) is clear.

iv) vi) =>vii) Let g GD 6 F (G). By iv) the element gx is not upe
for gA. Since gA C DA so by vi) the element gx is not upel for DA.

The implication vii) =>1i) is clear.,,
The above theorem immediately yields the following corollaries:

Corollary 1.3. The upel condition is left right symmetric. Hence for
example x is non upel for A if and only if there exists C G F(G) such that
CA = C(A\{g}).

Corollary 1.4. A group G is torsion-free if and only if each its subset
of cardinality 2 contains upel element.

As we will show in Proposition 4.3 there exists a torsion-free group and
its subset of cardinality 3 without upel elements.

Now we will describe some group-theoretic properties of the class of upel
groups.
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Proposition 1.5. The class of upel groups contains the class of right
ordered groups and is contained in the class of u.p. groups.

Proof. Let A be a nonempty finite subset of a right ordered group G.
Then by the proof of Lemma 13.1.7 from [5 the maximal and minimal
element of A are upels for A. It is clear that upel groups are u.p.-groups.B

Lemma 1.6. Let G be agroup. Then the following conditions are equiv-
alent:

i) G is an upel group;
ii) Every finitely generated subgroup of the group G is an upel group;

in) Every nonidentity finitely generated subgroup of the group G can be
mapped homomorphicaly onto a nonidentity upel group.

Proof. The implications i) == ii) =>in) are obvious.

in) == i) Let A be a finite subset of G. Proof by induction on cardinality
of A.

a) |Al = 1lthen x is the upel element of {x}.

b) Assume that every subset of cardinality less,then n contains an upel
element. Let [A| = n. Since A contains an upel element iff gA contains
an upel element forg 6 G, so we can assume e £ A. Let H =< A > be
a subgroup generated by A and let §: H -> U be a homomorphism
onto a non-trivial upel group U. Let x 6 A be such that <f>x) is
upel for 4>{A). Set B = {a £ A<j>a) = g>{X)}. Since |E| < \A\, so
B contains an upel element b. Since e and b £ A so the group H is
generated by the set b~IA. Hence without loss of generality we can
assume that b = e. Now ) = e € U is an upel element of 4>{A).
We will show that e is an upel for A. Suppose e = aia2... a< for some
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a, £ A. Then e = d>@l)"(a2) ... 4>{a). Since e = & is an upel for
<t(A) so by Theorem 1.2.ii, </>@) = e, for all i. Now a- £ B and e is an
upel for B so ai = e, for all i. Hence by Theorem 1.2.ii, e is an upel
for A.m

The following theorem shows us that properties of the class of upel
groups are similar to properties of classes of right ordered groups and of
classes of u.p. groups, (cf. [5]).

Theorem 1.7. The class of upel group is closed under extensions, direct
products and coproducts.

Proof. Let H be a normal subgroup of a group G such that H and
G/H are upel groups. Let S be a subgroup of G. If S (f H then S/S H ~
(S mH)/H isnontrivial upel group. If S C H then S is an upel group.
Therefore by Lemma 1.6, G is an upel group.

ii) If if is a nontrivial subgroup of direct product of groups then H can
be mapped homomorphicaly onto nontrivial subgroup of some factor. Hence
Lemma 1.6 yields the result.

iii) Coproducts. Let us first consider the case of two factors G * H . Let
\G*H —=G x H be the homomorphism given by f>(g) — G for g£ G
and d>h) = h for h £ H. According to ([3] Theorem 3 in Appendix) ker*>
is a free group. Since free groups are ordered so they are upel. By i) and ii)
G *H is an upel group. By induction this result holds for direct coproduct of
any finite number of groups. But every finitely generated subgroup of n*G
is contained in a coproduct of finitely many factors. Thus by Lemma 1.6 the
result is proved..

Let G be a right-ordered group and let A £ F(G). As we have shown
in Proposition 1.5 the maximal and the minimal element of A are upels. In
fact we have:
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Theorem 1.8. Let G be an upel group and let A 6 F(G). If |A] > 2
then A contains at least two upel elements.

Proof. Suppose A has only one upel element x. Let us consider the
element y~1z € A_1A — D. \i z » x then y~1z is not upel for D by
Theorem 1.2.vii. Ify » x then y~Iz is not upel for D since the upel condition
is left right symmetric. If A contains the additional element t ~ z then
z~lz —t~It is not upel for D.m

2. Relations in the semigroup of subsets

We need the following definition to describe some connections between
conditions upel and right-ordered.

Definition 2.1. Let A and B be some subsets of a group G. We set
Ay B ifA= B or B = A\{x}, where x is a non-upel for A. We say that
A is above B if there exists a sequence:

A=Aqy Aiy A2 AN —B

of subsets Ai of G. Let ~ be a relation on the set of all subsets of G defined
by: A rg B if there exists subset D of G such that D is above A and B.

Example 2.2. Let G be a right ordered group and let 6 F(G) be
such that A ~ B then maximal and minimal elements of A are maximal
and minimal elements of B. It is sufficient to prove it in the case A y B.
But then B — A\{x}. Since x is non-upel it can’t be maximal nor minimal.
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Lemma 2.3. Let A,B and C are non-empty subsets of a group G. Then:
i) ITAy B then AUCy BUC;
ii) If A is above B then A\J C is above B UC;
in) IfA ~ B then {AUC) ~ (B UC);
iv)y IfA~B and AC C C B then C ~ B;

v) If A, B and C are finite and CA = CB or AC —BC then A ~ B.

Proof, i) Suppose Ay B. IfA =B then AI)Cy BLC.Ili B=A\{x}
then /IUC = BUC'orBuCl=/IU C\{x}. Since x is not an upel for A
so by Theorem 1.2.vi x is not an upel for dUC. Hence AUC >B UC.

ii) Suppose A is above B. Then there exists a sequence:
A= Aoy Aiy A2y ... Yy Ak —B
of subsets A of G. By i):
AuC = AOuUCyAiUCyA2uCy...yAk[JC =B\JC.

Hence A U C is above BUC.

in) Suppose A ~ B. Then there exists a subset D of the group G such
that D is above A and B. By ii) D UC is above AUC and B L C.

For iv) we use in). Now C=dUC~BuC = B, thus, C ~ B.

v) If CA = CB for some C € F(G) then CA —C(A UB) = CB so we
can assume that B C A. Let A = B U{ai, a2,... an}. Note that:

CB = C{BLi{ai}) = C{BLi{ai,a2})

— C (B U{ai,a2,+++,an}) = CA.
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Each of the sets differ by one non-upel element from the previous, thus we
get:
Ay 5 U{fli}y B.

Therefore A ~ B. Similarly we can prove that AC = BC implies A ~ B.m

Corollary 2.4. Let A and B\, B2,..., Bn are subsets of G such that
A ~ B{, for i < n. Then there exists M above A and all Bfs.

Proof. The definition immediately follows case n — 1. Suppose n > 1
By induction there exist subsets M and N of G, such that M is above A
and B,, for i < n, and N is above M and Bn. Hence N is above A and all
Bfs..

It is easy to see that if A,B C G, A~ B and A EF(G) implies B 6
F(G). Hence we will also use ~ for relation on F(G).

Theorem 2.5. The relation ~ is the equivalence relation generated by
y on the set of all non-empty subsets of G. Furthermore ~ is a congruence
on the semigroup F(G) with multiplication defined in the introduction.

Proof. It is clear that A ~ A and that A ~ B implies B ~ A. Corol-
lary 2.4 yields transitivity. Now we will show that if A, B and D € F(G) and
A ~ B then AD ~ BD. It issufficient to proofthat in the case A is above B.
Let A = A0y Aiy A2y ... > Ak —B. Ifit is shown that A,D ~ AIl+iD,
then AD ~ BD will follow by transitivity. By Corollary 1.3 there exists
Y € F(G) such that VA = YA§{ Therefore YA\D — YA{+\D. Thus, by
lemma 2.3.v) A,D ~ Ai+iD. Similarly, DA ~ DB.m

Remark. Any semigroup has a minimal cancellative congruence
[1, page 14]. Lemma 2.3.v) yields that ~ is contained in the minimal can-
cellative congruence pc on F(G). If G is abelian then the congruence ~ is
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the same as p° and is given by: A ~ B if AC = BC for some C £ F(G)
(see [7]). We will show in Corollary 4.7, there exists a group T such that ~
is not cancellative congruence on F(r).

3. Ordered groups

Let G be a group with a partial right order. It is well known that the
set S —{g £ G| G > e} is a subsemigroup of G, such that S DS~I = {e}.
Conversely if S is a subsemigroup of G with property S fl 5_1 = {e}, then
we can associate a partial right order on G by, x < y if yx~I £ S. Such
semigroup we will call ordering semigroup. The ordering semigroup S is
aright order if the order associated with S is linear which is equivalent to
SUS~I = G.

Proposition 3.1. Let S be a subsemigroup of the group G, such that
e £ S. Then e is an upel of S iff S is ordering semigroup.

Proof. Suppose s is non-identity element of SOS-1. Then e is a non-upel
for the set {e,s,s-1} C S. Hence e is a non-upel for S. If e is a non-upel
for S then by Theorem 12 e = sis2...sn for some s, £ 5\{e}. Hence
Sjl=s2e*mn £ SnS hB

Definition 3.2. Let A be a non-empty subset of a group G. We say that
the element x is astrong upel for A ifa™ A* —T{B C G | B ~ A} i.e. x
belongs to the intersection of the equivalence class of A under ~ .

Proposition 3.3. Let x be an element of a subset A of the group G. If
x is a strong upel for A then A is an upel for A.
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Proof. Let af A, Since Ay A\ {x} if and only if x is non-upel for A s
each strong upel element is an upel.B

Example 3.4. Let A be a subset of a right ordered group {G <}. Then
a minimum and maximum elements of A are strong upels for A.

Example 3.5. LetG =< x,y \y~Ixy = x-1 > and A = {e, y2, X, xy~2}.
We claim that e is upel for A but e is not strong upel for A. It is easy to see
that the group generated by A is commutative. Suppose e = yZFx{xy_2)i,
m > 0,i > 0LA> 0. Then m = = i = 0. But since e — y~1ly2y~1
so y is not upel for A U {y} and AU {y} > A. Now e = Xxyxy~2y im-
plies {e,y,y2,x,xy-2} > {y,y2,%x,xy-2}. We obtain A = {e,y2, X, Xxy-2} ~
{y,y2,Xx, xy-2}. Hence e is not a strong upel for A.

Theorem 3.6. Lei G be a group and let A £ F{G). Then:

i) If G is torsion free and |A| = 1 then the unique element of A is strong
upel;

ii) If G is an upel group and |A| > 2 then A contains at least two strong
upel elements.

Proof, i) Suppose B £ F(G) is such that B 'y A. Then B = A or
B = {a,6} y A = {a} for some non-upel element b. Then Theorem 1.2
implies e = (6_1a)n, for some integer n. Since G is torsion free a = h.

ii) Since A is finite there exist sets B\, B2, mmm Bn related with A such
that A= L?%in B2H... flBn. By Corollary 2.4 there exists M £ F(G) above
all Bfs. By Theorem 1.8 M contains two upel elements x and y. Now it is
sufficient to prove that x and y are upels for each B. Let M = A0y Aiy
A2y ..my Ak = Bj, for some j. By induction x and y are upels for all At
and hence for Bj. Therefore x,y £ A*.m
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Theorem 3.7. Let G be a torsion free group and S its maximal ordering

semigroup. Then the following conditions are equivalent:

i) S is a right order;

ii) xy £S impliesx £ S ory £ S;

in) x $ S implies x is an upel for S U {x};

iv) x 0 S implies x is a strong upel for S U {x}/

v) e is a strong upel for S.

Proof. i) = ii) Suppose x and y are not in S. Then x x,y 1£ S. We
have (xy)-1 = y-1x-1 £ S which implies xy ~ S.

i) == in) Let x be a non-upel for S U {x}. By Theorem 1.2 there exi:
Xi, X2, ..., xn £ S\ {x} such that x-1xix-1x2,..., x-1xn = e. This equation
tells us that e is not an upel for {x, xi, x2,..., xn}. Since e £ S is a non-upel

for S so x 1 ~S. Now xx_1=¢e£ S sobyii) x £ S.

Hi) => v) By iii) if M is a subset of G such that M y S then M — S.
Hence if M is above S then M — S. Let A ~ S. Then S is above A. Let
S =A0y Aiy A2y ...y Ak — A. By induction e is an upel for all A,
and hence for A. Therefore e is a strong upel for S.

v) =>1i) Since S is an ordering semigroup for G, we need only to show that
SUS5 1= G. Letbf SU5-1.LetSi =S < SU{6}>be the subsemigroup
of G generated by S and b. Since S is maximal we have that Si is not an or-
dering semigroup for G. Thus we can write e = 6_1y16_1y2 ... ,6_1ly,,, where
y, £ S. This equation tells us that b is not upel for the set {6,yl5y2,..., yn}.
It yields S U {6} > S. Using the same procedure for 6-1, we can get
{zi, z2,..., zt} C S such that 6-1 is not upel for {b~1,z1,22, ..., ztj. It yields
B = 5U{6}U{6-1} >SU{b}>S. But By B\{e} so5 ~ #\{e} contrary
to v).
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i) = iv) Suppose < is a right order associated with S. Let x (ES. Then
X < e and x is a minimum element of S U {x}. Hence x is a strong upel for
S U {x}.

The implication iv) in) is obvious.m

Theorem 3.8. Let G be a group and let P be the positive cone of apar-
tial right-order on G. Then the following condition are equivalent:

i) The partial right-order P can be extended to a right-order on G;

i) IfA = {jijR,...,yn} € F(G), then there exist e = %1 such that
the semigroup generated by B = {P, y\x,y&,..., y*'} is an ordering
semigroup;

Hi) If A = {j/ijViime Vn} € F(G), then there exist e = £1 such thate is
an upel for B = {P,y[l,y2 ,..., YE"H

iv) If A = {yi,y2,-«+>Vn} € F(G), then there exist e = £1 such that e is
a strong upel for B = {P, y\x,y\2,..., y*n}.

Proof, i) =>iv) Let P be the semigroup of non-negative elements of G.
Let us choose e such that xe £ P. Then e is a minimum element of:

B = {Piy{\yR,---,yn}-
Hence e is a strong upel for B.
The implication iv) ~ Hi) is obvious.
Proposition 3.1 immediately yields implication iii) =>ii).

The conditions ii) and i) can be seen to be equivalent by realizing that
they are restatements of the conditions given in [4] Theorem 7.6.1.—



208 F. Pedersen, A. Strojnowski

Theorem 3.9. Let G be a torsion-free group. Then the following con-
ditions are equivalent:

i) For each A £ F(G) every upel for A is a strong upel for A;

ii) For each A £ F(G) every upel for A is a maximal element in some
right order on G;

in) Every partial order in G can be extended to a right order.

Proof. The implication ii) == i) is obvious.

i) =in) Suppose by contradiction there exists a maximal ordering semi-
group S which is not ordering semigroup. Then S DS~I = {e} and there
exists b£ S US '"1lsuch that the semigroups T generated by S U {6} \ {e}
and generated by S U{6-1}\ {e} contain e Hence there exists a finite subset
A of S such that AU {6} ~ Aand AU ~ A. Let M be above A U {6}
and AU{&1} Now M ~ A and e is not upel for M. So e is an upel for A
and it is an not strong upel for A.

iii) >mii) Suppose that the group G satisfies condition in) and let x |
an upel element of the subset A of G. By Theorem 1.2 the subsemigroup
generated by Ax~1is an ordering semigroup. We extend it to the right order
P and we define this order by:

X < V4=4> xy~x £ P.

Let 6 £ A, then hr-1 £ P so b < x. Hence x is the maximal element of A.u

The class of groups satisfying condition iv) is investigated in [4] chap-
ter 7.6. For example Rhemtulla ([4] Corollary 7.6.5) has shown that this
class contains all torsion-free locally nilpotent groups.



Unique product elements 209

4. Examples

In this section we illustrate theory of unique product on the example of
the well known group:

Fr=< X,y|x yx=y ,y Xy—x >.

Lemma 4.1. ([5] Lemma 13.3.3) Let H be a subgroup of T generated
by {x2,y2,(xy)2}. Then H is normal free abelian subgroup of T of rank 3
with T/H the Klein four group. Furthermore T is a torsion free group but
not right orderable.

Promislow has found a subset S of T of cardinality 14 such that all
multiplicities in SS are larger then 1. It shows that G is not u.p. group

(see [6]).
Lemma 4.2. Let {e, a, 6,c} be a coset representatives of H in T. Then:
aflea - |dz

Proof. Let b= xh, h 6 H. Then b2 = x2 for some integer i. Similarly
(yh)2 = y2j and (xyh)2 = {xy)2k. Since all cases are similar we will give
the proof only for the case a = xyy, g G H, and b = xh. Now a~1b2a =
g~ly~Ix~Ix2xyg = x-2*= b~2.u

Proposition 4.3. The group T is not upel. Furthermore the set {e,Xx,y}

contains no upel element.

Proof. First we show that y is not upel for {e, x, y}. By Theorem 1.2 it is
sufficient to show that the subsemigroup generated by y and y-1x contains
e. But:

y-1y 1Ixy_ 1y 1xy 1xy-1y 1xy-1 = x2yxy~2xy = x2yx2y~l = e.
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Similary x is non-upel since x and y play symmetric role. Furthermore e is
non-upel since e = Xyyxyxxy.m

For describing properties of ~ in T we will use the transfer map. Pick
coset representatives {xi,X2,x3,x4} for H in T. If g is in T, we construct
4*4 monomial matrix by placing XigxJ1 in the Ith row and jih column
if that element is in H and by placing 0 there otherwise. This induces an
injective homomorphism from T to the group of matrices with precisely one
nonzero entry, an element of H, in each row and column. The transfer map
T : G —H is gotten by taking the product of the nonzero entries of the
.monomial” representation. T is homomorphism and is independent of coset
representatives (see [2]).

Lemma 4.4. (cf[2] Theorem 23) Let T : T H be the transfer map.
Then T(G) = {e}.

Proof. We will show that generators of T belong to the kernel of the
transfer map. Indeed using for coset representatives {e, x,y,xy} we obtain:

T(X) = exx~xexxe myx(xy)~x m(xy)xy~x =

= XXYXY~IX~xxyxy~l = x2yx2y~x= e
and:

T(y) = eyy~| mxy(xy)~x myye m(Xy)yx~x = e.u

Lemma 4.5. Let A = {e,x,y,xy} be coset representatives for H in T.
Let B = AA~X If D € F(G), is such that B C D then B ~ D.

Proof. Let D — B U {d1;d2,m,dn}- By Lemma 4.4, for each d £ D
the element T (d~Xx) = e belongs to the semigroup generated by B and d.
According to Theorem 1.2 we get B ~ B U {d}. Continuing this process we
obtain:

B- Buygiy~ Budi,dz -~ -~ BuU {dj,d)--md,} = DM
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Theorem 4.6. The relation ~ in the semigroup F(T) has the following
description: A ~ D if and only if |JA|] > 2 and \D\ > 2 or \A\ =\ and
A = D.

Proof. Since G is torsion free prove of the case|A| = 1 is the same as
in Theorem 2.5. Let \A\ > 2. It is sufficient to prove that A~ B, where B
is the set from Lemma 4.5.

Step 1: A = {e,a}, a £ H. Analysis similar to that in Lemma 4.2 and
according to Lemma 4.5 we get A ~ {e, a,6} for some b £ (H U Ha). Con-
tinuing this process we obtain A ~ {e,a,6} ~ {e,a,6, c}, where {e,a, 6, c}
is a coset representatives of H in I\ Now after few steps we get A ~ B.

Step 2. A = h = x2ty2k(xy)2 € H and suppose t > 0. Then
equality e = (x~Ih)2x2~it implies A ~ {e, h,x}. Now A ~ {e,h,x} ~ B
follows by the same methods we used to prove step 1

Step 3: General case. Let |A| > 2. Then there exist gE T such that
{e,a} C Ag. Now, by steps 1 and 2, {e,r} ~ B ~ B UBg. This gives
{5-1,agf-1} ~ Bg~l UB. We thus get:

A= ag~1} UA ~ Bg~IUB UA ~ B.m

Corollary 4.7. ~ is not a cancellative congruence on F(T). Further-
more every cancellative congruence on F(T) is universal.

Proof. Let r be a cancellative congruence on F(T). Then for 6
F(F), \C\ > 2, then \AC\ > 2 and \BC\ > 2. Now AC r BC implies ArB,
hence r is universal.,,

Corollary 4.8. TU {0} and F(T)/ ~ are isomorphic semigroups.

Comments. Let G be a group generated by two elements x and vy.
Theorem 3.8 yields that if two words w(x,y) and u(x,y) are relations in G
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then G can not be right ordered. If in the group G two words (x,y) and
v/(y,yx) are relations then e and y are non-upels for the set A = {e,x,y}.
Hence, by Theorem 1.8, G is not upel group. We know that the group G
given on generators x and y with defining relations:

2,2.,3,,3 -1

xyx2yix3y® = x tyx ?y?ix®

y=e,

can not be right ordered but it is a candidate for an upel group.
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Streszczenie

Z kazdg grupg G mozna zwigzac potgrupe F (G) ztozong ze skonczonych
podzbiorow G, z dziataniami danymi wzorami:

A-B—{amh\aGA, bGB}.

W potgrupie F (G) badamy najmniejszg przechodnig relacje wyznaczong
przez warunek: A ~ B, gdy A C = B mC dla pewnego C G F(G). Po-
kazujemy, ze relacja ta jest kongruencja w F(G). Niestety, kongruencja ta
nie zawsze jest skracalna - podajemy przyktad grupy, w ktérej pdigrupa
ilorazowa F(G)/ ~ jest izomorficzna z p6lgrupa G z dotgczonym zerem.
W podzbiorach A G F(G) wyrdzniamy element a upel spetniajgcy waru-
nek: A mB / (A\{a}) *B dla kazdego B G F (G). Pokazujemy, ze klasa
grup upel, w ktorych kazdy podzbior zawiera upel element, lezy pomiedzy
grupami uporzgdkowanymi a u.p. grupami. Klasa ta jest zamknieta na
iloczyny podproste i rozszerzenia. Pokazujemy ponadto, ze kazdy podzhior
upel grupy zawiera co najmniej dwa upel elementy.



