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SOLUTION OF THE QUASISTATIONARY
STEFAN PROBLEM WITH NEUMANN
BOUNDARY CONDITIONS*

Summary. In this paper the analytical solution to the quasista-
tionary two-dimensional Stefan problem is presented for simply con-
nected domain with Neumann boundary conditions. The method uses
conformal mapping of the considered domain. Exemplary solutions of
this problem are given for unbounded domain, which is the interior of
the right angle, and for bounded domain, the boundary of which is an
ellipse.

ROZWIAZANIE QUASI-STACIJIONARNEGO ZAGADNIENIA
STEFANA PRZY WARUNKU BRZEGOWYM DRUGIEGO
RODZAJU

Streszczenie. W prezentowanej pracy przedstawiamy analityczne
rozwigzanie quasi-stacjonarnego dwuwymiarowego zagadnienia Ste-
fana w obszarze jednospéjnym, na ktérego brzegu zadano warunek
brzegowy drugiego rodzaju. Metoda wykorzystuje odwzorowanie kon-

*Mathematics Subject Classifications: 80A22;
Keywords: quasistationary Stefan problem, conformal mapping.
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foremne badanego obszaru. Jako przyktady podano rozwigzanie zada-
nia dla obszaru nieograniczonego, jakim jest wnetrze kata prostego,
i obszaru ograniczonego, ktérego brzegiem jest elipsa.

1. Introduction

A lot of physical processes are characterized by the Stefan problem. This
problem consists in calculating a thermal field and a moving boundary at
the same time. The first paper, which refer to moving boundary problems,
is G. Lame’s and B. P. Clapeyron’s paper [5]. Josef Stefan (1835-1893) de-
scribed a mathematical model of ice formation in the polar seas and solved
a one-dimensional problem in the case of constant Dirichlet boundary con-
ditions [15,16].

For one-dimensional problems, the existence, uniqueness and properties
of solutions are well known (see [9,11]) for Dirichlet boundary conditions as
well as for Neumann boundary conditions.

In the multi-dimensional case, the existence of classical solution of the
one-phase Stefan problem was proved in [4], for two-phase problem in small
time interval it was proved in [2,s], and for two-dimensional quasistationary
problem in [10]

Another question is how to find this solution?

We can try to use some techniques, such as the heat balance integral,
embbeding, isotherm migration and variational methods (see [3]). In some
one-dimensional cases it is possible to find an analytical solution. Unfortu-
nately, in general there methods cannot be transfered to multi-dimensional
problems. There are also numerical methods, which could be classified into
three main groups (see [1]): front tracking methods, front fixing methods
and fixed domain methods.
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The analytical solution of the quasistationary two-dimensional Stefan
problem is presented in this paper for a simply connected domain with
Neumann boundary conditions. This solution is a further development of
the Neumann boundary conditions case presented in papers [7,12-14],

The discussed method uses conformal mapping of the domain on the
consideration another, for which the solution is well known or relativly easy
to find. In the case of domains for which an explicit conformal mapping
can be given, the solution is given in analytical form. For other simply
connected domains, for which the conformal mapping can be given in form
<p@z) = IDSo ciz'i where G C, the solution could be as a series, countaining
these coefficients. The moving boundary is determined from the heat balance
equation on the solid layer, evaluated as a sum of the enthalpy changes in
the solid layer and the heat resulting from the phase change.

As examples, this problem is solved for unbounded domain, which is the
interior of the right angle, and for bounded domain, the boundary of which
is an ellipse.

In Section 2 the mathematical problem is formulated and the method
assumptions discussed. In the third section, the analytical .solution is pre-
sented in a general form. In Sections 4 and 5, as examples, the problem is
solved for unbounded domain and for bounded one, as follows.

2. Formulation of the mathematical problem

The scope of the paper ia a solution of the Stefan problem in curvilinear
tetragons (Fig. 1). It is assumed that one side of this tetragon is isotherm of
freezing front (CD), the opposite side contains cooling segment (AB) and
the two remaining sides are adiabates.

This problem is considered in quasistationary approximation, assuming
that the temperature distribution in solid layer may be evaluated on the
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Fig. 1. Solidification area
Rys. 1. Obszar krzepniecia

basis of the Laplace’a equation:
div (Agrad T) = 0

where A [VF/(m mK )] is the coefficient of thermal conductivity and T [AT] is
temperature.
It is assumed, that temperature is constant at the freezing front (I’k,l')i

= Tkr-
r*r

On boundary 7" and 7 ”, as adiabates:

dT dT
dn dn

Let us consider the case where the heat exchange with the environment
determines the Neumann boundary conditions:

dT

Ok
dnrO?n

The next important assumption adopted in the paper is the similarity
of the isotherm of the freezing front. The final characteristic of this method
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is used to evaluate the heat balance equation on the solid layer, calculated
as the sum of the heat change entalpy in solid layer (Qe) and heat emited
in phase change (Qkr), by the following equation:

Qo —Qkr T Qei

which could also [7] have the form:

where: L is latent heat, g is mass density, c is specific heat and T is mean
temperature in the domain, evaluated from the equation:

TA\H T(x'y)dxdy-
n

3. Solving the problem

Considering domain f2 positioned in plane Oxy. New coordinate system
O XY is introduced, associated with the old one by equation:

In the new coordinate system, domain 17 corresponds to new domain 0. The
analytic function:
U=u+iv=1(2) (2)

is conformai mapping of domain f1 on domain iV, where the isotherms of
the feezing front are paraller to the real axis (Fig. 2).
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Fig. 2. Transformation of solidification area by means of conformal mapping
Rys. 2. Przeksztatcenie obszaru krzepniecia za pomocg odwzorowania kon-

foremnego

The temperature in domain fF is given by the linear function [7,14]:

T(v) =Tn+ (Tkr-T n) \’;2’\ ~\ﬂ' (3)

where Tn denotes temperature of the surfaces.
The area of domain il is equal to:

S=JJ dxdy —I12J dX dY = 1223 D{u, v) du dv, (4)

n S n
where D(u,v) is the Jacobian transformation:

X = X(u,v),
y(u,u).

y
The heat balance equation (1), after it is passed to system Ouv, can be

represented in the form [7]:
(®)

1 (Af) = +07,-7)}

ul \ /I V=V\
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where ((t) = vt) is the position on the freezing front in moment t. Because:

dS dSdE  dE 29 . ..

dt = TETt=Ttl J D{Ki)du

(OT\
dv ?V,_M

/

and using constant , we obtain:

(@it \ . / \ dn 2
A(tt2 - ui) = gl2[L+c(Tkr-T)] - fj D(u,()du. (6)
=Y ]

From equation (3) we have:

W =TL-TI' T=1(0W+T.).
ov v2—w\ 2
Substituting this equations into formula () and using dimensionless vari-

ables:
At c(Tkr-T 0) _ Tkr- Tn

T~ cgl2’ ~ L """~ Tkr —To’
where TO - denotes temperature of the environment, after simple rearange-
ment we obtain:

2+ aondr ==y d%iJl DU’ &dum ()

The Neumann boundary conditions haven’t been used. On the plane Ouv
this conditions take the form:

i(8)..

Considering the derivative of the temperature expression, the dependence
defining temperature of the cast surface may be determined:

»(<)=n, -1({(<)-»m)*,. 9)
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Using equations (9) in the expression defining the dimensionless temper-
ature of the cast surface, we have:
ijtc<)-«m) (10)
A(ft -
Introducing the obtained formula into heat balance equation (7), we
have: _ 2
2clgn(£-vX) f-Ui f Ve
E:Tq_-ny- wiy A dT = ooy x” 4 0 ciu-
If heat flux gn doesn’t depend on time (is constant), the differential equation
with separation variables is obtained. Integrating this equation, a general
solution of the discussed problem with the Neumann boundary conditions
is found:

uz

T -l [14 [ 11
2 (U2 - UJR)X{ f' c anl N (V)

4. Solidification in unbounded domain

As the first example, solidification in unbounded domain is considered,
contained between the arms of the right angle. On account of the assumption
of the method and constant heat flux, thermal field is symmetrical with
regard to the bisector of the right angle. Therefore, it is enough in this
discussion to examine only domain f! (Fig. 3).

Assuming that | = AB, let’s introduce new coordinate system O XY
associated with the old one by the equations:
X y
7 7

In plane O XY the polar coordinates are introduced:

X — rcos<
Y = rsin</?,
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Fig. 3. Solidification area in the form of the right angle and its range
through conformal mapping

Rys. 3. Obszar krzepniecia w postaci wnetrza kata prostego i jego obraz
poprzez odwzorowanie konforemne

and the complex function considered:
w= f(Z) = Z2= raet2v.

This function is analytic and univalent in domain V = {Z : arg Z € [0, []},
therefore, it is conformal mapping in domain fl. From form function w,
half-time emanating from point Z = 0 with slop < turns into half-line
emanating from point u = 0 with slop 2<p Therefore, bisector AD (where
P is an image of point P in plane OXY), turns into positive imaginary
semi-axis. Positive real semi-axis (ip = 0) doesnt change. Points A = (0,0)
and B = (1,0) are constant points of this conformal mapping. The image of
section BC is perpendicular to the real axis and the image of section CD,
which is the image of the freezing front, is paraller to the real axis.
Because one more (polar) coordinate system is used, in the integral in
equation (11) the product of two Jacobians appears in this equation, there-
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fore it takes the form:

T 2wrzT) . + diM¢)
\J L J u

In the discussed example:
u=0 wu=1, vi—0, Di(r,<p)=r i D(u,v)=~(u2+u2 /[ .

Inserting the above to equation (12) and calculating the integrals, the de-
pendence between the position of the freezing front (if > 0) in plane Ouv
and dimensionless time is obtained:
1 4LA

Jl+ ﬂ— T arcsinhf-f
8 v clgn

T ~

+{b +i%),0g(1+vr "
cI‘qr‘J' { f M- (13>
Next, the dimensionless time corrensponding to parameter f may be
derived and, remembering about dependence r = ordinary time.

Using coordinates of point D and D', the thickness (77) of solid phase
along bisector AD may be obtained:

v=I1-yli- (14)

The dependence of solid phase thickness on time (in hours) is presented
in Fig. 4. The calculations are carried out for the following values of input
data: ¢ = 670 [J/(kg mK)\, L — 247 [kJ/kg], A = 30[VT/(m «K)], gn =
120 [kW/m 2], g — 7000 [kg/m3], I = 2 [m].

Assuming parameter f, the shape of the freezing front can be found
(inversing the transformations used above) and the time after which the
front assumes this position. The position of the freezing front of studied
domain  depending on parameter f is shown in Fig. 5. The values of the
parameters of metal and solidification process are the same as it was in the
case of calculating the thickness of solid phase. Parameter f is changing
from o.1 (internal curve) to 2.0 (external curve), with step o.1.
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ri [m]

Fig. 4. Dependences of solid phase thickness on time in the case of solidifi-

cation in unbounded area
Rys. 4. Zaleznos¢ grubosci warstwy zakrzeptej od czasu w przypadku krzep-

niecia w obszarze nieograniczonym

Fig. 5. Some positions of the freezing front in the case of solidification in

unbounded area
Rys. 5. Kilka potozen granicy rozdziatu faz w przypadku krzepnigecia w ob-

Szarze nieograniczonym
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5. Solidification in cylindroid

Let us consider the case of the solidification in cylindroid. On account
of symmetry, the solidification in one quarter cross-section of solidification
area is discussed (Fig. s).

Fig. s. Solidification area bounded by ellipse and its range through confor-
mai mapping

Rys. 6. Obszar krzepniecia ograniczony elipsa i jego obraz poprzez odwzo-
rowanie konforemne

The axes of coordinate system Oxy are selected in such a way that they
cover are convergent with the axes of the ellipse. The parametric equation

of the ellipse is as follows:

— acos«,
= fesinu, u€f0,27t).
) X y . .
If new coordinates X =y, Y == iZ = X + 1Y are introduced, where

| = y/a2—Db2 is the distance between the focus of the ellipse and the origin
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of the coordinates, the equation of the examined ellipse, takes the form:

X — - cosu,
(16)
Y y smu, UG [o, 271),
or in a complex form:
: a b
Z =X +1Y —-cosu + i-sinu.
Let’s introduce the function:
) a b
Z =X +iY = fu>) = ¥cosw + |—I sintu, a7)

where u = u + iv. This function is conformai mapping, which transforms
the zone:

on domain ft. The Jacobian D(u, v) the transformation of coordinates sys-
tem OXY on Ouv, is equal:

D(u,v) = 4]2&((&1 + b)2e~2v + (a —b)2e2v —2 (a2 —b2) cos 2 u)l .

Because now ui — 0, uz = f and v\ = 0, the formula determining the
dependence between the position of the freezing front in plane Ouv and
dimensionless time, takes the form:

1+28, —@ + 28?4+ 2£) e-2i
g (a + b)2
21—280+ (— -f250+ 2(H) e
@b g+ (—f259+ 2() a8)
where
2LX

clgn
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The thickness of the solid phase along axis Ox (rjx) may be calculated
using the coordinates of points D and D'. However, the thickness of the
solid phase along axis Oy (rly) can be calculated using the coordinates of
points C and C':

X a- \ ((@a+se)e_i+ (a- be(,

i - 49>
6- - ((@+ b)e 1- (a- s)ef).

Let’s attempt to determine, the time of the whole solidification process
for this example. The solidification process will be ended when the thickness
of the solid phase along axis Oy is equal to small axis of the ellipse (fly = b).
From formula (19) the following condition may be obtained:

f= 20>

If this condition is introduced to formula (18), the equation determining the
dimensionless time of all solidification process is derived.

The dependence of solid phase thickness on time (in hours) along axis Ox
and Oy (rjx and rly) is presented in Fig. 7. The calculations are achieved for
the following values of input data: ¢ = 670 [J/(kg mK)], L = 247 [kJ/kg\,
A= 30[W/(m «K)\, g — 7000 [kg/m3], gn = 100 [kKW/m2], a = 1[m] b =
0.8 [m].

The value of parameter if, which corresponds to the end of solidification
process is equal to 1.09861. However, the coresponding time of the whole
process is equal s.6s [/i].

The position of the freezing front of the studied domain, in depending
on parameter f is shown in Fig. s. The values of parameters of metal and
solidification process are the same as it was in the case of calculating the
thickness of the solid phase.

Parameter f is changing from 0 (boundary of casting mould, external
curve) to 1.0 (internal curve), with step o.1.
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Fig. 7. Dependence of the solid phase thickness on time in the case of so-
lidification in cylindroid (solid line — thickness of solid phase along
axis Oy, dots line — along axis Ox)

Rys. 7. Zaleznos¢ grubosci warstwy zakrzeptej od czasu w przypadku krzep-
niecia w walcu eliptycznym (linia ciggta - grubo$¢ warstwy zakrze-
ptej wzdtuz osi Oy, linia przerywana - wzdtuz osi 0x)

Fig. s. Some positions of the freezing front in the case of solidification in
cylindroid

Rys. s. Kilka potozen granicy rozdziatlu faz w przypadku Kkrzepnigecia
w walcu eliptycznym
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Streszczenie

W prezentowanej pracy przedstawiamy analityczne rozwigzanie guasi-
-stacjonarnego dwuwymiarowego zagadnienia Stefana w obszarze jednospdj-
nym, na ktérego brzegu zadano warunek brzegowy drugiego rodzaju. Me-
toda wykorzystuje odwzorowanie konforemne badanego obszaru na inny, dla
ktérego rozwigzanie zadania nie przedstawia trudnosci. Potozenie granicy
rozdziatu faz jest wyznaczone z réwnania bilansu ciepta w warstwie statej,
obliczanego jako suma ciepta zmiany entalpii warstwy statej i ciepta wydzie-
lanego przy przejsciu fazowym. Jako przyktady podano rozwigzanie zadania
dla obszaru nieograniczonego, jakim jest wnetrze kata prostego, i obszaru
ograniczonego, ktoérego brzegiem jest elipsa.



