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SYMMETRIC PRESENTATIONS FOR GROUPS

Summary. Let G be a group which has a presentation:
(x, y | {Ri(x,y), i € /}). This presentation is called symmetric if
the mapping x -» y, y —x defines an automorphism of the group
G. Then G is called symmetrically presented. We investigate finite
and infinite groups which have symmetric presentations. We give here
some examples of groups with symmetric presentations. In particular
we show that all symmetric groups Sn and all alternating groups An
are symetrically presented.

SYMETRYCZNE PREZENTACJE GRUP

Streszczenie. Niech G bedzie grupg posiadajgca prezentacje:

(x, y [{Ri(x,y), i € 1}).

Moéwimy, ze prezentacja ta jest symetryczna, jesli odwzorowanie x —a
Yy, Yy —X mozna przedtuzy¢ do automorfizmu grupy G, a grupe G
nazywamy wtedy symetrycznie prezentowalng. Badamy tu skonczone
i nieskofnczone grupy, posiadajace symetryczne prezentacje. Podajemy
przyktady symetrycznie prezentowalhych grup oraz pokazujemy, ze
grupy symetryczne Snialternujgce Ansg symetrycznie prezentowalne.
Podajemy réwniez przyktad minimalnej grupy skonczonej, dwugene-
rowanej bez symetrycznych prezentacji.
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Let G be a group with a presentation:

(x.y [{Rfix,y), i €/}) (1)

Definition 1. ( [3] or [5]) We say that the presentation (1) is sym-
metric if the mapping x —»y, y —* x defines an automorphism of the group
G

Remark 1. A presentation (1) is symmetric if and only if every relation
R (x,y) implies a relation R(y,x).

The question is:

Question 1. Which groups (especially finite groups) have symmetric
presentations?

This question was considered in [3]. The necessary and sufficient condi-
tion are given for the free product of two cyclic groups to have a symmetric
presentation. In this paper, we give some examples of groups with symmet-
ric presentations and we prove that symmetric groups Sn and alternating
groups An have symmetric presentations. We also prove that the groups of
order pg, where p and g are prime, have symmetric presentations.

Lemma 1. Let G be agroup with apresentation (X,y|xm —ym — (xy)n)
or (x,y|xm=ym = (xy)n= 1). Then G is symetrically presented.

Proof. We have to prove that G has relations: xm = ym = (yx)n. Indeed
it follows from equalities: (yx)n = (x-1xyx)n = x-1(xy)nx = x-1xmx -
Xm = ym.m



235

Symmetric presentations for groups

Lemma 2. Every 2-generator Coxeter group has a symmetric presen-

tation.
Proof. If G is a 2-generator Coxeter group then G has a presentation:

(x,y[x2=y2= (xy)n= 1)

(see [1]). Then by Lemma 1. G is symetrically presented..

Examples of symmetrically presented groups:

1. S3=(x,y|x2=y2= (xy)3= 1),

(x,y|x3=y3= (xy)2=1)

2. Ad=
= (X yx3=y3= (xy)3= (yx)3 I,x2y=y2x),
3. S4=(,y|x4=yd= (xy)3= (x_1ly)3 =(x2y2)2= 1),
4. Q8= (x,y|x2=y2= (xy)2),
5. Every dihedral group has a symmetric presentation:

Dn= (x,y|x2=y2= (xy)n= 1).

Lemma 3. Every 2-generator abelian group has a symmetric presenta-
tion:
(X, y|xr = yr = 1,xs = ya, [X, y]>,

where r can be either finite or infinite.
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Proof. It can be deduced from Corollary 3.5.2 from the book [4] that
if G is 2-generator, abelian group then G has the presentation: (x,y\xs =
yT= I,s|r, [x,y\ = 1). Because s|r then there exists k such that r = ks. We
denote by a = y and by b = xy, hence G = gp(a, b) and we have following
relations: ar = 1, br = 1, as = bs and [a, 6] = 1, as required..

The following theorem provides the necessary and sufficient condition
for a group to have a symmetric presentation.

Theorem 1. The 2-generator group G has a symmetric presentation if
and only if G has an automorphism a of order two and there exists such an
element g £ G that G —gp(g,ga).

Proof. The necessary coindition follows directly from the Definition 1.
Conversely, if w(a,aa) = 1then 1= (w(a, a“))” = w(aa,a). The last equal-
ity holds because a has order 2.,

Using the above theorem we can prove that all symmetric groups Sn and
all alternating groups An have symmetric presentations. First, we want to
show some lemmas.

Lemma 4. Leta= (1,2,... ,n- 1,n) andb- (1,2,...,n —2,n,n - 1)
be two cycles in Sn. Then An C gp(a,6).

Proof. Let us denote by H the group generated by a and 6. It is enough
to prove that all cycles of the form (1,2, A) belongtoH.
ab~l = (I,n,n —1) = cE H,
a~lb=(n—2,n—1n)=d£ H,
6¢6-1 = (1,2,n —1) € H,
c(l,2,n —I1)-1c-1 = (1,2,n) £ H,
d{l,2,n)d~1 = (1,2,7r —2) £ H.
Now, we show, that if (1,2, A) £ H then (1,2, A—1) £ H for3< A< n —1
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6“1(1,2,A%= (LAr —I,n —1)G H,

1,n—I,k —1)-(1,2,A)-(1,A; —4d,n —1) =(2,A,n — 1) £ H,

(2,k,n —1) m(l,n — 1,k —1)+(2, n —fc = (1,2, t—1)GH,
and it finishes the proof..

Lemma 5. Leta=(1,2,....,.n—1,n) andb=(1,2,... ,n —2,n,n- 1)
be two cycles in Sn then for an even n Sn = gp(a, 6), and for an odd n
An = gp(a,b).

Proof. We know from Lemma 1 that An C gp(a, b). If n is even then
both a and b are odd permutations, so Sn = gp(a,6). For odd n, a and bare
even, hence An = gp(a,6)..

Lemma 6. Leta= (1,2,...,n—1) andb—(1,2,...,n —2,n) be two
cycles in Sn. Then An C gp(a,6).

Proof. Let us denote by H the group generated by a and b. We shall
prove that for all k G {3,...,n} cycles (I,2,fc) belong to H.
ab~1= (1,n,n—1)=c¢ GH,
a~xb= (n,n —1,n —2) = d GH,
bcb~x= (I,n —I1,2)G-if, so(l,2,n —I) € H,
c(l,bn —1,2)c_ 1= (I,2,n) GH,
d-1(1,2,n)d= (1,2,n-2) GH.
Now, it is enough to prove that if the cycle (1,2, A) G H then (1,2,k —1) G
H, for3< k<n-—1,
6 1(1,2,k)b = (1, k —1,n) G H,
l,n,k —1)(1,2,k)(l, k —1,n) = (2,fc,n) G H,
2,An)l,n k—1)2,n, A = (1,2, A—1) GH, which was required..
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Lemma 7. Leta=(1,2,...,n—1), b—(1,2,...,n —2,n) be cycles in
Sn. Then for even n, An = gp(a,b), and for odd n, Sn = gp(a,b).

Proof. We know from the Lemma 3, that An C gp(a,b). If nis even
then cycles a and b are both even, so An = gp(a,b). For n odd the cycles a
and b are odd, hence Sn = gp(a,6).B

Theorem 2. Symmetric groups Sn and alternating groups An have sym-
metric presentations.

Proof. We use Theorem 1, Lemma 2 and Lemma 4. It follows from
Lemmas 2 and 4 that there exist an element a € Sn and the automorphism
a of order 2, such that:

Sn =gp(a a“),

where a is the inner automorphism that maps every x into X(n'h~" (a
changes n and n —1). The element a depends on n, for even n, a =
(1,2,...,n), and forodd n, a= (1,2,...,n —1).B

Symmetric presentations of alternating groups An were found by

H. S. M. Coxeter ( [2]):

A2mti = (X, y\W2m+l = y2m+l = (xy)m,(x~jyJ)2= 1,2 < j < m),

A2m = {x,y\x2m-1=y2™-1= (xyn(arV V )2=12<j<m - 1).
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Theorem 3. Ifthe G is afinite non-abelian groupof order pg, where p
and q are primes, then G has symmetric presentation.

Proof. Let us assume that p < g. It is not difficult to show that G has
a presentation: (x,y\xp = yqg— 1,xyk = yx), where kp = 1mode and k 1
We consider the mapping:

—La —y~Ix

y ib=yl1

The group G is generated by elements x and xa. By Theorem 1, it is enough
to prove that a defines the automorphism of order 2 of G. To prove that a is
the automorphism of G we use the Lemma 3.3 from [4] and we show that a
and b satisfy the same relations as x and y do. It is clear that ap= bq= 1. We
prove now that abk = ba, indeed abk = y~Ixy~k — (xy~k)y~1= y~Ixy~1=
ba. Clearly a has order 2.,,

Let u — x and v = y 1x then G — gp(u,u) and x = u, y = uv~l.
1 and

Elements u and v satisfy following relations: up —vp = (uv~1)9
(uv~1)k —v~1u. Hence G has the following symmetric presentation:

(x,y\xp=yp- (xy~l)g= = y_1Ix),

where kp = 1mod g, and k / 1

Now, we show that there exist 2-generator groupswithoutsymmetric
presentations. Theorem of 0. Macedonska and D. Solitar [3] shows that
the free product of cyclic groups of order r and s, where 0 < s < r, has
a symmetric presentation if and only ifr = s or ifr or s is odd. So we get ex-
amples of infinite groups without symmetric presentations. In next theorem
we show the example of a finite group without symmetric presentations.
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Theorem 4. Let G be a group with the presentation
{x, y\x2= l,y* = y3).

Then G is the metacyclic group of order 16 and G has no symmetric pre-
sentations. Morover, G is the smallest group with this property.

Proof. The subgroup of G generated by y, is normal and the quotient
group G/(y) is cyclic and has order 2. So G is the metacyclic group [2] and
every element of G can be written in the form xkyl, k £ {0,1}. To find the
order of G it is enough to find the order of y. From the relation y3 = yx
we get y9 = x~ly3x = x~2yx2 = y and hence y8 = 1. It means that G
has the order 16. Now, we show that G has no symmetric presentations.
We consider all pairs a, b of elements which have the same orders. Every
element of G has order 2, 4 or 8. Elements: y4,x,xy2,xy4,xy6 have order
2, y2,y6,xy, xy3,xy5,xy7 have order 4, and y,y3,y5,y7 have order 8. If two
elements a, b have order 2 then the subgroup generated by a and b is con-
tained in K = (x,y2), and K has 8 elements, so K G. The subgroup
generated by two elements of order 4 is contained in H — (xy,y2) and H
has order 8. Indeed we have y6 £ H, xy3=xy my2 £ H, xy5= xy3my2£ H,
xy7= xy5my2 £ H. We denote a = xy, b= y2then a and b satisfy relation
a4 = bd=1,a2—b2,a~1ba = b~l, hence H is isomorphic to the quaternion
group Qs, which has 8 elements. It means thet every pair ofelements of order
4 generates a proper subgroup of G. Every element of order 8 is contained in
(y), so every pair of elements of order 8 does not generate G. This group is
the smallest group without symmetric presentations because it follows from
the table 1in [2] that every group of order less then 16 has the presentation
of the form (x,y\x2= y2= (xy)m) or (x,y\x2= y2= (xy)m = 1) and both
types of presentations are symmetric.,,
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Streszczenie

Niech G bedzie grupg posiadajacg prezentacje:

(x, y [{Ri(x,y), T £ 7}).

Prezentacja ta jest symetryczna, jesli odwzorowanie X —>y, y —>X mozna
przedtuzy¢ do automorfizmu grupy G, a grupe G nazywamy wtedy syme-
trycznie prezentowalng. W pracy tej pokazujemy, ze nastepujace grupy po-
siadajg symetryczne prezentacje:

- grupa kwaternionéw QS8,

- wszystkie dwugenerowane grupy Coxetera,

- wszystkie dwugenerowane grupy abelowe,

- grupy symetryczne Sn i grupy alternujace An.

Podajemy réwniez przykiady dwugenerowanych grup, ktére nie posia-
dajg symetrycznych prezentacji. Minimalng grupg o tej wiasnosci jest grupa,
ktéra ma prezentacje (X, Y\ Xx2—1,yx = y3).



