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DOMINO SYNCHRONIZATION: PR O D U C T FORM  
SOLUTION FOR STOCHASTIC AUTOM ATA NETW ORKS

S um m ary . We present a new kind of synchronization which allows Stocha­
stic Automata Networks (SAN) to have a product form steady-state distribution. 
Unlike previous models on SAN with product form solutions, our model allows 
synchronization between three automata. The synchronization is not the usual 
”Rendez-Vous” but an ordered list of transitions. Each transition may fail. When 
a transition fails, the synchronization ends but all the transitions already executed 
are kept. This class of SAN is a generalization of Gelenbe’s networks with trigge­
red customer movement. Finally, our result suggests an approximation based on 
product form for SAN whose synchronization are ordered lists of transitions of 
arbitrary size.

SYNCHRONIZACJA DOMINO: FORMA ILOCZYNOWA DLA SIECI 
AUTOMATÓW STOCHASTYCZNYCH

Streszczenie. W artykule przedstawiony jest nowy rodzaj synchronizacji, 
który pozwala przedstawić w formie iloczynowej rozwiązanie modelu Sieci Auto­
matów Stochastycznych. W przeciwieństwie do wcześniejszych modeli w postaci 
Sieci Automatów Stochastycznych o rozwiązaniu produktowym, ta  propozycja 
umożliwia synchronizację trzech automatów. Ten rodzaj synchronizacji nie re­
prezentuje zwykłego typu "Rendez-Vous” . Jest on bowiem reprezentowany przez 
uporządkowaną listę tranzycji, z których każda może być aktywowana. Po zakoń­
czeniu reaktywacji tranzycje są zachowywane. Ta klasa Sieci Automatów Stocha­
stycznych stanowi uogólnienie sieci Gelenbego z odpalanym ruchem klientóow. 
Uzyskane wyniki prowadzą do aproksymacji opartej na Sieciach Automatów Sto­
chastycznych o rozwiązaniu iloczynowym, w których synchronizacje są wprowa­
dzana na zasadzie listy tranzycji o określonym rozmiarze.
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1. Introduction

Since they have been introduced by B. Plateau [14] to evaluate the performance 
of distributed algorithms, Stochastic Automata Networks (SAN for short) have been 
associated to new research on numerical solvers. The key idea is to take into account the 
tensor decomposition of the transition matrix of a SAN to improve the storage of the 
model and the complexity of the vector-matrix product [6]. The first algorithm proposed 
was a numerical resolution of steady-state distribution of the Markov chain associated 
to a SAN [15] using the power method. Since then, several numerical methods have 
been investigated ([5], [19], [8]). And SAN have been used to obtain loss rates in ATM 
networks [7] , blocking probabilities in multistage interconnection networks [1] or for the 
performance evaluation of a bandwidth allocation mechanism in Wireless ATM [20].

As a SAN is a modular decomposition into autom ata which are connected by synchro­
nized transitions, SAN are closely related to Stochastic Process Algebra. Therefore, new 
results on SAN may be easily translated into other models based on composition such 
as process algebra, for instance PEPA ([12]). The tensor decomposition of the generator 
has been generalized for Stochastic Petri Nets (see for instance [4]) and other modular 
specification methods as well [13].

Recently, some analytical results for SAN have been presented. First, B. Plateau et 
al. [16] have considered SAN without synchronization. They proved that a product form 
steady-state distribution exists as soon as some local balance conditions are satisfied. Even 
without synchronization, the transitions of the autom ata are still dependent because of 
functional rates. Plateau’s result is closely related to  Boucherie’s result on Markov chains 
in competition [3] and Robertazzi’s theorems on Petri nets [17]. Similarly, using the same 
type of argument (i.e. group local balance), Sereno has proved a sufficient condition 
to obtain a product form solution for a PEPA model [18], Different results have been 
obtained by Harrison using reversibility theory for PEPA models [11].

In [2], we have considered SAN with a special case of synchronization denoted as 
limited synchronization. In a limited synchronization, only two autom ata are active. We 
also restrict ourself to SAN without functional rates. We proved a sufficient condition to 
have a product form steady-state distribution: existence of a solution for a fixed-point 
system between the instantaneous arrival rate and the steady-state distributions of the 
autom ata in isolation. Some typical queueing networks such as Jackson’s networks or 
Gelenbe’s networks of positive and negative customers [9] have been shown to be examples 
of this type of SAN. For both networks, the fixed-point system is equivalent to the
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well-known flow equation. Our proof was based on global balance equation. Indeed, there 
is no local balance (in the usual sense) for Gelenbe’s networks. However to generalize 
our former result to a more general class of SAN, we have to change the description of 
synchronization.

The assumption on synchronization used to define the SAN methodology was the 
”Rendez-Vous” . Here, we consider a completely different kind of synchronization: the 
Domino synchronization that we will introduce more formally in the next section. Brie­
fly, a Domino synchronization is an ordered list of tuples (automaton number, list of 
transitions inside this automaton). The synchronization takes place according to the or­
der of the list. The synchronization may completely succeed or be only partial if some 
conditions are not satisfied.

The rest of the paper is organized as follows: in section II, we describe Domino syn­
chronization. In section III, we state the main theorem of the paper, the proof of which 

is postponed into an appendix. Section IV is devoted to examples. Finally, we give some 
conclusions and some perspectives to extend our results to more general synchronizations.

2. Domino Synchronization

An automaton consists of states and transitions which represent the effects of events. 
These events are classified into two types: local events or synchronizing events. A local 
event affects a single automaton and is modeled by some local transitions. On the oppo­
site, a synchronizing event modifies the state of more than one automaton (but loops are 
considered as valid transitions). Transitions rates may be fixed or functions of the states 
of the whole set of automata.

In this paper, we consider that the transition rates are fixed. The SAN methodo­
logy allows functional rates to couple the automata. However it is possible to  replace 
functional rates by synchronization with loops. Each value of the function is replaced 
by a synchronization with loops and a fixed transition rate (i.e. the value of the func­
tion). Functions have been added in the SAN methodology to make more compact the 
representation using less synchronizations.

So we restrict ourself to continuous-time SAN without functions. The state space of the 
system is the cartesian product of the states of the autom ata which are combined in the 
network. The effective state space is in general only a subset of this product. Because of 
synchronizations, an automaton by itself is not Markovian. To obtain a multidimensional
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Markov chain for the whole network, we assume exponentially distributed transition 
durations.

The synchronization formerly used for SAN are defined as ”Rendez-Vous” . This sim­
ply says that a synchronized transition is possible, if and only if, all autom ata are ready 
for this synchronized transition. We have to consider a completely different type of syn­
chronization: the domino of three automata. The name comes from a group of domino 
tiles which falls one after the other. Of course, if one tile does not fall, the domino effect 
stops but the tiles already fallen stay down.

Let r  be a synchronization number or label. The Domino synchronization consists 
of an ordered list of three autom ata called the master m sr(r), the slave sl(r) and the 
relay rl(r). The synchronization is performed according to the list order. The master of 
synchronization r  is the initiator of the synchronization. It performs its transition. The 
slave may obey or not to the request of the master. If it does not follow the master, 
it makes a loop and the synchronization stops without any interaction with the third 
automaton (i.e. the relay). But the transition of the master is kept. If the slave obeys, 
it performs a real transition (i.e. not a loop) and the third automaton (i.e. the relay) 
now has to make a transition. This transition is either a loop (the relay refuses to follow) 
or a real transition (the relay obeys). In both cases, the master and the slave perforin 
their transitions. The relay and the slave follow the master according to their local state 
and the list of transitions marked by label r. Note that this definition of synchronization 
implies that the master is never blocked by the slave or the relay (it is not a rendez-vous). 
This implies that every state of the autom ata sl(r) and rl(r) is the origin of at least one 
synchronized transition marked by synchronization label r.

Fig. 1. A Domino Synchronization 
Rys. 1. Synchronizacja Domino
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Finally, let us remark that the name ’’relay” for the third automaton is justified by the 
following idea. Assume that automaton Ai is the relay for synchronization r l .  It may also 
be the master for synchronization r 2. Assume that the effect of synchronization r l  on Ai 
is that synchronization r 2 becomes firable. Then, if the transition rate for synchronization 
r2 is higher than the other rates, it is more likely that r2 will almost immediately follow 
rl. Furthermore, as it may be seen in the next section, increasing the transition rate of 
some synchronization do not remove the product form solution.

3. Product Form Solution

We now establish a sufficient condition for a SAN with domino synchronization to have 
steady-state distribution which is obtained as the product of steady-state distribution of 
isolated automata. The autom ata are defined by the following matrices which may be 
either finite or infinite:
N  matrices denoted as F) which contains the transition rates of local transitions for 
automaton I. The matrices are normalized, i.e.

F [[k , i] ^0  if i i 1 k and y~) Fi\k, ¿1 =  0
i

R tuples of three matrices (D r, E r;T r) which represents the synchronizations. In DT we 
find the transitions due to synchronization r  on the master automaton. It is assumed 
that the synchronizations always have an effect on the master (i.e. its transition is not a 
loop). All matrices are normalized, i.e. for all k we have:

D r[k, i \ ^ 0 H i ^ k  and D r[k, f] =  0 
E r[k, i\ ^  0 if i ^  k and Yli F r[k, ¿] =  0

T r[k, ¿] 5= 0 if i ^  k and Y ,iT r[k,i] — 0

The effect of synchronization r  on the slave (i.e. automaton sl(r)) is specified by ma­
trix E r. The synchronization may have no effect on the slave when it is in state k (i.e
Er[k,k] is zero). It is said that the synchronization r  fails during the second step. The 
synchronized transition takes place on the master but there is no effect on the slave and 
the synchronization is stopped at this step. Thus, the relay do not synchronize. For in­
stance, in Fig. 1, the slave does not follow the synchronization when it is in state A  and 
it performs a loop.
Otherwise, row k of matrix E r gives the transition probability out of state k for the slave.
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And the synchronization tries now to trigger a transition of the automaton rl(r). Due to 
the normalization, we have:

E r[k, k] — —1 or S r [)t,A:]=0

Similarly, the synchronization may have an effect on the relay (a real transition and a 
probability in matrix T r) or it may fail (it is represented by a loop in T r). The matrix is 
suitably normalized:

T r[k,k} = - 1 or T r[k,k] = 0

Remark 1

• We note © the product vector-matrix.

• To keep the notation as clear as possible, we use in the following the indices i, j ,  k
and m  for states, I for an automaton, r for a synchronization.

• Finally, we denote by ((ki, k2, ■ ■ ■, kn)0(lis t  (automaton, state))) the state where 
all automata are in the state defined by (ki, k2, • ■ •, kn), except the ones in the list. 
So, ((ku k2, - - - , k n)0((l,i)))  represents the state where for all m, automaton m is 
in state km except automaton I which is in state i.

Theorem  1 I f  there exists a solution (gi, r r , flr)i,r to the fixed point system

f 9i O [Fi +  £ f= i (-Dr l msr(r)=i +  r rRr l si(r)=i +  r r^ rT r l rj(r)=i)] =  0

' Tr gt = giQ Dr i f  msr(r) -  I (1)

f i r S i = f f l 0  E r i f  sl(r) -  I

where

• D r — D r — diag(Dr)

• E r = E T — diag(Er)

• r r , a  6 n +

• gi is a distribution of probability on the state space Xi

Then, the steady-state distribution has a product form solution.

P r ( ( X UX 2, ■■■,Xn)) = c f [ gi(X,) (2)
¿ = 1

and. C is a normalization constant.
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The proof is based on algebraic manipulation of the global balance equation (see 
below). For the sake of readability, it is postponed into an appendix. Here, we just explain 
the various terms which appear in this equation.

^ ( E E ^ M  +  E  E  D r[kmsr(r),i}) (3)
¡=1 ij ik i  r = l  i j ik m, r (r)

=  t ' z w M P r f c i m )
1=1 i^k[

+ E  E  n U ) l  E  E r[(j,kaKT))} £  T r[m,krKr)] x
r~ 1 i^nwr(r) jj^̂ al(r) m7 r̂f(r)

Pr(kO((msr{r), i ),  (,s l{r), j), (rZ(r),m)))
R

+  E .  E  D  [¿, &msr(r)] E  (jf, fc5f(r) ) l T r(fcr^r),A:r/(r)]=0
r=l *^mjr(r) j9̂ âl(r)

Pr(kO((msr(r) ,  i), (sl{r), j)))
R

+  E  E  £>r[bfcmirw]1s-[fca,(r),it„(r,]=o-P7-(fcO((™sr(r),i)))
r = l  i j tk msHr)

• On the left-hand-side, is the rate for local transition out of state /q for 
automaton I and [A;, z] is the transition rate of a synchronization which jumps 

out of state /q,

• on the right-hand-side, the first term describes local transitions into state Aq,

• the second term is associated to a complete synchronization of the three automata,

• in the third term, we consider a synchronization which fails at the third step (i.e. 
the relay),

• and finally, the last term describes a synchronization which fails at the second step. 
The slave refuses the transition.

The equations in theorem 1 are quite complex, but a simple interpretation may be 
given to all of them. The first equation defines <?; as the invariant distribution of a 
continuous-time Markov chain which models the automaton in isolation (i.e. giMi = 0), 
with

R

Ml =  Fi -f (^Im srp )=l + Tr£'rl i((r)=| +  Frfi,-Trl r;(r)=I)
r = l
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Clearly, as F;, D r, E r and T r are generators and Tr and flr are positive, matrix Mi is 
the generator of a continuous-time Markov chain. Of course, this construction does not 
prove in general that the chain is ergodic. However, if the chain is finite and if the matrix 
Fi is irreducible, then the matrix Mi is irreducible and the chain of the automaton in 
isolation is ergodic.

Furthermore, the four terms of the summation have an intuitive interpretation. The 
first term corresponds to the local transitions. The last three terms represent the effects 
of the synchronization on the autom ata involved. The effect on the master are explicitly 
represented by the transition matrix D r while the effect on the slave and the relay are 
represented by the normalized matrices E T and T r multiplied by some rates denoted 
flr and Fr . These rates are defined by the last two equations of the fixed point system. 
Consider the first one:

Tr 9i =  9i O Dr

This equation states that Fr is the left-eigenvalue associated to the eigenvector gi for 
an operator obtained from matrix Dr by zeroing the diagonal elements. The examples 
presented in the next section show that this equation is a generalization of queueing 
networks flow equation. Similarly, fir is defined as the eigenvalue of a modified version 
of E r. Note that, like in product form queueing network, the existence of these flows 
(rr, fir) does not imply that the whole network send a Poisson streams of synchronization 
on automaton I. Similarly, the product form holds even if the underlying Markov chain 
is not reversible.

Remark however that the assumptions of the theorem are quite restrictive. We have 
seen before that, for finite autom ata with an irreducible local transition matrix Ft, vector 
gi exists and is unique because chain Mj is ergodic. But the two last equations establish 
that gi is also an eigenvector of operators D r and E r. Furthermore we also have a fixed 
point on the eigenvalues f2r and Tr . Clearly, this part of the system may have no solution. 
For instance, as and Fr are positive, matrices D r and E T do not have rows full of zero. 
Therefore, every state of the master and the slave must be the destination of at least one 
synchronized transition. We present in the next section some examples where the product 
form holds.
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4. Exam ple

We define some notation for the various matrices used to describe the SAN:

• I: the identity matrix,

• U: the matrix full of 0 except the main upper diagonal which is 1,

• L: the matrix full of 0 except the main lower diagonal which is 1,

• 1°: the identity matrix except the first diagonal element which is 0.

4.1. G elenbe’s networks w ith  custom er triggered m ovem ent

The concept of Generalized networks (G-networks for short) have been introduced 
by Gelenbe in [9]. These networks contain customers and signals. In the first papers on 
this topic, signals were also denoted as negative customers. Signals are not queued in 
the network. They are sent into a queue, and disappear instantaneously. But before they 
disappear they may act upon some customers present in the queue. As customers may, 
at the completion of their service, become signals and be routed into another queue, 
G-networks exhibit some synchronized transitions which are not modeled by Jackson 
networks. Usually the signal implies the deletion of at least one customer. These networks 
have a steady-state product form solution under usual Markovian assumptions. Then the 
effects have been extended to include the synchronization between three queues : a signal 
originated from queue i and which arrives into queue j  triggers a customer movement 
into queue k, if queue j  is not empty. Gelenbe has proved that these networks still have 
a product form solution under the same assumptions [10]. For the sake of simplicity, we 
assume tha t there is no arrival of signals from the outside. We also restrict ourselves to 
networks where at the completion of their services, the customers become signals or leave 
the network.

We consider an infinite state space. Each automaton models the number of positive 
customers in a queue. The signal are not represented in the states as they vanish in­
stantaneously. The local transitions are the external arrivals (rate A¡) and the departures 
to the outside (rate fit multiplied by probability d{). The synchronization describes the 
departure of a customer on the master (the end of service with rate in and probability
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(1 -  di)), the departure of a customer on the slave (a customer movement, if there is any), 
the arrival of a customer on the relay (always accepted).

Ft = Xi{U - I )  + nidt(L -  1°)

D r = W(1 -  <k)(L -  1°) (4)
E r — (L — I °)
T T = {U - 1)

After substitution in the system considered in theorem 1, it must be clear tha t matrix 
Mi is tridiagonal with constant diagonals. Thus, gi has a geometric distribution with rate 

PC

—  ^  +  £-’•=1 fy-fYfw(r)=l
Hi +  £ f= l r r l si(r)=i

Of course, one must check that for all I, pi is smaller than 1. Because of its geometric
distribution, gi is an eigenvector of operators D T and E r. Finally, we obtain:

=  p$l(r) and Fr =  Prnsr{r)/hnsr(r)(I dmsr(r))

which is roughly the generalized flow equation which has been found in [10]. This provide 
a new proof of Gelenbe’s theorem.

4.2. E x ten sio n

It is worthy to remark that matrices T r and Fi only appear in one equation. There­
fore, it is possible to extend Gelenbe’s result in several directions keeping the geometric 
distribution for gi and the matrices D r and E r unchanged. Indeed, the last two equations 
of the fixed point system are still verified for the eigenvector. And this gives two relations 
between the eigenvalues Fr and flr and the rate of the geometric distribution of gi.

T h eo rem  2 Assume that D r — a L  and E r = L, then for every matrices Fi and T r 
which imply a geometric distribution for gi with rate pi, the SA N  has a product form 
distribution if  the flow equation in pi has a solution whose components are smaller than

1.

For instance, if T r or Ft combines queue flushing, deletion of a batch of customers and 
arrival of one customer (with natural representation of these effects on the automata), 
the distribution gi is geometric and we have a product form as soon as the pi exist and 
are smaller than 1.
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Another easy extension comes from the representation of customer migration in a 
Jackson network. Remember that we do not have consider these transitions in the sim-

customer arrival cannot be represented by matrix E r because of the eigenvector and 
eigenvalue constraint (i.e. in this case, the first column of E r is null). Therefore it must 
be represented by matrix T r. To represent a customer movement, we add a slave which 
always follows the master and allows the transfer of customers between the master and

good solution to allow a solution for the eigenvector constraint. This construction allows 
also some movement with constraints represented by E r.

Finally, we may represent domino synchronization of larger size. Indeed, the relay for 
synchronization r l  may be the master for a new synchronization r2. Assume that the 
state space of this automaton is the set of integers. Assume that the only transitions on 
this automaton are the synchronization r l  and r2. Let Ir be the automaton number. If 
Trl = [U — I)  and D r2 = a(L  -  1°). Then, gir has a geometric distribution with rate 
ILjp i  and the eigenvector relation is satisfied. Thus, we have two domino synchi’onization 

of three autom ata which are connected by the relay. The domino effect apply now on five 
automata with a loop for the relay and some time spent to fire the relay. This is depicted 
in Fig. 2 where synchonisation 1 is depicted by plain arcs while synchronization 2 is 
modelled by dotted ones. Automaton 3 is the relay for synchronization 1 and the master 
for synchronization 2.

plified model of Gelenbe’s network. We now show how to add them into the model. A

the relay. The slave must have at least two states. For instance, E T —
- 1  1
1 - 1

Fig. 2. Two linked Domino Synchronizations 
Rys. 2. Dwie połączone Synchronizacje Domino

Furthermore, one must remark that this result still holds if we increase the value of
a. Indeed, if < 1 for a particular value of a, the relation is still true for a larger
value. But the larger the rate, the more likely r2 will follow r l  very quickly. This gives
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an approximation to analyze networks where the domino synchronization involve more 
than three automata. One may also expect from this limit behavior or from the algebraic 
proof of the theorem tha t this product form for domino is not limited to synchronization 

between three automata.

5. Conclusions

Domino synchronization limited to three modules allow SAN and more generally SPA 
to have a product form steady-state distribution. This result is based on the synchroni­
zation description and the algebraic analysis of the global balance. Our result holds even 
if the underlying Markov chain is not reversible. Similarly, local balances do not hold 
(at least for Gelenbe’s networks which are included in our model). However, Domino 
synchronization are far less powerful for specification than the usual ”Rendez-Vous” . For 
instance, they do not allow the blocking of the master by the slave. We expect that it 
will be possible to make a perturbation of the autom ata with events of small probability 
to transform a ”rendez-vous” into a domino. And the product form result will provide an 
approximation of the solution. More theoretically, the Domino synchronization with pro­
duct form is much more general than the three autom ata case we have presented here. It 
remains to generalize to arbitrary size Domino synchronization and to explain why they 
allow product form. Finally, one must consider functional transitions.

6. Appendix

P ro o f  o f th eo re m  1: First remember the global balance equation: 

^ ( ¿ £ F , [ M  +  E  E  D '[k msr(rh i}
\ l = 1 i^ k t r = l

=  E E ^ , ^ r ( £ o ( ( U ) ) )
¿=1 i?k ,

+  E  E  D % k m„ {r)} E r[(],ksl{r))} ¿2  ^ r[m, krl{r)] x
r = l  ijSfcmsr{l.) , w  m ^ k rl(r)

Pr(kO ((m sr(r),i) ,  (s l ( r ) , j ), (ter(r), m)))
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R
+  E .  E  D  [2 , /cmsr(r)] J2  B r{ j ,k sKr)) lTr[krlirhkrllr)]=oPr(kO({msr(r),i),{sl{r),j)))

r = 1  r(r) j ¥ A l ( r )

+ E  E  ^ r [h ^n Sr( r ) ] l^ [^ (r),fcjl(r)]=o-Pr(feO((msr(r),z)))
r = l  i j i k msr{r)

Step 1: Remember that Ft and D r are generators. Thus,

E  E  *] +  E  E  D r[kmsr(r),i] =  — ^ 2  Flihi h] ~  E  ^msr(r)]
¿=1 i ^ k i  r = l  i ^ k mar(r ) 1=1 r = 1

After substitution in global balance equation, we simplify the left-hand-side (l.h.s. for 

short).
Step 2: Then, we divide both sides of equation (5) by Pr(k)  and we assume a product
form solution to simplify the ratios of probability.

-  £  Ftlkt, h \  -  J2  Dr[kmsr(r), kmsr(r)] (6)

■

+  E  E  £>r [ i , W ) ] . E  F l U M r ) ) )  E  T r[m,kri{r)] x
r~ 1 j^mjr(r) J7̂ ŝl(r) m̂ rl(r)

9msr(r){j) 9sl{r)(j) 9rl(r){'lTl)
9msr(r){kmsr (r )) 5 s i(r ) (^ s l(r ) )  9rl(r){krl(r))

. v->  v —' n rr- ; 1 V ''  77r / ■ T 9msr(r) (0_____9sl(r){j)
+  E  E  D  [l >*msr(r)] E  ^  (■?’ ^K»-))1T't*rl(r).fcrl(r)l=0 /fr . g ,, J k  tt \)

+ £  £  W i l n - i t . , , i - „
r = l  i^km,rM 9msr(r) (^msr(r)J

Step 3: Remember that the first equation of the fixed point system defines <?; as a 
steady-state distribution for a Markov chain in isolation. For all ki we have:

E f t 00
r = l

Fl[t, ki] + ^2  (-^r[b ^i]lmsr(r)=i +  ¿¡]lai(r)=i +  FrfirT r [l, /q]l(er(r)=i) (7)

=  0

Step 4: After some algebraic manipulation of equation (7), we obtain a new relation for 
the l.h.s. of equation (6):
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- F t[ki, k,\ -  Z  D r[kh k,]lmsr{r)=l (8)
r= 1

- +

Step 5: Combining equation (8) and equation (6) we get after some cancellation of terms:

Z  Z  ^¿]lmir(r)=r”V7T +  Z  Z  ^n. I  ^ ^ < ] l i l ( r ) = i  +  firT r[i, ^¡]l(cr(r)=i)
r = l  i ^ k )  S l W )  r=1  ,•

=  Z  Z  ^ r [b W ) ]  Z  ^ [ (7 ,  M r))] Z  T r{m,krl{r)} x
r = l i^mir(r) jŷ ŝt(r) m7~̂rl{r)

9msr(r) (Q 9sl(r) jj) 9rl(r){Wl)
9msr(r) {^msr(r)) 9sl{r){ksl(r)) <?r/(r) (^rZ(r))

R
9 m s  r(r)(0

[*, ^mSr(r)Ji£q*,,(r),i:.,(r)J=0 —
^ m i r ( r )

Step 6: Rearrange the summation on i in the second part if the l.h.s.:

+  z  z  r  (9 )
r = l  ir^km .r ir\ 9 m s r ( r ) \R m s r { r ) J

Z  Z  D rlk‘, *<] +  £  Z  *i]lw(r)=i +  ^ r T %  k,]lter(r)=i)
r = lz ^ fc f r = l  9 l \ f y )

R

+  X) ( ^ r[^> ]̂lfiZ(r)=Z +  f 2r T r [fe|, /C/]lier(r)=/)
r = l

=  Z  Z  £ r M™r(r>] Z  ^ r[0 ',W ))]  Z  T > , f c r((r)] x
r = 1  m » r ( r )  l ( r )  " » T ^ r  l ( r )

f f m s r ( r ) ( f )  9 s l ( r ) { j )  9r l(  r ) { m )

9 m s r ( r )  (^ m jr (r ) ) *7si(r)(^ sl(r)) 9rl(r)  (^ rl(r))

* ...

+ E  E  o ' [ ; ,w > U s - i *  8" t l|i), - (10)
r = l  i ^ k msr ir-) 9 m s r ( r ) \ K m s r ( r ) }
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Step 7: Remember the second part of the fixed point system: 

r r gi = 9i © (D r -  diag(Dr)) i f  m sr(r ) =  I 

After some algebraic manipulation,

r r =  £  D % k msr{r)] . =  E i f f e l , (11)
i ^ k m, r{r) 9msr ( r ) (kmsr ( r )J  ¿-¿fc, 9 l { ^ l )

Similarly we have, according to the assumption of the theorem: 

fir 9i = 9iO (Er — diag(Er)) i f  sl(r) = I

Thus,

a =  e  m u ,  *,.<-))] , (i2)
9sl (r) \ks l (r)J

Step 8: Substitute relations (11) and (12) into equation (10):

R R R

X^ Fr +  X) R fir  +  X) FrE r[ksl(T) ,ksi(r)]
r = 1 r = l  r = l

f t «  rrrr .+  X) r rn rT r [/cri(r), kr m ) +  X X  T^ r f f } T )T r ^  W )= <
r = l  r = l  i jik i

=  ¿ r r !ir e  r [ m M 4
r=l  m ^ k r,(r) 9 r l ( r ) [k rl{r))

n
+ X ) r i-firlTr[<:rl(r),iri(r)]=0

r = l

R

+  X ) r r l s rlfcaI(r).fcJl(r)]=0 (I3)
r = l

Step 9: Remember th a t E r and T r are normalized such th a t their diagonal elements are 
0 or —1. Thus, for all i we have:

lfir[i,i]=o -  E r[i, i\ = 1 and l r --[i,i]=o -  T T[i, i} =  1

Step 10: Thus after some cancellation of terms in equation (13), we get

r = l i ;iki  9l\Kl)

=  ¿ r rn ,E  r¡7 ^  (« )
r = l  m ^ k rKr) P rl(r)(«V i(r))

which is trivially true. This concludes the proof.
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Streszczenie

Łańcuchy Markowa są często wykorzystywane w modelowaniu systemów informatycz­
nych, ponieważ pozwalają na opis synchronizacji pomiędzy wykonywanymi zadaniami. 
Jedną z metod tworzenia łańcuchów Markowa dla modeli o bardzo dużej liczbie stanów, 
w szczególności modeli systemów, w których występuje równolegle wykonywanie zadań, 
jest metoda Automatów Stochastycznych, podająca algorytm tworzenia macierzy przejść 
dla łańcucha Markowa, odpowiadającego całości badanego systemu (zwanego Siecią Au­
tomatów Stochastycznych) na podstawie modeli cząstkowych, zwanych Automatami Sto­
chastycznymi. W artykule przedstawiony jest nowy rodzaj synchronizacji, który pozwala
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przedstawić w formie iloczynowej rozwiązanie modelu Sieci Automatów Stochastycznych. 
W przeciwieństwie do wcześniejszych modeli w postaci Sieci Automatów Stochastycznych 
o rozwiązaniu produktowym ta propozycja umożliwia synchronizację trzech automatów. 
Ten rodzaj synchronizacji nie reprezentuje zwykłego typu ’’Rendez-Vous” . Jest on bowiem 
reprezentowany przez uporządkowaną listę tranzycji, z których każda może być aktywo­
wana. Po zakończeniu reaktywacji tranzycje są zachowywane. Ta klasa Sieci Automatów 
Stochastycznych stanowi uogólnienie sieci Gelenbego z odpalanym ruchem klientów. Uzy­
skane wyniki prowadzą do aproksymacji opartej na Sieciach Automatów Stochastycznych 
o rozwiązaniu iloczynowym, w których synchronizacje są wprowadzane na zasadzie listy 
tranzycji o określonym rozmiarze.


