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STOCHASTIC BOUNDS ON THE TRANSIENT
BEHAVIORS OF THE G-NETWORKS

Summary. In this work, we study the transient behaviors of the G-networks
which are the extension of the Jackson networks. In fact, the steady-state solution
of these networks has a product-form solution, however any analytical solution
for their transient behaviors is not known. Following the studies on the Jack-
son networks, we propose to study the transient behaviors of the G-networks by
applying the stochastic comparison approach.

OGRANICZENIA STOCHASTYCZNE STANOW NIEUSTALONYCH
W SIECIACH G

Streszczenie. W artykule badane sg stany nieustalone sieci G, stanowiacych
rozszerzenie sieci Jacksona. Zaréwno sieci G, jak i sieci Jacksona posiadajg roz-
wigzanie produktowe w stanie ustalonym, natomiast nieznane jest ich zachowanie
w stanie nieustalonym. Zaproponowano analize stanéw nieustalonych w sieciach
G poprzez porzadkowanie i stochastyczne poréwnywanie wielowymiarowych tan-
cuchéw Markowa.

1. Introduction

In this paper, we arc interested in the transient behavior of the G-networks. These

networks are introduced by Gelenbe [2], [3] to generalize the Jackson networks. In the
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G-networks, there are two types of customers, positive customers are the usual ones,
waiting in the queues or in service, and negative customers destroy the positive ones,
and go out of the network. The product-form solution of the stationary behavior of these
networks has been proved ([2], [3]). However, there is no analytical method to study their
transient behavior. Let us recall here that the transient behaviors of the Jackson networks
have been studied by Massey through the stochastic comparison approach [7, 8]. In this
work, we analyze the transient behavior of the G-networks with this approach. In other
terms, we also stochastically bound the transient behaviors of the G-networks by the
models whose transient behaviors are known.

The stochastic ordering applied in this work is the sample-path (strong) stochastic
ordering, and it will be denoted by <st. Massey [9] has studied the <st stochastic com-
parison on multidimensional state spaces with the increasing set formalism. On partially
ordered state spaces, there are three stochastic orderings related to the increasing sets: one
of them corresponds to the usual sample path comparison and there are two weaker
orderings corresponding to the comparison of tail and cumulative distribution functions.
These three orderings are equivalent to each other, when the state space is totally ordered.

The stochastic comparison methodology is especially useful when one is interested to
bound functionals of Markov processes. For instance, in a queuing network of K queues,
the state space is represented by a vector N = {rii,n2 mmmuk) where n; is the number
of customers in queue i. If we are interested in the total (or partial) sum of components,
representing the total (or partial) number of customers in the network, we can bound the
functional of the underlying process instead of bounding the process itself.

The proposed bounding models are similar to the models proposed in the case of
the Jackson networks. The upper bound in the case of the Jackson networks is provided
by a network of independent M/M/1 queues whose transient behavior can be computed
through the transient analysis of M/M/1 queues [10]. In the case of the G-networks, we
consider queues where services are carried out in batches of 1 or 2 customers. This is indeed
a homogeneous general birth and death process where “births” represent the increases by
one while “deaths” represent the decreases by one or two. The upper bounding model
is constituted of a collection of independent queues with services in batch. The lower
bound on the total number of customers in the G-Network is provided by a single queue.
Obviously, it is easier to analyze the transient behavior of a generalized birth-death process

and a collection of independent such processes than that of a G-network.
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In fact, Massey has largely studied the operator-analytic descriptions of Jackson ne-
tworks and related stochastic dominance results [7, 8, 9], We are especially interested
in the application of the stochastic comparison techniques in the multidimensional case.
Our main goal is to give insights in these techniques through the study of the G-networks.
There are different ways to demonstrate the proposed stochastic comparison results, and
we give the demonstrations which seem us more representative for the application of the
techniques presented in this paper.

This paper is organized as follows: first we present briefly the stochastic comparison
method and the G-networks. In section 2, we give the bounding models to study the

transient behaviors and demonstrate these bounds.

2. Preliminaries

2.1. Stochastic Comparison

The stochastic ordering terminology through increasing sets are included from [9].
Let £ be a denombrable, discrete state space, endowed with a preorder < (reflexive and

transitive binary) relation.
Definition 1 T C £, is an increasing set if and only ifx € T, and x <y, theny € T.
The following particular increasing sets for a given x 6 £ are defined as follows:

M t= {yef lyy i} {x}1={y € £ \y * x}

The stochastic orderings <wk') and ~ ¥ are then defined respectively through the

following families of increasing sets:
S>WE) = {{z} f, x € £}
wk{f) = {£ - {z}| |x €£}
<tH{£) —{all increasing sets on £}

Definition 2 Let X (resp. Y) be a random variable taking values in £ defined by a proba-
bility vector p (resp. (), where for i € £, p[i) = Prob(X = i) (resp. g[i\ = Prob(Y = i)).
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X <0y, (@<t£{*wk, —wk*i +st}), if the corresponding probability measures are compara-
ble:
p~q<=>J2pN < § vré
Xgr ier
where f{£) is the corresponding increasing set: IX£) 6 {(™wk{£), fwk*{£), <>st{f)}-

In fact <st is the well-known sample-path ordering, while <wk corresponds to the
comparison of the tail distributions and to the comparison of cumulative distribu-
tions. <wk, and t- are weaker than the strong stochastic ordering -<st, in the sense that
<st implies both of them. Moreover, in the case of the totally ordered spaces, they are

equivalent to each other.

Definition 3
X <wKkY <{=Pr(X £x)< Pr(Y £ x), VZ€ £
X <wk. Y <=> Pr(X <x)> Pr(Y Xx), Vx € £

In the case the random variables are not taking values on the same space, it is possible

to compare the images of random variables on a common space.

Definition 4 Let X (resp. Y) be a random variable taking values in T (resp. Q) defined
by a probability vector p (resp. qj. We define two many-to-one applications, a, fi. Let
a:T -*£ and0 :Q-» £. a(X) <$ 0{Y), (<$£ {dink, <wk* fist}), if the corresponding
probability measures are comparable:
a(p) ~o /?(q) <=4* J2 p[x] < JZ vr 6
Xla(x)er X|[3(2)er

where g>f) is the corresponding increasing set: IXf) € {fiwk(£), <tWXE)> <t>sH{E)}-

We are interested in the stochastic comparison of Markov processes. In this work,
the stochastic comparison of Markov processes {A{f), t > 0}, and (F(i), t > 0} taking
values on the same state space £ is defined as the comparison of the corresponding random

variables at each instant:

Definition 5 We say that Markov process {A'(E), £ > 0} is less than Markov process
{F(f), f> 0} in the sense of that will be noted by {AT(E), t > 0} {IK(£), t > 0},
if

X{t) y(£), >0
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We consider time-homogeneous Markov processes, and give the definition of the sto-
chastic monotonicity and the comparison of the infinitesimal- generators. Let Qx (resp.
QY) be the infinitesimal generator of {AT(i), t > 0} (resp. {T(i), t > 0}).

Definition 6 Markov process (AT(i), f > 0} is said to be stochastically monotone (in the

sense of <$) iffor all probability vectors p and gq in £, we have
p <4gq implies that p exp(t Qx) g exp(t Qx)

In the case of time-homogeneous Markov chains, the comparison of Markov chains
can be defined in means of the monotonicity and the comparison of the corresponding

infinitesimal-generators.

Definition 7 We denote by Qx (x, *) the row corresponding to state x € £ of generator

Qx representing the transition rates from state x to each state of £.
QX ™ QY <=k Qx(x,*) <4 Qy(x, *), Mr€e
where

Qx {x,*) QY (X, *) <=>'52Qx {x, y) <J2 QY(X>Yy)> vr € " (e)
yer yer

The sufficient conditions to compare Markov processes are given as follows (theorem
3.4 of [9]):

Theorem 1 If the following conditions are satisfied
1) A(0) * T(0),
2) (A'(i), t> 0} or {T(i), t> 0} is monotone,

3) Qx <t QY

then {Ar(f) t > 0} (T(f), t > 0}.
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2.2. G-Networks

In the last years, the G-networks proposed by Gelenbe has been extended by different
authors (see the book [11]). We consider here G-Network with n queues which is the
extension of the Jackson networks with positive” and “negative” customers. Positive
customers have the same behavior as customers in the Jackson networks: they arewaiting
in the queue or they arein service. Negative customers delete positivecustomers, and go
out.

For each queue i, we have the following parameters:

1) A“: is the external Poisson arrival rate of negativecustomers. The effectof this

arrival is to destroy one positive customer in queue i.

2) A+:is the external Poisson arrival rate of positive customers. The effect of this arrival

is to increase by one the number of positive customers in queue i.
3) /it: is the mean exponential service rate. After a service, a positive customer can

e depart from the network with the probability di
e go to queue j asa positive customer with probability

e go to queue j asa negative customer with probability P~j.

Thus for each queue i, we have the following relation:

. N N —_
A + £ +4 =1

=1 H
It has been proved by Gelenbe [2], and [3] that stationary distributions of the
G-networks have product form solutions. Let n(xi, ..,£,) be the stationary distribution
where X{ is the number of positive customers in queue i. Ifthefollowingsystem of equ-
ations has a solution such that for each i: 0 < ¢ < 1:
_ 1PN Qj
g Pi+Tj=iPfivjQj + K
the stationary distribution has the following product-form solution:
n(xi,..,xn)= (1- g life]?
=l
However, their transient behaviors are difficile to carry out. We propose to compare

stochastically G-Networks with systems whose transient distributions are known.
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3. Bounds on the transient behaviors of the G-networks

Let us recall here that in the case of the Jackson networks, the bounding models
are given by means of M/M/1 queues which correspond to homogeneous birth-death
processes where Arepresents the birth rate while fj, represents the death rate. The upper
bounding model consists in n independent M/M/1 processes, if there are n queues in
the corresponding Jackson network. Obviously, the rates of these independent queues are
computed by taking into account the parameters of the underlying network. On the other
hand, the number of the customers are lower bounded by a single M/M/1 queue with
rates computed from the underlying network.

The bounding models to study the transient behaviors of the G-networks will be
constructed in a similar manner. In the case of the G-networks, the construction element
will be birth-death processes where deaths may occur by one or two, rather than simple
birth-death processes. The upper bounding model is also constructed by a collection of
independent such birth-death processes, while the lower bound is studied through a single
birth-death process.

In the sequel, the bounding models will be formally defined. The demonstration of the
stochastic comparison results are based in theorem 1. In fact, the homogeneous generali-
zed birth-death processes, where the skips are not limited to one step, are monotone in
the sense of the sample-path ordering [12]. In [7], Massey has studied the monotonicity
of the birth-death processes corresponding to M/M/1 queues with an operator-theoric
approach. Moreover, he has established through the same approach, the generator of a
multidimensional birth-death processes (births and deaths occur only for a component
at once). The <wk monotonicity of the upper bounding model for the Jackson network
which is a collection of independent M/M/1 queues has been also proved through this
approach [7]. The <wk monotonicity of the collection of independent birth-death proces-
ses where deaths are by one or two can be proved in a similar manner, by including an
operator to shift two times to the left to the operators which are defined in [7], Here, we
do not give the demonstration of the monotonicity. By applying theorem 1, we establish

the comparison results by proving the comparison of the corresponding generators.
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3.1. Upper Bounding Model

The state of a G-network with n queues can be represented by a state vector x € Nn,

where X; is the number of customers in queue i, 1< i< n:
X= (X].,..., Xi,..., xn)
We consider the usual component-wise ordering (*) to compare vectors on Nn:
XMV Xi <Vi, 1<i<n

The upper bounding model consists of n independent birth-death processes where
deaths may occur by one or two. queues. For each queue i, these rates are computed from
the parameters of the ith queue of the corresponding G-network. Let us first give the
intuition to compute these rates.

The customer increasing rate in queue i, which means the transition rate from Xi to
Xi+H :

A+ + £ M/ML{X>c}
w

The customer decreasing rate by 1 corresponding to the transition rate from X{ to

Xi-1 :
vk {x;>0} + pik{xi>0}(I — -Pji" — )+ y IfljPg Ifx;>0)
1?74~

The customer decreasing rate by 2 corresponding to the transition rate from aq to x,_2 :

IhI{xi>i}"7
Since we construct an upper bound on the underlying G-network, in the upper boun-
ding model the increasing rate must be greater while the decreasing rate must be less than
the rates of the underlying G-network. On the other hand, the increasing and decreasing
rates in the G-networks are described through the indicator functions. Thus we must

replace these values by their extreme values to define the rates in the bounding model.

1) The increasing rate, A++T,ja VjPji k{xj>0} reaches its maximal value when I{X>0} =

T Y? Y * Hence the maximal increasing rate by assuming all queues non-empty is

(M
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2) The decreasing rate by 1, reaches its minimal value when 1{X>} = 0, Vj ~ i. The

minimal decreasing rate by assuming all other queues empty is

+A{OB0K - Pai - {XiT}PIT) @)

3) The decreasing rate by 2 is

(3)
Let us now demonstrate formally the stochastic comparison. We denote by:

1) (X(t), t > 0} the Markov process which represents the evolution of the G-Network

system, with n queues. Qx represents the infinitesimal generator of this process.

2) {F(f), t > 0} the Markov process which represents the evolution of the network ofn
independent birth-death processes with arrival and service rates given in equations

1, 2,3. QY represents the infinitesimal generator of this process.

We assume that at the beginning tail distribution of both systems are comparable,

and demonstrate that this order is preserved each time.
Theorem 2 If X(0) Xwk T(0), then
{X(t), t>0} <wk {Y(t), t>0}

Proof: We use here the monotonicity of the bounding model. Therefore, the stochastic
comparison of the processes can be established through theorem 1 by demonstrating the
comparison of the corresponding generators. In the case of the Jackson networks, the com-
parison of generators has been established analytically [6, 8]. We apply here the increasing
set approach to prove this comparison. Let us remark that we need to define increasing
sets of vW(IVn). However since the state space isinfinite, the numberof increasing sets
of 4>wk{Xn) is also infinite. We propose to definea methodology in order to definea finite
number of increasing sets, which are necessary to compare the underlying processes. The
main idea is to define each increasing set through events occuring in the system, since
transitions occur due to the events. We give now all the events that occur in the systems.

Let Ei the set of events which occur in queue I:
Ei = {evi, evt+ eu,-, evt—, evki+ evki-}

The impacts of these events in queue | are as follows:
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1) event evi: the number of customers of queue | does not change.

2) event eu;+: the number of customers of queue | increases by 1, corresponding to an

arrival.

3) event evt-

: the number of customers of queue | decreases by 1, following a service.

4) event evt—: the number of customers of queue | decreases by 2, following a service.

5) event evki+ the number of customers of queue k decreases by 1, and the number of

customers of file I increases by 1. A customer of queue k joins queue I.

6) event evki+ the number of customers of queue | and k decrease by 1. a negative

customer leaves queue k, deletes a positive customer of queue /, and disappears.

W ith each of these events, we associate an increasing set of $wk(INn), defined from a

state x € iVn. Let e* be a vector in JNn, which all the components equal to 0, except the

zth one which equals to 1:

LY,

L«i+
Peut-
Fet—

Do+
L evki-

To compare

= {a}t
= {x+e}t
= {x-¢e,X>0}t

= {x-e;-e,,x, > 1}t
= {x-ek+el,kMIxk> 0}t
= {x —ek —ej,k ™ I,xk > Oandxi > 0} t

the corresponding generators in the sense of the <wk, we must compare

for each state x through each increasing set belonging to </w(W?”). However, transition

rates are non-null only for the increasing sets defined above, so it is sufficient to compare

only through them. Therefore the generators are comparable, if

vred,VIi£f IV’ £ Qx( y)<2Z Qr(x, vy)

yer yer

where A — {revj, reiJ+, rek , Peyl reKl+i C <fink{IN )

1) Increasing set Vevj:



Stochastic Bounds on the Transient behaviors of the G-networks 265

£ Qx(x7y) = QX(xX) + 2 Qx{xx + &)
yeres t=i
n

n
= - E " - £G{%>0)(i - p5) - E Aifx>g+Ea+
i= «=1 1=1

1=1

= -EwI{>60(1-Bt)-¢ A rifi0

E q'Viv)

qy(xiX) +£ qyxx+¢e9
yEret} i=l

=-E~"-EE"-EwVod1-7")

t=1 ¢=1 JJii 1=1
E Ar1{>q>o}+_E AL+ ElE i*jpji
=1 jjii
= -Ewi{x>o}(i-"i)-E Ai{xi>o}
2=1 2=1
= E =E QY
£ Q0= E vy

2) Increasing set Fel+

Syert(+ QA(x,2) = <X(x,x +e,) = A+

Sy€r«(+ K(x, 2) QK(X,x + &) = At + £i%

= £ X< E QY

yer, i+
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3) Increasing setre)i_ :

Eyerv QX{x,y) Qx{x,x - e() + Qx(x,x) + Ei# QX(X,X - e, + &)

+ Ei<3x (a;,a; + ei)

—Ei# MI{xi>0}(I —-Pit) —Ei#  I{xs0}

E j# W-Fy Ifox)} - WPRIi71{x>i}

Ayerg QY{x,y) QY{x,x - et) + QY{x,x) + ZiQY(x,x +

= —Ei# Mil{x>0}(I ~ "it) —Ei#\ A0} ~ PIN 1{X]>1}

=4> 53 QA(z,2/) < 53 Qy((x>2)
yere|_ yere(_

4) Increasing set red__ :

Eyer,,.. QX{x,y) = Qx{x,x- et- ei)+ Qx (x,x - et) + Qx (x,x)

+Ei# Qx(x,x- e +ej)+ EiQx (x,x + ei)

i

~ YA XSO —I-it) —E i# \  I{X]>0}—E j# w-fy Hp¢>0}

Ey€re(__ QY (X,y) QX{x,x-ei-et)+ QY(x,x - e() + QY{x,x) + Ei QY{X,X + €))

~ Ei#Mt&{xi>0}(l ~ -fit) ~ Eirti | I{xi>0}

= 8B Q)" 53 86

yerej__ y€re__

5) Increasing set rﬂ) +

Eyertkt+QX (x,y) QA(ar, re+ ej) + Qx (x,x - ek+ ej) = A+ + HkPu

Lyer'kl+QY (x’V) Qy (*,z + ei) = A+ E i#wPtf
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=* X Qx@xx<y) M X Qyi{x, V)
1,6r'e*i+

6) Increasing set r e4( :

fyerGH QX(xy) = QX{xx - ek- e() + <x (a:a; - %) + Qx {x,x- &) + Qx (&)
+Ei# Qx(,a- e +ej)+ £i%*0Qx (a,x - ek + ¢gj)
+Ej QX (X, x + €])
= - Eiyst# W I{xi>03 (1 _ -Fij ~ YIYIKJM w-pjj 1{xj>03)
EjVijVA: AGFGHIH >0 —WR 1H8))
-Mfc-PfojtifxkMy - Eifityjc \" I{xi>0}
Eyereti. QK(any) = Qy(xai- e*) + Qy(aa- e+ Qy(xa) + Ej QY(x,x + €])
= - EEIRifeMil{xi>0}(l ~ Pjt ~ Eiyii.iyUtri I{xi>0})

=% X) QX)X QYKX'V)
ver‘kl- VEr ‘kt-

Since these inequalities are satisfied for all of the defined increasing sets, we have the
comparison of the generators. Therefore from theorem 1, by considering the monotonicity
of <y, if X(0) sk y(0), then the stochastic order is preserved all the time:

X(t) Ak Y(t), Vi> 0

Remark 1 The stochastic order -<wk between {X(t), t > 0} and (E(f), t > 0} can not

be extended to the sample-path ordering (-<st)- We will show this through the following
increasing set:

r€={y\ytx, ory>zx-ei +ej, Vi*j, }
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which belongs to (Fst{£)> but not to 4wk{£)- The transition rate of the G-Network to r st,

is equal to:

ZyeritQX(x, V) = E"siZj&Qx(x,x-ei+ej) + Qx{x, x) + E"=iQx (z, x + ef)
— —E"=1 K {x;>0} —E?=1 A»H{xi>0{1 —Pit) + EiLi Mil{xi>0} DjjiiPij

= EfciAri{x>o}- E " = 1 - EU pti)

And in the upper bound it is:

Y, QY(X>y) = QY(X>x) + YQ Y(X’ z + ei)
yerst =i

t=1 =1

Since (I-E?=IPE£)<(I-Jtf),

at%r (a:> 2))-

52 Q*(z, 2) > Jor

yerd

77ns inequality contradicts with the other ones corresponding to the weak ordering, so we
deduce that the strong stochastic ordering -<st cannot exist between {X(t), t > 0} and

(m t > o}.

3.2. Lower Bounding Model

In this section, we bound from down the total number of customers in the G-Networks.

First let us explain briefly the evolution of the total number of customers in a G-network:

e it increases by one due to a positive customer arrival,

« it decreases by one when a customer is served and it leaves the network, or a negative
customer coming from a queue joins an empty queue, or finally when a negative

customer coming from outside destroys a positive customer.

e it decreases by two when a negative customer coming from a queue joins a non-empty

queue, and destroys a positive customer.
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As in the previous section, we denote by {X(t),t > 0} the underlying G-network. The
lower bounding model is one queue where the service is by batch of one or two, and the

number of customers changes as follows:

e it increases by one with a rate A

» it decreases by one with a rate /i p, and by two with a rate p. (1 —p).

Thus, the lower bounding model {Y(t),t > 0} takes values on TV. On the other hand,
{X(t),t > 0} takes values on 7?h. In fact, we demonstrate that the sum of the number of
customers of the underlying G-network is bounded from down by {Y(t),t> 0}, for some

values of A, p and p. First, we define the sum function S : TV' —>as follows:

n
x= {xu ...,xn) -> S{x) =
Fl

Obviously, the comparison is established on TV, which is totally ordered. Hence the com-

parison will be in the sense of <st.
Theorem 3

Y(t) > 0 <si S(X(t)), Vi

t i=i i=i j=i
\r"n p—

P<I.

Proof First of all, let us remark that we apply here the same proof approach as the
bounding model which is based on the increasing sets. In fact, in this case which consists
in establishing <st on TV, it would be possible to apply the related coupling techniques[12].
Since we are especially interested in studying the increasing set approach, we demonstrate
the lower bounding model through this approach.

The lower bounding model which is a generalized homogeneous birth death process
is <st monotone[12]. By applying theorem 1, we must compare the corresponding infini-
tesimal generators. However the processes are not defined on the same state space, we
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compare the lower bounding process with the sum of the components of the conside-
red G-network. As in the upper bounding case, we define increasing sets through events

occuring in the system. Let E be the set of events:
E = {evo, ev+i, en_i, eu_2}

The impacts of these events on the sum of the number of customers are as follows:

1) event evo: the sum does not change.

2) event ev+i: the sum increases by 1.

3) event eu_j: the sum decreases by 1

4) event eu_2: the sum decreases by 2.

From a state x' £ IN, we define these increasing sets.

e rao = {&}f

e Fe, il = {x' + 1} f

* Fe, 1 {x1- I,x'" >0}t
ere, 2 = {x - 2x'> 1}t
The comparison of the images of generators are established (definition 2.1) by demon-

strating for all increasing sets VT = {I’&D Fev+l, Te«.,, Tev-j}

Y ay{x', y) < Qx (x>2) 4)
yer z|s(z)er

forall x £ INn, forall x' £ IN such that x' = S(x)
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First we give the transition rates for the considered G-Network:

EZIS(2)=S(x)+l QX (x>z) = E"=iA?
E.IS(.)=S(X) x) = ~ E%=1X - E?=, A*<I{xj>o}i- E"=i/#) - E"=i Ari{x>0)
Ez|S(2)=S(x)-l Q X{X1z) — EjLI + Ej=I EjVi 1{x,>0}i{xj=0}

+ E=1AHDED + E'=1\iPia Li{xi=i)

EZ4S(2)=S(X)-2 QX (x2) — E"=I EjjitViPij Kxi>OH{xj>0k + Efcl mPu 1{xi=I)

We now give the inequalities for each increasing set as in the upper bounding model.

]) Increasing set rd)'ﬂl

Ez|S(z)ere#l Qx (x,z) — Y,2\s(z)=s(X)+\QX{x>z)

= E?=1A+

Evyer,,xJ QY (x',y) A

2) Increasing set r O :

Ez|S(2)=r,,.0 QX (X1z)

EziS(z)=S(*) QX (x>z) + Ez|S(z)=S(x)+| QX (x >z)

- Efai FA{X>0}1 - E”=1/#) - E"=1 A-1{X>0}
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3) Increasing set r e« _:
szS@ere, Q K2) = EzS@=Sx-1Q'(Xi 2) s4S2)=5¥) Q (x>2)
v e21s@)=s00+1 QX 2)
= —FEi=l AP0 Pij Kxj>0p+ {xi>[}-Ptt )

M1-p)

Syer..., Q/(Xy)

2

4) Increasing set I¢,

Ez|s(z)erev_ ZQXOQ) = Ez|S(2)=s(x)-2 + £z[s(z)=s(x)-i Q(IXZH
£2]5(2)=5(x) QX()Q) + £2/5{z)=S(x)+I Q((XZ): 0

Z«er,,_2QY(x\y) =0

Inequalities 4 are summarized as follows:

A < A+

®)
Al
X SE/JUl{~(l-E "™ +EATri*o0} (6)
1=1 j=1 t=1

m(1l-p) > £/il{xi>0} (7)
«=1 =1

Obviously, these inequalities must be satisfied for all possible values. Therefore for
equations 6, 7, we take the indicator functions equal to 1: I{X>0} = I{xj>0} — 1- Thus,

equations 5, 6 correspond respectively the conditions on Aet .. We can rewrite equation
7 to give condition on p:

Moreover, the following condition must be satisfied to have 0 < p < L

A>

N
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In fact, by replacing 1 —£"=1i$ by ]C"=i Pij + in inequality 6:

M> + +¢ ¢ N T > (W -Py
t=1 t=1 t=1j=1 t=1jf=1

thus it completes the proof.

4. Conclusion

In this paper, we are especially interested in the stochastic comparison of multidimen
sional Markov chains through the increasing set approach. The stationary distributioi
of both the Jackson networks and the G-networks has a product-form solution. Howevei
their transient behaviors are hard to study. Massey has proposed to study the transient
behaviors of the Jackson networks through the stochastic comparison approach. In fact,
bounding models whose transient behaviors are easier to study are proposed and the sto-
chastic comparison results are established. In this work, following this idea, we study the
transient behaviors of the G-networks by applying the stochastic comparison approach.
The main difficulty of the stochastic comparison approach comes from the multidimen-
sional state space. We are especially interested in the increasing set methodology and

demonstrate the stochastic comparison results by this methodology.
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Streszczenie

W modelowaniu systemoéw informatycznych szczegdlng role odgrywajg tanicuchy Mar-
kowa. Stany modelowanego obiektu (np. sieci komputerowej lub jej fragmentu) sa od-
wzorowane przez stany odpowiedniego tancucha Markowa. Rozwigzujac réwnania tgczace
prawdopodobienstwa stanéw tego tafncucha uzyskujemy prawdopodobienstwa standw ba-
danego obiektu. Sie¢ Jacksona to markowowski model sieci stanowisk obstugi reprezentu-
jacych elementy systemu informatycznego. Wymagany jest wyktadniczy rozktad czaséw
obstugi i poissonowskie strumienie zgtoszen. Sie¢ G to zaproponowane przez E. Gelenbego
uogolnienie sieci Jacksona, w ktdrej kraza klienci pozytywni, obstugiwani w stanowiskach
i klienci negatywni, niszczacy przy spotkaniu klientéw pozytywnych. Formalizm ten po-
zwala opisa¢ rézne uwarunkowania synchronizacyjne wystepujace w badanym systemie.

Rozklad stacjonarny dla sieci Jacksona i sieci G ma forme iloczynowsa, to znaczy
prawdopodobienstwo stanu catej sieci wyraza sie iloczynem prawdopodobienstw stanéw
poszczeg6lnych stanowisk w sieci. Mato natomiast wiadomo o prawdopodobienstwach sta-

néw obu sieci w stanie nieustalonym, gdy prawdopodobienistwa stanéw zalezg od czasu.
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W modelowaniu systeméw informatycznych, ktérych obcigzenie zmienia sie nieustai
nie, modelowanie stanéw nieustalonych jest bardzo wazne. W artykule prébuje sie oszi
cowa¢ prawdopodobienstwa standw nieustalonych w sieciach G poprzez stochastyczn
poréwnywanie wielowymiarowych tancuchéw Markowa, wprowadzajgc formalizm porzac

kowania zbhiorow. Jest to rozszerzenie rezultatow Masseya uzyskanych dla sieci Jackson;



