STUDIA INFORMATICA 2003
Volume 24 Number 4 (56)

Zdzistaw SZCZER.BINSKI
Polish Academy of Sciences, Institute for Theoretical and Applied Computer Science
Gliwice

PARALLEL COMPUTING APPLIED TO SOLVING

LARGE MARKOV CHAINS.
A FEASIBILITY STUDY

Summary. The article is concerned with parallel computation issues arising
in numerical solution of systems of linear equations which describe stationary pro-
babilities of states in large Markov chains. Upon introduction to the subject of
Markov chains and their solution, several adequate solution methods are surveyed,
from the classical through projection to decompositional ones. Each algorithm is
accompanied by a study of its suitability to parallel computing (multi- and vector
processing). Additional opinions on aspects of the potential for parallelization in
the discussed methods are contained in the conclusion.

Keywords: parallel computing, Markov chains, iterative methods, systems of
linear equations

OBLICZENIA ROWNOLEGLE W ZASTOSOWANIU
DO ROZWIAZYWANIA DUZYCH tANCUCHOW MARKOWA.
STUDIUM WYKONALNOSCI

Streszczenie. Artykut jest poswiecony zagadnieniom obliczen réwnolegtych,
wystepujgcym w trakcie numerycznego rozwigzywania uktadéw réownan liniowych,
opisujacych stacjonarne prawdopodobieristwa stanéw w duzych fancuchach Mar-
kowa. Po wprowadzeniu do tematyki tancuchéw Markowa, dokonano przegladu
wybranych metod rozwigzywania, poczawszy od klasycznych, poprzez projekcyjne,
do metod dekompozycyjnych. Dla kazdego algorytmu zostata dokonana analiza, na
ile nadaje sie on do wykonania w trybie réwnolegtym (wieloprocesorowym lub wek-
torowym). Dodatkowe uwagi dotyczagce mozliwosci zrownoleglania dla omawianych
metod zawarto w czesci koncowej.

Stowa kluczowe: obliczenia rownolegle, tancuchy Markowa, metody iteracyjne,
uktady réwnan liniowych

S Z. Szczerbiiiski

1. Introduction

We are concerned with Maikov processes with discrete state spaces and continuous
time (i.e. a state may change at any real-valued time instant). Such processes are called
continuous-time Markov chains. We further limit our attention to homogeneous chains,
i.e. Markov chains whose probabilities are stationary with respect to time.

Assume a continuous-time Markov chain, represented by a family of random variables
X (I.), takes values from the set {xj, .t2, me, xn}. If A'(i) = x- then the chain is said to be
in state X;. For a homogeneous chain, the probability of transition from state x- to state

Xj in a very small time interval At is linear:
Pij{At.) = qijAt,

where <A represents the transition rate between states x; and Xj. A homogeneous

continuous-time Markov chain is represented by

» a set of states, and
e an infinitesimal generator matrix Q = [</y] whose entries are the transition rates,
except for the diagonal elements whose values are such that the following holds:
Qi
We are interested in computing the probabilities of the Markov chain being in respective
states Xi,X2,mm X,,; once these values are known, it is analytically possible to gather
vital characteristics of the system modelled by the chain.
It may be shown that the stationary probability vector it, a vector of length n whose
k-th element denotes the stationary probability of state x*, can be obtained by solving

the system of equationsl
tuTQ = Or

The above system has an infinite number of solutions since the matrix Q is singular.
We are interested in finding the unique solution for which the sum of the probabilities
(elements of vector n) is equal to 1. The above condition (conservation of probability)
may be directly introduced into the system by replacing one equation (e.g. the last one)
with 7Te = 1, where, e is a vector whose elements are all equal to 1. Q is now non-singular

and the system of equations takes the form

*TQ=H, 0]

1We assume columnwise orientation of vectors, e.g. n is a column vector and rT is a row vector.

Parallel computing applied to solving large Markov chains. A feasibility study 9

where b is a vector whose all elements are equal to 0 except one element which is equal
to 1. For such a system, the unique solution which satisfies conservation of probability

may be analytically computed. Let us note that (1) may be written as
QTn= b,

which allows for the application of general numerical methods of solving linear systems
of the form Ax = bh.
Alternatively, the stationary probability vector 7 can be obtained by using P = (j™J

rather than Q. The corresponding system of equations involving 7r is then

nTP = 77 2)
or, in the form usually required by numerical methods

PT= diag(Pr),

where diag(PT) is the vector formed of the diagonal elements of PT.

The above problems appear simple from the mathematical standpoint in view of
the extensive family of methods for solving systems of linear equations. However, the
technical side of the solution process is far more complicated, mainly because of the
large number of states which usually occur in real-world systems modelled by Markov
chains. Besides, Q (or P) is usually (very) sparse, which limits the effectiveness of classical
methods developed for dense systems of equations, and necessitates employment of special
techniques to deal with sparsity.

In the paper we show how the solution of the above and related problems can benefit
from applying the techniques of parallel computing, by which we mean both multipro-
cessing (also known as true parallel computing) and vector processing. In section 2, a
general introduction to the idea of solving linear systems is made. The next three sec-
tions describe various methods for obtaining solutions to such systems, with discussion
on their potential for being parallelized or vectorized. Concluding remarks and directions

for future research are contained in section 6.

2. Solution methods for linear systems

Solution methods for

Ax =b €]

10 Z. Szczerbihski

are classified into two categories: direct and iterative. Direct methods give exact solutions
and the number of operations they involve is fixed for a given system size. A common
feature of these methods is the factorization of the matrix A. Classical methods, such
as Gaussian elimination, are based on LU factorization [11]; other useful factorizations
are QR [7] and WZ [9], developed especially for parallel computers. These techniques
are effective for medium-sized and dense or narrowly banded systems. The obstacle to
using them for large sparse systems is the presence of numerous non-zero entries in the
factors, known as fill-in. There are methods for reordering matrices so as to reduce fill-in;
however, they inevitably require additional computer memory which, for many problems,
exceeds allowable limits.

Iterative methods generate a sequence of approximate solutions until a desired ac-
curacy is reached. Their advantage over direct methods is thus that the system can be
solved to a predetermined accuracy and so the number of operations required can be far
less than that in direct solvers. lterative methods are also preferred for other reasons.
Usually, the only operation in which the matrix A (or a matrix easily derived from A) is
involved is multiplication by vector(s); such operations do not alter the matrix, which is
important for large and sparse matrices because compact storage schemes may now be
implemented. Additionally, since the matrix is never altered, there is no rounding error
propagation which characterizes direct methods. From the point of view of parallel com-
puting, the matrix-vector products inherent in practically every iterative solver are ideal
for vectorization, which makes these methods well suited to implementation on parallel
architectures. A major disadvantage of iterative methods is their frequent bad conver-
gence (prohibitively long time is required to reach a solution with accepted accuracy) or
even inconvergence, for an ill-conditioned matrix A. By contrast, in direct methods an
upper bound on the time required to obtain the solution is easily determined before the
actual calculation; besides, the solution is (theoretically) always accurate. Nevertheless,
for a whole spectrum of applications including, among others, Markov chains, iterative

solvers are more effective than direct solvers.

3. Classical iterative methods

The oldest classical methods converge linearly and rather slowly. They include the

Jacobi and Gauss-Seidel algorithms, often accelerated by using a relaxation technique.

Parallel computing applied to solving large Markov chains. A feasibility study H

3.1. The Jacobi method
The matrix A may be written as
A=D+L+U

where D, L, U are, respectively, the diagonal, lower triangular and upper triangular parts

of A. The system (3) has now the form
[D+L+U)x=b
or
x = D~lb—D~I(L + U)x
The above forms the basis for an iteration process with the iteration step expressed
componentwise as

ANH) = - - it —xf\i=1,2,...,n,A=0,1,2,...
an . an J

The initial vector is chosen arbitrarily, e.g. a*0*= 0 or = h. The process is terminated
when an adopted criterion for solution accuracy is satisfied. The most common criteria

here are:

* absolute error criterion:

maxi”,|a;-*+1) - < &for a given 5 > 0,

» relative error criterion:

max|ri$,,|i[*+1) - x f’l < maxi*n|xSfc+l)|E for a given e > 0,

e k > ko, where ko is a preselected maximal number of iterations (often predicted by

some estimate).

Unfortunately, for many cases where the system (3) does not satisfy convergence criteria
(these are based on comparisons of certain expressions involving elements of A and b),
the Jacobi method is useless (it is sometimes possible to fulfill the criteria by forming
linear combinations of the equations). Besides, even if convergence exists, it is usually
very slow.

A common technique to increase the rate of convergence is to “relax” the Jacobi

method. The iteration rule can be written in matrix form as

x{k+l) = x<*>- (D~IAxw - D~xb)

12 Z. Szczerbiiiski

We can thus see x(t+1) as a change of xw towards the final solution:

X(*+p = xw + g{k)t

where = D~I(b- Ar”) iscalled the correction vector. In a relaxation method, x s
improved by using wz(N instead of zW, w > 0. The relaxation coefficient w is chosen in
such a way that the rate of convergence increases when compared with that of the .Jacobi

method. The iteration step now becomes

X(*+U = +ug®=xK +wEri _ AxW) O]

and is called imderrelar.at.ion if0 < w < 1land overrelaxation ifui > 1. Ifui has the optimal
value for a given linear system then convergence is significantly improved. Unfortunately,
for wrong values of ui, the opposite may be true. There is no theory for determining
the optimal value of w for arbitrary A\ usually, such values are obtained from repetitive
numerical experiments.

We note that the Jacobi method is inherently parallel: there is no data dependence
between values .r[A+) in iteration step k, so they can be computed simultaneously. The

distribution of computations among p processors is rowwise i.e.

xg(r:nﬂ) = x @1 + WZj”Z(fprocessor H\I
xm+l:2m ~ xm+l:2m + Am+1:2m (processor 2)
z'ii-Om+1,. = 4v-I)rn+l:n+ w*E-I)m +1:» > (processor p)
where m = fa] and the subscript expression i : j denotes indices i,i + 1,...,j; for
vectors x 'k\ x and b (which is used in zW) this subscript indicates the corresponding

elements whereas for matrices A and D (used in z”~) the subscript denotes all columns
in rows from i to j (since D~I is diagonal, the above refers to respective elements of
the diagonal). Note that the whole vector x A is needed in z”~ for each processor. The
parallel algorithm may be summarized as follows. Each processor updates the section of
(U assigned to it, thus forming the corresponding section of In the process, it
uses the corresponding set of rows of A and sections of vector b and the diagonal of D~x.
All these processes are overseen by a master process which tests for convergence.
Besides the rowwise distribution of the matrix A and computations, there is another

level of parallelism in the Jacobi algorithm. Note that x*k+I" in (4) is computed from

Parallel computing applied to solving large Markov chains. A feasibility study 13

by a matrix-vector multiplication, a vector subtraction, a vector-vector scalar mul-
tiplication (E>-t may be treated as a vector formed by the diagonal), a scalar-vector
multiplication and a vector summation. All these operations are easily vectorized i.e.
translated into instructions of a vector computer. Hence, the Jacobi method is well suited
for vector architectures, including many “classical” supercomputers and minisupercom-
puters. Most of such systems feature machine implementation of some typical sequences
of operations, including the so-called linked triad, arising in many numerical problems,
where a vector is first multiplied by a scalar and then added to another vector. Note that
a sequence of this type is formed by the last two operations in the above description of
computations in the iteration step of Jacobi.

Special attention is required by the main computation in the whole sequence, the
matrix-vector multiplication. Vectorization of this operation is of great importance since
such multiplication is the most costly part of the execution time in each iteration. In
order to vectorize the multiplication in an optimal way, one has to take into account the
structure of the matrix A. As stated earlier, for Markov chains this matrix is usually
very sparse. We shall first see how the matrix-vector multiplication is vectorized when
the matrix is full and, basing on this, treat the problem for large and sparse matrices.

In computing a matrix-vector product, say ¢ = Ar, on a vector computer, the co-
lumnwise form is preferred, following a well-established tradition of coding programs for
such machines in Fortran. The resulting algorithm is:

doi =1, n

c(i) =0.0
enddo

c(i) = c(i) + a(i,k)*r(k)
enddo

enddo
The reason is that, for this “orientation” of algorithm, the elements of A in the innermost
loop (which is translated into a vector instruction) are in contiguous storage locations
(this follows from Fortran coding), which is, by the nature of vector computer organiza-
tion, required to provide an optimal data flow from memory to processor while executing
the resulting vector instruction.

If the matrix is sparse, it could be theoretically treated as a full one. However, sparse

matrices in real-world problems (e.g. Markov chain models of computer networks) are

14 Z. Szczerbiriski

usually very large, e.g. a Markov chain may have 10000 states which translates into the
matrix A — QT of 100 million elements, of which perhaps “only” 100000 are not zeroes.
One should therefore try to store only the non-zero elements of A, and do it in such a
way that the matrix-vector product is still easily vectorized. The matrix is usually stored
either by rows or by columns, in a compressed form; without loss of generality we can
assume that it is stored by rows. There are two possibilities to compress a row: to pack it
by a mask vector or to gather it by an index vector, see e.g. [18] for details. The question
of which method to use is open for discussion. Generally, the former one is preferred if the
matrix is of less or medium sparsity while the latter if the matrix is very sparse. Further,
there are two approaches to performing matrix-vector multiplication. In the first one, a
row of A is unpacked with the mask vector (or scattered with the index vector) and the
scalar product is computed with this full decompressed vector. In the second approach,
the vector r is also compressed by the same vector (mask or index) as the row of A and
the scalar product is computed with two packed (gathered) vectors: the row of A and r.

Generally, the latter approach is more efficient and often preferred in practice.

3.2. The Gauss-Seidel and SOR methods

The Gauss-Seidel iterative method differs only slightly from the Jacobi method de-
scribed earlier: the calculated values of ajjfc+tl\ x~ +1\ ..., are used when calculating
the value x|*'+1). In other words, the newly computed results in an iteration are used in
the same iteration to compute the remaining results, whereas in the Jacobi method all
results in an iteration are derived from results produced in the previous iteration. The
iteration step now becomes

n> = £ iixf>,i=.1,2...... n=0 , I , 2 (5
«n J=1 «n J=i+l an

or, in matrix form

x(k+i) = (E>+ L)~I(b-U xw)

As for the Jacobi method, there exist convergence criteria for this method; their deta-
iled description is beyond the scope of this paper. Let us only note that the Gauss-Seidel
method is guaranteed to converge if the matrix A is positive definite. Also, similarly to Ja-
cobi, it is possible to accelerate the Gauss-Seidel algorithm’ convergence by “weighting”

the previously and currently computed elements towards an average, i.e.

x\M) = ujx\k+l) + (1 - ujij*1i=1,2,...,n;k=0,1,2,...

Parallel computing applied to solving large Markov chains. A feasibility study 15

where xjfctl*is the (new) element computed according to the Gauss-Seidel procedure i.e.
(if+1) is identical with in (5). As before, x\k) is the element from the previous

iteration. The above may be written in matrix form as

x<fctl) = u(D + uL)~Ib~{D +wL)-1gU + (1 - u)D]xw

It has been proved that convergence can be achieved only if 0 < ui < 2. Usually, w is in the
range (1; 2), hence the above extrapolation technique is called successive overrelaxation
(SOR). Note that for .=== 1 the relaxation method becomes the Gauss-Seidel algorithm.

There are certain classes of matrices for which there isa simple formula for the optimal
overrelaxation factor w. However, for general matrices there exist no analytical methods
to find the optimal value of this parameter and implementations of SOR use heuristic
approach.

By contrast with the Jacobi procedure, the Gauss-Seidel and SOR methods are not
parallel in their form. The reason is that the new values of the elements of x can only be
calculated one after the other and not simultaneously since the calculations depend on one
another: the computation of x-A+1' requires that all the elements x\k+I\ x[k+I\ ...
have already been computed. Hence, these methods are, generally, not suited for execution
on parallel systems by rowwise partitioning as in the Jacobi case. There are modifications
of SOR towards at least partly parallelization, as e.g. in [6] where an iteration is divided
into two phases, of which the former is easily parallelizable; the latter phase, however,
is sequential and time-consuming (solution of a lower triangular systems of equations by
a direct method). In the case of large and sparse matrices A, a fortunate situation may
occur where a multitude of zero entries in the matrix leads to some elements of the new
iterate not necessarily dependent on previous elements. By reordering the equations it is
sometimes possible to make updates to groups of elements in parallel [4].

Vectorization of the SOR method (and Gauss-Seidel as its special case) is far more
difficult than in the Jacobi algorithm. There arises the technical problem of “non-smooth”
data flow from memory to processor since the elements Oy in (5) are not in contiguous
memory locations (as elements of a row of an array they are equidistant from their
neighbours in the row, with distance n) and it is not easy to restructure the computations
into a columnwise form which would cancel the problem. Additionally, for Markov chains,
the usually irregular, large sparsity of A introduces compression/decompression problems
due to separation of the matrix-vector product into parts involving “old” and “new”

values in the vector.

1G Z. Szczerbiriski

4. Projection methods

Projection methods, also known as Krylov subspace techniques, are a popular class
of iterative solvers for large systems of linear equations. Their effectiveness has been
tested on a wide range of science and engineering applications including fluid dynamics,
atmospheric modelling, structural analysis and finite element analysis. They feature fairly
good convergence, are competitive with classical iterative methods in terms of memory

utilization, and are well suited to implementation on parallel computers.

4.1. The conjugate gradient method

By far the most widely known projection method is the conjugate gradient algorithm
developed in the early 1950s by Hestenes and Stiefel [16] and used to solve linear systems
where the matrix A issymmetric positive definite. The method has since been generalized
to allow for arbitrary matrices. Below we shall first present the general principle of the
basic method and then describe its variants which are best suited to solving large Markov
chains.

The simplest conjugate gradient algorithm [14] is based on the idea of minimizing the

function
f(x) =\ xTAx ~ xTh,

which, for symmetric positive A is minimized when the gradient
V/=AXx —b— —r

is zero, which is equivalent to (3). The minimization consists in generating a succession
of search directions pW (with p(0 = r”~) and improved solutions according to the

formulae:

x {k+i) _ x (k) + aWp(k

r<s+l) - or _ n(kApK

ptfc+l) = r(k+1) + p[k)p{k)

The coefficients aW and 0~ are chosen so as to minimize / in x"k+1" over the whole
subspace (p”°\p~\ ... ,p”) and to ensure that the direction vectors forming the above

subspace are conjugate with respect to A i.e. p " TAp” = 0 forj < k. It has been proved

Parallel computing applied to solving large Markov chains. A feasibility study 17

in the literature that after at most n steps the algorithm terminates with the solution
found i.e. x'k) is the solution for some k ~ n. However, this can occur only with exact
arithmetic. In practice, roundoff errors make the procedure iterative and the termination
is allowed after some error criterion is met.

In our study, the large and sparse matrix A is not necessarily positive definite or
symmetric (in fact, it is symmetric in very rare cases). Therefore we turn our attention
to generalizations of the classical conjugate gradient method for arbitrary linear systems

of equations.

4.2. The biconjugate gradient method

The biconjugate gradient method was developed by Fletcher [10] from an algorithm
for tridiagonalization of nonsymmetric matrices (due to Lanczos), applied to solve non-
symmetric systems of equations. This method uses two residual vectors rather than one
as in the classical conjugate gradient algorithm; likewise, two direction vectors are formed
instead of one. Denoted respectively by Kk\ rk\ pW and jflk\ these vectors satisfy the
following conditions:

e biorthogonality — r()TrU) = fi")TrU) = 0,j <i

* biconjugacy (with respect to A) — p*ATpN) —pW/Ip(i) = o, < i

* mutual orthogonality — rMr pfj) = rt)Tp(j)) —o,j <
The algorithm may be written as follows.

Choose an initial approximate solution a;”".

Compute the residual r* = b —Ax"°K

Set p(°l = pf°l = = r(°>, and k —0.

Perform iteratively the following sequence of computations

M w0 p

() = 7>
“7 ~ pvrApa)
A(FH1) — x 1K) fr(k)p (k)
r(fe+l) _ .(*) _ a (k)A p (k)
rik+D - f*k) _ a (k)A Tftk)
a(k) _ 2in-i)Tr(t-+)
p - —“yudrr(i)

p(k+1) _ r(k) + 0{k)p{k

flk+1) _ ~{k) + p(K)flk)

increment k

18 Z. Szczerbifiski

As in the conjugate gradient method, the coefficients aW are chosen to ensure the
biorthogonality condition, and p » — the biconjugacy condition. There is a danger of the
algorithm breaking down; this happens (fortunately, rarely) when one of the denominators
is zero. Otherwise, the method converges after m st n iterations (i.e. step 4 is performed at
most’n ,times) with r*"I+11= f(m+l) = 0 and a(m+1) being the solution. Again, the above
convergence rule is theoretical only. In practical applications, the algorithm proceeds
beyond n iterations, until a convergence test determines that it should terminate, e.g.
r(kTr(k) ~ f wliere £is a tolerance criterion.

It may be seen from the above that the most costly computation in the biconjugate
gradient procedure are the two matrix-vector multiplications. Of much interest to us is
that they can be executed simultaneously, for example an a dual-processor system. For a
large and sparse A this will be done after decompressing A and AT. Note that both A and
At will have been compressed earlier. It is sufficient to compress A alone only if diagonal
storing is possible i.e. non-zero diagonals of A, rather than rows or columns, are stored;
however, no assumption as to diagonal dominance of the matrices derived from Markov
chains can be made.

As regards vectorization, we are fortunate to have all the crucial operations
(matrix-vector and vector-vector multiplications, and linked triads) fully vectorizable
here. Thus, this method (incidentally, along with the classical conjugate gradient algori-
thm) is ideally suited for vector computers.

Besides being fairly effective in its own right, the biconjugate gradient method is
significant because it led directly to the development of several techniques with faster

convergence, the most noted of which are described in the following sections.

4.3. The conjugate gradient squared method

In the biconjugate gradient algorithm described in the preceding section, it can be
shown that the residual rW is computed as the initial residual multiplied by a matrix
polynomial of degree k. The conjugate gradient squared method was derived by Sonneveld
[26] from the above algorithm by simply squaring the residual polynomial, which results
in “contracting” the residual and reducing it faster than in the original method. The
algorithm has the following form.

1. Choose an initial approximate solution

2. Compute the residual r(°) = B—AXx(0).

3. SetgwW = 7/“% =0, pi-1) = 1, and k —0.

4. Perform iteratively the following sequence of computations

Parallel computing applied to solving large Markov chains. A feasibility study 19
p(k) _ ..(0)Tr (k)

PK = A

u (k) _ r(t) +

pM = <) + [jWfoW + pWp(*-V)
w(fg = /p!*)

CT(fc) _ ,.(0)Tw (k)

«<S> = #

q(k+1) _ u(fc) _ a (k).w{k)
3;(+1) —X(K) + + <I+P)
r(fe+l) _ r(fc) _ Q.(%)i4 (M(*) + qlk+1))

increment k

The conjugate gradient squared method converges whenever the biconjugate gradient
method does i.e. both methods have the same break-down conditions; unfortunately,
these conditions are not precisely known. The newer method requires more calculations
(actually, twice the amount of computational work necessary for the basic conjugate
gradient algorithm). However, convergence is now much faster. Another advantage is
that the need to use the transpose of A is now avoided. In terms of computation cost,
multiplication with A1l is replaced by additional matrix-vector multiplication involving
4. Nevertheless, in view of the problems stemming from compression/decompression of
Ar (see the preceding section) it is truly beneficial to use this method in cases where A

is large and sparse.

4.4. The generalized minimum residual method

Another variant of the biconjugate gradient algorithm corresponds to a symmetric
but not necessarily positive definite matrix A. In step 3, is set to ArW rather than
~0) Further, for all k, fiw = ArW and = ApW. This approach is known as the

minimum residual method since it successively minimizes the function
/(*) = \rTr =i |Ax - b\2

over the same set of search directions pW as the ones generated in the conjugate gradient

method. The method is due to Paige and Saunders [21], It has been generalized in various

20 Z. Szczerbiriski

ways for nonsymmetric matrices. The most robust of these variations is possibly the
generalized minimum residual method developed by Saad and Schultz [24]. Without going
to excessive detail, we can outline the algorithm as follows.

In iteration k, the approximate solution x*k' is calculated as
I<*) = Z<°> + Z<*>,

where zifc) (the “correction” vector) is chosen from the Krylov subspace spanned by
vectors r(O\ Ar(0),AMO ..., so that it minimizes the two-norm of the residual

in this iteration
r<*>2 = [[b- A(xm + z<*)[2 = [[if> - Az™ ||2

In other words, determining the correction involves solving a ~-dimensional
least-squares problem.

The generalized minimum residual method is expensive in terms of memory usage
because all consecutive vectors forming the Krylov subspace must be maintained thro-
ughout the algorithm, and their number increases with each iteration. On the other hand,
the method is optimal in the sense that it provides the smallest residual in a fixed num-
ber of iteration steps. Its convergence is not necessarily strictly monotonic, though, i.e.
[[?K*+D||2 ~ ||r (fc>12 rather than ||r(fctl)||2 <e iM~Ih' In practice, the method is usually
restarted every m. iterations, with —Xx " +z " as the new “initial” approximation for
the first restart, x(2m>= x " + z(2m) for the second and so forth; this constrains excessive
storage. Unfortunately, the implementations done so far have confirmed that m may not
be reasonably large or else the resulting program runs out of space.

The generalized minimum residual method is amenable to both parallelization and
vectorization. A recent example is shown in [22] where this method was implemented on
the Convex C3840, a quad-processor vector minisupercomputer, and used to solve exam-
ple, large Markov chains, achieving 20-fold speedup compared with the non-optimized,

single processor version of the program for the same machine.

4.5. Other projection methods

Besides the ones described so far, there are several other methods stemming from
the biconjugate gradient algorithm. A number of them are known and used more widely
while some are only gaining popularity, albeit fairly slowly. The biconjugate gradient squ-
ared stabilized algorithm [15, 25] “smoothes” the uneven convergence of the conjugate

gradient squared method by using two different polynomials to reduce instead of

Parallel computing applied to solving large Markov chains. A feasibility study 21

applying one polynomial twice: the first one is the same as that used in the biconjugate
gradient method and the second is derived from the generalized minimum residual me-
thod. This results in better convergence due to better local minimization. Another form
of the biconjugate gradient method gave rise to the conjugate residual squared algorithm
[19] which is in fact a modification of the conjugate gradient squared method, also leading
to smoother reduction of the residual error. Likewise, the generalized conjugate residual
method [8] can be used to solve linear systems with general matrices; this method, howe-
ver, is costly in terms ofstorage. The quasi-minimal residual algorithm [13] is a derivative
of the generalized minimum residual method which also takes a least squares approach
to minimizing residuals while using the biorthogonal basis of the biconjugate gradient
method, resulting in, generally, less storage at the cost of maintaining and using the
transpose of A. A similar approach applied to the conjugate gradient squared method led
to the transpose-free quasi-minimal residual algorithm [12], which, as the name suggests,
has the advantage of not requiring multiplication with AT. A good, hierarchical survey
of projection methods may be found in [17].

From the point of view of parallel computing, the above methods retain good suita-
bility to both parallelization and vectorization, which is characteristic of all algorithms
related to conjugate gradients (see remarks in section 4.2). Moreover, the methods deri-
ved directly from the biconjugate gradient algorithm (i.e. performing operations on AT)
feature mutual independence of two computationally intensive matrix-vector multiplica-

tions in each iteration, thus augmenting the potential for parallel calculations.

4.6. Preconditioning

Generally, all projection methods work well for systems of linear equations whose
matrices are well-conditioned. In order to reduce the condition number of the system’s
matrix, and thus improve the convergence rate, one may apply preconditioning, consisting

in replacing the original equation (3) by the system

A~xAx = A~Ib,

where A-1 approximates A-1 and A is chosen such that it is relatively inexpensive to
compute A~Iw for any vector w. The idea here is that, thanks to commutativity of ma-
trix multiplication, A~I1A ss /, which allows the algorithm to converge in fewer iterations.
There is, obviously, additional computational cost inherent in preconditioning. For exam-

ple, in the preconditioned biconjugate gradient method an additional set of vectors z*

22 Z. Szczerbiriski

and zw is introduced, defined by (see section 4.2. for comparison)
Az<> = rlf), Arz<> = (%) (6)

and the calculations are modified as follows

fPr-Ajw

f(k+\)Tz (k+\)
rw Tz (k)

p(*+1) = +
pt*+») = 2 « + [*<*>f«

The main problem here is that it is now necessary to solve the additional equations (6)
in each iteration. However, since the matrix A (called the preconditioner) is selected so
as to simplify matrix-vector multiplications involving A-1, it is relatively easy to obtain
A*) = A-1r () (the same holds for AT, and fW). Moreover, all the operations are fully
vectorizable. A common technique is to use the diagonal part of A as the preconditioner.
This further simplifies the solution of (6) since A-1 is now trivial and the whole procedure
is reduced to multiplying corresponding elements of two vectors (the diagonal of A-1
is stored as a vector), which is an elementary operation on a vector computer. More
refined preconditioning techniques include the incomplete LU factorization (ILU) [20]
and its variants ILUTH and ILUK [27]. They work fine when implemented on sequential
computers but are not directly vectorizable since they involve classical LU factorization
which requires back-propagation, basically a serial operation. However, with some effort,
these techniques may be transformed into a scheme which vectorizes the computations.
For details, see e.g. [19] where ILU is vectorized by using the Neumann series expansion of
the preconditioner, or one of the papers describing the wavefront method for vectorization

of the LU factorization process, e.g. [2].
5. Decompositional methods
The so-called decompositional methods of solving large Markov chains are based on the

principle of divide and conquer, where a problem is partitioned into subproblems which

are. next solved and the solutions are eventually combined into a solution to the original

Parallel computing applied to solving large Markov chains. A feasibility study 23

problem. The approach of divide and conquer is, in our case, as follows: the (long) Markov
chain is divided into smaller subc.hains, and these subchains are solved individually. In
order for such a technique to work, the subchains must be independent of one another.
This is very rare in practical Markov chains. However, in several cases, the subchains may
be considered nearly independent, with strong interactions among their internal states
and weak interactions among the subchains themselves. This gave rise to the category
of nearly completely decomposable systems, with first applications in economy and later
extension to Markov chains analyzed in performance evaluation of computer systems [5].
The approach implies that the above character of interactions (strong internal vs weak
external) enables an ordering of states which results in a block structure of the stochastic

matrix of transition probabilities P:

' Pn Pa Pim vy
P P2l P22 mmm P2m
v Pjnl1 Pm2 cvo Pmm J
The blocksPa aresquare and of order «j, i — 1,2,... ,m, n; = n. In this form of

P, the non-zero elements of the off-diagonal blocks are small (interactions between sub-
chains) compared to those of the diagonal blocks (interactions within subchains). Hence,
an approximation is made in which the system is treated as completely decomposable,
i.e. Pij = [0] fori » j. The vector 7 in (2) is then partitioned in conformance with P:

= [7rf,%J,..., ®m "}t where 7r, is a vector of length n,-. v is obtained by solving
p2 T, = diag(Pj)

for i = 1,2,...,rn and combining “subvectors” 7r. Pure concatenance is not possible
because the elements of each subvector sum to one. In order to cause the elements of the
whole vector n to sum to one, the subvectors are weighted, with weights equalling the
probabilities of the modelled system being in one of the states comprising corresponding
subchains.

From the point of view of parallel computing, decompositional methods exhibit three

issues where parallelization is possible.

1. The states of the Markov chain must be properly ordered so as to achieve the
required block structure of P. This is best accomplished by treating the chain as
a directed graph and applying graph search algorithms, several of which have been

successfully parallelized, see e.g. [1, 23].

24 Z. Szczerbiriski

2. Solutions for blocks P,, are individual and independent of one another so it is natural
that they can be obtained in parallel tasks, with each task performing computations
on separate blocks and subvectors.

3. Within each of the tasks mentioned above, a linear system of equations is solved.
There is thus possible further parallelization and/or vectorization, depending on the
solution method chosen. We must, however, underline that the underlying matrix
is now dense, and a solution method will be selected which is (probably) outside
the categories described in this paper; in this case, a direct method rather than an

iterative one will possibly be used.

6. Conclusion

We have discussed solution methods for large Markov chains as seen from the view-
point of a researcher into parallel computation. There have been studied three distinct
families of methods: classical, projection and decompositional. Each algorithm has been
accompanied by a study of its suitability to parallel computing. It appears that there is
no general rule as to which class of methods provides the greatest potential for parallel

computing. Our opinion on these classes is the following.

e Classical methods must be treated individually. The Jacobi method, with its poor
convergence rate, is a very good candidate for both parallelization and vectoriza-
tion. It is a good point of reference for more advanced solution techniques. Clearly,
if an algorithm reaches the solution in a longer time than the fully parallelized
and vectorized Jacobi, then the algorithm is actually inefficient. Parallelization of
the Gauss-Seidel / SOR group of methods is practically ineffective due to data
dependences between computations for different equations in the linear system.

» Projection methods are generally well suited to implementation on parallel systems,
especially vector computers. Their most important feature is that they are solely
composed of simple operations on vectors, which are vectorizable by definition, and
matrix-vector multiplications, which are both parallelizable and vectorizable. Mo-
reover, the methods related to biconjugate gradients feature an additional level of
parallelism since calculations for the two gradients may be performed simultane-
ously. We are planning further research into effective implementation of selected
projection methods on a workstation cluster (parallelization) and a shared-memory
multiprocessor vector (mini)supercomputer (parallelization and vectorization on the

same computing platform)-

Parallel computing applied to solving large Markov chains. A feasibility study 25

« Decompositional methods, even in purely sequential form, are still more in the phase
of experiments than sustained practice. Incidentally, we are aware of no practical
parallel implementations of these methods. In the paper we have presented our
own theoretical concept for parallelization. The subject is undoubtedly interesting
and should be gratifying to potential researchers. Delving into it requires, however,

deeper studies into, among others, graph theory and process scheduling.

Finally, let us make an interesting remark which came to mind while studying precon-
ditioning in projection methods. As mentioned in the corresponding section, ILU and
its variants, arguably the most popular preconditioning techniques today, are based on
a direct solution of an auxiliary linear system. The solution can be, albeit not trivially,
vectorized. This bridges the gap between direct and iterative methods; let us digress that
the two classes are also brought together in the concept of iterative refinement of direct
methods. It is therefore interesting to reconsider the possibility of applying direct me-
thods to solving Markov chains. In section 2, prompted by disqualifying opinions from
authoritative authors, we have distanced ourselves from this approach. Several researchers
maintain, however, that direct methods need not necessarily be dismissed in solving large
systems of equations. There is, for example, ongoing research into refinement of typical
(e.g. Gauss-Jordan elimination) direct methods to very efficient parallel algorithms, with
variants for large and sparse systems, see e.g. [3]. Techniques for solving large Markov

chains could possibly benefit from applying this approach.

REFERENCES

1 Aid S. G.: Parallel Computations: Models and Methods. Prentice Hall, New Jersey
1997.

2. Amestoy P. R., Duff I. S.: Vectorization of a multiprocessor multifrontal code.
International Journal of Supercomputer Applications, 1989, Vol. 3, pp. 41-59.
3. Aincstoy P. R., Duffl. S., L’Excellent J. Y.: Multifrontal solvers within the PARA-

SOL environment. In: Kagstrom B., Dongarra J., EImroth E., Wasniewski J. (Eds.):
Applied Parallel Computing PARA’98. Springer Verlag, Berlin 1998, pp. 7-11.

4. Barrett R., Berry M., Chan T., Demmel J., Dorato J., Dongarra J., Eijkhout V.,
Pozo R., Romine C., Van der Vogt H.: Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods. SIAM, Philadelphia 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Z. Szczerbiriski

Courtois P. J.: Decoinposability: Queueing and Computer System Applications.

Academic Press, Orlando 1977.

Da Cunha R. D., Hopkins T.: Parallel overrelaxation algorithms for systems of
linear equations. In: Welch P. et al (Eds.): Transputing ’91. 10S Press, 1991,
pp. 159-169.

Dryja M., Jankowska J., Jankowski M.: Survey of Numerical Methods and Algori-
thms. Part 2. WNT, Warsaw 1982.

Eisenstat S., EIman H., Schultz M.: Variational iterative methods for nonsymmetric
systems of linear equations. SIAM Journal on Numerical Analysis, 1983, Vol. 20,

pp. 345-357.

Evans D.: Parallel algorithms in computational linear algebra. In: Van Leeuven J.,
Lenstra J. (Eds.): Parallel Computers and Computations. Centrum voor Wiskunde

en Informatica 1985.

Fletcher R.: Conjugate Gradient Methods for Indefinite Systems. Springer Verlag,
Berlin 1976.

Fortuna Z., Macukow B., W”sowski J.: Numerical Methods 4th ed. WNT, Warsaw
1998.

Freund R. W.: A transpose-free quasi-minimal residual algorithm for non-Hermitian
linear systems. SIAM Journal on Scientific and Statistical Computing, 1996, Vol. 14,
pp. 470-482.

Freund R. W., Nachtigal N. M.: QMR: a quasi-minimal residual method for
non-Hermitian linear systems. Numerische Mathematik, 1991, Vol. 60, pp. 315-339.

Golub G. H., Van Loan C. F.: Matrix Computations. The Johns Hopkins University
Press, Baltimore 1983.

Gutknecht M, H.: Changing the norm in conjugate gradient type algorithms. SIAM
Journal on Numerical Analysis, 1993, Vol. 30, pp. 40-56.

Hestenes M. R., Stiefel E.: Methods of conjugate gradients for solving linear sys-
tems. J. Research Natl. Bur. Standards, 1952, Vol. 49, pp. 409-436.

Knottenbelt W. J.: Parallel Performance Analysis of Large Markov Chains. Ph. D.

Thesis, University of London, Imperial College of Science, Technology and Medicine
1999.

Kozielski S., Szczerbinski Z.: Parallel Computers: Architecture, Elements of Pro-

gramming 2nd ed. WNT, Warsaw 1994.

Parallel computing applied to solving large Markov chains. A feasibility study 27

19.

20.

21.

22.

23.

24.

25.

26.

217.

Ma S., Chronopoulos A. T.: Implementation of iterative methods for large sparse
nonsymmetric linear systems on parallel vector computers. International Journal
on Supercomputing, 1990, Vol. 4, pp. 9-24.

Meijerrink J., Van der Vorst H.: An iterative solution method for linear systems for
which the coefficient matrix is a symmetric m-matrix. Mathematical Computation,
1977, Vol. 31, pp. 148-162.

Paige C. C., Saunders M. A.: Solution of sparse indefinite systems of linear equ-
ations. SIAM Journal on Numerical Analysis, 1975, Vol. 12, pp. 617-624.

Pecka P.: An Object-Oriented Multithreaded System for Modelling Transient States
in a Computer Network with Markov Chains. Ph. D. Thesis, Polish Academy of
Sciences, Institute for Theoretical and Applied Computer Science, Gliwice 2002 (in
Polish).

Quinn M. J., Deo N.: Parallel graph algorithms. Computing Surveys, 1984, Vol. 16,
pp. 319-348.

Saad Y., Schultz M. IT: GMRES: a generalized minimal residual algorithm for
solving non-symmetric linear systems. SIAM Journal on Scientific and Statistical
Computing, 1986, Vol. 7, pp. 856-869.

Sleijpen G. L., Fokkema D. R.: BICGSTAB(L) for linear equations involving unsym-
metric matrices with complex spectrum. Electronic Transactions on Numerical
Analysis, 1983, Vol. 1, pp. 11-32.

Sonneveld P.: CGS, a fast Lanczos-type solver for nonsymmetric systems. SIAM
Journal on Scientific and Statistical Computing, 1989, Vol. 10, pp. 36-52.

Stewart W. J.: Introduction to the Numerical Solution of Markov Chains. Princeton

University Press, Princeton 1994,

Recenzent: Dr inz. Ewa Starzewska-Karwan

W ptyneto do Redakcji 21 listopada 2002 r.

Omowienie

W artykule przeprowadzono analize mozliwos$ci zastosowania obliczeA réwnolegtych

do efektywnego rozwigzywania duzych tancuchéw Markowa, rozumianego jako rozwigzy-

wanie uktadéw réwnan liniowych (1) opisujacych stacjonarne prawdopodobieristwa sta-

28 Z. Szczerbinski

néw takich tancuchéw. Dokonano przeglagdu znanych metod iteracyjnych, stosowanych do
rozwigzywania takich uktadéw; kazdej metodzie towarzyszy analiza mozliwosci zréwnole-
glenia, prowadzacego do wykonania adekwatnego programu w trybie wieloprocesorowym
lub wektorowym. W pierwszej czeSci omdwiono klasyczne metody iteracyjne: Jacobiego
(staba zbiezno$¢ metody, duze mozliwosci zrownoleglenia) i Gaussa-Seidela (lepsza zbiez-
nos$¢, zrownoleglenie praktycznie niemozliwe). W kolejnej czesci przedstawiono metody
projekcyjne, wykorzystujace podprzestrzenie Krylowa. Dla algorytmow wywodzacych sie
z metody gradientéw sprzezonych wykazano duze mozliwosci wektoryzacji (kluczowe ope-
racje obliczeniowe to dziatania na wektorach) oraz dodatkowo, w metodzie gradientow
dwusprzezonych - zréwnoleglenia na dwa procesory. W dalszej czesci przegladu oméwiono
metody dekompozycyjne, polegajgce na podziale dtugiego tannicucha Markowa na podlan-
euchy w celu ich oddzielnego rozwigzania a nastepnie scalenia wynikéw, co prowadzi do
uzyskania rozwigzania dla pierwotnego tanicucha. Wyrézniono trzy aspekty mozliwego
zrownoleglenia: w algorytmach przeszukiwania grafow, w dekompozycji uktadu réwnan
opisujacych dtugi tancuch oraz w trakcie rozwigzywania poszczegélnych (po dekompozy-
cji) mniejszych uktadéw rownan. W koncowej czesci artykutu zawarto dodatkowe uwagi

na temat zrownoleglania oméwionych metod oraz wskazano mozliwos$ci dalszych badan.

Adres

Zdzistaw SZCZERBINSKI: Instytut Informatyki Teoretycznej i Stosowanej PAN,
ul. Battycka 5, 44-100 Gliwice, Polska, zdzich@iitis.gliwice.pl

mailto:zdzich@iitis.gliwice.pl

