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S u m m a r y .  T h e  article  is concerned with parallel com putation  issues arising 
in num erical so lu tion  of system s of linear equations which describe s ta tio n a ry  pro­
babilities of s ta te s  in large M arkov chains. Upon in troduction  to  the sub ject of 
M arkov chains and  the ir solution, several adequate solu tion  m ethods are surveyed, 
from the classical th rough  projection to  decom positional ones. Each algorithm  is 
accom panied by a  s tu d y  of its su itab ility  to  parallel com puting (m ulti- and vector 
processing). A dditional opinions on aspects of the p o ten tia l for parallelization in 
the discussed m ethods are contained in the conclusion.
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STUDIUM WYKONALNOŚCI

S tre s z c z e n ie .  A rtykuł je s t poświęcony zagadnieniom  obliczeń równoległych, 
w ystępującym  w trakcie num erycznego rozwiązywania układów  równań liniowych, 
opisujących stac jonarne  praw dopodobieństw a stanów  w dużych łańcuchach M ar­
kowa. Po wprow adzeniu do tem atyki łańcuchów M arkowa, dokonano przeglądu 
w ybranych m etod  rozwiązywania, począwszy od klasycznych, poprzez projekcyjne, 
do m etod  dekom pozycyjnych. D la każdego algorytm u zosta ła  dokonana analiza, na 
ile nadaje  się on do w ykonania w tryb ie  równoległym (wieloprocesorowym  lub wek­
torow ym ). Dodatkow e uwagi dotyczące możliwości zrów noleglania d la  om awianych 
m etod zaw arto  w części końcowej.
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1. Introduction

We are concerned w ith M aikov processes w ith d iscrete s ta te  spaces and continuous 

tim e (i.e. a  s ta te  may change a t any real-valued tim e in stan t) . Such processes are called 

continuous-tim e M arkov chains. We fu rther lim it our a tten tio n  to  homogeneous chains,

i.e. M arkov chains whose probabilities are sta tionary  w ith  respect to  tim e.

Assum e a continuous-tim e M arkov chain, represented by a fam ily of random  variables 

X (/.), takes values from  the  set {x j, .t2, • ■ •, x n}. If A '(i) =  x,- then  th e  chain is said to  be 

in s ta te  X;. For a hom ogeneous chain, the probability  of transition  from  s ta te  x,- to s ta te  

Xj in a  very sm all tim e interval A t  is linear:

Pij{At.) = q ijA t,

where <7y represents the  transition  ra te  between sta te s  x; and  Xj. A homogeneous 

continuous-tim e M arkov chain is represented by

• a  se t of s ta tes , and

• an in fin itesim al generator m atrix  Q  =  [</y] whose entries are the transition  rates, 

except for the diagonal elem ents whose values are such th a t  the following holds: 

Qii

We are in terested  in com puting  the  probabilities of the M arkov chain being in respective 

s ta tes X i,X 2 , ■ ■. ,x„; once these values are known, it is analy tically  possible to  gather 

vital characteristics of the  system  m odelled by the chain.

I t may be shown th a t  the  sta tionary probability vector i t , a  vector of length  n  whose 

k- th  elem ent denotes th e  s ta tio n a ry  probability  of s ta te  x*, can be ob ta ined  by solving 

the system  of equ a tio n s1

trT Q =  0r

The above system  has an infinite num ber of solutions since th e  m atrix  Q  is singular. 

We are in terested  in finding the unique solution for which the sum  of the  probabilities 

(elem ents o f vector n) is equal to 1. T he above condition (conservation o f probability) 

may be d irectly  in troduced into the system  by replacing one equation  (e.g. the  last one) 

with 7rTe =  1, where, e is a  vector whose elem ents are all equal to  1. Q  is now non-singular 

and the system  of equations takes the form

*TQ = i>T, (l)
1 We assume columnwise orientation of vectors, e.g. n is a column vector and rT  is a row vector.
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where b is a  vector whose all elem ents are equal to 0 except one elem ent which is equal 

to  1. For such a system , the unique solu tion  which satisfies conservation of probability 

may be analy tically  com puted. Let us note th a t  (1) m ay be w ritten  as

Q T-n =  b,

which allows for the  app lica tion  of general num erical m ethods of solving linear system s 

of the form A x  =  b.

A lternatively, the s ta tio n a ry  probability  vector 7r can be ob ta ined  by using P  = (j^J 

ra th e r than  Q. T he corresponding system  of equations involving 7r is then

nT P  =  7T7 (2)

or, in the form usually required by num erical m ethods

P T 7T =  d iag  (P r ),

where d ia g (P T) is the vector form ed of the  diagonal elem ents o f P T .

T he above problem s appear sim ple from the m athem atica l s tan d p o in t in view of 

the extensive fam ily of m ethods for solving system s o f linear equations. However, the 

technical side of th e  so lu tion  process is far m ore com plicated , m ainly because of the 

large num ber of sta te s  which usually occur in real-w orld system s modelled by Markov 

chains. Besides, Q  (or P )  is usually (very) sparse, which lim its the  effectiveness of classical 

m ethods developed for dense system s of equations, and necessitates em ploym ent of special 

techniques to deal w ith sparsity.

In th e  paper we show how th e  solution of the above and related  problem s can benefit 

from apply ing  the techniques of parallel computing , by which we m ean bo th  m ultipro­

cessing (also known as true parallel com puting) and vector processing. In section 2, a 

general in troduction  to  the  idea of solving linear system s is m ade. T he next three sec­

tions describe various m ethods for ob ta in ing  solutions to  such system s, w ith discussion 

on their po ten tia l for being parallelized or vectorized. C oncluding rem arks and directions 

for fu tu re  research are contained in section 6.

2. Solution methods for linear systems

Solution m ethods for

A x  = b (3)
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are classified in to  two categories: direct and iterative. D irect m ethods give exact solutions 

and the num ber of opera tions they involve is fixed for a given system  size. A common 

feature of these m ethods is the  factorization  of the m atrix  A . Classical m ethods, such 

as G aussian elim ination , are  based on LU factorization [11]; o ther useful factorizations 

are Q R  [7] and W Z [9], developed especially for parallel com puters. These techniques 

are effective for m edium -sized and dense or narrowly banded system s. T h e  obstacle to 

using them  for large sparse system s is the presence of num erous non-zero entries in the 

factors, known as fill-in . T here  are m ethods for reordering m atrices so as to  reduce fill-in; 

however, they inevitab ly  require additional com puter m em ory which, for m any problem s, 

exceeds allowable lim its.

Itera tive  m ethods generate  a sequence of approxim ate solutions until a  desired ac­

curacy is reached. T heir advantage over d irect m ethods is thus th a t the  system  can be 

solved to a p redeterm ined  accuracy and so the num ber of operations required can be far 

less th an  th a t in d irec t solvers. Itera tive  m ethods are also preferred for o ther reasons. 

Usually, the only opera tion  in which the m atrix  A  (or a  m atrix  easily derived from A )  is 

involved is m ultip lication  by vector(s); such operations do not a lter the m atrix , which is 

im p o rtan t for large and sparse m atrices because com pact storage schemes m ay now be 

im plem ented. A dditionally , since the  m atrix  is never altered , there is no rounding error 

propagation  which characterizes d irect m ethods. From the po in t of view of parallel com­

puting , the m atrix -vector p roducts inherent in practically  every ite ra tive  solver are ideal 

for vectorization , which m akes these m ethods well su ited  to  im plem entation  on parallel 

architectures. A m ajo r d isadvantage of iterative m ethods is the ir frequent bad conver­

gence (prohibitively long tim e is required to  reach a  solution w ith accepted accuracy) or 

even inconvergence, for an  ill-conditioned m atrix  A. By con trast, in d irec t m ethods an 

upper bound on the tim e required to  ob ta in  the solution is easily determ ined  before the 

ac tua l calculation; besides, the  solu tion  is (theoretically) always accurate. Nevertheless, 

for a whole spec trum  of applications including, am ong others, M arkov chains, iterative 

solvers are m ore effective than  d irect solvers.

3. Classical iterative methods

T he oldest classical m ethods converge linearly and ra th e r slowly. T hey  include the 

Jacobi and G auss-Seidel algorithm s, often accelerated by using a re laxation  technique.
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3 .1 . T h e  J a c o b i  m e th o d  

T he m a trix  A  m ay be w ritten  as 

A = D + L + U

where D , L, U are, respectively, the diagonal, lower triangu lar and upper triangu lar parts 

of A . T he system  (3) has now the form

[D + L  + U )x  = b

or

x  =  D ~ lb — D ~ l (L  +  U )x

The above form s th e  basis for an iteration  process w ith the ite ra tio n  s tep  expressed 

com ponentw ise as

^ +1) =  - -  i t  — x f \ i  =  1 , 2 , . . . ,  n , A; =  0 , 1 ,2 , . . .
an . an J

T he in itial vector is chosen arb itra rily , e.g. a:*0* =  0 or =  b. T h e  process is term inated  

when an adop ted  criterion for solution accuracy is satisfied. T he m ost com m on criteria  

here are:

•  absolute erro r criterion:

m a x i^ „ |a ;-* +1) -  <  <5 for a given 5 > 0,

• relative erro r criterion:

m ax l^ i$„ |i[* +1) -  x f ’l <  m ax1̂ i^n |xSfc+1)|£ for a given e > 0,

•  k  > ko, w here ko is a  preselected m axim al num ber of ite ra tio n s (often predicted by 

some estim ate).

U nfortunately, for m any cases where the system  (3) does no t satisfy  convergence criteria  

(these are based on com parisons of certain  expressions involving elem ents of A  and b), 

the Jacobi m ethod  is useless (it is som etim es possible to  fulfill the  crite ria  by forming 

linear com binations of the equations). Besides, even if convergence exists, it is usually 

very slow.

A com m on technique to increase the ra te  of convergence is to  “relax” the Jacobi 

m ethod. T he ite ra tio n  rule can be w ritten  in m atrix  form as

x {k+l) = x<*> -  (D ~ lA x w  -  D ~ xb)
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We can thus see x (t+1) as a change of x w  tow ards the final solution: 

x (*+p =  x w  + g{k) t

where = D ~ l ( b -  A r ^ )  is called the correction vector. In a relaxation method, x is 

improved by using wz(N instead  of zW ,  w >  0. T h e  relaxation coefficient w is chosen in 

such a  way th a t  the ra te  of convergence increases when com pared w ith th a t  of the .Jacobi 

m ethod. T he ite ra tion  step  now becomes

X(*+U =  +  u g (k) =  x (k) +  w £ r  i _  A x W )  (4)

and is called imderrelar.at.ion if 0 <  w <  1 and overrelaxation  if ui > 1. If ui has the optim al 

value for a  given linear system  then convergence is significantly improved. U nfortunately, 

for wrong values of ui, the opposite m ay be true. T here is no theory  for determ ining 

th e  optim al value of w for a rb itra ry  A\ usually, such values are ob ta ined  from repetitive 

num erical experim ents.

We note th a t the Jacobi m ethod  is inherently  parallel: there is no d a ta  dependence 

between values .r[A:+l) in ite ra tion  step  k, so they can be com puted sim ultaneously. T he 

d istribu tion  of com putations am ong p  processors is rowwise i.e.

(fc+1) (A.-) , Ik) /• i Nx \:m = x h m  +  wzj :/n (processor 1)

x m + l : 2 m  ~  x m + l : 2 m  +  ^ m + l : 2 m  (processor 2)

z ' i i - O m + l , .  =  4 v - l ) r n + l : n  +  w * £ - l ) m + I : »  > ( p r o c e s s o r  p )

where m  =  fa ]  and the subscrip t expression i  : j  denotes indices i , i  +  1 , . . . , j ;  for 

vectors x 'k\  x and  b (which is used in zW )  th is  subscrip t ind icates the corresponding 

elem ents whereas for m atrices A  and D  (used in z ^ )  the subscrip t denotes all colum ns 

in rows from i to  j  (since D ~ l is diagonal, the above refers to  respective elem ents of 

the diagonal). N ote th a t  the whole vector x ^  is needed in z ^  for each processor. T he 

parallel algorithm  may be sum m arized as follows. Each processor updates the section of 

;/:(U assigned to  it, thus form ing the corresponding section of In the process, it

uses the corresponding set of rows of A  and sections of vector b and  the diagonal of D ~ x. 

All these processes are overseen by a  m aster process which tests  for convergence.

Besides th e  rowwise d istribu tion  of the m atrix  A  and com putations, there is another 

level of parallelism  in the Jacobi algorithm . N ote th a t x^k+l  ̂ in (4) is com puted from
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by a  m atrix -vecto r m ultip lication , a  vector sub trac tion , a vector-vector scalar m ul­

tiplication (£>- t  m ay be trea ted  as a  vector formed by the d iagonal), a  scalar-vector 

m ultip lication  and a  vector sum m ation . All these operations are easily vectorized  i.e. 

transla ted  in to  in struc tions of a  vector computer. Hence, the Jacobi m ethod  is well suited 

for vector arch itec tu res, including m any “classical” supercom puters and m inisupercom ­

puters. M ost of such system s feature m achine im plem entation of som e typical sequences 

of operations, including th e  so-called linked triad , arising in m any num erical problem s, 

where a vector is first m ultip lied  by a  scalar and then added to  an o th er vector. N ote th a t 

a sequence of th is  type is form ed by the last two operations in the above description of 

com putations in the  ite ra tio n  step  of Jacobi.

Special a tte n tio n  is required by the m ain com putation  in the  whole sequence, the 

m atrix-vector m ultip lication . V ectorization of this operation is of g rea t im portance since 

such m ultip lication  is the  m ost costly  p a r t of the execution tim e in each iteration . In 

order to vectorize th e  m ultip lication  in an optim al way, one has to take into account the 

s tru c tu re  of th e  m atrix  A. As s ta te d  earlier, for Markov chains th is m atrix  is usually 

very sparse. We shall first see how the m atrix-vector m ultip lication  is vectorized when 

the m atrix  is full and , basing on this, tre a t the problem for large and sparse m atrices.

In com puting  a  m atrix -vecto r p roduct, say c =  A r, on a  vector com puter, the co­

lum nwise fo rm  is preferred, following a well-established trad itio n  of coding program s for 

such machines in F ortran . T h e  resulting  algorithm  is: 

do i  = 1, n 

c ( i )  = 0 .0  

enddo

d o  k  =  1 ,  n  

d o  i  =  1 ,  n

c ( i )  = c ( i )  + a ( i , k ) * r ( k )  

enddo 

enddo

The reason is th a t, for th is “o rien ta tio n ” of algorithm , the elem ents o f A  in the innerm ost 

loop (which is tran sla ted  in to  a vector instruction) are in contiguous storage locations 

(this follows from  F ortran  coding), which is, by the n a tu re  of vector com puter organiza­

tion, required to  provide an optim al d a ta  flow from m em ory to  processor while executing 

the resulting  vector in struc tion .

If the m a trix  is sparse, it could be theoretically  trea ted  as a  full one. However, sparse 

m atrices in real-w orld problem s (e.g. Markov chain m odels o f com pu ter networks) are
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usually very large, e.g. a M arkov chain m ay have 10000 s ta te s  which transla tes into the 

m atrix  A  — Q T o f 100 million elem ents, of which perhaps “only” 100000 are no t zeroes. 

One should therefore try  to sto re  only the non-zero elem ents of A , and do it in such a 

way th a t  the  m atrix -vector p roduct is still easily vectorized. T h e  m a trix  is usually stored 

either by rows or by colum ns, in a  com pressed form; w ithou t loss of generality we can 

assum e th a t  it is stored by rows. T here are two possibilities to  com press a  row: to  pack it 

by a m ask vector or to  gather  it by an index vector, see e.g. [18] for details. T h e  question 

of which m ethod  to  use is open for discussion. Generally, the  form er one is preferred if the 

m atrix  is of less o r m edium  sparsity  while the la tte r  if the m a trix  is very sparse. Further, 

there are two approaches to  perform ing m atrix-vector m ultip lication . In the first one, a 

row of A  is unpacked w ith  the mask vector (or scattered  w ith  the index vector) and the 

scalar p roduct is com puted  w ith  th is full decom pressed vector. In the second approach, 

the vector r  is also com pressed by the sam e vector (m ask or index) as the row of A  and 

the scalar p roduct is com puted  w ith  two packed (gathered) vectors: the row of A  and r. 

Generally, the la tte r  approach  is m ore efficient and often preferred in practice.

3.2. T h e  G auss-Seidel and  SO R  m ethods

T he G auss-Seidel ite ra tive  m ethod differs only slightly  from the Jacobi m ethod de­

scribed earlier: the  calculated  values of a;jfc+1\  x ^ +1\  . . . ,  are used when calculating 

the value x|*'+1). In o ther words, the newly com puted resu lts in an ite ra tion  are used in 

the sam e  ite ra tion  to com pute the rem aining results, whereas in the  Jacobi m ethod all 

results in an ite ra tion  are derived from results produced in the previous ite ra tion . The 

ite ra tion  step  now becomes

* » « >  =  £  i i x f > , i = . l , 2 ..........n ,*  =  0 , l , 2 (5)
«n J=1 «n J=i+1 an

or, in m atrix  form

x (k+i) =  (£> +  L )~ l ( b - U x w )

As for the  Jacobi m ethod, there exist convergence crite ria  for th is  m ethod; the ir d e ta­

iled descrip tion  is beyond the scope of this paper. Let us only no te th a t  the Gauss-Seidel 

m ethod is guaran teed  to  converge if the m atrix  A  is positive definite. Also, sim ilarly  to J a ­

cobi, it is possible to  accelerate the Gauss-Seidel a lg o rith m ’s convergence by “weighting” 

the previously and cu rren tly  com puted elem ents tow ards an average, i.e.

x \M )  =  ujx\k+l) +  (1 -  u j i j * 1, i =  1 ,2 , . . . ,  n;  k  =  0 , 1, 2 , . . .
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where x jfc+1* is the (new) elem ent com puted according to  the Gauss-Seidel procedure i.e. 

: i f +1) is identical w ith in (5). As before, x \k) is the elem ent from the previous

iteration . T he above may be w ritten  in m atrix  form as

x<fc+1) =  u ( D  +  u L ) ~ lb ~ { D  + w L ) - 1[<j U  +  (1 -  u )D ] x w

It has been proved th a t  convergence can be achieved only if 0 <  ui < 2. Usually, w is in the 

range (1; 2), hence the above ex trapo lation  technique is called successive overrelaxation  

(SO R ). N ote th a t  for u> =  1 the  relaxation  m ethod becomes the Gauss-Seidel algorithm .

T here are certain  classes of m atrices for which there is a  sim ple form ula for the  optim al 

overrelaxation factor w. However, for general m atrices there exist no analytical m ethods 

to find the op tim al value of this param eter and im plem entations of SO R  use heuristic 

approach.

By con trast w ith the Jacobi procedure, the Gauss-Seidel and  SO R  m ethods are not 

parallel in the ir form. T h e  reason is th a t  the new values of the elem ents of x  can only be 

calculated one afte r the o th e r and not sim ultaneously since the  calculations depend on one 

another: the com pu tation  of x-A+1' requires th a t all the elem ents x \k+l\  x[k+l\  . . .  

have already been com puted. Hence, these m ethods are, generally, not suited  for execution 

on parallel system s by rowwise partitio n in g  as in the Jacobi case. T here  are m odifications 

of SO R  tow ards a t  least p a rtly  parallelization , as e.g. in [6] where an iteration  is divided 

into two phases, of which the  form er is easily parallelizable; the la tte r  phase, however, 

is sequential and tim e-consum ing (solution of a  lower triangu lar system s of equations by 

a direct m ethod). In th e  case of large and sparse m atrices A , a  fo rtuna te  situ a tio n  may 

occur where a m u ltitude of zero entries in the m atrix  leads to  som e elem ents of the new 

ite ra te  no t necessarily dependen t on previous elem ents. By reordering the equations it is 

som etim es possible to m ake updates to  groups of elem ents in parallel [4].

Vectorization of the S O R  m ethod (and Gauss-Seidel as its special case) is far more 

difficult than  in the Jacobi algorithm . T here arises the technical problem  of “non-sm ooth” 

d a ta  flow from m em ory to  processor since the elem ents Oy in (5) are not in contiguous 

memory locations (as elem ents of a row of an array  they are equid istan t from their 

neighbours in the row, w ith  d istance n) and  it is not easy to  res tru c tu re  the com putations 

into a colum nwise form which would cancel the problem . A dditionally , for M arkov chains, 

the usually irregular, large sparsity  of A  in troduces com pression/decom pression problem s 

due to  separation  of the m atrix -vector p roduct into p arts  involving “old” and  “new” 

values in the vector.
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4. Projection methods

Projection methods, also known as Krylov subspace techniques, are a popu lar class 

o f ite ra tive  solvers for large system s of linear equations. T heir effectiveness has been 

tested  on a  wide range of science and engineering applications including fluid dynam ics, 

a tm ospheric  m odelling, s tru c tu ra l analysis and finite elem ent analysis. T hey  feature fairly 

good convergence, are com petitive w ith classical ite ra tive  m ethods in term s of memory 

utiliza tion , and  are well su ited  to im plem entation on parallel com puters.

4.1. T h e  co n ju g ate  g rad ien t m ethod

By far the m ost w idely known projection m ethod is the conjugate gradient algorithm  

developed in the early  1950s by Hestenes and Stiefel [16] and used to  solve linear system s 

where the  m a trix  A  is sym m etric  positive definite. T he m ethod  has since been generalized 

to  allow for a rb itra ry  m atrices. Below we shall first present the  general principle of the 

basic m ethod and then describe its variants which are best su ited  to  solving large Markov 

chains.

T he sim plest con jugate  grad ien t algorithm  [14] is based on the  idea of m inim izing the 

function

f ( x ) =  \ x T A x  ~  x T b,

which, for sym m etric  positive A  is m inim ized when th e  grad ien t

V /  =  A x  — b — —r

is zero, which is equivalent to  (3). T he m inim ization consists in generating  a  succession 

of search d irections pW  (w ith p (0' =  r ^ )  and improved so lu tions according to  the 

formulae:

x {k+  i) _  x (k) + a W p (k) 

r <*+1) _  r (k) _  n (k)A p (k) 

p t f c + l )  =  r (.k+1) +  p [ k ) p {k)

T he coefficients a W  and  0 ^  are chosen so as to m inim ize /  in x^k+1  ̂ over the  whole 

subspace (p^°\p^l\  . . .  , p ^ )  and to  ensure th a t the d irection  vectors form ing th e  above 

subspace are con jugate w ith  respect to  A  i.e. p ^ T A p ^  =  0 for j  < k. I t  has been proved
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in the lite ra tu re  th a t  afte r a t  m ost n  steps the algorithm  te rm inates w ith the solution 

found i.e. x 'k) is the solu tion  for som e k  ^  n. However, th is can occur only with exact 

arithm etic . In practice, roundoff errors m ake the procedure ite ra tive  and the term ination  

is allowed afte r som e erro r criterion  is m et.

In our study, the  large and sparse m atrix  A  is no t necessarily positive definite or 

sym m etric (in fact, it is sym m etric in very rare  cases). T herefore we tu rn  our a tten tion  

to  generalizations of the  classical conjugate gradient m ethod  for a rb itra ry  linear system s 

of equations.

4.2. T h e  b icon jugate  g rad ien t m eth o d

T he biconjugate gradient m ethod was developed by F letcher [10] from an algorithm  

for trid iagonalization  of nonsym m etric m atrices (due to  Lanczos), applied to  solve non- 

sym m etric system s of equations. T his m ethod  uses two residual vectors ra th e r than  one 

as in the classical con jugate grad ien t algorithm ; likewise, two direction vectors are formed 

instead of one. D enoted respectively by K k\  r^k\  pW  and jflk\  these vectors satisfy the 

following conditions:

• b iorthogonality  —  r (')TrU) = fi')Tr U) =  0 , j  < i

• biconjugacy (w ith respect to  A )  —  p ^ A Tp^') — pW /lp(i) =  o, j  <  i
• m utual o rthogonality  — r Mr pfj) =  rt')Tp(j) — o , j  < i

T he algorithm  m ay be w ritten  as follows.

1. Choose an  in itial approxim ate solu tion  a ;^ .

2. C om pute the residual r ^  = b — Ax^°K
3. Set p(°l =  pf°l =  =  r(°>, and k — 0.

4. Perform  ite rative ly  the  following sequence of com putations

(t) =  ?*>*><*>
“  ~  p v r Apa)
^ ( * + 1 )  —  x l k )  f t ( k ) p ( k )

r ( f c + l )  _  ,.(* .)  _  a ( k ) A p ( k )  

r i k + D  -  f *k )  _  a ( k ) A T f t k )

a ( k )  _  ?in-i)Tr(t-+i) 
p  — “ yu:)rr(i)
p ( k + 1) _  r (k) +  0 { k ) p {k) 

f l k + 1) _  ~{k) +  p ( k ) f l k )

increm ent k
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As in the con jugate  g rad ien t m ethod , the coefficients a W  are chosen to  ensure the 

b iorthogonality  condition , and p ^  —  the biconjugacy condition. T here is a  danger of the 

algorithm  break ing  down; th is happens (fortunately, rarely) when one of the denom inators 

is zero. O therw ise, the  m ethod  converges afte r m  st n  ite ra tions (i.e. step  4 is perform ed a t 

m ost’n  ,times) w ith  r^"l+l'1 =  f (m+l) =  0 and a;(m+1) being the solution. Again, the above 

convergence rule is theore tical only. In practical app lications, the  algorithm  proceeds 

beyond n  ite ra tions, un til a  convergence test determ ines th a t  it should te rm inate , e.g. 
r (k)Tr (k) ^  f w]iere £ is a  to lerance criterion.

I t may be seen from the  above th a t the  m ost costly com putation  in the biconjugate 

gradient procedure are the  two m atrix -vector m ultip lications. O f much in terest to  us is 

th a t they can be executed sim ultaneously, for exam ple an a  dual-processor system . For a 

large and sparse A  th is will be done afte r decom pressing A  and A T . N ote th a t both A  and 

A t  will have been com pressed earlier. It is sufficient to  com press A  alone only if diagonal 

sto ring  is possible i.e. non-zero d iagonals of A, ra th e r th an  rows or colum ns, are stored; 

however, no assum ption  as to  diagonal dom inance of the m atrices derived from Markov 

chains can be m ade.

As regards vectorization , we are fo rtuna te  to  have all the  crucial operations 

(m atrix-vector and vector-vector m ultip lications, and linked triads) fully vectorizable 

here. T hus, th is  m ethod  (incidentally , along w ith the classical con jugate grad ien t algori­

thm ) is ideally suited  for vector com puters.

Besides being fairly effective in its own right, the biconjugate grad ien t m ethod is 

significant because it led d irectly  to  the developm ent of several techniques w ith  faster 

convergence, the m ost noted  of which are described in the following sections.

4.3. T h e  co n ju g ate  g rad ien t squared  m eth o d

In the b iconjugate g rad ien t algorithm  described in the  preceding section, i t  can be 

shown th a t the residual rW  is com puted  as the in itial residual m ultip lied  by a m atrix  

polynom ial of degree k. T h e  conjugate gradient squared m ethod  was derived by Sonneveld 

[26] from the above a lgorithm  by sim ply squaring the residual polynom ial, which results 

in “con tracting” the  residual and reducing it faster th an  in the original m ethod. T he 

algorithm  has the  following form.

1. Choose an in itial approx im ate  solution
2. C om pute the residual r (°) =  l> — A x(0).
3. Set qW  =  7 /“ *) =  0, pi-1) =  1, and k  — 0.
4. Perform  ite ra tive ly  the  following sequence of com putations
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p (k)  _  , . ( 0 ) T r (k)

P k) =  A
u ( k )  _  r ( t )  +

pM  =  „<*) +  /jW foW  +  pW p(*-V )

w(fc) =  /Ip!*")

CT(fc) _  , . ( 0 ) T w (k)

«<*> =  #

q ( k + 1) _  u (fc) _  a (k).w {k)

3;(*+1) — X(k) +  +  <7l*+P)

r (fc+l) _  r (fc) _  Q.(*)i4 ( M(*) +  q l k + 1))

increm ent k

T he conjugate g rad ien t squared m ethod converges whenever the b iconjugate gradient 

m ethod does i.e. bo th  m ethods have the sam e break-down conditions; unfortunately, 

these conditions are n o t precisely known. T he newer m ethod requires m ore calculations 

(actually, tw ice the  am oun t of com putational work necessary for the  basic conjugate 

gradient a lgorithm ). However, convergence is now much faster. A no ther advantage is 

th a t the need to  use th e  transpose of A  is now avoided. In term s of com putation  cost, 

m ultip lication  w ith  A 1 is replaced by additional m atrix -vector m ultip lication  involving 

.4. N evertheless, in view of th e  problem s stem m ing from com pression/decom pression of 

.4r  (see the  preceding section) it is tru ly  beneficial to  use this m ethod  in cases where A  

is large and sparse.

4.4. T h e  generalized  m in im um  residual m eth o d

A nother varian t of the biconjugate gradient algorithm  corresponds to  a  sym m etric 

b u t not necessarily positive definite m atrix  A. In step  3, is se t to  A r W rath e r than 

,-(o) F urther, for all k , fiW =  A r W and =  A pW . T h is approach  is known as the 

m in im um  residual m ethod  since it successively minim izes the  function

/ ( * )  =  \ r Tr =  i |A x  -  b\2

over the sam e se t of search directions pW  as the ones generated  in the  conjugate gradient 

m ethod. T he m ethod  is due to  Paige and Saunders [21], It has been generalized in various
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ways for nonsym m etric m atrices. T h e  m ost robust o f these variations is possibly the 

generalized m in im u m  residual m ethod  developed by Saad and Schultz [24]. W ithou t going 

to  excessive detail, we can ou tline  the algorithm  as follows.

In iteration  k , the approx im ate  solution x^k' is calculated  as

! < * )  =  Z <°>  +  Z<*>,

where zifc) (the  “correction” vector) is chosen from the  Krylov subspace spanned by 

vectors r (0\  A r(0), A M 0\  . . . ,  so th a t it m inim izes the two-norm  of the residual

in th is iteration

||r<*>||2 =  | |b -  A ( x m  +  z<*>)||2 =  ||rf°> -  A z ™ ||2

In o ther words, determ in ing  the correction involves solving a ^-dim ensional 

least-squares problem .

T he generalized m inim um  residual m ethod is expensive in term s of m em ory usage 

because all consecutive vectors form ing the Krylov subspace m ust be m aintained th ro ­

ughout the algorithm , and the ir num ber increases w ith  each iteration . O n the o ther hand, 

the m ethod is op tim al in th e  sense th a t  it provides the  sm allest residual in a fixed num ­

ber of iteration  steps. I ts  convergence is not necessarily s tric tly  m onotonic, though, i.e. 

||?K*+1) ||2 ^  | | r (fc>11-2 ra th e r than  | |r ( fc+1) ||2 <• i M ^ l h '  In practice, the m ethod is usually 

restarted every m. ite ra tions, w ith — x ^  + z ^  as the new “in itia l” approxim ation for 

th e  first re s ta rt, x (2m> =  x ^  +  z(2m) for the second and so forth; th is constrains excessive 

storage. U nfortunately, the im plem entations done so far have confirm ed th a t  m  may not 

be reasonably large or else the resu lting  program  runs o u t of space.

T h e  generalized m inim um  residual m ethod is am enable to bo th  parallelization  and 

vectorization. A recent exam ple is shown in [22] where th is  m ethod was im plem ented on 

th e  Convex C3840, a quad-processor vector m inisupercom puter, and used to solve exam ­

ple, large M arkov chains, achieving 20-fold speedup com pared w ith  th e  non-optim ized, 

single processor version of the  program  for the sam e m achine.

4.5. O th er p ro jec tio n  m ethods

Besides the ones described so far, there are several o ther m ethods stem m ing from 

the b iconjugate grad ien t algorithm . A num ber of them  are known and used m ore widely 

w hile some are only gain ing popularity , a lbe it fairly slowly. T he biconjugate gradient squ­

ared stabilized a lgo rithm  [15, 25] “sm oothes” the uneven convergence of the conjugate 

grad ien t squared m ethod  by using two different polynom ials to  reduce instead of
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applying one polynom ial twice: th e  first one is the sam e as th a t  used in the biconjugate 

gradient m ethod and the  second is derived from the generalized m inim um  residual me­

thod. This resu lts in b e tte r  convergence due to  b e tte r  local m inim ization . A nother form 

of the biconjugate g rad ien t m ethod  gave rise to  the conjugate residual squared algorithm  

[19] which is in fact a m odification of the conjugate gradient squared m ethod, also leading 

to sm oother reduction  of the residual error. Likewise, the generalized conjugate residual 

m ethod [8] can be used to  solve linear system s w ith general m atrices; th is m ethod, howe­

ver, is costly in term s of sto rage. T he quasi-m inim al residual a lgorithm  [13] is a derivative 

of the generalized m inim um  residual m ethod which also takes a  least squares approach 

to m inim izing residuals while using the biorthogonal basis of the  biconjugate gradient 

m ethod, resu lting  in, generally, less storage a t  the  cost of m ain ta in ing  and  using the 

transpose of A. A sim ilar approach applied to the conjugate grad ien t squared m ethod led 

to the transpose-free quasi-m inim al residual algorithm  [12], which, as the nam e suggests, 

has the advantage of no t requiring  m ultip lication  w ith A T . A good, hierarchical survey 

of projection m ethods m ay be found in [17].

From the p o in t o f view of parallel com puting, the above m ethods reta in  good su ita ­

bility to both  para lle liza tion  and  vectorization, which is characteristic  of all algorithm s 

related to  conjugate g rad ien ts (see rem arks in section 4.2). Moreover, the m ethods deri­

ved directly from the b iconjugate gradient algorithm  (i.e. perform ing opera tions on A T ) 

feature m utual independence of two com putationally  intensive m atrix-vector m ultip lica­

tions in each ite ra tio n , thus augm enting the po tential for parallel calculations.

4.6. P reco n d itio n in g

Generally, all p ro jection  m ethods work well for system s of linear equations whose 

m atrices are w ell-conditioned. In order to reduce th e  condition num ber of th e  system ’s 

m atrix , and thus im prove the  convergence rate , one m ay apply preconditioning, consisting 

in replacing the  original equation  (3) by the system

A ~ xA x  = A ~ lb,

where A -1 approx im ates A-1 and A is chosen such th a t  it is relatively inexpensive to 

com pute A ~ lw  for any vector w. T he idea here is th a t, th an k s to  com m uta tiv ity  of m a­

trix m ultip lication , A ~ lA ss / ,  which allows the algorithm  to  converge in fewer iterations. 

T here is, obviously, add itiona l com putational cost inherent in preconditioning. For exam ­

ple, in the preconditioned biconjugate gradient m ethod an add itiona l se t of vectors z^
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and zw  is in troduced, defined by (see section 4.2. for com parison)

Az<*> =  r l ‘ ), Ar z<*> =  f(*) (6)

and the calculations are m odified as follows

fP r - A jW

f ( k + \ ) T  z ( k+ \ )  

rW T z (k)

p(*+1) =  +  

pt*+») =  2 «  +  /*<*>£«

T he m ain problem  here is th a t i t  is now necessary to  solve the  additional equations (6) 

in each iteration . However, since the m atrix  A  (called the preconditioner) is selected so 

as to sim plify m atrix -vecto r m ultip lications involving A-1 , it is relatively easy to  ob ta in  

A*) =  A-1r (fc) (the sam e holds for AT , and fW ). Moreover, all the operations are fully 

vectorizable. A com m on technique is to  use the diagonal p a r t o f A as the preconditioner. 

T his fu rther simplifies the  so lu tion  of (6) since A -1 is now triv ial and the whole procedure 

is reduced to  m ultip ly ing  corresponding elem ents of two vectors (the diagonal of A -1 

is stored  as a  vector), which is an elem entary operation  on a  vector com puter. More 

refined preconditioning techniques include the incomplete LU  factoriza tion  (ILU) [20] 

and its varian ts ILU TH  and  ILUK [27]. T hey  work fine when im plem ented on sequential 

com puters b u t are no t d irec tly  vectorizable since they involve classical LU factorization 

which requires back-propagation, basically a serial operation . However, w ith som e effort, 

these techniques m ay be transform ed into a  scheme which vectorizes the com putations. 

For details, see e.g. [19] where ILU is vectorized by using th e  N eum ann series expansion of 

the preconditioner, or one of the papers describing the wavefront m ethod for vectorization 

of the LU factorization  process, e.g. [2].

5. Decompositional methods

T he so-called decompositional methods o f solving large M arkov chains are based on the 

principle of divide and conquer, where a  problem  is p a rtitioned  into subproblem s which 

are. next solved and th e  solutions are eventually  com bined in to  a solution to  th e  original



Parallel com puting  applied  to solving large Markov chains. A feasibility study 23

problem . T he approach  of divide and conquer is, in our case, as follows: the (long) Markov 

chain is divided in to  sm aller subc.hains, and these subchains are solved individually. In 

order for such a technique to  work, the subchains m ust be independent of one another. 

This is very rare  in p rac tica l M arkov chains. However, in several cases, the subchains may 

be considered nearly  independent, w ith strong  in teractions am ong the ir in ternal s ta tes 

and weak in teractions am ong the subchains themselves. T h is gave rise to  the  category 

of nearly com pletely decomposable system s, w ith first app lications in economy and la ter 

extension to  M arkov chains analyzed in perform ance evaluation of com puter system s [5]. 

T he approach im plies th a t  the above character of in teractions (strong  in ternal vs weak 

external) enables an ordering of s ta te s  which results in a  block structure  of the stochastic 

m atrix  of tran sitio n  probabilities P:

'  P n  P a  Pim y

p  _  P2 I P22 ■ ■ ■ P2m

\  P j n  1 P m 2  •  • •  P m m  J

T he blocks Pa are  square  and of order «¡, i — 1 , 2 , . . .  , m,  n; =  n. In th is form of

P , the non-zero elem ents of the off-diagonal blocks are sm all (in teractions between sub­

chains) com pared to  those of the diagonal blocks (in teractions w ith in  subchains). Hence, 

an approxim ation  is m ade in which th e  system  is trea ted  as com pletely decom posable,

i.e. Pij =  [0] for i ^  j .  T h e  vector 7r in (2) is then partitioned  in  conform ance w ith P: 

7T =  [7rf, 7r J , . . . ,  ■k^1]t  w here 7r; is a vector of length n,-. v  is ob ta ined  by solving

P ?  7T; = diag(Pj)

for i =  1 ,2 , . . . , r n  and com bining “subvectors” 7r;. P u re  concatenance is no t possible 

because the elem ents o f each subvector sum  to one. In order to  cause the elem ents of the 

whole vector n  to  sum  to one, the subvectors are weighted, w ith weights equalling the 

probabilities o f the m odelled system  being in one of the  s ta te s  com prising corresponding 

subchains.

From the  p o in t of view of parallel com puting, decom positional m ethods exhib it three 

issues where parallelization  is possible.

1. T he s ta te s  o f the Markov chain m ust be properly  ordered so as to  achieve the 

required block s tru c tu re  of P.  T h is is best accom plished by trea tin g  the  chain as 

a d irected  g raph  and  applying graph search algorithm s, several of which have been 

successfully parallelized, see e.g. [1, 23].
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2. Solutions for blocks P„ are individual and independent of one an o th er so it is natu ra l 

th a t they can be ob ta ined  in parallel tasks, w ith each task  perform ing com putations 

on separate  blocks and sub vectors.

3. W ith in  each of the  tasks m entioned above, a linear system  of equations is solved. 

T here is thus possible fu rther parallelization  a n d /o r  vectorization, depending on the 

solution m ethod  chosen. We m ust, however, underline th a t the underlying m atrix  

is now dense, and a solution m ethod will be selected which is (probably) outside 

the  categories described in th is paper; in th is case, a  d irect m ethod  ra the r than an 

ite ra tive  one will possibly be used.

6. Conclusion

We have discussed solution m ethods for large M arkov chains as seen from the view­

point of a researcher into parallel com putation . T here have been stud ied  three d istinct 

fam ilies of m ethods: classical, projection  and  decom positional. Each algorithm  has been 

accom panied by a s tu d y  of its su itab ility  to  parallel com puting. I t appears th a t there is 

no general rule as to  which class o f m ethods provides the  g rea test po ten tia l for parallel 

com puting. O ur opinion on these classes is the following.

• Classical m ethods m ust be trea ted  individually. T h e  Jacobi m ethod , w ith its poor 

convergence ra te , is a very good cand ida te  for bo th  parallelization  and vectoriza­

tion. It is a  good po in t of reference for m ore advanced solution  techniques. Clearly, 

if an algorithm  reaches the solu tion  in a longer tim e than  the  fully parallelized 

and vectorized Jacobi, then the  algorithm  is actua lly  inefficient. Parallelization of 

the Gauss-Seidel /  SO R  group of m ethods is p ractically  ineffective due to d a ta  

dependences between com putations for different equations in the linear system .
•  P rojection  m ethods are generally well su ited  to  im plem entation  on parallel systems, 

especially vector com puters. T heir m ost im p o rtan t feature is th a t  they are solely 

com posed of sim ple operations on vectors, which are vectorizable by definition, and 

m atrix -vector m ultip lications, which are bo th  parallelizable and  vectorizable. Mo­

reover, the  m ethods related to b iconjugate grad ien ts feature an additional level of 

parallelism  since calculations for the two grad ien ts m ay be perform ed sim ultane­

ously. We are p lanning  fu rther research into effective im plem entation  of selected 

projection  m ethods on a  w orkstation  cluster (parallelization) and  a shared-m em ory 

m ultiprocessor vector (m ini)supercom puter (parallelization  and vectorization on the 

sam e com puting  platform )-
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• D ecom positional m ethods, even in purely sequential form, are still m ore in the phase 

of experim ents than  sustained  practice. Incidentally, we are aware of no practical 

parallel im plem enta tions of these m ethods. In the paper we have presented our 

own theoretical concept for parallelization. T he sub ject is undoubtedly  interesting 

and should be gratify ing  to  p o ten tia l researchers. Delving into it requires, however, 

deeper stud ies into, am ong others, graph theory and process scheduling.

Finally, let us m ake an in teresting  rem ark which cam e to  m ind while studying  precon­

ditioning in pro jection  m ethods. As m entioned in the corresponding section, ILU and 

its variants, arguably  the m ost popu la r preconditioning techniques today, are based on 

a d irect so lution  of an aux ilia ry  linear system . T he solution can be, a lbe it not trivially, 

vectorized. T h is bridges the  gap between d irect and iterative m ethods; let us digress th a t 

the two classes are also b rough t toge ther in the concept of iterative refinem ent of direct 

m ethods. It is therefore in te resting  to  reconsider the possibility of applying d irect me­

thods to  solving M arkov chains. In section 2, p rom pted by disqualifying opinions from 

au tho rita tive  au thors, we have d istanced  ourselves from th is approach. Several researchers 

m aintain, however, th a t d irect m ethods need no t necessarily be dism issed in solving large 

system s of equations. T here  is, for exam ple, ongoing research into refinem ent of typical 

(e.g. G auss-Jordan  elim ination) d irec t m ethods to  very efficient parallel algorithm s, w ith 

variants for large and  sparse system s, see e.g. [3]. Techniques for solving large Markov 

chains could possibly benefit from applying th is approach.

R E F E R E N C E S

1. Aid S. G.: Parallel C om putations: Models and M ethods. P ren tice Hall, New Jersey

1997.

2. Am estoy P. R., Duff I. S.: V ectorization of a m ultiprocessor m ultifron ta l code. 

In ternational Jo u rn a l of Supercom puter A pplications, 1989, Vol. 3, pp. 41-59.

3. A incstoy P. R., Duff I. S., L ’Excellent J. Y.: M ultifrontal solvers w ithin the  PARA­

SOL environm ent. In: K agstrom  B., D ongarra J., E lm ro th  E., W asniewski J. (Eds.): 

Applied P arallel C om puting  PA R A ’98. Springer Verlag, Berlin 1998, pp. 7-11.

4. B a rre tt R ., Berry M., C han T ., Demmel J., D orato  J., D ongarra J., E ijkhout V., 

Pozo R., Rom ine C., Van der Vogt H.: T em plates for the Solution of L inear Systems: 

Building Blocks for Ite ra tive  M ethods. SIAM, P hiladelph ia 1994.



Z. Szczerbiriski

5. C ourto is P. J .: D ecoinposability: Q ueueing and C om puter System  A pplications. 

A cadem ic Press, O rlando  1977.

6. D a C u n h a  R. D., Hopkins T .: Parallel overrelaxation algorithm s for system s of 

linear equations. In: Welch P. e t al (Eds.): T ranspu ting  ’91. IOS Press, 1991, 

pp. 159-169.

7. D ry ja M., Jankow ska J ., Jankowski M.: Survey of N um erical M ethods and Algori­

thm s. P a r t 2. W N T, W arsaw  1982.

8. E isensta t S., E lm an H., Schultz M.: V ariational ite ra tive  m ethods for nonsym m etric 

system s of linear equations. SIAM Journal on N um erical A nalysis, 1983, Vol. 20, 

pp. 345-357.

9. Evans D.: P arallel a lgorithm s in com putational linear algebra. In: Van Leeuven J., 

L enstra  J . (Eds.): Parallel C om puters and C om putations. C en trum  voor W iskunde 

en In fo rm atica  1985.

10. F letcher R.: C on jugate G rad ien t M ethods for Indefinite System s. Springer Verlag, 

Berlin 1976.

11. F o rtuna Z., Macukow B., W ^sowski J.: N um erical M ethods 4 th  ed. W N T, Warsaw

1998.

12. Freund R. W .: A transpose-free quasi-m inim al residual algorithm  for non-H erm itian 

linear system s. SIAM Jo u rn al on Scientific and S ta tis tica l C om puting , 1996, Vol. 14, 

pp. 470-482.

13. Freund R. W ., N achtigal N. M.: QM R: a quasi-m inim al residual m ethod for 

non-H erm itian  linear system s. Numerische M athem atik , 1991, Vol. 60, pp. 315-339.

14. G olub G. H., Van Loan C. F .: M atrix  C om putations. T h e  Johns Hopkins University 

Press, B altim ore 1983.

15. G u tknech t M, H.: C hanging the norm  in conjugate g rad ien t type algorithm s. SIAM 

Journal on N um erical A nalysis, 1993, Vol. 30, pp. 40-56.

16. H estenes M. R., Stiefel E.: M ethods of conjugate g rad ien ts for solving linear sys­

tem s. J. Research N atl. Bur. S tandards, 1952, Vol. 49, pp. 409-436.

17. K no ttenbelt W . J .: Parallel Perform ance A nalysis of Large M arkov Chains. Ph. D. 

Thesis, U niversity of London, Im perial College o f Science, Technology and Medicine

1999.

18. Kozielski S., Szczerbinski Z.: Parallel C om puters: A rch itecture , E lem ents of P ro­

gram m ing  2nd ed. W N T , W arsaw 1994.



Parallel com puting  applied to  solving large Markov chains. A feasibility study 27

19. Ma S., C hronopoulos A. T .: Im plem entation  of iterative m ethods for large sparse 

nonsym m etric linear system s on parallel vector com puters. In ternational Journal 

on S upercom puting, 1990, Vol. 4, pp. 9-24.

20. M eijerrink J., Van der V orst H.: An iterative solution m ethod for linear system s for 

which the coefficient m atrix  is a  sym m etric m -m atrix . M athem atical C om putation , 

1977, Vol. 31, pp. 148-162.

21. Paige C. C., Saunders M. A.: Solution of sparse indefinite system s of linear equ­

ations. SIAM Journal on N um erical Analysis, 1975, Vol. 12, pp. 617-624.

22. Pecka P.: An O bject-O rien ted  M ultith readed  System  for M odelling T ransient S tates 

in a C om puter Network w ith Markov Chains. Ph. D. Thesis, Polish Academ y of 

Sciences, In s titu te  for T heoretical and  Applied C om puter Science, Gliwice 2002 (in 

Polish).

23. Q uinn M. J ., Deo N.: P arallel g raph  algorithm s. C om puting Surveys, 1984, Vol. 16, 

pp. 319-348.

24. Saad Y., Schultz M. IT: GM RES: a generalized m inim al residual algorithm  for 

solving non-sym m etric linear system s. SIAM Journal on Scientific and S tatistical 

C om puting, 1986, Vol. 7, pp. 856-869.

25. Sleijpen G. L., Fokkem a D. R.: B iCGSTAB(L) for linear equations involving unsym- 

m etric m atrices w ith com plex spectrum . E lectronic T ransactions on Num erical 

Analysis, 1983, Vol. 1, pp. 11-32.

26. Sonneveld P.: CGS, a fast Lanczos-type solver for nonsym m etric system s. SIAM 

Journal on Scientific and S ta tis tica l C om puting, 1989, Vol. 10, pp. 36-52.

27. S tew art W . J.: In troduction  to  the N um erical Solution of M arkov Chains. P rinceton 

U niversity Press, P rinceton  1994.

Recenzent: Dr inż. Ew a Starzew ska-Karwan

W płynęło do Redakcji 21 lis topada 2002 r.

Omówienie

W  artykule przeprow adzono analizę możliwości zastosow ania obliczeń równoległych

do efektywnego rozw iązyw ania dużych łańcuchów Markowa, rozum ianego jako rozwiązy­

wanie układów równań liniowych (1) opisujących stacjonarne praw dopodobieństw a s ta ­
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nów takich łańcuchów. D okonano przeglądu znanych m etod iteracyjnych, stosowanych do 

rozwiązywania takich układów ; każdej m etodzie towarzyszy analiza możliwości zrównole- 

glenia, prowadzącego do w ykonania adekw atnego program u w tryb ie  wieloprocesorowym 

lub wektorowym . W  pierwszej części omówiono klasyczne m etody iteracyjne: Jacobiego 

(słaba zbieżność m etody, duże możliwości zrównoleglenia) i G aussa-Seidela (lepsza zbież­

ność, zrównoleglenie praktycznie niemożliwe). W  kolejnej części przedstaw iono m etody 

projekcyjne, w ykorzystujące podprzestrzenie Krylowa. D la algorytm ów  wywodzących się 

z m etody gradientów  sprzężonych wykazano duże możliwości w ektoryzacji (kluczowe ope­

racje obliczeniowe to  d z ia łan ia  na wektorach) oraz dodatkowo, w m etodzie gradientów  

dwusprzężonych - zrów noleglenia na dwa procesory. W  dalszej części przeglądu omówiono 

m etody dekom pozycyjne, polegające na podziale długiego łańcucha M arkowa n a  podlań- 

euchy w celu ich oddzielnego rozw iązania a następnie scalenia wyników, co prowadzi do 

uzyskania rozw iązania d la  pierw otnego łańcucha. W yróżniono trzy  aspekty  możliwego 

zrównoleglenia: w algory tm ach  przeszukiw ania grafów, w dekom pozycji uk ładu  równań 

opisujących długi łańcuch oraz w trakcie rozwiązywania poszczególnych (po dekom pozy­

cji) mniejszych układów  równań. W  końcowej części artyku łu  zaw arto  dodatkow e uwagi 

na tem at zrów noleglania omówionych m etod oraz wskazano możliwości dalszych badań.
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