
STUDIA INFORM ATICA
Volume 24

_________ 2003
Number 4 (56)

Jarosław FRANCIK, KATARZYNA TRYBICKA-FRANCIK
Politechnika Śląska, Instytut Informatyki

A FRAMEWORK FOR PROGRAM CONTROL OF ANIMATION
OF HUMAN AND ANIMAL CHARACTERS*

Sum m ary. Our objective is to add a significant level o f automation to the process of
animating human and animal avatars using commercially available animation packages. One
of possible solutions is controlling the animation in an external unit. The proposed frame
work, called K3NE+ supports importing a 3D model data from an animation package,
a bone-based animation control and, finally, exporting the generated motion definitions
back to a 3D package. Two applications have been also presented.

Stowa kluczowe: animation, 3D model, avatar, collision detection

ARCHITEKTURA DLA POTRZEB AUTOMATYCZNEGO STEROWANIA
ANIMACJĄ POSTACI LUDZKICH I ZWIERZĘCYCH

Streszczenie. Naszym celem jest wprowadzenie znaczącego poziomu automatyzacji do
procesu animacji ludzi i zwierząt za pomocą dostępnych na rynku pakietów 3D. Jednym
z możliwych rozwiązali jest sterowanie animacją w zewnętrznym module. Zaproponowana
architektura, KINE+, wspomaga pozyskiwanie danych o modelu 3D z pakietu 3D, stero
wanie animacją oparte na systemie kości oraz eksport utworzonych opisów ruchu z powro
tem do pakietu 3D. Przedstawiono też dwa zastosowania stworzonych narzędzi.

S tow a kluczowe: animacja, model 3D, awatar, wykrywanie kolizji

1. Introduction

The animation o f three-dimensional characters (avatars) became a relevant issue in the in

dustry for film, video, games and special effects for post production. The commercial anima

tion packages such as 3D StudioM ax™ or Maya™ are widely used by the professionals [1-3].

Research supported by Silesian Univ. o f Technology Project no. BW-486/RAu-2/2002

56 J. Francik, K. Trybicka-Francik

creator. .
:.v ■ '

"tW©!
three-dimensional animation package

KINE++ Framework

Programmatic
Animation

Control Unit
'.Instant

Rende re r U n it

They contain three principal components (fig. 1):

• the modeller,

• the animation creator,

• the renderer.

3D m odeller animation

geometrical data motion data

Fig. 1. Principal com ponents o f 3D packages and the proposed
external processing architecture

Rys. 1. Główne komponenty pakietu 3D i proponowana architektura
zewnętrznego przetwarzania

The modeller enables the user to define 3D models o f objects or characters. It is done by

determining their geometric structure and surface characteristics. The animation creator is then

used to define the animation key frames by placing the modelled objects and characters within

a 3D scene. Finally, after defining the lighting and virtual camera positions, the renderer gen

erates the animated sequence between given key frames.

So far, it is only the renderer that provides true automation of the process. Both modeller

and animation creator facilitate, but do not automate the user’s tasks. Although recent ver

sions of the animation packages have incorporated limited environment awareness and some

collision avoidance, there is still plenty o f scope for improvements, including environment-

aware motion planning, high-level interaction and other AI-based issues.

The animation o f three-dimensional characters is even more challenging than animation of

any other objects [4, 5], The aim o f the presented works is to provide a significant level o f

additional automation to the process o f animating human and animal avatars. This will be ob

tained by providing an additional, programmatic step of processing done outside the 3D pack

age, in an external animation control unit (fig. 1). This paper presents an architecture that

A framework for program control o f animation of human and animal characters 57

makes it possible to acquire geometrical data on a 3D model created with a 3D package, pro

duce and control animation on that model and, finally, export the animation - in form of a mo

tion definition file - back to the 3D package. There is no support for 3D modelling or final

rendering: these two phases should be done in the 3D package, however a Tenderer for instant

visualization may be added, at least for a quick preview of animation results (actually a limited

version of such unit is already implemented).

2. Background

Animation o f avatars attracted much attention [4-5]. Any effort in the area must have a

deep background in bio mechanics [6]. O ther important issues embrace forward and inverse

kinematics [7] and collision detection and avoidance techniques [8], Nevertheless many prob

lems remain still unsolved. An interaction between two or more characters or between a char

acter and any external objects seems to be of particular interest.

If any kind of a procedural animation control is taken into account (like [9]), an efficient

model of the avatar’s (bio)mechanics is essential. Such models are usually based on use of

skeletons (fig. 2, first on the left). Skeleton is the simplest abstraction of a 3D character: it’s a

hierarchical system o f smaller parts called bones (tab. 1). Each bone can be treated as a seg

ment in 3D space, defined with a pair- o f points (often called joints). Position and orientation of

a bone is defined relatively to its “superbone” that is above it in the hierarchy, by a set o f Euler

angles, transformation matrix or a quaternion. So, to compute the absolute position and loca

tion of a given bone, it is necessary to apply transformations recursively across the whole hier

archy to the root (which should be defined in absolute values). Transformation of any bone

affects all its derived bones, ie. a rotation o f an upper arm affects the whole arm. For a given

bone, its translation (relative position) is an inherent feature o f the model, while its rotation

(relative orientation) may be freely changed to model bending the joints.

The next step after the skeleton is a hierarchy of oriented bounding boxes (OBB, fig. 2,

second on the left). Each bone is bound in a OBB, which is the smallest box that entirely con

tains a body part connected with this bone. O BB’s are usually used to detect collisions [10]

(between avatar’s different parts or between avatar and other objects). Mapping each bone to

a single BB is enough for many applications, however when more precision is necessary,

OBB’s may be divided into a hierarchy of smaller boxes to better conform the shape [10].

Its final shape an avatar obtains by the process o f skinning: fitting the external surface

(skin) to the internal skeleton. Sometimes an intermediary stage is also used. In the Character

Studio™ package [11] (a plug-in product for the 3D StudioM ax™ [12]), such intermediary

3D object built on top of a system o f bones is called biped (fig. 2, second on the right). Its

58 J. Francik, K. Trybicka-Francik

shape is closer to the final avatar’s shape, it’s more comfortable to animate than the skeleton,

and it’s a good starting point for the final skinning. In either case, fitting a final skin to an ex

isting skeleton or biped is relatively easy (fig. 2, first on the right). Once the animation is de

signed on the skeleton/biped level, it can be applied for the whole skinned avatar automati

cally.

17i

¿/IP

I j] j
L /Jy*

à !

f \ \

Ï7fcè
Fig. 2. Skeleton (w/o fingers or toes), bounding boxes, biped and

skinned avatar- for a sample character
Rys. 2. Szkielet (bez palców), zestaw bounding boxes, biped (manekin)

oraz aw atar ze skórą dla przykładowej postaci ludzkiej

Table 1
Bone hierarchy of an avatar of fig. 2

pelvis
— spineO
— left thigh

I— left calf
L- left foot

left toeO (3 links)t left toe4 (3 links)
— right thigh

right calf
right foot

right toeO (3 links)
h!
L— left toe4 (3 links)

spinel
'— spine2

L- spine3
1— neck

— head
— left clavicle

left upper arm
L— left forearm

left hand
left fingerO (3 links)t left finger4 (3 links)

L- right clavicle
right upper arm

right forearm
right hand

right fingerO (3 links)t right finger4 (3 links)

A framework for program control o f animation of human and animal characters 59

3. The KINE+ framework

KINE+, a framework presented here, implements a full skeleton o f a human or animal ava

tar. The aim was to make programmatic control o f the avatar animation available to C++ pro

grammers (other languages are also supported). A capability o f importing and exporting 3D

models from and to a professional 3D package is essential. No skinning is implemented: as we

stated in previous section, the animation is usually designed on the level o f a skeleton or a bi

ped. However a relatively easy real-time instant rendered is available just for a quick preview.

3.1. Im p o rtin g the G eom etry

Currently the framework supports data imported from the Discreet Character Studio™

[11]. This product is a plug-in for worldwide standard 3D package, 3D StudioM ax™ [12]. It

extends 3D StudioM ax™ functionality with bipeds - fully featured, skeleton based human and

animal avatars (fig. 2).

The KINE+ bone hierarchy is the same as the one used by Character Studio™ bipeds.

Main bones are shown in tab. 1; there are several more optionally supported bones, for exam

ple additional segments o f the head and the neck, the tail (up to 5 links) or two ponytails

(a “tail” made o f hair). All this makes it possible to create different biped figures just by adjust

ing the number and the length o f bones (fig. 3). All the adjustable parameters are simply trans

ferred to KINE+ in form of a native-format binary file, together with OBB data.

3.2. C ontro lling the A nim ation

The geometry file may be loaded at runtime or statically linked to the code. Once the ge

ometry is loaded, the KINE+ framework is ready to work. From the point o f view o f the user

it is just a library available in a form o f C++ LIB/H files or as an in-process COM + com po

nent. This makes KINE+ available for almost every programming environment in Windows.

KINE+ supports following animation related features:

• Geometrical set-up: by importing the geometry - as described in the previous subsection -

or defining it directly by setting various skeleton parameters.

• Forward kinematics (FK). Motion may be specified by defining relative rotations of the

chosen bones (along with the time stamp). Rotations may be given in a form o f Euler an

gles, rotation matrices or quaternions. FK data are used to set-up key frames; interpolating

of the frames in-between is done automatically when necessary.

• Inverse kinematics (IK). It is an alternative method of key frame set-up: there are

rather spatial co-ordinates o f joints specified instead of relative rotations. All the rota-

60 J- Francik, K. Trybicka-Francik

tion matrices are then retrieved automatically by KINE+. This approach is more com

fortable in many applications. Currently the IK algorithm applied is relatively poor, it

sometimes leads to unfortunate motions. Soon there will be available a much more so

phisticated approach [7],

• Position reading. In any moment of animation it is possible to get the spatial co

ordinates and/or transformation matrix (Euler angles, quaternion) o f any bone.

Fig. 3. Various characters created on the same skeleton schema
(standard figures distributed with Character Studio™)

Rys. 3. Różne postacie utworzone na podstawie tego samego schematu
szkieletu (standardowe sylwetki pakietu Character Studio™)

• Collision detection and avoiding. Currently collision detection is available for key

frames only. It is sufficient for most applications; if greater precision is needed, addi

tional key frames may be additionally added. Collision detection for every frame is not

supported; in any case it would be very time-consuming. Currently the framework al

lows deciding if there is a collision or not; one of the future w ork is to make it possible

to find out the closest not colliding state. Implementation of this feature is based on

oriented bounding box (OBB) algorithm [10], that gives quite precise results. Current

version supports only one OBB per bone. O B B ’s may be imported from the 3D pack

age or defined manually.

• Key frame management: individual key frames may be browsed, modified and removed.

• Exporting the animation: this issue will be described in the next subsection.

A framework for program control o f animation o f human and animal characters 61

3.3. E xporting the M otion File

Once the animation is generated it may be stored in a file in a format readable for a 3D

package. KINE+ supports two formats:

• BVH: BioVision M otion Capture File format [11, 13]. It is one of the most popular

MoCap (M otion Capture) file formats, imported by most 3D packages including Char

acter Studio™ and Maya™ . It contains a definition o f a bone hierarchy and a set of

spatial co-ordinates. Unfortunately the support given by the Character Studio™ is lim

ited: it does not interpret data concerning individual fingers. As precise hand configura

tion is crucial for one of the applications for which KINE+ was originally created, an

alternative file export should have been implemented.

• MS: Max Script files [12], It is a 3D StudioM ax™ native script language file. It is not

usable in any other 3D package; however this file format is supported because Charac

ter Studio™ does not read finger configuration from BVH files.

3.4. In s ta n t R e n d ere r U nit

A small, real-time - “instant” - rendering is supported primarily for quick preview pur

poses [14]. Creating a full real-time 3D engine was not our objective. Currently a simple solu

tion has been created for the Thetos system (see section 4.1, fig. 4). It uses OGL but has many

limitations: among others it does not render the legs. A more advanced unit is currently devel

oped.

4. Applications

4.1. T he T hetos System : T ran sla tin g Polish W ritten in to Sign L anguage

The Thetos system (formerly: TGT-1) [15, 16] translates sentences written in Polish into Polish

sign language. The resultant utterance is presented in form of a short, animated sequence. A simple,

OGL-based rendering unit has been purposely created for the project; however the quality of the

character presenting the sentences is not high (fig. 4, on the left). To obtain professionally looking

animations it was necessary to export motion files to some 3D package, in this case 3D Studio-

Max™ with Character Studio™. As mentioned in section 3.3, the widely used BVH file format is

not fully supported by this package: hand configuration cannot be read. As it is crucial in case of

sign language visualization, an alternative Max Script file has been applied to solve the problem.

The resultant stills, made of animations generated by the Thetos system and rendered in 3D Stu

dioMax™ (using available skins), are shown in fig. 4.

62 J. Francik, K. Trybicka-Francik

The animation in Thetos is generated accordingly to the description of consecutive signs

made in a special text notation. This notation briefly specifies hand and finger position and

orientation. This makes both FK and IK necessary. As the notation has been originally de

signed to be used by humans, in many cases it is inaccurate. Solving these inherent contradic

tions requires, among others, some collision detection and avoidance.

Fig. 4. Polish sign language: stills created with the Thetos system. On the left: im
age from an instant renderer unit. In the middle and on the right: the same
sign rendered using two standard Character Studio™ skins.

Rys. 4. Polski język migowy: kadry utworzone za pom ocą systemu Thetos. Po le
wej: obraz natychmiastowej wizualizacji. W środku i po prawej: ten sam
znak uwidoczniony za pom ocą standardowych skór Character Studio™

4.2. T he A uto-A nim ate P ro ject: C rea ting Actions w ith M achine L earn ing

The Auto-Animate project, conducted in co-operation at Silesian University of technology

and University of Kingston (UK), is a part o f a wider FreeWill project [17]. Its general objec

tive is to add a significant level o f automation to the process o f animating human and animal

avatars, especially crow d scenes. A cognitive architecture has been proposed to control anima

tion.

In the Auto-Animate project reinforcement learning algorithm has been applied to auto

matically generate actions for an animated avatar. It is a typical process of trials and errors. A

method may be well illustrated on example of action of walking through a door. Automatic

machine learning of this action requires as many as 25 million iterations; each one consists of

several arm and hand rotations and strong collision detection. Number o f iterations may be

decreased if IK is used.

A framework for program control o f animation of human and animal characters 63

Earlier versions of the system were implemented using 3D StudioM ax™ internal scripting,

plug-in subsystem as well as COM -based communication. In all these cases much overhead

could be observed.

The resultant action is stored in form o f a BVH M otion Capture file and may be easily

rendered in any 3D package (fig. 5).

Fig. 5. Avatar going out through the door. Image created with Auto-Animate sys
tem. Rendered using a standard Character Studio™ skin

Rys. 5. Avatar wychodzący przez drzwi. Obraz utworzony w systemie Auto-Ani-
mate, uwidoczniony za pom ocą standardowej skóry Character Studio™

5. Conclusion

The presented framework, KINE+, has been created to satisfy requirements o f two pro

jects realized in the Silesian University o f Technology: the Thetos system [15, 16] and the

Auto-Animate project [17]. The common point for both projects is that animation is generated

and controlled programmatically, out of a 3D package, but it depends on models created in the

package and should be exported back to the package for final rendering. The results gained are

very encouraging. It seems that the KINE+ framework may be applied in any system requiring

intelligent control animation.

64 J. Francik, K. Trybicka-Francik

R EFER EN C ES

1. M aestri G.: Digital Character Animation 2. New Riders, Indianapolis 1999 (Polish edi

tion by Helion, Gliwice 2000).

2. Giambruno M.: 3D Graphics & Animation. New Riders, Indianapolis 2002.

3. Ratner P.: M astering 3D Animation. Allworth Press, New York 2000.

4. Badler N., Bindiganavale R., Bourne J., Allbeck J., Shi J., Palmer M.: Real time virtual

humans. International Conference on Digital Media Futures. Bradford, UK, April 1999.

5. Noma T., Zhao L., Badler N.: Design of a virtual human presenter. IEEE Computer

Graphics and Applications 20(4), July/August 2000, pp. 79-85.

6. Raibert M.: Human Animation and Biomechanics. Proc. o f 1st W orkshop on Simulation

and Interaction in Virtual Environments, Univ. o f Iowa, Iowa City, 1995: 215-225.

7. Tolani D., Goswami A., Badler N.: Real-time inverse kinematics techniques for

anthropomorphic limbs. Graphical Models 62 (5), Sept. 2000, pp. 353-388.

8. Bindiganavale R., Granieri J., Wei S., Zhao X., Badler N.: Posture interpolation with

collision avoidance. Com puter Animation '94, Geneva, Switz., pp. 13-20, 1994.

9. Boulic R.: Procedural movement for articulated figure animation. Com puter Graphics,

Vol. 18, 1994, 453-461.

10. Gottschalk S., Lin M.C., Manocha D.: OBB-Tree: a hierarchical structure for rapid in

terference detection. Proc. o f ACM SIGGRAPH, 1996.

11. Character Studio™ Reference and Tutorials. From Discreet. Autodesk, Inc. 2000.

12. 3D StudioMax Release 3 Reference. Vol. I and II. Autodesk, Inc. 1999.

13. BVH File Format Specification. Biovision Corp. http://www.biovision.com/bvh.html.

14. Lever N.: Real-time 3D Character Animation with Visual C++. Focal Press, Oxford 2002.

15. Suszczanska N., Szmal P., Francik J.: Translating Polish Texts into Sign Language in

the TGT System. Proc. o f 1ASTED AI 2002, Innsbruck, Austria 2002, pp. 282-287.

16. Francik J., Fabian P.: Animating Sign Language in the Real Time. Proc. o f IASTED AI

2002, Innsbruck, Austria 2002, pp. 276-281.

17. Amiguet-Vercher J., Szarowicz A., Forte P.: Synchronized Multi-agent Simulations for

Automated Crowd Scene Simulation. W orkshop on Spatial and Tem poral Reasoning

with Agents Focus, International Joint Conf on Artificial Intelligence, Seattle, 2001.

Recenzent: Prof. dr hab. inz. Konrad Wojciechowski

Wpłynęło do Redakcji 30 stycznia 2003 r.

http://www.biovision.com/bvh.html

A framework for program control o f animation of human and animal characters 65

Omówienie

Animacja kom puterowa obejmuje fazę modelowania obiektów trójwymiarowych, plano

wania ich ruchu i wreszcie końcowej wizualizacji (renderingu). Najczęściej wszystkie trzy fazy

wykonuje się za pom ocą specjalizowanych pakietów 3d (np. 3D StudioM ax™ czy Maya'™).

Jednak gdy zachodzi potrzeba zaawansowanego, algorytmicznego sterowania ruchem obiek

tów w czasie rzeczywistym, faza planowania ruchu staje się fazą sterowania ruchem i często

jest realizowana przez dedykowane moduły oprogramowania. Zaproponowana architektura,

KINE+, wspomaga pozyskiwanie danych o modelu 3D z pakietu 3D, sterowanie animacją oparte

na systemie kości oraz eksport utworzonych opisów ruchu z powrotem do pakietu 3D (rys. 1).

K3NE+ wykorzystuje tę samą hierarchię kości, co pakiet Charakter Studio™ (rys. 2 i 3, tab.

1), co sprawia, że import danych geometrycznych z tego pakietu jest szczególnie prosty. Samo

sterowanie animacją może się odbywać w oparciu o kinematykę prostą lub odwrotną. O pro

gramowanie zapewnia też wykrywanie kolizji. W ygenerowane animacje m ogą być eksporto

wane do pakietów 3D przy wykorzystaniu dwóch formatów plików.

Architektura KINE+ pow stała jako odpowiedź na zapotrzebowanie stworzone przez dwa

projekty realizowane na Politechnice Śląskiej. Projekt Thetos (rys. 4) to automatyczny tłu

macz języka polskiego na polski język migowy. Zastosowanie KINE+ pozwoliło na stworze

nie realistycznych animacji. Realizowany we współpracy z Uniwersytetem w Kingston projekt

Auto-Animate obejmuje automatyczne generowanie akcji dla animowanego awatara z wyko

rzystaniem uczenia maszynowego. W tym przypadku zastosowanie KINE+ pozwoliło znaczą

co przyspieszyć czas obliczeń.

Adresy

Jarosław FRANCIK: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16,
44-101 Gliwice, Polska, francik@ ps.edu.pl.

Katarzyna TRYBICKA-FRANCIK: Politechnika Śląska, Instytut Informatyki,
ul. Akademicka 16, 44-101 Gliwice, Polska, kasiat@zeus.polsl.gliwice.p l .

mailto:francik@ps.edu.pl
mailto:kasiat@zeus.polsl.gliwice.pl

