
STUDIA INFORM ATICA
Volume 24

_________ 2003
Num ber 4 (56)

Stanisław ZAW IŚLAK, Grzegorz FREJ
University of Bielsko-Biała, Faculty o f Mechanical Engineering and Com puter Science

AN INFLUENCE OF PARAMETERS
OF THE EVOLUTIONARY ALGORITHM
APPLIED FOR THE GRAPH K-PARTITIONING PROBLEM

Summary. In the paper, the evolutionary algorithm for k-partitioning o f graph is
presented. Some new robust evolutionary operations are introduced replacing
traditional ones. The analysis o f influence of param eters on the algorithm
performance is presented.

Keywords: graph k-partitioning, special evolutionary operations

WPŁYW PARAMETRÓW
NA DZIAŁANIE ALGORYTM U EWOLUCYJNEGO
ZASTOSOWANEGO DO PROBLEMU K-PODZIAŁU GRAFU

Streszczenie. W pracy przedstawiono zastosowanie algorytmu ewolucyjnego do
problemu podziału grafu. Zastosowano nowe, skutecznie działające operacje
ewolucyjne zam iast tradycyjnych. Przedstawiono analizę wpływu param etrów na
działanie zaproponowanego algorytmu.

Słowa kluczowe: k-podział grafu, specjalizowane operatory ewolucyjne

1. Introduction

The problem o f graph partitioning belongs to the classical graph theory problems, but it is

not so widely known and considered as others, like e.g. travelling salesman, short path or

coloring problems [2], The problem o f k-partitioning can be formulated as follows: (a) Let us

consider the graph G(V,E), where V - set o f vertices (|V| = n), E - set o f edges (|E| = m); the

graph is simple, finite, w ithout multiedges and loops, (b) Divide the vertex set into k mutually

disjoint subsets whose sum gives the whole set V, (c) Create the subgraphs generated by the

166 S. Zawislak, G. Frej

distinguished subsets o f V, (d) Consider all possible proper divisions o f V into subsets of V

(i.e. neglecting an em pty subset); (e) Find the partitioning for which number o f edges

connecting the vertices which belong to the separate subsets is minimal, taking into account

the divisions mentioned in the points b, c and d.
The obtained elem ents o f the k-partitioning are called partitions, sections, parts or

com ponents in some references. The problem is called sometimes k-cut and in the case k = 2

bisection.
Additional conditions, which can be added to the above formulated problem, are e.g.

(c l) the minimum number of vertices in a particular subset o f set V has to be greater than the

lower bound or (c2) the differences o f cardinalities o f the subsets must not to exceed a given

e value (so called balanced partitioning). I f we consider the case when n is a multiple of k,

then we can consider that the obtained com ponents are equinumerous, i.e. the special

formulation o f the (c2) condition for e = 0. The problem can be also generalized by

considering, among others, weighted graphs, called in some references networks. Taking into

account all possible formulations o f the graph partitioning problem, it is considered in some

papers as multiobjective one.
It should be underlined that graph partitioning problem solutions have been successfully

applied not only in VLSI circuit design (what is widely known) but also in the following

practical tasks, like e.g. decom position o f an optim ization problem [13], decomposition of a

FEM grid [10] and pattern recognition procedure by means o f segmentation [11].

Several algorithms to solve this NP-hard problem [3,4] are known. One of the approaches

to graph partitioning problem which has been proposed is an application o f evolutionary

algorithms [1,4,5,6,8,9]. The earliest paper from the aforementioned list o f references was

published by von Laszewski who focused an attention on the special so called structural

operators. The detailed study o f specialized operators for this task was presented in the paper

[l].This survey contains 16 operators and their descriptions. The authors considered slightly

different problem of k-partitioning called by them ‘generalized graph partitioning’.

The aim of this work is to study the influence of the evolutionary algorithm parameters

(i.e. population size, probabilities o f operators etc.) on its performance. This problem was

mentioned as especially im portant in paper [1] but not presented due to the scope of the

works assumed by the authors. In this paper, some operators proposed in references [1,5] are

adopted and the detailed analysis o f their importance is discussed. The analyses were made

by means o f own program written in the C++ language for the exemplary graph presented in

the Appendix. The sim ilar task and analyses for different graphs have been presented in the

papers [8,9], where the outcomes relevant to the presented underneath were obtained but

some other evolutionary operations were used.

An influence of parameters on the evolutionary algorithm applied for 167

2. Evolutionary algorithms

The term evolutionary algorithms (EA) has been introduced to distinguish them from

genetic ones. The main difference is that the knowledge about the problem is represented in

particular way in the second type of them. The knowledge em bedded in the task is connected

with encoding rules, special operators, special m ethod of the fitness function reckoning [12]

and possible repair routines. In our case (i.e. k-partitioning), the differences consist in:

- Different encoding rules i.e. digits 0 and 1 are replaced by the numbers of the set of

integer numbers i.e. 7,2, ..., k for encoding the chromosomes. Digits 0,1 are characteristic for

binary representation of decimal numbers and the length of the chromosom e depends on the

arbitrary researcher decision, e.g. taking into account the precision o f outcomes. But our code

represents the problem itself i.e. i on the position j means that j-vertex belongs to i-subset of

V. Therefore the length o f the chrom osom e code depends on the num ber of graph vertices |V|

(examples - see Chapter 4). The more detailed considerations concerning the m ethodology of

the graph and chrom osom e representations have been presented in paper [12].

- Application o f the special type evolutionary operators, i.e. structural mutation and

crossover as well as so called operator o f local optim ization OLO.

- Repair procedures applied; aiming for avoidance of procedure degeneration, i.e.

obtaining the chrom osom es which do not represent the solution - in our case chromosom es in

which some numbers from the set [1,2, ... , k) are not present. This situation can be

straightforward interpreted - the partitioning consists o f less than k com ponents what can be

inadmissible due to the researcher/program user arbitrary decision.

- Special fitness function reckoned not upon the explicit formula but based upon some

search through the data, i.e. incidence matrix or list, depending on the graph encoding

algebraic structure. It depends on the language and the additional conditions [12],

- Other activities or m ethods like e.g. random immigrant which application should cause

avoidance of getting stuck by the algorithm in a local minimum etc.

It is worth to add that evolutionary algorithms have been recently used to some other

graph theoretical problems - like graph coloring [2] and TSP (travelling salesman problem).

The essence of application of EA consists in special methods of problem encoding and usage

of specialized operators tailored to the particular problem. In case of TSP, the following ideas

of chromosomes have been considered: adjacency, order and path representations.

It was assumed in the paper that only the additional condition (c l) is taken into account.

The condition (c2) is neglected in general, but some evolutionary operations are consistent

with it, e.g. structural crossover preserving some com plete partitions copied from one

chromosome to another. Two possible formulations o f (c l) can be considered: (f l) it is

forbidden to obtain the any offspring non-consistent with (c l) , o r (f2) it is forbidden to obtain

168 S. Zawislak, G. Frej

the whole population non-consistent with (c l) . This second case is incorporated by

introducing the elite to a population which fulfills this condition. E lem ents o f this elite pass

the proper solutions through the consecutive generations o f the evolutionary algorithm.

3. Some specific problems - repair procedures

During execution o f an evolutionary algorithm, as the result o f usage o f different

evolutionary operators, the improper chromosomes can be obtained, i.e. representing the

partition into less than k com ponents or unbalanced partitions if such an assum ption is added

e.g. (c l) and/or (c2). Aiming for the situation in which such chrom osom es are excluded or do

not spread alongside the population in excessive quantity, a special repair algorithm should

be introduced, which controls whether the chromosomes produced by particular operations

are admissible.

The repair algorithm, for the proposed evolutionary algorithm, can w ork in the following

way:

(a) After finishing o f activities o f all evolutionary operators applied, it is checked if all the

chromosomes are acceptable, i.e. represent the partitioning into proper components.

(b) If a prohibited chrom osom e has been found then it is replaced by the copy of a randomly

chosen member o f the population.

However the follow ing condition should be satisfied: proper perform ance o f the repair

procedure needs an ever existence o f at least one proper chromosom e in the population,

otherwise there is a threat that the algorithm will be unable to do this.

The solutions to the above thread -proposed in references - are: (sa) an application of

special controlled initialization of the starting population, which consists only o f acceptable

chromosomes, (Sb) assurance that the elite size is nonzero, what guarantees survival of at least

one proper chromosome from the previous base population. As was said above the second

method was adopted.

4. Evolutionary operators

Based upon the above considerations and some other references o f the one o f the authors

[8, 9, 12] it can be stated that the proper representation o f the task as well as the method of

introductory or initial population were chosen, i.e. (c2) is fulfilled. The next step in building

the evolutionary algorithm is usually a careful design o f evolutionary operators, which are

relevant to the problem. In particular, the algorithms are able to acquire the knowledge

An influence of param eters on the evolutionary algorithm applied for 169

enclosed in chromosom es. It means that beside the fitness function reckoning, other control

activities can be done, e.g. comparison of cardinalities o f com ponents. The so called

intelligent operators were applied: structural crossover, structural mutation and the special

operator of local optim ization OLO [1, 8, 9]. In addition, the operator o f bit type mutation

(one-point mutation) was incorporated, which has been recognized as giving the effect of

wider exploration.

4.1. S tru c tu ra l crossover

The operator o f crossover is very important for the proper perform ance o f every

evolutionary algorithm. I f the crossover operator destroys too much inform ation obtained

previously (i.e. in past generations) by the algorithm then it can turn into the random search

algorithm.

In our case, to avoid the loss o f too much information, we use the operator o f structural

crossover. This operator copies one full com ponent o f partitioning from the parent solution

(chromosome) to the offspring. Thus, it is different from the ordinary one-point-cut crossover

- which destroys the information about graph components -dividing simply a chromosome

into two parts.

An analysis o f results o f structural crossover is presented based upon the following

example. It simultaneously shows an advantage o f it over one-point crossover. Let us assume

that for crossover two following parents were chosen - series o f 12 elem ents (what means

that a graph consisted o f 12 vertices is divided into 3 parts): p i= (1 1 2 3 1 2 1 3 2 2 3 3)

and p2 = (1 2 1 3 3 2 2 1 3 3 1 2). The divisions encoded by pi and p 2 are as follows: Vi =

{V|,V2,V5 ,V7}, V 2 = {v3 ,Vc,v9 ,vio}, v 3 = {v4 ,vg,V]i,vj2 } and Wi = {vi,v3 ,v8 , vu) , W 2 =

{v2,V6,v7,vi2}, W 3 = {v4 ,V5 ,V9 ,V]o), respectively. As the first step, a random substring from

the partition is chosen (e. g. denoted by 3) and it is copied from pi to p2:

Pi = (1 1 2 3 1 2 1 3 2 2 3 3)

i vL 4' 4*
p2 = (1 2 1 3 3 2 2 1 3 3 1 2)

as the result of the above step, the following chromosom e is obtained:

p ’2 = (1 2 1 3 3 2 2 3 3 3 3 3).

As can be seen from the above example, the copying procedure dam ages the dem and of

e<lual sizes o f the copied part o f partitioning. Third com ponent has 7 elements in the

temporary offspring because there were vertices belonging to the third com ponent in the

chromosome p2 different than these in the first one. Repair procedures could be applied. It

can be seen that in the initial p2, there were elements representing part 3 and they have not

been the elements o f copied part i.e. elements 5, 9 and 10 (underlined genes). These elements

are erased (the asterisks symbolize this action):

170 S. Zavvislak, G. Frej

p ” 2 = (1 2 1 3 * 2 2 3 * * 3 3) .
In the next step, these places are randomly filled by numbers representing other parts,

which were rewritten during copying procedure (underlined genes underneath):

p2 = (1 2 1 3 3 2 2 1 3 3 1 2).
Finally, the obtained chrom osom e (child) - can be as follows:

p ’” 2 = (1 2 1 3 1 2 2 3 2 1 3 3).
In the above described example, one chromosome was received, in the evolutionary

algorithm - from two parents two children (offsprings) should be obtained, the second

chromosome is created according to the same way. The division (partitioning) encoded by

p ’ ” 2 is as follows: Ui = {v^vs.vs.vio}, U 2 = {v2 ,V7 ,v8 ,V9 }, U 3 = {v4 ,v8 ,vn ,v i2}. It can be seen

that V 3 = U3 i.e. the com ponent 3 was preserved.

Using the standard crossover would cause loss of information about parts in a particular

partitioning. Introducing the structural crossover operator has the following adventages:

(i) an exchange of genes is not completely random, it preserves one partition (in some

references, a jargon phrase “intelligent operator” is used), (ii) additionally it can assure equal

or close numbers o f vertices in every part (then additionally, if special repair procedure has to

be inserted), (iii) it increases the convergence to the solution o f the algorithm.

4.2. One-point mutation

The ordinary operator o f bit type mutation (one-point mutation) turns one gene in a

chromosome into particular random number from the set {1, 2, . .., k}. Unfortunately it

changes the number o f graph vertices in singled out components (first and third component in

the example, underneath).

For a chromosome chosen for mutation (in the case o f 3-partitioning):

p = (1 2 1 3 3 2 2 1 3 3 1 2),
one number from the interval [1 , ..., n] is randomly generated, where n is the length of the

chromosome (n = 12). Let it be 11, than the gene on position 11 (i.e. 1) is randomly turn into

the number from the set {1,2,3} e.g. 3. It means that the third com ponent has five elements

and the first com ponent has three elements after this operation. Like it has been said

previously the elite in population is established to avoid the case when the chromosomes

from the obtained population represent only the h-partitioning, where h < k. In our case it

could happen if in next operations would cause the total removal ones from the chromosome;

e.g. the same chromosom e should be consecutively drawn and all ones would be turned into 2

or 3. It is probably very rare case but possible. The elite preserves, assumed in advance,

number o f proper chromosom es representing the k-partitioning.

An influence of parameters on the evolutionary algorithm applied for 171

4.3. Structural mutation

Additionally, other - so called - operator o f structural mutation was proposed. It replaces

mutually two genes (1 and 3 in the example underneath). For a chromosom e chosen for

mutation:

p = (1 2 1 3 3 2 2 1 3 3 1 2),
two numbers from the interval [1, ..., n] are randomly generated. In the example, these

numbers are 4 and 8 which show the positions o f genes for swapping (underlined genes,

underneath):

p = (1 2 1 3 3 2 2 1 3 3 1 2),

in the next step, if the values chosen are different that the genes are exchanged (i.e. 1 and 3

in the example). Otherwise - the random choice of positions is repeated. Finally the child-

chromosome (offspring) can be written as:

p = (1 2 1 1 3 2 2 3 3 3 1 2).

The interpretation o f this operation is as follows: at the beginning we have the

partitioning: V) = {vi,v3 ,vg,v n }, V2 = {v2 ,v6 ,v7 ,v12} and V3 = {v4 ,V5 ,v9 ,vio}, after the

operation: Vi = {V|,v3 ,V4 ,vu }, V2 = {v2 ,v6 ,v7 ,vi2} and V3 = {v4 ,V8 ,v9 ,vI0}. The mutual

exchange of genes causes that the cardinalities o f the sebsets Vj (i = 1 , 2 , . . . , k) remains the
same.

4.4. Operator o f local optim ization

The last evolutionary operator used in present w ork is an one-argument operator o f local

optimization (local search) OLO. This operator is essentially different in com parison to

others. It acts on one chrom osom e but more com plicated calculations are perform ed in

comparison to all above described operators.

The OLO does not act in a blind search way. Usually evolutionary operators do modify

chromosomes and they do not ‘care’ if the value o f fitness function after their activity is

lower or higher, but operator OLO, in contrary, just does it. During the execution of

operations on chrom osom es (see procedure described underneath), the fitness param eter is

checked simultaneously. If the fitness param eter decreases then the modifications are

cancelled. Therefore this operator does not turn the chromosom es into worse ones. The idea

of activities performed by this operator can be com pare to solutions applied in the traditional

algorithms of optimization (see chapter 5.3 and 9.4 in [7]). The traditional algorithm, which

takes into account consecutive points tending to the optimal one (obtained in consecutive

iterations), checks the surroundings o f the point looking for the steepest inclination. Then the
next point is chosen in the established direction.

172 S. Zawislak, G. Frej

The operator o f local optim ization modifies each gene in a chrom osom e in the following

way:

- value o f the gene is randomly changed one by one into a number from the interval [1 ,

p a r tj iu tn], where p a r tj iu m = k is the number o f com ponents into which the

graph is divided,

- after every change, the value o f the fitness function is calculated,

- if the fitness is better, then the next gene in the chromosome is analyzed, if the

worsening takes place - the previous value o f the gene is restored.

It should be underlined that, the speed o f this operator activities depends in general on the

length of chrom osom e n, number o f assumed graph com ponents part_num as well as the

population size pop_size. Therefore time o f execution of the operator is proportional to n x

parl_num x pop_size and in case o f greater values can substantially slow down the whole

evolutionary algorithm.

All the above operators are active when the previous draw gives the result less then the

probability param eter established by the user. It worth to underline that in the case of the

classical genetic algorithms low values o f mutation probabilities are suggested and for graph

partitioning problem it is not the case.

5. Numerical analysis of influence of algorithm parameters

Values o f different parameters used by the evolutionary algorithm can be set by the

researcher - com puter program user. Furtherm ore in more advanced evolutionary software

environment, they can be controlled by the special supervision procedures whose aim is to

adjust all the param eters properly. There are some attem pts to prepare a self-adapting

evolutionary software.

Because the self-adapting evolutionary programs are extremely com plicated and not tgo

easy to write, we decided to make an analysis o f the effect o f parameters changes in ranges

set by ourselves on the algorithm effectiveness. The result will be the set o f recommendations

for future users which values o f parameters should be taken into account. The above

mentioned methodology could be an objective o f further investigations (e.g. analyzing all 16

operator mentioned in [I] or their com binations). The values o f chosen parameters of the

algorithm are established in advance and they are not changed during the program execution.

They could be adjusted experimentally, based upon the wide possible analysis of their

importance e.g. changing ranges o f parameters, taking into account new graphs etc. Such

analyses are presented underneath in this paper and other [1,4,8 ,9]. The influence of the

following parameters were here analyzed: population size, elite size and probabilities of

An influence o f parameters on the evolutionary algorithm applied for 173

particular evolutionary operators on perform ance of the evolutionary algorithm by means of

own computer program w ritten in C++ language.

The best solution to the presented problem would be establishing the proper values of

algorithm parameters by theoretical proof but it is impossible till now - due to lack o f the

tools in such young field o f knowledge as the theory o f evolutionary algorithms is.

In general, the theoretical proves of effectiveness o f evolutionary algorithms are very

rare. Only a few theorem s are known e.g. about schemes. It would be a valuable achievement

to do so for graph partitioning case but it exceeds the purpose of this paper. Furtherm ore the

problem depends on the graphs considered. O ther papers o f one o f the authors, mentioned

above, where other graphs had been considered, do confirm the tendencies shown by the

underneath presented figures and analyses.

5.1. Population size

In order to establish the optim al population size of the evolutionary algorithm, the

following analyses were performed: investigating an influence of the population size on the

running time of the program as well as on the quality o f achieved outcomes. The algorithm

effectiveness was m easured for the following parameters: the number o f generations

(iterations) - 2000, probability o f structural crossover - 0.3, probability o f bit type mutation -

0.2, probability o f structural mutation - 0.5, probability o f using the operator o f local

optimization - 0.04, elite size - 2, the test graph g-44 (presented in Fig. 1), n = 44, num ber o f

components k = 3.

The minimum is known - it is equal 3. It is stated only for test purposes and was used for

establishing the useful stopping condition for the program. The condition on balanced

partitioning was not entered into the program.

The algorithm was run independently for particular population sizes in the range 10

*100 increasing the size by 10 (initially even by 5). The run o f the com puter program was

finished after perform ing 2000 generations. The results have been presented in Fig.2. Based

upon the charts, the following conclusions can be drawn: from the Fig.2a - in case of

constant number of generations, the running time increases approxim ately in linear way with

the population size in the whole assumed range, i.e.: 10 + 100. However, an influence of the

population size on the obtained results of the algorithm has different shape. From the chart in

F'g- 2 b, it can be clearly seen that for the populations enclosing less then 30 chromosomes,

the algorithm after perform ing 2 0 0 0 generations still had not found the optim al solution, the

best results achieved were far from the minimum.

174 S. Zawiślak, G. Frej

Fig. 1. Test graph g-44 which consists o f 44 vertices, 70 edges, the found
minimum for k-partitioning is equal to 3 (k = 3)

Rys. 1. G raf testowy g-44 o 44 wierzchołkach, 70 krawędziach; znalezione
m inim um dla podziału na trzy partycje wynosi 3

The program found the minimum just after increasing the population size up to 40. It

should be added that further increasing of population size (pop_size) does not have essential

effect on the improvement of obtained results, because for the population greater than 60

chromosomes - the evolutionary algorithm did not find better solutions. F or example; for the

data o f pop_size = 80 - the running time of the program is two times longer than for pop_size

= 40 (in the case in which other parameters are the same), and the reached solution is almost

the same in both cases.

An influence of param eters on the evolutionary algorithm applied for 175

Population size

(b)
T>
C
3
OH—
E
3
E
c

Population size

Fig. 2. Influence o f population size on program running time (a) and on its
effectiveness (b) for 2 0 0 0 generations

Rys.2. W pływ rozmiaru populacji algorytmu ewolucyjnego na czas
obliczeń (a) i jakość osiągniętego wyniku (b) dla 2 0 0 0 generacji

However it should be underlined, as it has been assumed at the beginning o f the test, the

evolutionary algorithm was stopped after perform ing o f 2 0 0 0 generations, even if the

minimum has been found earlier. The greater the population size was the earlier the solutions

were reached. Due to this, the more detailed analysis o f an influence o f the population size on

the convergence o f the evolutionary algorithm was made. The same param eters like in the

previous test were used, except one o f them i.e. the stopping condition. The stopping

condition was established as follows: the minimum value o f the cutting edges is less than or

equal 4 (min < 4) i.e. the result is close to the global minimum which for the test graph is 3.

h was assumed, like in the previous one case, that the assumed in advance number of
generations should be performed.

176 S. Zawiślak, G. Frej

Population size

Fig. 3. Generation num ber as a function o f population size
Rys. 3. Zależność liczby generacji potrzebnych do osiągnięcia minimum od rozmiaru

populacji

Population size

Fig. 4. Running time o f evolutionary algorithm as a function o f population size
Rys. 4. Zależność czasu obliczeń algorytmu ewolucyjnego od rozmiaru populacji

The population size was changed in the range 10 -s- 280. The results are presented in Fig.

3 and 4. Analyzing Fig. 3 and 4 it can be stated that the population size has an essential

influence on the convergence o f the evolutionary algorithm. In the case o f small populations,

the algorithm results are not close to the minimum. Good results are obtained for the case

when pop_size = 50, furtherm ore the number of generations in the algorithm needed for

reaching the minimum (min = 4) is approximately 1700. The time needed for obtaining this

result equals approx. 30 s. After increasing the population size up to 70 chromosomes, the

convergence o f the algorithm improves twice. The most interesting is that the time of

reaching the acceptable results is also lower.

Comparing the charts in Fig. 2 and 4, an interesting conclusion can be drawn. Despite the

fact that the greater population size is, the longer is the running time o f the program but the

convergence o f the algorithm also increases. It means that there is purposeless to increase the

population number over 60 to 70 chromosomes because it does not cause any improvement in

An influence o f param eters on the evolutionary algorithm applied for 177

reached solution. Despite the fact that the time o f creating and analyzing o f one generation in

the algorithm is longer, the total time o f calculations does not increase (Fig. 4) but above

some value of param eter pop_size stabilizes.

5.2. Elite size

In Fig. 5 the results are presented which show an influence o f most suitable elite size r)

on the running tim e o f the program. The evolutionary algorithm was launched independently

10 times for r] = 1, 2, 3, 4, 5, 10, 20, ..., 80. The execution o f the program was stopped after

finding the solution which fulfills the inequality, min < 4 or exceeding the maximal number

of generations max_gen = 1 0 0 0 .

pop_size = 100

S 40

| 30

o) 20

I 10
IX 0

Fig. 5. Average running time o f evolutionary algorithm for different elite sizes in
the case o f proportional reproduction for pop_size = 1 0 0

Rys. 5. Średni czas działania algorytmu ewolucyjnego dla różnej wielkości elity t|
przy zastosowaniu reprodukcji proporcjonalnej dla pop_size = 1 0 0

The parameters o f the evolutionary algorithm used in this task: (a) probability of

structural crossover - 0.3, (b) probabilities o f mutation - bit type - 0.2, (c) - structural -

0-5, (d) probability o f operator o f local optim ization - 0.04, (e) test graph g-44 (see Fig. 1),

(f) number of com ponents - 3, (g) population size pop_size = 100.

The tests of the algorithm were perform ed for pop_size = 50, max_gen = 2000 as well as

pop_size = 200, max_gen = 500, for the similar probabilities o f the evolutionary operators
(Fig. 6 and 7).

2 0 40 60 80 100

Elite size

178 S. Zawiślak, G. Frej

pop_size = 50

o
E -*—■
O)c
ccu
cr

Elite size

Fig. 6 . Average running time o f evolutionary algorithm for different elite sizes in the
case of proportional reproduction for pop_size = 50

Rys. 6 . Średni czas działania algorytmu ewolucyjnego dla różnej wielkości elity r|
przy zastosowaniu reprodukcji proporcjonalnej dla pop_size = 50

pop_size = 200

S 25
a 20
I 15
f 10
i 5
£T 0

Ez :

50 1 0 0

Elite size

150 200

Fig. 7. Average tim e o f evolutionary algorithm running for different elite sizes T|
for proportional reproduction; pop_size = 2 0 0

Rys. 7. Średni czas działania algorytmu ewolucyjnego dla różnej wielkości elity r|
przy zastosowaniu reprodukcji proporcjonalnej dla pop_size = 2 0 0

As can be seen in Fig. 6 and 7, for pop_sizes = 50 and 200, the shortest times of

calculations were reached for the elite size r) = 1. Similar outcomes was achieved for

pop_size = 1 0 0 , what allows us for the conclusion that the best results are obtained for the

small elite (a few chromosomes).

An influence o f parameters on the evolutionary algorithm applied for 179

Elite size

— pop_size = 200 - a- pop_size = 100 — pop__size = 50

Fig- 8 . Running time o f evolutionary algorithm vs. population size T] in the case of
proportional reproduction

Rys. 8 . Wpływ wielkości elity r| na czas obliczeń algorytmu ewolucyjnego przy zastosowaniu
reprodukcji proporcjonalnej w zależności od rozmiaru populacji

Increasing the elite size is not recommendable - it causes that convergence is too fast.

It can be stated that for the large sizes o f populations (Fig. 8), the elite size has not so

essential influence like in the case o f low sizes o f population pop_size. It is confirm ed by the

fact that in the case when the elite constitutes 80% o f the whole population (i.e. very large

elite), in the case o f pop_size = 2 0 0 , the algorithm has found the solutions very rarely after in

advanced established num ber o f generations. However, in the case o f pop_size = 50 it was

just impossible. The elite size should be taken considerably into account, choosing the values

of the parameters.

5.3. Probabilities of evolutionary operations

Aiming for an assurance o f an effective execution of the evolutionary algorithm, the

probabilities o f incorporating o f particular- evolutionary operators should be properly chosen

- in our case - special types o f crossover and mutation operators.

Analyzing an influence o f the structural crossover probability p c on execution of the

algorithm the following tests were done. The algorithm run independently 10 tim es for every

from the following values o f the probability pp. 0, 0.05, 0.1, ..., 0.9. The values o f other

parameters were listed below: (a) probability o f bit type mutation - 0 .2 , (b) probability o f

structural mutation - 0.5, (c) probability o f operator of local optim ization - 0.04, (d) test

graph g-44 (Fig. 1), (e) number o f com ponents k = 3, (f) population size pop_size = 100,

(0 performance o f the algorithm has been stopped after finding the value min < 4 or after

exceeding the number o f generation higher than 1 0 0 0 .

180 S. Zawiślak, G. Frej

Fig. 9. Average generation num ber vs. crossover probability
Rys. 9. Średnia liczba generacji jako funkcja prawdopodobieństwa krzyżowania

strukturalnego

From the chart in Fig. 9, it can be seen that the best outcomes are obtained for the

crossover probability pc in the range 0.3 h-0.5.

1000c

1 800

§ 1 600
a) E
g, c 400
CO
cu 200

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Bit mutation probability

Fig. 10. Average generation num ber in the evolutionary algorithm vs.
probability o f bit (one-point) mutation

Rys. 10. Średnia liczba pokoleń jako funkcja praw dopodobieństwa mutacji
bitowej (jednopunktowej)

In the next step, an influence o f the probability of bit type mutation p m on algorithm

execution was analyzed Fig. 10. The tests were done for the parameters: (a) probability of

structural crossover - 0.4, (b) probability o f structural mutation - 0.5, (c) probability of

operat o f local optim ization - 0.04, (d) test graph g-44 (Fig. 1), (e) partition into k = 3

components, (f) population size pop_size - 1 0 0 , (g) algorithm perform ance was stopped a fter

finding the value nun < 4, or after exceeding the number o f generations over lO O O .T h e

course o f the average generation number vs. probability o f bit mutation p,„ has a different

An influence of param eters on the evolutionary algorithm applied for 181

type than in the case o f p c. For the test graph - the advisable value p m is enclosed in the

interval 0.1 + 0.2 (Fig. 10). Upon the com parison of Fig. 9 and 10, it can be stated that the

operator of bit mutation has more essential influence on the proper perform ance o f the

evolutionary algorithm then the operator o f structural crossover. The advisable values pm are

enclosed in the narrow interval, what causes that slight changes o f probability pm (leaving

this interval) cause essential lowering o f the algorithm efficiency.

However next param eter i.e. probability p r can vary in the wider range, it does not cause a

noticeable lowering o f the algorithm convergence.

Further, the probability o f structural mutation p ms was taken into account. Test of

algorithm was perform ed for the following parameters: (a) probability o f structural - 0.4, (b)

probability o f bit mutation - 0.2, (c) probability o f operator of local optim ization - 0.04, (d)

test graph g-44 (F ig .l), (e) partitioning o f graph into k = 3 components, (f) population size

pop_size = 100, (f) perform ance o f algorithm was stopped after finding value min < 4 or

exceeding number of generations over 1 0 0 0 generations.

It is worth to add, that in traditional genetic algorithms, the suggested range o f mutation is

lower than 0.1 or even 0.05 but these numerical investigations proved that standard

suggestions sometimes do not be adequate to evolutionary operations and graph optimization

problems.

•5 6 0 0

ju w 5 0 0

E o 4 0 0

i 2 3 0 0
Q) Q)
i? S 200
>
<

1 0 0

o

0 0,1 0 ,2 0 ,3 0 ,4 0 ,5 0 ,6 0 ,7 0 ,8 0 ,9 1

Probability of structural mutation

Fig. 1 1 . Influence o f probability o f structural mutation on on the
evolutionary algorithm running

Rys. 1 1 . Średnia liczba pokoleń w algorytmie ewolucyjnym jako funkcja
prawdopodobieństwa mutacji strukturalnej

From Fig. 1 1 follows that changes o f param eter pm in the range 0 -s- 0.9 were done, but

any clear effect can not be recognized. It can be stated that the operator o f structural mutation

almost has not any influence on the perform ance of the proposed evolutionary algorithm or

lts mfluence is nonessential therefore it can be omitted. This conclusion corresponds to the

182 S. Zawiślak, G. Frej

considered test graph. Nevertheless, in the next tests last decision was not introduced into

practice.

The last performed test was an analysis o f influence o f the probability o f the operator of

local optim ization p„i0 on the effectiveness o f the proposed approach, Fig. 12. The algorithm

was tested for the same param eters as previously: (a) probability o f bit mutation - 0 .2 , (b) test

graph g-44, (c) partitioning o f graph into k = 3 components, (d) population size pop_size -

100, (e) perform ance o f algorithm was stopped after finding value min < 4 or exceeding

number of generations over 1 0 0 0 generations.

Fig. 12. Average number of generation in the evolutionary algorithm vs.
probability o f operator o f local optim ization

Rys. 12. Średnia liczba generacji algorytmu ewolucyjnego jako funkcja
prawdopodobieństwa operatora lokalnej optymalizacji.

S 25 -i--
<D

0 0,1 0,2 0,3 0,4 0,5 0,6
Probability of O.L.O

Fig. 13. Average tim e o f calculations vs probability o f operator o f local optim ization
Rys. 13. Średni czas obliczeń jako funkcja prawdopodobieństwa operatora optymalizacji

lokalnej

Analysing the results in Fig. 12, it is easy to spot that the operator o f local optimisation

gives very good results. It can be seen that without the operator OLO (probability equal to 0),

the tested evolutionary algorithm does not find a solution - it just stops after performing of

1000 generations. However in the case o f an application o f this operator with the probability

An influence of param eters on the evolutionary algorithm applied for 183

equal to 0.02, the algorithm finds fairly acceptable solutions. By increasing the probability

p0i0 up to value 0 .1 , it can be observed five times reduction o f number o f the generations

repeated in the algorithm run in com parison to the variant without the OLO operator.

Probability of operator

- • —OLO Mutation —»— Crossover
Fig. 14. Running time o f 10 generations vs. the probabilities o f evolutionary operators
Rys. 14. Zależność czasu obliczeń 10 generacji algorytmu od prawdopodobieństw

operatorów genetycznych (ewolucyjnych)

Fig. 13 shows that it is not any essential influence of the OLO probability on the average

running time o f the program.

It should be fairly add that there are some costs o f using this operator. The operator OLO

is more complicated in its calculation routine then the rest o f evolutionary operators, it means

that more operations have to be performed for one generation analysis, therefore it runs

essentially slower.

Fig. 14 shows that for the operator OLO time o f the analysis o f one generation depends

linearly on the probability o f activity of this operator - it is different situation from all others

evolutionary operators which frequency of activity does not influence the speed of the

program performance essentially.

Despite this drawback, the operator of local optim isation is very effective w hat is shown

especially in Fig. 12. Due to the fact that the operator OLO improves the convergence of the

evolutionary algorithm, the longer perform ance is acceptable. Fig. 13 shows that the operator

of local optimisation improves the average tim e o f the calculation approx. 30%; for the most

suitable values of its probability in the range 0 . 1 0 .2 .

6. Conclusions and remarks

In the paper, the analysis o f the parameters o f the evolutionary algorithm applied for the

graph partitioning problem has been presented. The algorithm proposed uses the special

184 S. Zawislak, G. Frej

evolutionary operators constructed especially for the task o f graph partitioning. The problem

is discrete and the fitness function is calculated upon the special search through the applied

graph representing algebraic structure (e.g. incidence matrix, list, tree). These methods for k=

2 were described, among others, in paper [1 2).

It should be underlined that one o f the most suitable tools is the operator o f local

optimisation. Its importance is essential, without this operator the algorithm is almost

powerless. Like in the case of other evolutionary algorithms, especially important is a proper

selection o f particular param eters o f an evolutionary algorithm. Some conclusions can be

drawn upon the above presented analyses: the elite size should be small, the special operator

OLO dedicated to the problem o f graph partitioning should be used.

It should be highlighted that the genetic as well as evolutionary algorithms do not assure

finding the minimum from theoretical point of view but frequently they do. Therefore, like

can be seen from the entire paper, the solution has not been searched. It is known, that for test

graph, the minimal num ber o f edges is three, the partitions which gives the solution can be

distinguished by the reader. The aim o f our consideration was to investigate the influence of

parameters, therefore even in some stopping conditions o f the algorithm it has not been

assume reaching the minimal num ber o f edges connecting the parts o f the particular

partitioning.

Some recom m ended values o f the parameters are listed in Table 1. Similar results were

obtained for different graphs but they are not included in this paper (see some other

w orks[l,8,9]). In overall, the result does not depend on the graph but the num ber o f vertices

should not exceed hundreds.

Further investigations for very large graphs are in progress: prospective topics could be

e.g. hybrid algorithms in which more knowledge from graph theory would be embedded in

evolutionary operations or parallel algorithms.

There are some suggestion that the ranks of the graph vertices can be taken into account

constructing the operators. The vertices o f the maximal ranks should be distributed

throughout the com ponents o r collected in one com ponent. It should depend on the distance

between them in a graph.

An influence o f param eters on the evolutionary algorithm applied for 185

Table 1
Recom m ended values o f parameters o f the evolutionary algorithm

Param eter Recommended range

Population size - pop_size Os o •I- o o

Elite size - elit_size 1 - 2

Probability o f crossover - pc 0,3 - 0 ,5

Probability of mutations - pm 0 , 1 + 0 , 2

Probability of OLO - pc 0,05 + 0.2

Introducing of this ideas into practice will cause the essential elongation of the running

time of such enhanced algorithm. Therefore, hybrid algorithms are the subject o f interest o f

some researches.

REFERENCES

1. Chmiel W., Kadluczka P.: Special genetic operators for the problem of graph partitioning

(In Polish), Algorytmy Ewolucyjne i Optymalizacja Globalna, Politechnika Warszawska,

pp. 37-44, W arszawa 2000.

2. Discrete Optimisation. Models and methods o f graphs colouring (In Polish). Editor M.
Kubale, WNT, W arszawa 2002.

3. Falkner J., Rendl F., W olkowicz H.: A computational study o f graph partitioning,

Mathematical Programming, Vol. 6 6 , pp. 211-239, 1994.

4. Kadluczka P., W ala K.: Tabu search and genetic algorithms for the generalised graph

partitioning problem. Control and Cybernetics, V.24, No 4, pp. 459-476, 1995.

5. Laszewski von G.: Intelligent structural operators for the k-way graph partitioning

problem, Proceedings o f 4th Inter. Congr. On Genetic Algorithms, 1991.

6 - Lin-Ming J., Shu-Park Ch.: A genetic approach for network partitioning . Int. J. Computer

Math., Vol. 42, pp. 47 - 60,1992.

2- Seidler J., Badach A., Molisz W.: Methods of optimization (in Polish). WNT, Warszawa
1980.

8 - Wojnarowski J., Zawiślak S. : Evolutionary Algorithm Applied for Graph Partitioning (in

Polish), in the book ‘Polioptymazacja i Komputerowe Wspomaganie Projektowania’, (ed.

W. Tarnowski, T. Kiczkowiak) WNT, pp. 277 - 284, Warszawa 2002.

9- Wojnarowski J., Zawiślak S., Kozik S: Application of evolutionary algorithm for graph, k-

partitioning (in Polish) ZN Wydziału Mechanicznego Nr 32. Polioptymalizacja i CAD,

Mielno 2003, Politechnika Koszalińska, p. 143-150, 2003.

186 S. Zawiślak, G. Frej

10. Yang D-L., Chung Y-Ch, Chen Ch-Ch„ Liao Ch-J.: A Dynamic Diffusion Optimization

Method for Irregular Finite Element Graph Partitioning , The Journal o f Supercomputing,

17,91-110, 2000.

11. Yu Stella X., Gross R., Shi J.: Concurrent Object Recognition and Segmentation by Graph

Partitioning, private communicate.

12. Zawiślak S., W ojnarowski J., Jagosz A.: Comparison of graph representation methods for

graph partitioning problem. Implementations in some algorithmic languages. Zeszyty

Naukowe ATH w Bielsku-Bialej, Nr 4, Zeszyt 3, Bielsko-Biała 2002.

13. Zawiślak S., Ziemska I.: Graph theoretical approach to decomposition problem in optimal

design (in Polish), Politechnika Łódzka, Bielsko-Biała,-pp.159-161, 1999.

Recenzent: Prof. dr hab. inż. Zbigniew Czech

W płynęło do Redakcji 1 maja 2003 r.

Omówienie

W pracy omówiono problem k-podziału grafu, który ma liczne zastosowania praktyczne.

Problem sform ułowano warunkam i (a) - (e) w rozdziale 1. Algorytmy rozwiązania tego

problemu były stosowane do: projektowania układów scalonych o dużej integracji, podziału

siatki modelującej obiekty w metodzie MES, rozpoznawania obrazów oraz dekompozycji

dużych zadań optymalizacji konstrukcji. D la dużych grafów (pojęcie umowne) w literaturze

analizuje się różne algorytmy k-podziału grafu, przy czym w ostatnich łatach wielokrotnie

proponowano zastosowanie algorytmów ewolucyjnych do rozwiązania tego zagadnienia.

W wielu publikacjach nie analizowano wpływu param etrów algorytmu ewolucyjnego na

efektywność metody. W niniejszym artykule zaproponowano algorytm ewolucyjny do

k-podziału grafu wykorzystując wybrane operacje ewolucyjne z wielu przeanalizowanych

prac. W ybrano specjalizowane operatory, między innymi: mutację strukturalną (zachowuje

liczności komponentów), krzyżowanie strukturalne (zachowuje jeden komponent) oraz

operator Optymalizacji Lokalnej [O.L.O.](działa na pewnym etapie systematycznie, co

odróżnia go od wszelkich innych operatorów). Do testów wybrano graf przedstawiony na rys.

1 o 44 wierzchołkach, przy czym autorzy przeprowadzali testy dla innych grafów uzyskując

analogiczne rezultaty. Przedstawiono analizę wpływu następujących parametrów algorytmu

ewolucyjnego na jego działanie: rozm iar populacji (rys. 2 + 4), wielkości elity (rys. 5 + 8),

prawdopodobieństwa krzyżowania (rys. 9), prawdopodobieństwa mutacji (rys. 10 + 11).

prawdopodobieństwa operatora O.L.O. (rys. 12 -s- 13) oraz porównano wpływ prawdopo­

An influence of parameters on the evolutionary algorithm applied for 187

dobieństw kilku operacji na czas pracy algorytmu (rys. 14). Ponieważ chodziło o testowanie

działania algorytmu, więc stosowano także jako kryterium zatrzymania: zbliżanie się

bieżącego rozwiązania do znanego minimum. Na podstawie analiz zestawiono zalecane

zakresy parametrów algorytmu (tab. 1). Należy zauważyć, że operacja mutacji odgrywa w

tym algorytmie w ażną rolę i je j zakres powinien być zm ieniony w stosunku do zwykle
zalecanych w literaturze zakresów (pm < 0,05). Zastosowanie operatora O.L.O. istotnie

przyspiesza dochodzenie do rozwiązania przez przedstawiony algorytm ewolucyjny.

Adresy

Stanisław ZAW IŚLAK: Akadem ia Techniczno-Hum anistyczna, W ydział Budowy Maszyn
i Informatyki, ul. W illowa 2, 43-309 Bielsko-Biała, Polska, szawislak@ ath.bielsko.pl.
Grzegorz FREJ: Akademia Techniczno-Hum anistyczna, W ydział Budowy Maszyn
i Informatyki, ul. W illowa 2, 43-309 Bielsko-Biała, Polska.

mailto:szawislak@ath.bielsko.pl

