
STUDIA INFORM ATICA 
Volume 24

_________ 2003
Num ber 4 (56)

Stanisław ZAW IŚLAK, Grzegorz FREJ
University of Bielsko-Biała, Faculty o f Mechanical Engineering and Com puter Science

AN INFLUENCE OF PARAMETERS  
OF THE EVOLUTIONARY ALGORITHM  
APPLIED FOR THE GRAPH K-PARTITIONING PROBLEM

Summary. In the paper, the evolutionary algorithm for k-partitioning o f  graph is 
presented. Some new robust evolutionary operations are introduced replacing 
traditional ones. The analysis o f influence of param eters on the algorithm 
performance is presented.
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WPŁYW PARAMETRÓW
NA DZIAŁANIE ALGORYTM U EWOLUCYJNEGO  
ZASTOSOWANEGO DO PROBLEMU K-PODZIAŁU GRAFU

Streszczenie. W pracy przedstawiono zastosowanie algorytmu ewolucyjnego do 
problemu podziału grafu. Zastosowano nowe, skutecznie działające operacje 
ewolucyjne zam iast tradycyjnych. Przedstawiono analizę wpływu param etrów na 
działanie zaproponowanego algorytmu.

Słowa kluczowe: k-podział grafu, specjalizowane operatory ewolucyjne

1. Introduction

The problem o f graph partitioning belongs to the classical graph theory problems, but it is 

not so widely known and considered as others, like e.g. travelling salesman, short path or 

coloring problems [2], The problem  o f k-partitioning can be formulated as follows: (a) Let us 

consider the graph G(V,E), where V -  set o f vertices (|V| = n), E  -  set o f edges (|E| = m); the 

graph is simple, finite, w ithout multiedges and loops, (b) Divide the vertex set into k mutually 

disjoint subsets whose sum gives the whole set V, (c) Create the subgraphs generated by the
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distinguished subsets o f V, (d) Consider all possible proper divisions o f V into subsets of V 

(i.e. neglecting an em pty subset); (e) Find the partitioning for which number o f edges 

connecting the vertices which belong to the separate subsets is minimal, taking into account 

the divisions mentioned in the points b, c and d.
The obtained elem ents o f the k-partitioning are called partitions, sections, parts or 

com ponents in some references. The problem is called sometimes k-cut and in the case k = 2 

bisection.
Additional conditions, which can be added to the above formulated problem, are e.g. 

(c l)  the minimum number of vertices in a particular subset o f set V has to be greater than the 

lower bound or (c2) the differences o f cardinalities o f  the subsets must not to exceed a given 

e value (so called balanced partitioning). I f  we consider the case when n is a multiple of k, 

then we can consider that the obtained com ponents are equinumerous, i.e. the special 

formulation o f the (c2) condition for e = 0. The problem can be also generalized by 

considering, among others, weighted graphs, called in some references networks. Taking into 

account all possible formulations o f the graph partitioning problem, it is considered in some 

papers as multiobjective one.
It should be underlined that graph partitioning problem solutions have been successfully 

applied not only in VLSI circuit design (what is widely known) but also in the following 

practical tasks, like e.g. decom position o f an optim ization problem  [13], decomposition of a 

FEM grid [10] and pattern recognition procedure by means o f segmentation [11].

Several algorithms to  solve this NP-hard problem  [3,4] are known. One of the approaches 

to graph partitioning problem  which has been proposed is an application o f  evolutionary 

algorithms [1,4,5,6,8,9]. The earliest paper from the aforementioned list o f references was 

published by von Laszewski who focused an attention on the special so called structural 

operators. The detailed study o f  specialized operators for this task was presented in the paper 

[l].This survey contains 16 operators and their descriptions. The authors considered slightly 

different problem of k-partitioning called by them ‘generalized graph partitioning’.

The aim  of this work is to study the influence of the evolutionary algorithm parameters 

(i.e. population size, probabilities o f operators etc.) on its performance. This problem was 

mentioned as especially im portant in paper [1] but not presented due to the scope of the 

works assumed by the authors. In this paper, some operators proposed in references [1,5] are 

adopted and the detailed analysis o f  their importance is discussed. The analyses were made 

by means o f own program  written in the C++ language for the exemplary graph presented in 

the Appendix. The sim ilar task and analyses for different graphs have been presented in the 

papers [8,9], where the outcomes relevant to the presented underneath were obtained but 

some other evolutionary operations were used.
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2. Evolutionary algorithms

The term evolutionary algorithms (EA) has been introduced to distinguish them from 

genetic ones. The main difference is that the knowledge about the problem is represented in 

particular way in the second type of them. The knowledge em bedded in the task is connected 

with encoding rules, special operators, special m ethod of the fitness function reckoning [12] 

and possible repair routines. In our case (i.e. k-partitioning), the differences consist in:

- Different encoding rules i.e. digits 0 and 1 are replaced by the numbers of the set of 

integer numbers i.e. 7,2, ..., k for encoding the chromosomes. Digits 0,1 are characteristic for 

binary representation of decimal numbers and the length of the chromosom e depends on the 

arbitrary researcher decision, e.g. taking into account the precision o f outcomes. But our code 

represents the problem itself i.e. i on the position j  means that j-vertex belongs to i-subset of 

V. Therefore the length o f the chrom osom e code depends on the num ber of graph vertices |V| 

(examples - see Chapter 4). The more detailed considerations concerning the m ethodology of 

the graph and chrom osom e representations have been presented in paper [12].

- Application o f the special type evolutionary operators, i.e. structural mutation and 

crossover as well as so called operator o f local optim ization OLO.

- Repair procedures applied; aiming for avoidance of procedure degeneration, i.e. 

obtaining the chrom osom es which do not represent the solution -  in our case chromosom es in 

which some numbers from  the set [1,2, ... ,  k) are not present. This situation can be 

straightforward interpreted -  the partitioning consists o f less than k com ponents what can be 

inadmissible due to the researcher/program  user arbitrary decision.

- Special fitness function reckoned not upon the explicit formula but based upon some 

search through the data, i.e. incidence matrix or list, depending on the graph encoding 

algebraic structure. It depends on the language and the additional conditions [12],

- Other activities or m ethods like e.g. random  immigrant which application should cause 

avoidance of getting stuck by the algorithm in a local minimum etc.

It is worth to add that evolutionary algorithms have been recently used to some other 

graph theoretical problems -  like graph coloring [2] and TSP (travelling salesman problem). 

The essence of application of EA  consists in special methods of problem encoding and usage 

of specialized operators tailored to the particular problem. In case of TSP, the following ideas 

of chromosomes have been considered: adjacency, order and path representations.

It was assumed in the paper that only the additional condition (c l)  is taken into account. 

The condition (c2) is neglected in general, but some evolutionary operations are consistent 

with it, e.g. structural crossover preserving some com plete partitions copied from one 

chromosome to another. Two possible formulations o f (c l)  can be considered: (f l)  it is 

forbidden to obtain the any offspring non-consistent with (c l) , o r (f2) it is forbidden to obtain
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the whole population non-consistent with (c l) . This second case is incorporated by 

introducing the elite to a population which fulfills this condition. E lem ents o f this elite pass 

the proper solutions through the consecutive generations o f the evolutionary algorithm.

3. Some specific problems -  repair procedures

During execution o f  an evolutionary algorithm, as the result o f usage o f different 

evolutionary operators, the improper chromosomes can be obtained, i.e. representing the 

partition into less than k com ponents or unbalanced partitions if such an assum ption is added 

e.g. (c l)  and/or (c2). Aiming for the situation in which such chrom osom es are excluded or do 

not spread alongside the population in excessive quantity, a special repair algorithm  should 

be introduced, which controls whether the chromosomes produced by particular operations 

are admissible.

The repair algorithm, for the proposed evolutionary algorithm, can w ork in the following 

way:

(a) After finishing o f activities o f all evolutionary operators applied, it is checked if all the 

chromosomes are acceptable, i.e. represent the partitioning into proper components.

(b) If  a prohibited chrom osom e has been found then it is replaced by the copy of a randomly 

chosen member o f the population.

However the follow ing condition should be satisfied: proper perform ance o f  the repair 

procedure needs an ever existence o f at least one proper chromosom e in the population, 

otherwise there is a threat that the algorithm will be unable to do this.

The solutions to the above thread -proposed in references - are: (sa) an application of 

special controlled initialization of the starting population, which consists only o f  acceptable 

chromosomes, (Sb) assurance that the elite size is nonzero, what guarantees survival of at least 

one proper chromosome from the previous base population. As was said above the second 

method was adopted.

4. Evolutionary operators

Based upon the above considerations and some other references o f  the one o f  the authors 

[8, 9, 12] it can be stated that the proper representation o f the task as well as the method of 

introductory or initial population were chosen, i.e. (c2) is fulfilled. The next step in building 

the evolutionary algorithm is usually a careful design o f evolutionary operators, which are 

relevant to the problem. In particular, the algorithms are able to acquire the knowledge



An influence of param eters on the evolutionary algorithm applied for 169

enclosed in chromosom es. It means that beside the fitness function reckoning, other control 

activities can be done, e.g. comparison of cardinalities o f com ponents. The so called 

intelligent operators were applied: structural crossover, structural mutation and the special 

operator of local optim ization OLO [1, 8, 9]. In addition, the operator o f bit type mutation 

(one-point mutation) was incorporated, which has been recognized as giving the effect of 

wider exploration.

4.1. S tru c tu ra l crossover

The operator o f crossover is very important for the proper perform ance o f every 

evolutionary algorithm. I f  the crossover operator destroys too much inform ation obtained 

previously (i.e. in past generations) by the algorithm then it can turn into the random  search 

algorithm.

In our case, to avoid the loss o f too much information, we use the operator o f structural 

crossover. This operator copies one full com ponent o f partitioning from  the parent solution 

(chromosome) to the offspring. Thus, it is different from the ordinary one-point-cut crossover 

-  which destroys the information about graph components -dividing simply a chromosome 

into two parts.

An analysis o f results o f structural crossover is presented based upon the following 

example. It simultaneously shows an advantage o f  it over one-point crossover. Let us assume 

that for crossover two following parents were chosen -  series o f 12 elem ents (what means 

that a graph consisted o f  12 vertices is divided into 3 parts): p i=  (1 1 2 3 1 2 1 3 2 2 3  3) 

and p2 = (1 2 1 3 3 2 2 1 3 3 1 2). The divisions encoded by pi and p 2 are as follows: Vi = 

{V|,V2,V5 ,V7}, V 2 = {v3 ,Vc,v9 ,vio}, v 3 = {v4 ,vg,V]i,vj2 } and Wi =  {vi,v3 ,v8 , vu) ,  W 2 = 

{v2,V6,v7,vi2}, W 3 = {v4 ,V5 ,V9 ,V]o), respectively. As the first step, a random substring from 

the partition is chosen (e. g. denoted by 3) and it is copied from  pi to p2:

Pi = (1  1 2 3 1 2 1 3 2  2 3  3) 

i vL 4' 4*
p2 = (1 2 1 3 3 2 2 1 3 3 1 2)

as the result of the above step, the following chromosom e is obtained: 

p ’2 = (1 2 1 3 3 2 2 3 3 3 3 3).

As can be seen from  the above example, the copying procedure dam ages the dem and of 

e<lual sizes o f the copied part o f partitioning. Third com ponent has 7 elements in the 

temporary offspring because there were vertices belonging to the third com ponent in the 

chromosome p2 different than these in the first one. Repair procedures could be applied. It

can be seen that in the initial p2, there were elements representing part 3 and they have not

been the elements o f copied part i.e. elements 5, 9 and 10 (underlined genes). These elements 

are erased (the asterisks symbolize this action):
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p ” 2 = ( 1 2 1 3 * 2 2 3 * *  3 3 ) .
In the next step, these places are randomly filled by numbers representing other parts, 

which were rewritten during copying procedure (underlined genes underneath): 

p2 = (1 2 1 3 3 2 2 1 3 3 1  2).
Finally, the obtained chrom osom e (child) -  can be as follows: 

p ’” 2 = (1 2 1 3 1 2 2 3 2 1 3  3).
In the above described example, one chromosome was received, in the evolutionary 

algorithm -  from two parents two children (offsprings) should be obtained, the second 

chromosome is created according to the same way. The division (partitioning) encoded by 

p ’ ” 2 is as follows: Ui = {v^vs.vs.vio}, U 2  = {v2 ,V7 ,v8 ,V9 }, U 3 = {v4 ,v8 ,vn ,v i2}. It can be seen 

that V 3 = U3 i.e. the com ponent 3 was preserved.

Using the standard crossover would cause loss of information about parts in a particular 

partitioning. Introducing the structural crossover operator has the following adventages: 

(i) an exchange of genes is not completely random, it preserves one partition (in some 

references, a jargon phrase “intelligent operator” is used), (ii) additionally it can assure equal 

or close numbers o f  vertices in every part (then additionally, if  special repair procedure has to 

be inserted), (iii) it increases the convergence to the solution o f the algorithm.

4.2. One-point mutation

The ordinary operator o f bit type mutation (one-point mutation) turns one gene in a 

chromosome into particular random  number from the set {1, 2, . .., k}. Unfortunately it 

changes the number o f graph vertices in singled out components (first and third component in 

the example, underneath).

For a chromosome chosen for mutation (in the case o f 3-partitioning): 

p = ( 1 2 1 3 3 2 2 1 3 3 1  2),  
one number from the interval [1 , ..., n] is randomly generated, where n is the length of the 

chromosome (n = 12). Let it be 11, than the gene on position 11 (i.e. 1) is randomly turn into 

the number from the set {1,2,3} e.g. 3. It means that the third com ponent has five elements 

and the first com ponent has three elements after this operation. Like it has been said 

previously the elite in population is established to avoid the case when the chromosomes 

from the obtained population represent only the h-partitioning, where h < k. In our case it 

could happen if  in next operations would cause the total removal ones from the chromosome; 

e.g. the same chromosom e should be consecutively drawn and all ones would be turned into 2  

or 3. It is probably very rare case but possible. The elite preserves, assumed in advance, 

number o f proper chromosom es representing the k-partitioning.
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4.3. Structural mutation

Additionally, other - so called - operator o f structural mutation was proposed. It replaces 

mutually two genes (1 and 3 in the example underneath). For a chromosom e chosen for 

mutation:

p = (1 2 1 3 3 2 2 1 3 3 1 2), 
two numbers from the interval [1, ..., n] are randomly generated. In the example, these 

numbers are 4 and 8  which show the positions o f  genes for swapping (underlined genes, 

underneath):

p = (1 2 1 3 3 2 2 1 3 3 1  2),  

in the next step, if  the values chosen are different that the genes are exchanged (i.e. 1 and 3 

in the example). Otherwise -  the random  choice of positions is repeated. Finally the child- 

chromosome (offspring) can be written as: 

p = ( 1 2 1 1 3 2 2 3 3 3 1  2).

The interpretation o f this operation is as follows: at the beginning we have the 

partitioning: V) = {vi,v3 ,vg,v n }, V2 = {v2 ,v6 ,v7 ,v12} and V3 = {v4 ,V5 ,v9 ,vio}, after the 

operation: Vi = {V|,v3 ,V4 ,vu }, V2 = {v2 ,v6 ,v7 ,vi2} and V3 = {v4 ,V8 ,v9 ,vI0}. The mutual 

exchange of genes causes that the cardinalities o f the sebsets Vj (i =  1 , 2 , . . . ,  k) remains the 
same.

4.4. Operator o f local optim ization

The last evolutionary operator used in present w ork is an one-argument operator o f local 

optimization (local search) OLO. This operator is essentially different in com parison to 

others. It acts on one chrom osom e but more com plicated calculations are perform ed in 

comparison to all above described operators.

The OLO does not act in a blind search way. Usually evolutionary operators do modify 

chromosomes and they do not ‘care’ if the value o f fitness function after their activity is 

lower or higher, but operator OLO, in contrary, just does it. During the execution of 

operations on chrom osom es (see procedure described underneath), the fitness param eter is 

checked simultaneously. If  the fitness param eter decreases then the modifications are 

cancelled. Therefore this operator does not turn the chromosom es into worse ones. The idea 

of activities performed by this operator can be com pare to solutions applied in the traditional 

algorithms of optimization (see chapter 5.3 and 9.4 in [7]). The traditional algorithm, which 

takes into account consecutive points tending to the optimal one (obtained in consecutive 

iterations), checks the surroundings o f  the point looking for the steepest inclination. Then the 
next point is chosen in the established direction.
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The operator o f local optim ization modifies each gene in a chrom osom e in the following 

way:

-  value o f  the gene is randomly changed one by one into a number from the interval [1 ,

p a r tj iu tn ], where p a r tj iu m  = k  is the number o f  com ponents into which the

graph is divided,

-  after every change, the value o f the fitness function is calculated,

-  if the fitness is better, then the next gene in the chromosome is analyzed, if the 

worsening takes place -  the previous value o f the gene is restored.

It should be underlined that, the speed o f this operator activities depends in general on the 

length of chrom osom e n, number o f assumed graph com ponents part_num  as well as the 

population size pop_size. Therefore time o f execution of the operator is proportional to n x 

parl_num  x  pop_size and in case o f greater values can substantially slow down the whole 

evolutionary algorithm.

All the above operators are active when the previous draw gives the result less then the 

probability param eter established by the user. It worth to underline that in the case of the 

classical genetic algorithms low values o f mutation probabilities are suggested and for graph 

partitioning problem it is not the case.

5. Numerical analysis of influence of algorithm parameters

Values o f different parameters used by the evolutionary algorithm can be set by the 

researcher -  com puter program user. Furtherm ore in more advanced evolutionary software 

environment, they can be controlled by the special supervision procedures whose aim is to 

adjust all the param eters properly. There are some attem pts to prepare a self-adapting 

evolutionary software.

Because the self-adapting evolutionary programs are extremely com plicated and not tgo 

easy to write, we decided to make an analysis o f the effect o f parameters changes in ranges 

set by ourselves on the algorithm effectiveness. The result will be the set o f recommendations 

for future users which values o f parameters should be taken into account. The above 

mentioned methodology could be an objective o f further investigations (e.g. analyzing all 16 

operator mentioned in [I] or their com binations). The values o f chosen parameters of the 

algorithm are established in advance and they are not changed during the program  execution. 

They could be adjusted experimentally, based upon the wide possible analysis of their 

importance e.g. changing ranges o f parameters, taking into account new graphs etc. Such 

analyses are presented underneath in this paper and other [1,4,8 ,9]. The influence of the 

following parameters were here analyzed: population size, elite size and probabilities of
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particular evolutionary operators on perform ance of the evolutionary algorithm  by means of 

own computer program w ritten in C++ language.

The best solution to the presented problem would be establishing the proper values of 

algorithm parameters by theoretical proof but it is impossible till now - due to lack o f the 

tools in such young field o f knowledge as the theory o f  evolutionary algorithms is.

In general, the theoretical proves of effectiveness o f evolutionary algorithms are very 

rare. Only a few theorem s are known e.g. about schemes. It would be a valuable achievement 

to do so for graph partitioning case but it exceeds the purpose of this paper. Furtherm ore the 

problem depends on the graphs considered. O ther papers o f one o f the authors, mentioned 

above, where other graphs had been considered, do confirm the tendencies shown by the 

underneath presented figures and analyses.

5.1. Population size

In order to establish the optim al population size of the evolutionary algorithm, the 

following analyses were performed: investigating an influence of the population size on the 

running time of the program  as well as on the quality o f  achieved outcomes. The algorithm 

effectiveness was m easured for the following parameters: the number o f generations 

(iterations) -  2000, probability o f  structural crossover -  0.3, probability o f bit type mutation -

0.2, probability o f structural mutation -  0.5, probability o f  using the operator o f local 

optimization -  0.04, elite size -  2, the test graph g-44 (presented in Fig. 1 ), n = 44, num ber o f 

components k = 3.

The minimum is known -  it is equal 3. It is stated only for test purposes and was used for 

establishing the useful stopping condition for the program. The condition on balanced 

partitioning was not entered into the program.

The algorithm was run independently for particular population sizes in the range 10 

*100 increasing the size by 10 (initially even by 5). The run o f the com puter program  was 

finished after perform ing 2000 generations. The results have been presented in Fig.2. Based 

upon the charts, the following conclusions can be drawn: from the Fig.2a -  in case of 

constant number of generations, the running time increases approxim ately in linear way with 

the population size in the whole assumed range, i.e.: 10 + 100. However, an influence of the 

population size on the obtained results of the algorithm has different shape. From  the chart in 

F'g- 2 b, it can be clearly seen that for the populations enclosing less then 30 chromosomes, 

the algorithm after perform ing 2 0 0 0  generations still had not found the optim al solution, the 

best results achieved were far from  the minimum.
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Fig. 1. Test graph g-44 which consists o f 44 vertices, 70 edges, the found 
minimum for k-partitioning is equal to 3 (k = 3)

Rys. 1. G raf testowy g-44 o 44 wierzchołkach, 70 krawędziach; znalezione 
m inim um  dla podziału na trzy partycje wynosi 3

The program found the minimum just after increasing the population size up to 40. It 

should be added that further increasing of population size (pop_size) does not have essential 

effect on the improvement of obtained results, because for the population greater than 60 

chromosomes -  the evolutionary algorithm did not find better solutions. F or example; for the 

data o f pop_size = 80 -  the running time of the program  is two times longer than for pop_size 

= 40 (in the case in which other parameters are the same), and the reached solution is almost 

the same in both cases.
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Population size
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Fig. 2. Influence o f population size on program running time (a) and on its 
effectiveness (b) for 2 0 0 0  generations 

Rys.2. W pływ rozmiaru populacji algorytmu ewolucyjnego na czas
obliczeń (a) i jakość osiągniętego wyniku (b) dla 2 0 0 0  generacji

However it should be underlined, as it has been assumed at the beginning o f the test, the 

evolutionary algorithm was stopped after perform ing o f 2 0 0 0  generations, even if the 

minimum has been found earlier. The greater the population size was the earlier the solutions 

were reached. Due to this, the more detailed analysis o f an influence o f  the population size on 

the convergence o f the evolutionary algorithm was made. The same param eters like in the 

previous test were used, except one o f them i.e. the stopping condition. The stopping 

condition was established as follows: the minimum value o f  the cutting edges is less than or 

equal 4 (min < 4 ) i.e. the result is close to the global minimum which for the test graph is 3. 

h was assumed, like in the previous one case, that the assumed in advance number of 
generations should be performed.
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Population size

Fig. 3. Generation num ber as a function o f population size
Rys. 3. Zależność liczby generacji potrzebnych do osiągnięcia minimum od rozmiaru 

populacji

Population size

Fig. 4. Running time o f  evolutionary algorithm as a function o f population size 
Rys. 4. Zależność czasu obliczeń algorytmu ewolucyjnego od rozmiaru populacji

The population size was changed in the range 10 -s- 280. The results are presented in Fig. 

3 and 4. Analyzing Fig. 3 and 4 it can be stated that the population size has an essential 

influence on the convergence o f the evolutionary algorithm. In the case o f  small populations, 

the algorithm results are not close to the minimum. Good results are obtained for the case 

when pop_size = 50, furtherm ore the number of generations in the algorithm needed for 

reaching the minimum (min = 4) is approximately 1700. The time needed for obtaining this 

result equals approx. 30 s. After increasing the population size up to 70 chromosomes, the 

convergence o f the algorithm  improves twice. The most interesting is that the time of 

reaching the acceptable results is also lower.

Comparing the charts in Fig. 2 and 4, an interesting conclusion can be drawn. Despite the 

fact that the greater population size is, the longer is the running time o f  the program  but the 

convergence o f the algorithm also increases. It means that there is purposeless to increase the 

population number over 60 to 70 chromosomes because it does not cause any improvement in
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reached solution. Despite the fact that the time o f  creating and analyzing o f one generation in 

the algorithm is longer, the total time o f  calculations does not increase (Fig. 4) but above 

some value of param eter pop_size  stabilizes.

5.2. Elite size

In Fig. 5 the results are presented which show an influence o f most suitable elite size r) 

on the running tim e o f the program. The evolutionary algorithm was launched independently 

10 times for r] = 1, 2, 3, 4, 5, 10, 20, ..., 80. The execution o f the program  was stopped after 

finding the solution which fulfills the inequality, min < 4 or exceeding the maximal number 

of generations max_gen  =  1 0 0 0 .

pop_size = 100

S  40  

|  30  

o) 20

I 10
IX 0

Fig. 5. Average running time o f evolutionary algorithm for different elite sizes in 
the case o f proportional reproduction for pop_size = 1 0 0  

Rys. 5. Średni czas działania algorytmu ewolucyjnego dla różnej wielkości elity t| 
przy zastosowaniu reprodukcji proporcjonalnej dla pop_size = 1 0 0

The parameters o f the evolutionary algorithm used in this task: (a) probability of 

structural crossover -  0.3, (b) probabilities o f mutation -  bit type - 0.2, (c) -  structural -  

0-5, (d) probability o f operator o f local optim ization -  0.04, (e) test graph g-44 (see Fig. 1), 

(f) number of com ponents -  3, (g) population size pop_size  = 100.

The tests of the algorithm were perform ed for pop_size = 50, max_gen = 2000 as well as 

pop_size = 200, max_gen = 500, for the similar probabilities o f the evolutionary operators 
(Fig. 6  and 7).

2 0  40  60 80  100

Elite size
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pop_size = 50

o
E -*—■
O)c
ccu
cr

Elite size

Fig. 6 . Average running time o f evolutionary algorithm for different elite sizes in the 
case of proportional reproduction for pop_size = 50 

Rys. 6 . Średni czas działania algorytmu ewolucyjnego dla różnej wielkości elity r| 
przy zastosowaniu reprodukcji proporcjonalnej dla pop_size = 50

pop_size = 200

S  25
a  20
I 15 
f  10
i  5 
£T 0

Ez :

50 1 0 0  

Elite size

150 200

Fig. 7. Average tim e o f  evolutionary algorithm running for different elite sizes T| 
for proportional reproduction; pop_size = 2 0 0  

Rys. 7. Średni czas działania algorytmu ewolucyjnego dla różnej wielkości elity r| 
przy zastosowaniu reprodukcji proporcjonalnej dla pop_size = 2 0 0

As can be seen in Fig. 6  and 7, for pop_sizes = 50 and 200, the shortest times of 

calculations were reached for the elite size r) = 1. Similar outcomes was achieved for 

pop_size = 1 0 0 , what allows us for the conclusion that the best results are obtained for the 

small elite (a few chromosomes).
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Elite size 

— pop_size = 200 - a-  pop_size = 100 — pop__size = 50

Fig- 8 . Running time o f  evolutionary algorithm vs. population size T] in the case of 
proportional reproduction 

Rys. 8 . Wpływ wielkości elity r| na czas obliczeń algorytmu ewolucyjnego przy zastosowaniu 
reprodukcji proporcjonalnej w zależności od rozmiaru populacji

Increasing the elite size is not recommendable -  it causes that convergence is too fast.

It can be stated that for the large sizes o f populations (Fig. 8 ), the elite size has not so 

essential influence like in the case o f  low sizes o f population pop_size. It is confirm ed by the 

fact that in the case when the elite constitutes 80% o f the whole population (i.e. very large 

elite), in the case o f pop_size  =  2 0 0 , the algorithm has found the solutions very rarely after in 

advanced established num ber o f generations. However, in the case o f pop_size  = 50 it was 

just impossible. The elite size should be taken considerably into account, choosing the values 

of the parameters.

5.3. Probabilities of evolutionary operations

Aiming for an assurance o f an effective execution of the evolutionary algorithm, the 

probabilities o f incorporating o f particular- evolutionary operators should be properly chosen 

-  in our case - special types o f crossover and mutation operators.

Analyzing an influence o f  the structural crossover probability p c on execution of the 

algorithm the following tests were done. The algorithm run independently 10 tim es for every 

from the following values o f the probability pp. 0, 0.05, 0.1, ..., 0.9. The values o f other 

parameters were listed below: (a) probability o f bit type mutation -  0 .2 , (b) probability o f 

structural mutation -  0.5, (c) probability o f operator of local optim ization -  0.04, (d) test 

graph g-44 (Fig. 1), (e) number o f com ponents k = 3, (f) population size pop_size  = 100, 

(0 performance o f  the algorithm  has been stopped after finding the value min < 4 or after 

exceeding the number o f generation higher than 1 0 0 0 .
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Fig. 9. Average generation num ber vs. crossover probability 
Rys. 9. Średnia liczba generacji jako funkcja prawdopodobieństwa krzyżowania 

strukturalnego

From the chart in Fig. 9, it can be seen that the best outcomes are obtained for the 

crossover probability pc in the range 0.3 h-0.5.

1000c

1  800

§ 1  600 
a) E
g, c  400
CO
cu 200

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Bit mutation probability

Fig. 10. Average generation num ber in the evolutionary algorithm  vs.
probability o f  bit (one-point) mutation 

Rys. 10. Średnia liczba pokoleń jako funkcja praw dopodobieństwa mutacji 
bitowej (jednopunktowej)

In the next step, an influence o f the probability of bit type mutation p m on algorithm 

execution was analyzed Fig. 10. The tests were done for the parameters: (a) probability of 

structural crossover -  0.4, (b) probability o f structural mutation -  0.5, (c) probability of 

operat o f local optim ization -  0.04, (d) test graph g-44 (Fig. 1), (e) partition into k = 3 

components, (f) population size pop_size -  1 0 0 , (g) algorithm perform ance was stopped a fter  

finding the value nun < 4, or after exceeding the number o f generations over lO O O .T h e  

course o f the average generation number vs. probability o f  bit mutation p,„ has a  different
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type than in the case o f p c. For the test graph -  the advisable value p m is enclosed in the 

interval 0.1 +  0.2 (Fig. 10). Upon the com parison of Fig. 9 and 10, it can be stated that the 

operator of bit mutation has more essential influence on the proper perform ance o f the 

evolutionary algorithm then the operator o f structural crossover. The advisable values pm are 

enclosed in the narrow interval, what causes that slight changes o f probability pm (leaving 

this interval) cause essential lowering o f the algorithm efficiency.

However next param eter i.e. probability p r can vary in the wider range, it does not cause a 

noticeable lowering o f the algorithm convergence.

Further, the probability o f structural mutation p ms was taken into account. Test of 

algorithm was perform ed for the following parameters: (a) probability o f structural -  0.4, (b) 

probability o f bit mutation -  0.2, (c) probability o f operator of local optim ization -  0.04, (d) 

test graph g-44 ( F ig .l), (e) partitioning o f graph into k = 3 components, (f) population size 

pop_size = 100, (f) perform ance o f algorithm was stopped after finding value min < 4  or 

exceeding number of generations over 1 0 0 0  generations.

It is worth to add, that in traditional genetic algorithms, the suggested range o f mutation is 

lower than 0.1 or even 0.05 but these numerical investigations proved that standard 

suggestions sometimes do not be adequate to evolutionary operations and graph optimization 

problems.

•5 6 0 0  

ju w 5 0 0  

E o  4 0 0  

i  2  3 0 0
Q) Q)
i? S  200
>
<

1 0 0  

o

0  0,1 0 ,2  0 ,3  0 ,4  0 ,5  0 ,6  0 ,7  0 ,8  0 ,9  1

Probability of structural mutation

Fig. 1 1 . Influence o f probability o f  structural mutation on on the 
evolutionary algorithm running 

Rys. 1 1 . Średnia liczba pokoleń w algorytmie ewolucyjnym jako funkcja 
prawdopodobieństwa mutacji strukturalnej

From Fig. 1 1  follows that changes o f param eter pm  in the range 0 -s- 0.9 were done, but 

any clear effect can not be recognized. It can be stated that the operator o f structural mutation 

almost has not any influence on the perform ance of the proposed evolutionary algorithm or 

lts mfluence is nonessential therefore it can be omitted. This conclusion corresponds to the
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considered test graph. Nevertheless, in the next tests last decision was not introduced into 

practice.

The last performed test was an analysis o f influence o f the probability o f the operator of 

local optim ization p„i0 on the effectiveness o f  the proposed approach, Fig. 12. The algorithm 

was tested for the same param eters as previously: (a) probability o f bit mutation -  0 .2 , (b) test 

graph g-44, (c) partitioning o f graph into k = 3 components, (d) population size pop_size -  

100, (e) perform ance o f algorithm was stopped after finding value min < 4 or exceeding 

number of generations over 1 0 0 0  generations.

Fig. 12. Average number of generation in the evolutionary algorithm vs.
probability o f operator o f local optim ization 

Rys. 12. Średnia liczba generacji algorytmu ewolucyjnego jako funkcja 
prawdopodobieństwa operatora lokalnej optymalizacji.

S  25 -i------------------------------------------------------------------------------------
<D

0 0,1 0,2 0,3 0,4 0,5 0,6
Probability of O.L.O

Fig. 13. Average tim e o f calculations vs probability o f  operator o f local optim ization 
Rys. 13. Średni czas obliczeń jako funkcja prawdopodobieństwa operatora optymalizacji 

lokalnej

Analysing the results in Fig. 12, it is easy to spot that the operator o f local optimisation 

gives very good results. It can be seen that without the operator OLO (probability equal to 0), 

the tested evolutionary algorithm does not find a solution -  it just stops after performing of 

1000 generations. However in the case o f  an application o f this operator with the probability
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equal to 0.02, the algorithm  finds fairly acceptable solutions. By increasing the probability 

p0i0 up to value 0 .1 , it can be observed five times reduction o f number o f the generations 

repeated in the algorithm run in com parison to the variant without the OLO operator.

Probability of operator

- • —OLO Mutation —»— Crossover
Fig. 14. Running time o f 10 generations vs. the probabilities o f evolutionary operators
Rys. 14. Zależność czasu obliczeń 10 generacji algorytmu od prawdopodobieństw  

operatorów genetycznych (ewolucyjnych)

Fig. 13 shows that it is not any essential influence of the OLO probability on the average 

running time o f the program.

It should be fairly add that there are some costs o f using this operator. The operator OLO 

is more complicated in its calculation routine then the rest o f evolutionary operators, it means 

that more operations have to be performed for one generation analysis, therefore it runs 

essentially slower.

Fig. 14 shows that for the operator OLO time o f  the analysis o f  one generation depends 

linearly on the probability o f  activity of this operator -  it is different situation from  all others 

evolutionary operators which frequency of activity does not influence the speed of the 

program performance essentially.

Despite this drawback, the operator of local optim isation is very effective w hat is shown 

especially in Fig. 12. Due to the fact that the operator OLO improves the convergence of the 

evolutionary algorithm, the longer perform ance is acceptable. Fig. 13 shows that the operator 

of local optimisation improves the average tim e o f the calculation approx. 30%; for the most 

suitable values of its probability in the range 0 . 1  0 .2 .

6. Conclusions and remarks

In the paper, the analysis o f  the parameters o f the evolutionary algorithm applied for the 

graph partitioning problem  has been presented. The algorithm proposed uses the special
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evolutionary operators constructed especially for the task o f  graph partitioning. The problem 

is discrete and the fitness function is calculated upon the special search through the applied 

graph representing algebraic structure (e.g. incidence matrix, list, tree). These methods for k= 

2  were described, among others, in paper [ 1 2 ).

It should be underlined that one o f the most suitable tools is the operator o f local 

optimisation. Its importance is essential, without this operator the algorithm  is almost 

powerless. Like in the case of other evolutionary algorithms, especially important is a proper 

selection o f  particular param eters o f an evolutionary algorithm. Some conclusions can be 

drawn upon the above presented analyses: the elite size should be small, the special operator 

OLO dedicated to the problem o f graph partitioning should be used.

It should be highlighted that the genetic as well as evolutionary algorithms do not assure 

finding the minimum from  theoretical point of view but frequently they do. Therefore, like 

can be seen from  the entire paper, the solution has not been searched. It is known, that for test 

graph, the minimal num ber o f  edges is three, the partitions which gives the solution can be 

distinguished by the reader. The aim o f  our consideration was to investigate the influence of 

parameters, therefore even in some stopping conditions o f the algorithm it has not been 

assume reaching the minimal num ber o f  edges connecting the parts o f the particular 

partitioning.

Some recom m ended values o f the parameters are listed in Table 1. Similar results were 

obtained for different graphs but they are not included in this paper (see some other 

w orks[l,8,9]). In overall, the result does not depend on the graph but the num ber o f  vertices 

should not exceed hundreds.

Further investigations for very large graphs are in progress: prospective topics could be 

e.g. hybrid algorithms in which more knowledge from graph theory would be embedded in 

evolutionary operations or parallel algorithms.

There are some suggestion that the ranks of the graph vertices can be taken into account 

constructing the operators. The vertices o f the maximal ranks should be distributed 

throughout the com ponents o r collected in one com ponent. It should depend on the distance 

between them in a graph.
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Table 1
Recom m ended values o f parameters o f the evolutionary algorithm

Param eter Recommended range

Population size -  pop_size Os o •I- o o

Elite size -  elit_size 1 - 2

Probability o f crossover - pc 0,3 - 0 ,5

Probability of mutations -  pm 0 , 1  + 0 , 2

Probability of OLO - pc 0,05 + 0.2

Introducing of this ideas into practice will cause the essential elongation of the running 

time of such enhanced algorithm. Therefore, hybrid algorithms are the subject o f interest o f 

some researches.
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Omówienie

W  pracy omówiono problem  k-podziału grafu, który ma liczne zastosowania praktyczne. 

Problem sform ułowano warunkam i (a) -  (e) w rozdziale 1. Algorytmy rozwiązania tego 

problemu były stosowane do: projektowania układów scalonych o dużej integracji, podziału 

siatki modelującej obiekty w metodzie MES, rozpoznawania obrazów oraz dekompozycji 

dużych zadań optymalizacji konstrukcji. D la dużych grafów (pojęcie umowne) w literaturze 

analizuje się różne algorytmy k-podziału grafu, przy czym w ostatnich łatach wielokrotnie 

proponowano zastosowanie algorytmów ewolucyjnych do rozwiązania tego zagadnienia. 

W wielu publikacjach nie analizowano wpływu param etrów algorytmu ewolucyjnego na 

efektywność metody. W  niniejszym artykule zaproponowano algorytm ewolucyjny do 

k-podziału grafu wykorzystując wybrane operacje ewolucyjne z wielu przeanalizowanych 

prac. W ybrano specjalizowane operatory, między innymi: mutację strukturalną (zachowuje 

liczności komponentów), krzyżowanie strukturalne (zachowuje jeden komponent) oraz 

operator Optymalizacji Lokalnej [O.L.O.](działa na pewnym  etapie systematycznie, co 

odróżnia go od wszelkich innych operatorów). Do testów wybrano graf przedstawiony na rys. 

1 o 44 wierzchołkach, przy czym autorzy przeprowadzali testy dla innych grafów uzyskując 

analogiczne rezultaty. Przedstawiono analizę wpływu następujących parametrów algorytmu 

ewolucyjnego na jego działanie: rozm iar populacji (rys. 2 + 4), wielkości elity (rys. 5 + 8 ), 

prawdopodobieństwa krzyżowania (rys. 9), prawdopodobieństwa mutacji (rys. 10 + 11). 

prawdopodobieństwa operatora O.L.O. (rys. 12 -s- 13) oraz porównano wpływ prawdopo­
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dobieństw kilku operacji na czas pracy algorytmu (rys. 14). Ponieważ chodziło o testowanie 

działania algorytmu, więc stosowano także jako kryterium zatrzymania: zbliżanie się 

bieżącego rozwiązania do znanego minimum. Na podstawie analiz zestawiono zalecane 

zakresy parametrów algorytmu (tab. 1). Należy zauważyć, że operacja mutacji odgrywa w 

tym algorytmie w ażną rolę i je j zakres powinien być zm ieniony w stosunku do zwykle 
zalecanych w literaturze zakresów (pm < 0,05). Zastosowanie operatora O.L.O. istotnie 

przyspiesza dochodzenie do rozwiązania przez przedstawiony algorytm  ewolucyjny.
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