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Summary. This article describes a method o f query execution time optimization 
based on the UB-Tree index [1] which is used for data clustering. The optimization 
method was implemented in a DR/JB component environment [3].

Keywords: data loading, UB-Tree, optimization, data warehouses

ŁADOWANIE DANYCH WYKORZYSTUJĄCE INDEKS UB-TREE 
ZAIMPLEMENTOWANE W ŚRODOWISKU DESIGN- 
RESUME/JAVABEANS

Streszczenie. Artykuł przedstawia metodę optymalizacji czasu wykonywania 
zapytań kierowanych do hurtowni danych poprzez odpowiednie rozlokowanie danych 
na dysku zgodnie z indeksem UB-Tree [1]. Implementacja dokonana została w 
środowisku komponentowym DR/JB [3].

Słowa kluczowe: ładowanie danych, UB-Tree , optymalizacja, hurtownie danych

1. Introduction

Data warehouses gather and process large amounts o f data (often tens o f  GB). Not only 

proper managing o f such amount o f  data is important but also a high level o f  efficiency must 

be held. Minimization o f  the queries execution time can be achieved in many different ways. 
These are for instance:

indexing that speeds up searching and data joining,

- initial data aggregation, performed during the ETL process, 

materialized views,
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taking over the control o f  SQL optimizer,

- intentional data redundancy in dimension tables (denormalization o f  dimension).
Indexing allows to quickly locate tuples fulfilling the specified conditions (B*Tree index) 

and speed up the tables joining operation when is used for low cardinality attributes like color 

or sex (bitmap index) [5]. Moreover, external indexes working next to database engine are 
commonly used (e.g. aggregate tree). Such index is created in RAM memory so all operations 

using it are very fast. Initial data aggregation and materialized views technique allow to 

prepare required data earlier, but possible query set must be known before creating aggregates 
or materializing views. Using hints for SQL query optimizer can also bring a significant 

reduction o f execution time. Denormalization o f  the dimension and intentional data 

redundancy is a very common approach in data warehouses. It allows to save a lot o f  time 
required for joining large data tables. The method o f query execution time optimization 

presented in this paper bases on the UB-Tree index [1], The UB-Tree clusters data in a way 

which can reduce number o f  accesses to disjoint data pages on a hard drive. This reduces both 

the time needed for fetching data from the disc and the query execution time.

2. Idea of the UB-Tree

UB-Tree is a multidimensional extension o f  the B-Tree index that is very common in many 

available data base systems. UB-Tree helps to manage multidimensional data. Increase of 
query execution efficiency is obtained by data clustering. Clustering causes that tuples with the 

same or similar values o f attributes are stored together on the disc. This is important when 
dealing with point queries or range queries. Let’s analyze the influence o f the data distribution 
on the efficiency o f  the point query for a scalar key.

K 1 3 2 2 3 3 1 1 2 3 1 3 2 1 3 3

Page 1 Page 2 Page 3 Page 4

Fig. 1. Random data distribution on pages 
Rys. 1. Dane losowo rozmieszczone na stronach

K 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3

Page 1 Page 2 Page 3 Page 4

Fig. 2. Data sorted by a key value
Rys. 2. Dane uporządkowane wg narastającej wartości klucza
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Figure 1 shows the exemplary distribution o f  16 tuples with a set o f  key values 

K  € {1,2,3} on disc pages containing 4 tuples each. Execution o f  the point query for a key 

value K  = 3 requires loading o f  4 data pages. Figure 2 presents the same data set sorted by a 

key attribute. In this case only 2 pages must be loaded to fetch all the tuples with K  = 3: 

pages 3 and 4. Assuming that data pages don’t have to be located on the disc next to each 

other, reading any o f  them involves long lasting I/O operations like head positioning and 
sector reading. We can see that simple data ordering may result in 50% reduction o f the query 

execution time (reading only 2 o f  4 pages).
Figures 3 and 4 show the comparison o f  two-dimensional data distribution. A function 

(K2, K x) ->■ A has been defined to map values o f  the key attributes to so called tuple address. 

The function has a following definition:

• (1,1)-*0  

• (1,2)—> 1

• (2 ,1 )-» 2  

• (2,2) ->  3

The data in the figure 3 has random distribution whereas data in the figure 4 was sorted by 

address value A.

K, 1 1 2 1 1 2 2 1 2 1 2 2 1 1 1 2

k 2 1 2 1 1 2 1 1 1 2 1 1 2 2 2 1 2

A 0 2 1 0 2 1 1 0 3 0 1 3 2 2 0 3

Strona 1 Strona 2 Strona 3 Strona 4

Fig. 3. Random distribution o f  two-dimensional data on pages 
Rys. 3. Dane dwuwymiarowe losowe rozmieszczone na stronach

K, 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2

k 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2

A 0 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3

Strona 1 Strona 2 Strona 3 Strona 4

Fig. 4. Two-dimensional data sorted by an address value
Rys. 4. Dane dwuwymiarowe uporządkowane wg narastającej wartości adresu

To read tuples with address A = U ( a 2 = I, A, = l) 4 pages must be loaded when data is 

not sorted, and only 2 o f  them when data is sorted. Reading tuples with K 2 =2  and value o f



144 M. Gorawski, P. Marks

K, causes loading o f  4 pages tor unsorted data, and again only 2 pages for sorted data. We 

can observe that simple data ordering may result in significant growth o f  query execution 
efficiency.

2.1. Mapping multidimensional space to linear space

In the examples presented in Figures 3 and 4 we used the transformation assigning a scalar 
value to the multidimensional attributes combination. In other words, we mapped a 

multidimensional space to a  linear space and the transformation we use is so called mapping 
function. There are different transformation methods, for example: compound function, 
Lebesque function and Hilbert function [1], Basing on a two-dimensional space we compare 

shapes o f so called space filling curves [1] associated with these functions.

Fig. 5. Compound curve Fig. 6. Z-curve Fig. 7. Hilbert curve
Rys. 5. Krzywa złożona Rys. 6. Krzywa Z Rys. 7. Krzywa Hilberta

All the curves begin in the upper left comer o f  the rectangle representing two-dimensional 

space (particular case o f  a multidimensional space). The upper left comer corresponds to 
address A -  0 . When traversing the space along the curve, next pieces o f the space are 

covered, and each step increments the address by 1. The first look at the shape o f  the 
compound curve (Fig. 5) lets us conclude that attributes are not treated equally and one of 

them has “higher priority”. Such a distribution is obtained by concatenation o f the binary 
representation o f  the attributes. This method is very common for keys defined using two or 

more attributes. The distributions o f  the Z-curve (Fig. 6) corresponding to Lebesque function 
and Hilbert curve (Fig. 7) are much better. There is none (for Hilbert curve) or a small number 

o f  significant changes o f  the attributes’ values when the tuples’ addresses increase. The main 

advantages o f  the Z-curve are symmetrical distribution in the space it fills and low complexity 
o f the Z-address calculation algorithm.
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2.2. Z-addrcss calculation algorithm

The algorithm’s input parameters are: the attributes’ values vector x  and the dimensions’ 

cardinalities vector r. A few iterations are required in order to evaluate the address. During 
every iteration each value from the cardinality vector r  is divided by 2, then it is checked 

whether the value is smaller than the corresponding value in the values vector x. I f  so, zero is 
stored. Otherwise, the value one is stored and the value in vector x  is decreased with the value 

from the cardinality vector. Final Z-address is a concatenation o f the stored zeros and ones. 

Values o f  the stepsO and steplenghtO functions are chosen in a way that causes each attribute 

to be divided and compared as many times as many bits contains its binary representation.

Input: x  = (x ,,...,xd) : «-dimensional tuple

r = (rx,...,rd) : dimensions’ cardinality vector

Output: a : Z-address o f  a x  tuple

for s — 1 to stops(1)
for i = steplength(s) to 1 

if Xi < rj./2s then
as,d-i = 0

else
U3,d-i =  1
Xi = Xt -  r i /2 s

end if 
end for 

end for

Fig. 8. Z-address calculation algorithm in pseudo-code notation 
Rys. 8. Algorytm obliczania adresu Z w  pseudokodzie

3. DR/JB component environment

A DR/JB environment [3] is a set o f JavaBeans™ components, which let us create data 

extraction applications easily. Created applications can perform both extraction process and 
recovery of the interrupted extraction process basing on the Design-Resume algorithm [2]. 

The DR/JB environment contains the following components:

• application panel {JDAGPanel class),

• aggregation node (TA, TransformationAggr class),
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• filtering node (TF, TransformationFilter class),

• grouping node (TG, TransformationGroup class),

• joining node (TJ, TransformationJoin class),

• sorting node (TS, TransformationSort class),

• extractor node (E, FileExtractor class),

• inserter node (I, Filelnsertor and DBInsertor classes).

We can build any extraction application by connecting the above components. It will use 
extractors to fetch the source data, transform the data in selected transformations and finally 

store the transformed data in a destination place using inserter node. All components chosen 

by a designer create extraction graph. Its nodes are components and arrows define a data flow 

direction (Fig. 9).

Fig. 9. Sample o f  the extraction graph 
Rys. 9. Przykładowy graf ekstrakcji

The extraction graph is a directed acyclic graph (DAG) what means there are no loops and 

for each node the data flow direction is clearly defined. Each node is assigned a set o f 

properties. They allow putting additional filters computed by the Design-Resume resumption 

algorithm into a graph’s structure when the failure occurs. The modified graph is called a 
resumption graph and it is used for recovery o f the interrupted extraction process.

4. The UB-Ioading implementation in the DR/JB environment

The main goal o f  the UB-loading is to load data in a way that the tuples are sorted by the 

calculated tuples’ addresses. This results in an increase o f  the query processing efficiency. 
Implementation o f the UB-Tree indexing can be done in two ways:

a) integration o f  the UB-Tree managing code with a data base kernel,
b) use o f  the specific data loading algorithm.

Integrating the UB-Tree with RDBMS is quite complicated. We need to extend definitions 

o f  the DDL statements in the SQL parser, add cost models to the query optimizer and create a 

library for managing the physical data distribution on the media. All these improvements result 
in a significant growth o f the processing efficiency [1], Controlling the loading process 

without any modifications to the RDBMS kernel is much easier way o f increasing the 

efficiency. The discussed implementation bases on this approach.

©
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The UB-loading mechanism takes advantages o f  the Oracle9i data base features like JDBC 

interface and index-organized tables (IOT). The loading process is divided into the following 

stages:
a) creation o f  the destination IOT table,

b) Z-address calculation,
c) storing tuples in the destination table,
d) creation o f  the indexes on the attributes used for Z-address calculation.

4.1. Creation of the destination table

The destination table is created by the following query:

CREATE TABLE <table_name> ( 
attribute! type!, 
attribute2 type2,

7tm im ?v vinuDUD i o n  \

ZINDEX_COLLISION NUMBER(10),
PRIMARY KEY (ZINDEX, ZINDEX_COLLISION)

)
ORGANIZATION INDEX
NOLOGGING;

Two additional columns z i n d e x and z i n d e x_c o l l i s i o n are added to the table’s 
definition. The z i n d e x column contains the tuples’ Z-addresses, while the z i n d e x_c o l l i s i o n 
column was added to differ the tuples with the same Z-address. It was necessary to meet the 

table’s unique primary key requirements. The tables are created with the o r g a n i z a t i o n  
i n d e x phrase. The task o f  n o  l o g g i n g phrase is to slightly increase efficiency o f  the loading 

by turning off logging o f  the table’s content changes.

4.2. Z-address calculation

For each tuple the Z-address is calculated according to the calculation algorithm described 

in section 2.2. The input vector o f  the algorithm is created from the attributes chosen by an 

application designer. As a result o f  the calculation we obtain a scalar Z-address value.

4.3. Storing tuples in the destination table

Each tuple is inserted into the destination table in accordance with the algorithm presented 

in Figure 10. During the whole process an additional hash table ht is used. Before insertion it 

is checked if the Z-address o f  the currently inserted tuple is not stored in the hash table. I f  so, 
the value o f the collision field (z i d x c o l) assigned to the address is fetched from the table. This
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is the value that has been placed in the destination table already, so before next insertion it 
must be increased in order to avoid repeating the value o f  the key k (z i d x , z i d x c o l ) . In the 

case the hash table does not contain the Z-address o f  the inserted tuple, we try to insert the 
tuple with collision field set to 1. In case the insertion fails, what means the collision occurred, 

we get the maximal value o f  the collision field from the destination table. After incrementing it 

and storing in the hash table we try to insert the tuple once again.

hasnMap h t ;
if (HT(ZIDX) != null)

ZIDXCOL = HT(ZIDX);
else (

if (insert(K(ZIDX,1)) == success) 
return OK;

z i d x c o l  =  getSQL("select max(ziNDt;x_COLLiSiON) from <table> 
where ZINDEX=" + ZIDX);

1
ZIDXCOL++;
HT(ZIDX) = ZIDXCOL;
if (insert(K(ZIDX,ZIDXCOL)) == success) 

return OK;
else

return ERROR;

Fig. 10. Tuple insertion algorithm 
Rys. 10. Algorytm wstawiania krotki

The hash table solves the problem o f repeating o f  the Z-address values and reduces the 

number o f  the insertion collisions as much as possible. Presented approach holds the size o f 
the hash table on the rational level because it stores only these addresses that caused a 

collision.

4.4. Creation of the indexes on the attributes used for Z-address calculation

Standard B-Tree indexes are created after loading on the attributes used for Z-address 

calculation. This action is not obligatory but it is possible that these attributes will be used in 

queries conditions since they were a part o f the UB-Tree index, hence it is reasonable to speed 

up the access to them.

4.5. Transformation functions

Z-address can be calculated only from numeric attributes. To extend the possibility o f  the 

UB-loading usage, two transformations were defined. They allow to transform any type of 
attribute to the numeric value.

a) DATE transformation -  changes date into a number o f  days since 1 .January. 1970,
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b) ENUMERATE transformation -  each new value o f  the attribute is assigned next 

integer value, colors for example: blue = 1, orange = 2, yellow  = 3, etc.

Described mechanisms and solutions were gathered in a DBInsertor loading component.

5. Efficiency test of the UB-loading

We performed a few tests to examine the influence o f the UB-loading on the efficiency o f 

the whole extraction process. Researches were performed for extraction graphs o f a different 

structure and number o f  processed tuples.
Test 1 and 2 were performed according to the extraction graph presented in Figure 11. 

The difference between them is the selectivity o f  the filtering transformations, which for the 

test 1 was 90%, and for test 2 only 40%. In both cases an extractor node read a set o f  100k 

tuples.
Figure 12 shows the extraction graph used in the third test. Extractor fetches 150k tuples 

and the grouping transformation generates 1200 tuples as a result.

Test 4 is an example o f processing data fetched from 2 different sources E l and E2. 

Extractor E l reads 2500 tuples and extractor E2 reads 200k tuples. The size o f  the result set 

is 2500 tuples. The extraction graph was shown in Figure 13.
Tests 5 and 6 base on the extraction graph shown in Figure 14. The difference is the 

number o f  tuples read by extractor E2, which was 100k for test 5 and 150k tuples for test 6. 
Sizes o f the data sets read by the other sources: E l -  2500, E3 -  1200, E4 -  500, E5 -  10. 

Each result set contains 2500 tuples.

Fig. 11. Extraction graph o f  the tests 1 and 2 
Rys. 11. Graf ekstrakcji testów nr 1 i 2

Fig. 12. Extraction graph o f  the test 3 
Rys. 12. G raf ekstrakcji testu nr 3
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Fig. 13. Extraction graph o f the test 4 
Rys. 13. Graf ekstrakcji testu nr 4

Fig. 14. Extraction graph o f the tests 5 and 6 
Rys. 14. Graf ekstrakcji testów nr 5 i 6

In Figure 15 we can observe a significant influence o f the loaded tuples number on the 
total processing time in the tests 1 and 2. The result set in the test 2 (60k tuples) is 
approximately 6 times larger in comparison with the test 1 (10k tuples). This is connected with 

the increase o f the loading time caused by the relatively slow JDBC interface. The use o f the 
UB-loading resulted in additional growth o f  the loading time the reason being the necessity of 

the Z-addresses calculation and data distribution managing on the Oracle data base pages 
(very long-lasting operation). In the rest o f  the tests the result sets were smaller (1200-2500 

tuples). This let us show the influence o f  the UB-loading on the complicated processing, 
where aggregation, grouping and joining is also performed.

Figure 16 shows how the use o f  the UB-loading increases the processing time in particular 

tests. In the tests 1 and 2, where the loading process is a dominant since the filtration 

performed in the filtering nodes has low complexity, the processing time was significantly 
increased. In the rest o f  the tests, the processing time is mostly influenced by the 

transformation nodes, so there is no significant change in the processing time after use o f  the 
UB-loading. In the tests performing really complex processing, the growth o f the processing 

time does not exceed a few percent.
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Fig. 15. Comparison o f the processing time o f different loading methods 
Rys. 15. Porównanie czasów przetwarzania różnych metod ładowania danych
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Fig. 16. Growth o f the processing time during UB-loading 
Rys. 16. Wzrost czasu przetwarzania po zastosowaniu ładowania UB

6. Conclusions

In this paper we present a query execution time optimizing method based on the UB-Tree 

index data clustering on disc pages. As described in [6] such clustering may result in increasing 

the query processing efficiency even three times. Clustering reduces the number o f  accesses to 

the disc what directly decreases the query processing time. The tests described in [6] were
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performed in single- and multi-computer architecture. In both cases the advantage o f  the UB- 
loading was doubling the query execution performance. The UB-loading takes more time than 

the standard loading and in particular cases can even increase the loading time by 75% (tests 1 

and 2). However, the cases where the loading process is a dominant are uncommon. During 
complex ETL processes, additional time required by UB-loading is extremely short.
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Omówienie

Artykuł przedstawia metodę optymalizacji czasu wykonywania zapytań poprzez 

rozmieszczenie danych na dysku zgodnie z porządkiem indeksu UB-Tree. Takie działanie 

pozwala zredukować liczbę dostępów do stron dyskowych, a tym samym skrócić czas 
wykonywania zapytania. Adresy wstawianych zgodnie z algorytmem z rys. 10 krotek 

obliczane są wg algorytmu z rys. 8 opisanego szczegółowo w [1]. Przeprowadzone zostały 

testy mające na celu pokazanie, jak użycie ładowania UB wpływa na czas trwania procesu 

ETL. W zależności od złożoności procesu ekstrakcji zaobserwowano większe (testy 1 i 2) lub
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niniejsze (testy 4, 5 i 6) wydłużenie czasu przetwarzania. Jednak wzrost czasu ładowania 

hurtowni danych daje zysk w postaci znacznie szybszego przetwarzania zapytań. Testy 
przeprowadzone w [6] wykazały, że ładowanie UB powoduje około dwukrotne zwiększenie 

wydajności przetwarzania zarówno w  architekturze jedno-, jak i wielokomputerowej. Testy 
wykazały również niską wydajność interfejsu JDBC, który stanowił „wąskie gardło” systemu 

testowego.
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