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BASIC NOTATION 

Vectors and matrices are denoted by boldface letters, e.g., 𝐊 

Latin symbols: 

𝑏𝑖 – volume force, 

𝑐𝑖𝑗 – elastic constants, 

𝒄𝒊𝒋𝒌𝒍 – tensor of elastic constants, 

𝐶𝑅 – crossover rate, 

𝐷𝐸𝑖𝑡𝑒𝑟 – number of generations in differential evolution, 

𝐷𝐸𝑝𝑜𝑝𝑠– size of population in differential evolution, 

𝐸 – Young’s modulus,  

𝑓𝑖 – objective function, 

𝑓𝑏𝑢𝑐𝑘 – buckling factor, 

𝐹𝑐 – contact force, 

𝐟 – vector of objective functions, 

𝐹 – scaling factor, 

𝑔𝑖 – equality constraint, 

ℎ𝑖 – inequality constraint, 

ℎ𝑣 – hypervolume, 

𝐼 – electrical current, 

𝐼𝑧 – moment of inertia about axis 𝑧, 

𝐈 – global electric current vector, 

𝑘 – thermal conductivity,  

𝐊𝐄   – global electrical conductivity matrix, 

𝐊𝐌   – global stiffness matrix, 

𝐊𝐓   – global thermal conductivity matrix, 

𝐩 – vector of parameters, 

𝐏 – mechanical load vector, 

𝑝 – mechanical load, 

𝑞 – heat flux, 

𝑄 – internal heat source, 
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𝐐 – global heat flux vector, 

𝑅 – electrical resistivity, 

𝑡 – time, 

𝐭 – transition vector, 

𝑇 – temperature, 

𝐓 – global temperature vector, 

𝑢𝑖 – displacement components, 

𝐮 – displacement field, 

𝐔 – global displacement vector, 

𝐕 – global voltage vector, 

𝑣 – velocity, 

𝐱 – vector of design variables. 

Greek symbols: 

𝛼 – angle of attack, 

𝛼𝑐 – heat convection coefficient, 

𝛼𝑡 – thermal expansion coefficient, 

Γ – part of the boundary, 

𝜀0 – vacuum permittivity, 

𝜀𝑖𝑗 – strain tensor components, 

𝜃 – subspace of feasible solution space, 

𝜆 – Lamé’s first parameter, 

𝜆𝑖 – Lagrange multipliers, 

𝜇 – Lamé’s second parameter, 

𝜈 – Poisson’s ratio, 

𝜌 – charge flux density, 

𝜎𝑖𝑗 – stress tensor components, 

𝜎𝑒𝑞 – equivalent stress (Huber-Mises-Hencky hypothesis) 

𝜙 – electric potential, 

𝜑 – pre-bending angle, 

Ω – feasible solution space. 
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1. INTRODUCTION 

The design process of mechanical systems leads to creation of new technical objects 

which satisfy needs identified beforehand. One of the steps of this multiphase process is 

optimization during which the design is improved in the context of defined objectives. 

Objectives in the optimization process are related to previously defined needs. For optimization 

purposes, requirements must be expressed in mathematical form in a way that allows solutions 

to be compared with each other. It is possible to perform optimization considering either a single 

objective or a set of objectives at once. In many cases the requirements asked of mechanical 

systems are contradictory with each other and their simultaneous improvement is difficult or 

impossible. Results of multiobjective optimization are in the form of set of solutions rather than 

a single design and can provide additional information on the trade-offs between considered 

objectives. State and form of an optimized object is controlled by a set of design variables. The 

direction of search is driven by algorithms in a way to obtain improved solutions over time. 

There are numerous algorithms aiding the optimization process based on either deterministic or 

non-deterministic approach. Deterministic methods, known as hard computing, are well-studied 

and can be used to solve optimization problems of mechanical systems although they lack 

versatility provided by soft computing. Soft computing methods have been proven to be a 

successful tool used to enhance the process of optimal design of mechanical systems. Many 

multiobjective optimization problems have been solved using a wide range of soft computing 

methods, including very popular evolutionary algorithms which mimic mechanisms of 

biological evolution such as mutation, reproduction, and selection.  There are however certain 

difficulties algorithms face when dealing with problems concerning many objectives, especially 

in case of three or more objectives. It is crucial for the algorithms to be able to effectively 

compare solutions in order to perform reasoning on the direction of the search. Due to the way 

solutions are compared with each other when multiple objectives are considered simultaneously 

it is sometimes challenging to draw conclusions on superiority of a certain solution among 

others. In a situation when too many solutions are incomparable, algorithms fail to efficiently 

drive the search towards improvement. Considering these difficulties, there is a need to address 

them and explore other ideas allowing to improve the optimization process. Real mechanical 

problems, except for particularly simple cases, cannot be solved in an analytical manner and so 

numerical methods are used for the purpose of simulation of their behaviour. These methods 

are often computationally expensive and thus time-consuming. Optimization process in general 

requires multiple numerical analyses to be performed during the search of a new, improved 

design. Due to the computational effort required to obtain optimization results, especially in 

case of more demanding multiobjective optimization problems, there is a clear need to establish 

efficient ways of optimization to find improved designs in limited time. Moreover, algorithms 

must be able to exchange information with software performing numerical analyses and at the 

end of the optimization process, results need to be presented in an informative way utilising 

suitable visualisation techniques to help decision making process based on established 

preferences.  

1.1. Aims, assumptions and thesis 

The dissertation aims to propose and develop a multiobjective optimization 

methodology capable of dealing with optimal design of mechanical systems concerning 

multiple criteria. The developed algorithm will belong to a group of soft computing methods 

and optimization will be based on a differential evolution and elements of game theory. 
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Performance of proposed algorithm will be evaluated by solving mathematical benchmark 

problems intended to cover a range of features that pose problems in the optimization of 

mechanical systems. Performance metrics will be compared with existing optimization 

algorithms. Furthermore, proposed method will be used to solve a set of both analytical and 

numerical mechanical problems. Efficiency of the algorithm will be understood as an ability to 

find satisfying results within limited time. Results of optimization tasks will be presented using 

multiple visualization techniques in order to improve the process of decision making.  

In conclusion, the following thesis was formulated: 

An algorithm based on differential evolution and elements of game theory can be used 

as an efficient tool in the optimal design of mechanical systems concerning multiple criteria. 

1.2. Review of content 

The dissertation consists of 6 chapters. The second chapter contains literature review 

related to problems of optimal design of mechanical systems. Brief information on the design 

of mechanical systems is introduced. Multiobjective optimization methods are discussed with 

particular attention given to soft computing methods. Chapter provides information on 

numerical methods in optimization. Decision making process aided by visualisation techniques 

is discussed. Moreover, in the chapter test problems and performance metrics related to 

assessing quality of optimization algorithms are reviewed.  

In the third chapter developed algorithm based on differential evolution and elements of 

game theory is introduced. General idea of the algorithm is described and an example of game 

theoretic approach to optimization is shown. Chapter describes implementation of the algorithm 

and the way of communication with FEM systems.  

In the fourth chapter methodology of comparative tests of the developed algorithm is 

proposed. Algorithm is examined based on metrics of performance using mathematical test 

functions. A set of six test functions is chosen to represent the real difficulties posed to 

optimization algorithms by mechanical systems. Proposed algorithm is compared with other 

well-known and broadly used multiobjective optimization algorithms: NSGA-II and NSGA-III. 

Conclusions on the results of comparison are drawn. 

In the fourth chapter proposed algorithm is used to perform optimization tasks for a set 

of six mechanical problems. The optimized problems concern three cases in which the values 

of the objective function are obtained by analytical formulas. Moreover, three numerical 

problems are investigated, in which values of objective functions are simulated numerically by 

means of FEM. These problems include optimization of an airfoil, electrothermal microactuator 

and multiscale porous material. Results in this chapter are presented utilising selected 

techniques of visualisation of multivariate datasets. Chapter contains example of post-

optimization decision making process. Each example is concluded with final remarks.  

In the last chapter summary of the dissertation is presented along with conclusions and 

ideas on further research. 
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2. LITERATURE REVIEW 

2.1. Design of mechanical systems 

The purpose of designing is creating new technical objects motivated by specific needs 

and limited by means available to achieve them [1]. The word design stems from a Latin verb 

designare meaning to designate or appoint. The process of design starts with a need, a 

requirement or an idea and ends with information on how to manufacture and use a product, for 

example in the form of a set of drawings or a computer representation [2]. Design is an 

innovative, highly iterative process with multiple interactive phases [3]. Decision making 

process is an important phase of design. Steps associated with the design process are often 

illustrated as shown in the Fig. 1.  

 Arrows in the Fig. 1 denote iteration and therefore it can be seen that the process 

involves many back-and-forth reasoning, and several phases can be repeated.  

Identification of need begins the process, at this step, the need might be vague and must 

be recognised and phrased to start a creative act of design. Recognition of need is often triggered 

by adverse circumstances.  

Following the identification comes the definition of problem, when specific goals are 

stated, including the input and output quantities, characteristics, and limitations of a desired 

product.  

Fig. 1: Outline of the design process steps 
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Synthesis, sometimes also referred to as invention of the concept, or concept design is 

the formative and creative stage of the design in which some solutions to a said problem are 

proposed, investigated, assessed, and improved.  

In the analysis and optimization phase it is necessary to construct abstract models of a 

system to which mathematical tools could be applied. The mathematical model is supposed to 

simulate the mechanical system in a satisfying way, which is often a challenging task. The 

model is used to quantify whether the demands identified earlier are fulfilled and to further 

improve it in an optimization process. In general, mathematical model is a set of variables 

describing an object and its state and a set of mathematical relations between them. In the 

optimization model this set of variables is composed of a set of constant parameters and a set 

of design variables. Parameters are constant during the optimization process and can include 

for example physical properties (e.g., Young’s modulus or density) of a system and design 

variables (e.g., width of a beam, hole diameter) are changed during the optimization process in 

order to improve design in the context of a specific need. In general, constraints can be imposed 

on the design variables to reflect real limits of a system. To assess the quality of solution, an 

objective function (also called fitness function) must be established as a function of design 

variables. Objective function is supposed to represent specific real needs asked of product, such 

as for example low cost, low mass, or high stiffness.  

Evaluation focuses on providing final proofs of successful design and often incorporates 

creation and assessment of a prototype in a laboratory environment. The evaluation process 

should answer questions such as: Are the needs satisfied? Is the product reliable? Can it 

compete with similar products? Is it possible and economically viable to manufacture and use 

the product? Can the product generate profit by sale or use?  

The final step of the process is presentation, where a new solution is described to others. 

The new design is an accomplishment which should be explained in an appropriate way, often 

from a marketing perspective, taking into consideration varying levels of knowledge on the 

topic among the audience.   

Engineers solving design problems nowadays are assisted with a great variety of tools 

and resources. Computer software packages provide tools to enhance design, analysis, and 

simulation of mechanical systems. Computer-aided design (CAD) software allows to develop 

3D models of mechanical components and to prepare documentation, often in the form of 2D 

orthographic views supplemented with dimensions. CAD models can also be used to determine 

geometrical properties of objects quickly and accurately, such as: volume, center of gravity or 

moments of inertia. Another application of CAD models is prevalent after supplementing them 

to software dedicated to analysis and simulation, including finite element method (FEM) 

software for analysis of stress and deflection, heat transfer, vibration (e.g. MSC Patran/Nastran, 

Ansys, Abaqus), computation fluid dynamics (CFD) software for analysis and simulation of 

fluid flows (e.g. Ansys Fluent), dynamic systems analysis (e.g. ADAMS) or interdisciplinary 

coupled fields analysis, often referred to as multiphysics which deals with coupled systems 

involving more than one physical fields simultaneously occurring and interacting with each 

other (e.g. COMSOL, Ansys Multiphysics). Multiphysics cover a range of scientific and 

engineering disciplines and involves problems such as thermo-mechanical, electro-mechanical, 

electro-thermo-mechanical. Besides electric and thermal, other fields often accompanying 

mechanical problems are acoustic, magnetic, and fluid-dynamic. Software dedicated to analysis 
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is often referred to as computer-aided engineering (CAE) software. Present CAE software often 

includes optimization modules, however in many cases it is limited to single-objective 

optimization and if multiobjective optimization is possible, it is often according to NSGA-II 

algorithm, which has significant limitations. There is other non-engineering specific software, 

which is often utilised by engineers during the design process, such as word processing and 

spreadsheet software (e.g., Microsoft Office, LibreOffice), graphic software (e.g., Corel, 

Photoshop) or mathematical solvers (e.g., MATLAB, Scilab, Octave, MathCAD). 

2.2. Optimization of mechanical systems 

Among many phases of design of mechanical systems, the greatest emphasis in this 

dissertation is devoted to optimization. Whenever a product is created or designed some needs 

are supposed to be satisfied in the best possible way and therefore optimization is performed. 

The optimization process is often manual and involves a search of a solution and associated 

parameters in a step-by-step approach. A manual optimization process often does not provide 

extensive exploration and exploitation of the solution space and thus produces sub-optimal 

solutions. Exploration mechanism is understood as ability of optimization algorithm to explore 

new regions in a feasible solution space, while exploitation is a local search focused on a 

promising region. With the advance of computational methods, algorithms, software 

engineering and computational capabilities of hardware and on the other hand global 

competition it became possible and essential to design products to satisfy consumers needs in 

the most effective way. Replacing manual approach to optimization with an automatic process 

and application of intelligent computing helps achieve this goal [4]. In many real problems it is 

not possible to find a strictly optimal solution due to the lack of knowledge or size of the 

problem, in such case an optimization process essentially aims to find a design improvement 

[5].  

To perform an efficient optimization of a mechanical system, it is necessary to operate 

with a model. There are many ways of understanding the meaning of a model, for example [6] 

defines model of a real object as an imaginable or materially realisable system which, by 

reflecting or reproducing an object, is capable of replacing it so that its study provides new, 

verifiable information about the object. 

Model can also be understood as a good enough simplification of an object. There are 

many simple yet popular and successful models in constant use in problems concerning 

mechanical systems, for example point mass, rigid body, or deformable body. In the problems 

of strength of materials models of rods, beams or trusses for example are widely used. In fluid 

dynamics Newtonian fluid is an important model. These models are abstract, expressed in form 

of certain concepts. There is also a group of material models, which should be understood in a 

different way – they imitate object of interest in a certain way for the purpose of satisfying a 

specific goal, analysis, or synthesis. An example of application of a material model is 

experimental stress distribution analysis utilising elasto-optic effect. 

 In case of optimization problems, mechanical systems need to be expressed in the form 

of mathematical tools and language, allowing reduction of a system to a formal, numerical 

expressions – a mathematical model. There are several methods of examining mathematical 

models, particularly: analytical methods, which are looking for solutions either qualitative or 

quantitative, exact, or approximate in the form of analytical expression. Results of these 

methods are convenient to analyse, although it is often very challenging or even impossible to 
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apply analytical methods to complex systems, especially in case of non-linear or 

multidimensional systems. Numerical methods utilise computers and iterative computations to 

produce usually approximate results, however the approximation can in many cases be reliably 

precise. These methods found broad application in optimization of mechanical systems thanks 

to FEM software, which can be used and automatically compute values of optimization 

objective functions. Other methods of dealing with mathematical models include graphic 

methods and experimental methods, neither of which found a significant application in 

optimization problems.  

Performing design optimization can utilise or require knowledge on some aspects of a 

problem such as: current design, design variables and their limits, constraints, parameters, and 

objective functions. Variables can take either quantitative or qualitative form, however 

quantitative form is more desired as it can be easily expressed in the mathematical form, e.g., 

length or temperature of a system can take an explicit numerical value, while qualitative 

expressions such as aesthetics or ease of manufacturing require additional transformation to be 

expressed in the mathematical form. In most cases bounds are imposed on the variable, limiting 

the search space. Besides simple limits, constraints can be applied on the system, which can 

take form of equalities or inequalities. Equality constraints are particularly hard to satisfy for 

any optimization task and if it is possible, should be transformed to inequality constraints [7]. 

Optimization functions can, like variables, take qualitive or quantitative form, among which the 

latter is desired for similar reasons. Qualitative optimization functions are generally knowledge-

based and quantitative optimization functions are derived from analytical or numerical models. 

Taking the aforementioned aspects into consideration, the optimization problem can be 

described mathematically as a search of a vector of design variables: 

 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛]
𝑇  (1)  

under m equality constraints 

 𝑔𝑖(𝐱) = 0, 𝑖 = 1,2, … ,𝑚  (2)  
and p inequality constraints 

 ℎ𝑗(𝐱) ≥ 0, 𝑗 = 1,2, … , 𝑝  (3)  

to optimize (maximise or minimise) k objective functions 

 𝐟(𝐱) = [𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑘(𝐱)]
𝑇  (4)  

It is worth noting that maximization of a function 𝑓(𝐱) is equivalent to a problem of 

minimization of a function −𝑓(𝐱) and therefore maximization and minimization functions can 

be easily transformed. It is a common practice to transform and present all the optimization 

functions in the form of minimization. Multiple objective functions are used to represent the 

quality of solution in terms of different measures of performance, e.g., weight, mass, cost, and 

deflection. These objective functions usually have contradictory nature.  

Classification of design optimization problems is an essential task necessary to select 

an appropriate approach to examined problem. The classification schemes and categories were 

used to construct a Tab. 1, presenting classification of engineering design problems [5]. A 

choice of a method of optimization to solve a specific problem should follow the analysis of 

the model, particularly desired precision of results, analysis of objective functions and 

computational means available.  
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Tab. 1: Classification of engineering design optimization problems [5] 

Classification schemes based on Categories 

D
es

ig
n
 v

ar
ia

b
le

s Number of variables 
• Single-dimensional 

• Multi-dimensional 

Nature of design variables 
• Static 

• Dynamic 

Permissible values of design 

variables 

• Integer-values 

• Real-valued 

• Hybrid 

Dependence among design 

variables 

• Independent-variable 

• Dependent-variable 

C
o
n
st

ra
in

ts
 

Existence of constraints 

• Constrained 

o Inequality 

o Equality 

o Linear 

o Non-linear 

o Separable 

o Inseparable 

• Unconstrained 

O
b
je

ct
iv

e 
fu

n
ct

io
n
s 

Number of objective functions 

• Single-objective 

• Multiobjective 

o <10 objectives 

o Large scale multiobjective (>10 

objectives) 

Nature of objective functions 

• Quantitative 

o Simulation based 

o Analytical (linear and non-linear) 

o Empirical 

• Qualitative 

• Hybrid 

• Inexpensive 

• Computationally expensive 

• Uni-modal 

• Multimodal 

• Linear 

• Non-linear 

• Continuous 

• Discontinuous 

• Not defined outside the feasible space 

Separability of objective functions 
• Separable 

• Non-separable 

P
ro

b
le

m
 

d
o
m

ai
n

 

Physics of problem 

• Mechanics 

• Thermal 

• Electric 

• Multi-physics 

E
n
v
ir

o
n
m

en
t Uncertain 

• Without uncertainty 

• Uncertain 

• Robust 

• Reliability based 

Existing knowledge about the 

problem 

• Known search-space 

• Unknown search-space 

Designer confidence required 
• Interactive 

• Qualitative 

Nature of the environment 
• Static 

• Dynamic 
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 Among many methods of optimization to choose from, certain attention needs to be paid 

to classical deterministic methods. These methods utilise analytical properties of optimization 

problems to converge to optimal solution or find its approximation. Important drawbacks of 

deterministic methods of optimization include low flexibility, low efficiency dealing with 

certain problems [8] and limited scope of applicability of some of these methods. Selected 

deterministic methods of optimization will be discussed further in the following paragraphs. 

Analytical method – using this method an optimum of function is sought as function 

extremum obtained by differentiation. This method is an application of extreme value theorem 

in mathematical optimization. Extreme value theorem also called Weierstrass extreme value 

theorem says that if a real-valued function f is continuous on a closed interval [𝑎, 𝑏], then f must 

have at least one maximum and minimum. Therefore, numbers 𝑐 and 𝑑 in [𝑎, 𝑏] exist such that: 

 𝑓(𝑐) ≥ 𝑓(𝑥) ≥ 𝑓(𝑑) 𝑥 ∈ [𝑎, 𝑏]  (5)  

 Analytical method aims to find a global extreme and all local extrema of function. If the 

global extremum of function does not belong to the feasible solution space, then extremum of 

function should be sought on the boundary area of the solution space. Similar approach should 

be used if analysed function does not include any extremes. Using this method does not provide 

any further information on the nature of optimization problem besides the location of extrema 

and can only be used to solve problems with continuous design variable space. Application of 

this method is limited to simple problems with low dimensionality of design variable space 

uncommon in engineering practice. Example of a problem which could be solved using 

analytical method is optimization of a cross section of a simple cantilever beam to minimize 

mass of a beam considering allowable stresses in the system.  

Method of Lagrange multipliers – is used to solve constrained optimization problems 

with constraints under the assumption that objective function 𝑓(𝐱, 𝐩) and all the constraints 

𝑔𝑗(𝐱, 𝐩) = 0, 𝑗 = 1,… , 𝑠 are differentiable with respect to all arguments. In this method a 

function L is build that: 

 
𝐿(𝐱, 𝜆, 𝐩) = 𝑓(𝐱, 𝐩) +∑𝜆𝑗𝑔𝑗(𝐱, 𝐩)

𝑠

𝑗=1

 
(6)  

where 𝜆𝑗 = 𝜆1, … , 𝜆𝑠 is set of Lagrange multipliers. 

It can be proven that 𝐱𝑜𝑝𝑡 representing global or local extremum of function 𝑓(𝐱, 𝐩) 

satisfies the system of equations: 

 𝜕𝐿(𝐱, 𝜆, 𝐩)

𝜕𝑥𝑖
= 0        𝑖 = 1,… , 𝑛 

𝑔𝑗(𝐱, 𝐩) = 0            𝑗 = 1,… , 𝑠 

  

(7)  

provided that rank 𝑟 of a matrix 𝐃: 



13 

 

 

𝐃 =

[
 
 
 
 
 
𝜕𝑔[(𝐱𝑜𝑝𝑡, 𝐩)

𝜕𝑥𝑖
⋯

𝜕𝑔](𝐱𝑜𝑝𝑡, 𝐩)

𝜕𝑥𝑛
⋮ ⋱ ⋮

𝜕𝑔𝑠(𝐱𝑜𝑝𝑡, 𝐩)

𝜕𝑥𝑖
⋯

𝜕𝑔𝑠(𝐱𝑜𝑝𝑡, 𝐩)

𝜕𝑥𝑛 ]
 
 
 
 
 

 (8)  

 equals 𝑟 = rank(𝐃) = 𝑠. 

 Systematic search method – involves choosing a set of points in the feasible solution 

space, where values of objective functions are determined. Based on this information, assuming 

adequate density of points an approximate extremum can be found with a given accuracy, which 

depends on the selected set of points. Selection of points is a vital part of the method so as to 

provide desired accuracy within a limited computational effort. If the points are chosen before 

the computation, then the approach is called simultaneous and if they are chosen during the 

computation considering previously obtained results, then the approach is called sequential and 

the latter one is typically more effective. This method requires discretization of the feasible 

solution space Ω or a subspace 𝜃, assuming 𝐱𝑜𝑝𝑡 ∈ 𝜃 ∩ Ω (Fig. 2). The density of the grid 

imposed on the search space reflects on the accuracy of results obtained by the method, however 

opting into too fine grid results in extensive computational effort required by the method. 

 Among methods of sequential search of multidimensional spaces of design variables, 

one of the most popular and influential methods is the gradient descent method attributed to a 

French mathematician Augustin Louis Cauchy who introduced it in his 1847 article Methode 

generale pour la resolution des systemes d'equations simultanees [9], [10]. Similar method was 

independently proposed in 1908 by a French mathematician Jacques Hadamard [11]. American 

mathematician Haskell Curry studied the convergence of the method for non-linear 

optimization problems and called it a method of steepest descent [12]. The method proceeds 

with the search following the direction of the steepest descent (assuming minimization problem) 

Fig. 2: Systematic search method 
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of the objective function. This direction is obtained by calculation of objective function and its 

first derivative.  

In the gradient descent method, a start point 𝐱0 ∈ Ω is chosen and a gradient of objective 

function in this point is calculated: grad𝑓(𝐱0, 𝐩). This gradient is used to determine the 

direction of the steepest descent of the optimization function. Moving a step further in said 

direction, an improved value of objective function is obtained, new gradient is calculated in the 

point 𝐱1 and the algorithm then proceeds iteratively as illustrated in Fig. 3.  

Termination of the process is triggered either by going beyond the scope of admissible 

solutions or a decreased value of objective function, which indicates it has reached a nearby 

local extremum. Whether a local extremum is indeed the sought global extremum is a matter of 

further investigation. If objective function is unimodal or monotonous and decision space is 

convex then any found local extremum is provided to be global extremum as well. Otherwise, 

global optimum can perhaps be found by restarting the algorithm a couple of times changing 

the start point. Step size can be decreased in order to examine the area of the decision with 

increased density. Apart from the choice of location of a start point 𝑋0 and step size, the third 

factor influencing the quality of results is the method of determining the gradient of objective 

function. 

 The steepest descent method has found many modifications, one of the most important 

was introduction of penalty function (which should be differentiable) to handle constraints 

violations. Optimal gradient method is another modification, in which the direction of search is 

changed only if the value of optimization function wasn’t improved, otherwise steps are taken 

in a constant direction. In many cases this method provides faster convergence to an optimal 

solution, which is achieved thanks to a reduction in the number of times gradient of function 

needs to be computed.  

Gauss-Siedel method was first mentioned by a German mathematician Carl Friedrich 

Gauss in 1823 in a letter to one of his students and later published by another German 

Fig. 3: Gradient descent method 
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mathematician Philipp Ludwig von Seidel in 1847 in his book Abhandlungen der 

Mathematisch-Physikalischen Klasse der Königlich Bayerischen Akademie der 

Wissenschaften. It is similar to previously mentioned optimal gradient method, although it does 

not involve computation of gradients. Starting point 𝑋0 ∈ Ω is chosen and then steps are taken 

in the direction of the axis of the coordinate system unless the objective function stops 

improving. In this case search is continued from a point yielding the best value of objective 

function in the direction of next axis of coordinate system. The process is then continued 

iteratively.  

A very simple method of optimization is a random search method, also called Monte 

Carlo method. In this method, a set of randomly selected points from a feasible solution space 

is chosen, values of objective functions are calculated, and the best solution is chosen. The 

method is not very effective and requires many objective function computations, but it has some 

advantages: thanks to its simplicity Monte Carlo method is very easy to implement and doesn’t 

impose any assumptions on the optimization problem. There are some modifications of random 

method, including narrowing down the search area in which the points are randomly selected 

as the process proceeds utilising previously obtained solutions. Monte Carlo method can also 

be coupled with a gradient method to form a method in which start points are drawn at random 

and then optimization is continued according to the gradient descent method. This produces an 

efficient alternative to a classic gradient method as thanks to having multiple start points, in this 

approach the algorithm is less likely to get stuck in a local optimum.    

Newton Method is another optimization method in which at first a start point  𝐱0 ∈ Ω is 

selected and then an improved solution is sought in the direction 𝐝 ∈ Ω in an iterative process. 

Direction 𝐝 is obtained by using second-order Taylor expansion of objective function f around 

𝐱𝟎 and requires calculation of gradient and Hessian of function f [13]. Direction calculated this 

way uses additional information on curvature of optimization function, represented by Hessian 

and thanks to this feature can take a more direct route towards optima compared to steepest 

descent method which uses only information provided by gradient of function. For one 

dimensional problem this is reduced to calculation of first and second derivative of function f. 

Consequently, to use Newton method optimization function must be twice differentiable, which 

limits the scope of its applicability, although there are some approaches to overcome this, most 

notably quasi-Newton methods, which attempt to use information on second derivative of 

objective function without calculation of Hessian matrix.  

There are also more recent deterministic methods, such as Limited-Memory Broyden-

Fletcher-Goldfarb-Shanno Algorithm (LM-BFGS) [14], which belongs to a family of quasi-

Newton methods for unconstrained optimization. LM-BFGS is acclaimed for its efficiency in 

dealing with large-scale problems and is often used for parameter estimation in machine 

learning. The algorithm was also modified to handle constrained problems [15].  

Apart from deterministic methods, which could be understood as hard computing 

methods, second large group of optimization methods are heuristic methods which belong to 

the group of soft computing techniques [16]. The word heuristic comes from Greek heuriskein 

and means to find, find out, discover, or invent. This group of methods aims to find a solution 

which might not be strictly optimal, but can be found when other, direct methods fail to deliver 

for various reasons. Problems solved by heuristic methods often cannot be solved using 

deterministic approaches at all or solving them would be too demanding. For problems when 
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methods of finding solutions are unknown, vague, or timely, heuristic methods offer a 

convenient alternative, trading off qualities such as accuracy, precision, completeness in 

exchange for speed, versatility, and applicability. It should be noted that it is still possible and 

likely to produce satisfying results in terms of aforementioned sacrificed qualities when using 

heuristic methods. The term metaheuristics is often used to refer to algorithms solving 

sophisticated optimization problems [17], [18]. 

Many heuristic algorithms include some aspects of stochastic optimization in a way that 

solutions obtained by them are dependent on some form of random numbers. Another popular 

feature of many heuristic algorithms is their population-based structure so that they operate on 

a set of solutions at the time rather than on a single solution. A large part of metaheuristics is 

inspired by nature. Classification of metaheuristics and some examples of algorithms is 

presented in the Fig. 4. Nevertheless, it must be understood that the number of metaheuristic 

algorithms available nowadays is much larger than presented and new algorithms are proposed 

every day. 

In order for any algorithm attempting to solve a problem by search it is necessary for it 

to maintain an ability to explore and exploit the search space well. “Exploration and exploitation 

are the two cornerstones of problem solving by search” is an observation made by authors in 

their paper from 1998 concerning said mechanisms in evolutionary algorithms [19]. Their 

Fig. 4: Metaheuristics classification on an Euler diagram 
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insights are still valid and influence researchers dealing with heuristic approaches to 

optimization to this day. The process of exploration provides an ability to examine new areas 

of the search space whilst the process of exploitation provides extensive local search in vicinity 

of particularly desirable solutions. It is vital for a good algorithm to balance out the impact of 

both these features to produce satisfying results [20]. Genetic algorithms are understood to work 

remarkably well as general purpose (domain independent) optimizers thanks to a good ratio 

between exploitation and exploration mechanisms [21].  

Evolutionary algorithms (EAs) are bio-inspired, population-based metaheuristics with 

stochastic features which tend to mimic biological evolution mechanisms such as selection, 

mutation, reproduction, and recombination. These features in EAs are referred to as operators. 

EAs can be understood as an algorithmic interpretation of Darwinian concept of survival of the 

fittest. Solutions of the optimization problems are individuals in a population whose quality is 

assessed by the value of optimization function. Applying evolutionary operators leads to 

evolution of the population and therefore improved quality of solutions. Thanks to their robust 

behaviour and flexible nature EAs have been successfully applied to solve a wide range of 

complex problems in many fields [22] including engineering [23], computer science [24], 

natural science, mathematics, earth science, finance and economics, social sciences, industry, 

management and biological science. The general idea of EAs is shown in the Fig. 5.  

There are several types of EAs different in the way they represent solutions in genetic 

analogies, varying in implementation and specific purpose. The most important are: 

• genetic algorithm, 

• genetic programming, 

• evolution strategies, 

• evolutionary programming, 

• differential evolution. 

Genetic algorithm (GA) first emerged in the 60s and 70s in the works of Holland [25]–

[27] and is inspired by natural processes of evolution happening over time. Their ultimate goal 

is maximizing individuals’ fitness to survive in their natural environment and objective function 

(fitness function) is used to measure their ability to fit in the environment. Despite utilising 

stochastic elements, GA does not work at random but effectively use past experience in the 

form of previous solutions. GA traditionally adopted binary encoding of solutions, although 

Fig. 5: General idea of EAs 
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later works introduced other types of encoding including real numbers [21]. GA uses 

recombination (crossover) as a major operator whilst mutation operator plays a minor role. 

Selection operator is used in a probabilistic form. There are multiple schemes of crossover, 

mutation and selection, and the basic pseudo code of GA is shown in the Fig. 6.  

i ← 0 

Generate initial population P0; 

Evaluate P0; 

while termination condition 

 i ← i+1  

 Select Gi from Gi-1 // selection operators 

 Change Gi  // recombination and mutation 

 Evaluate Gi 

end-while 

Genetic Programming (GP) was introduced in 1992 [28] and is understood either as a 

separate paradigm of EAs or a type of a genetic algorithm. The main difference between GP 

and GA is the way attributes are represented. In GP attributes represent instruction sets or 

programs and algorithm generates computer programs whose ability to solve computational 

problems is measured as objective function. Characteristic feature of GP is tree-based encoding, 

with trees consisting of functions and terminals. Functions available in most general-purpose 

programming languages such as arithmetic and Boolean operations, mathematical and recursive 

functions, loops, and conditionals are usually available in GP and supplemented with domain-

specific functions. Terminals can be interpreted as functions without arguments and usually are 

variables or parameters.  

Evolution strategies were developed in 1973 [29] to answer difficulties with dealing 

with hydrodynamical optimization problems, which involved particularly hard objective 

functions: complex, multimodal and non-differentiable. The new algorithm was very simple, 

and the main idea was to apply random changes (mutation) to a selected solution (a single 

parent) to generate a single offspring. Offspring would then be compared with parent and 

superior of the two would become parent in the next generation. Later the mutation process was 

improved to adjust standard deviation of solutions in a deterministic manner so that the strategy 

could converge to a global optimum. Other modifications of the method were proposed over 

the years, including generation of more than a single offspring, using more than a single parent, 

more complex selection mechanisms to determine the new parents and self-adaptive mutation 

parameters.  

In the 60s Evolutionary Programming was proposed as a way to achieve artificial 

intelligence by adaptive behaviour [30]. Unlike other EAs which mostly try to emulate genetic 

mechanisms of transmission of information, this one focuses on behavioural relationships 

between parents and offspring. In Evolutionary Programming, several types of mutation 

Fig. 6: Pseudo code of GA 
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operators are used but no recombination is allowed. Each parent in the population generates 

only one offspring and selection mechanisms are probabilistic, rather than deterministic or 

random.  

As shown, there is a variety of EAs to solve a range of optimization problems. Even 

though many of these algorithms were developed over 50 years ago, their variants and 

modifications along with new emerging EAs are still used to this day.  

Apart from evolutionary approaches, one of the most popular and well-established 

optimization methods among heuristic optimization techniques is Particle Swarm Optimization 

(PSO). The idea was introduced in 1995 by Kennedy and Eberhart [31] and has since then 

brought significant attention of researchers generating over two dozens of variants of the 

original algorithm and numerous hybrid algorithms combining PSO with other methods [32]. 

The technique attempts to mimic the behaviour of swarms of animals such as flocking birds or 

schooling fish, who are organized in terms of their direction, speed and spacing between each 

other. Unlike many EAs, the algorithm does not use mutation or recombination mechanisms 

and does not require encoding/decoding of information but relies real-number randomness and 

global communication between particles representing solutions. Swarming particles in search 

of an improvement of objective functions move in a direction described by two major 

components each: one deterministic and one stochastic. Every particle is attracted by position 

of a global best solution and a best solution found previously by itself. Movement of particles 

is also influenced by a random factor. PSO is acclaimed for its simplicity and flexibility and 

has found application in many branches of science and engineering, aside from optimization it 

was successfully used for training of artificial neural networks and a broader term of Swarm 

Intelligence is often used for these non-optimization related purposes.  

Another biologically inspired although not evolutionary group of optimization 

algorithms are Artificial Immune Systems (AIS) [33]–[35]. These algorithms try to mimic 

processes of natural immune systems, including immunological learning and memory, immune 

response, antigen-antibody interactions, cell division and somatic hypermutation. It has found 

a wide range of application in fields such as image processing, pattern recognition, 

classification, and clustering. 

Other popular nature-inspired algorithms which found its application to optimization 

problems include Simulated Annealing, Firefly Algorithms, Cuckoo Search, Flower Pollination 

Algorithms, Ant Algorithms, Bee Algorithms, and Harmony Search among others. Overall, 

both deterministic (hard computing) and heuristic (soft computing) methods can be used for 

optimization of mechanical systems although due to certain limitations of analytical methods 

and flexibility and versatility of soft computing methods on the other hands, the latter seem to 

have a drawn a particular attention of researchers dealing with optimization of mechanical 

systems.  

Due to the lack of a universal optimization algorithm, a vast number of new algorithms 

inspired by natural, social, cultural, or physical processes are created every day. These 

algorithms often exhibit similar structure with only their tiny elements modified. In many cases 

new algorithms are effective to solve a specific group of problems. According to many 

researchers such an approach is unnecessary and new algorithms do not provide much of a 

novelty, instead they copy well established approaches and frame them differently, focusing on 

new metaphors rather than increased quality of algorithms [36]–[39].  
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2.3. Multiobjective optimization 

All the optimization methods discussed so far were in essence devoted to single 

objective problems. Often in real optimization problems many objectives need to be improved 

simultaneously, for example we want to increase acceleration of a car, reduce fuel consumption 

and cost – these are three conflicting objectives. Such problems require a different approach 

and therefore other optimization methods. Results of a multiobjective optimization task consist 

of a set of solutions, rather than a single best solution and in many cases optimization techniques 

to find these solutions are more complicated and require more computational effort.  In fact, it 

is a common practice during the design process to reduce complex problems with conflicting 

goals to scenarios, in which systems are geared only towards a single one of the objectives. This 

can be done in many ways, for example excessive objective functions can be introduced in the 

optimization problem in the form of constraints. Alternatively, multiple objectives can be 

aggregated into a single synthetic objective using mathematical operations, which may require 

applying a priori arbitrary weights to the objectives. These methods certainly can simplify a 

complex multiobjective problem and provide decision maker with a single solution using 

relatively simple techniques nonetheless this comes at a cost. Simplifying a problem results in 

the reduction of information obtained after the optimization, losing on the knowledge of trade-

offs between objectives and on a set of alternative solutions. Moreover, having a set of optimal 

solutions allows decision maker do draw conclusions regarding interdependencies between 

objectives, design variables, and constraints. Not having to choose preferences concerning 

objectives a priori presents an opportunity to articulate them with a more complete information 

a posteriori based on a set of Pareto optimal solutions (Fig. 7).  

Fig. 7: A priori and a posteriori approaches to multiobjective optimization 
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The concept of Pareto optimality uses terms such as: dominated solutions, non-

dominated solutions (also known as: Pareto-optimal, efficient, or non-inferior) and 

incomparable (neutral) solutions. Taking into consideration two vectors 𝐱 and 𝐲 in the 

admissible solution space and assuming minimization problem: 

• 𝐱 strongly dominates 𝐲, if: 

 ∀𝑖∈{1,2,…,𝑘}: 𝑓𝑖(𝐱) < 𝑓𝑖(𝐲) (9)  

• 𝐱 dominates 𝐲, if: 

 ∀𝑖∈{1,2,…,𝑘}: 𝑓𝑖(𝐱) ≤ 𝑓𝑖(𝐲)  ∧ ∃𝑗∈{1,2,…,𝑘}: 𝑓𝑗(𝐱) < 𝑓𝑗(𝐲) (10)  

 

• 𝐱 is neutral (incomparable) relative to 𝐲, if: 

 ∃𝑖,𝑗∈{1,2,…,𝑘}: 𝑓𝑖(𝐱) < 𝑓𝑖(𝐲) ∧ 𝑓𝑗(𝐱) > 𝑓𝑗(𝐲) (11)  

 

In other words, 𝐱 dominates 𝐲 if 𝐲 is not better in any objectives and 𝐱 is better in at 

least one objective. The relation can mathematically be written as 𝐱 ⋞ 𝐲. The domination 

relation is shown graphically in the Fig. 8. 

 

Fig. 8: Domination relationship between solutions 
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Fig. 9 shows the relationship between the vectors of solutions. Solution 𝑎 is dominated 

by 𝑥 (in other words solution 𝑥 dominates 𝑎), solution 𝑥 weakly dominates solution 𝑑, whereas 

solutions 𝑏 and 𝑐 are neutral (incomparable) relative to 𝑥. 

The set of all Pareto-optimal solutions creates a so-called Pareto front (Fig. 8). If three 

criteria are considered, solutions belonging to the Pareto front define a surface. Optimization 

methods based on Pareto approach, belong to a group of a posteriori methods. On the basis of 

a set of solutions it is possible to select a solution according to established preferences.  

Methods of multiobjective optimization are intensively developed since the end of last 

century. Classical methods such as Weighted Sum Method, ε-Constraint Method, Weighted 

Metric Methods, Benson’s Method, Goal Programming Method and Interactive Method all aim 

to transform multiobjective problem into a single-objective problem and have significant 

limitations, such as [40]: 

• they only find a single solution during a run of an algorithm, 

• they face difficulties dealing with nonconvex problems and 

• they require prior assumptions on the problems in the form such as weights or 

target values. 

 Newly designed algorithms often have biological inspiration, or such elements are 

integrated into deterministic algorithms to eliminate some of their drawbacks.   

Significance of the population-based methods can be seen especially for the multi-

criteria optimization problems, because such an approach naturally corresponds to the 

challenges of multi-criteria optimization, in which a set (population) of solutions is sought. 

Most multi-criteria evolutionary algorithms, using Pareto approach, utilise the methods of 

comparing feasible solutions within the population for effective optimization, for at most three 

criteria. These include the following groups: 

Fig.  9: Domination relationship between solutions 
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• methods, which refer to the number of individuals by which particular solution is 

dominated (dominance rank), 

• methods, which refer to the number of individuals which particular solution dominates 

(dominance count), 

• methods, where each of the individual is categorized on the basis of the membership to 

the separate fronts (dominance depth). 

A significant drawback of these approaches is their low efficiency for problems with 

more than 3 objective functions. In high-dimensional solution spaces, newly found solutions 

are often incomparable and therefore the algorithms have trouble applying comparison 

mechanisms such as selection, which are essential in most of the optimization problems, both 

single- and multiobjective. The reason for increased number of incomparable solutions in a set 

is the increase of ratio between non-dominated and dominated solutions along with the increase 

of number of objectives. Practically, for problems with 4 or more objectives, the entire set of 

solutions is often non-dominated and therefore solutions are incomparable with each other, 

which poses a significant challenge for multiobjective optimization algorithms. This limitation 

can be confronted by a unique approach to soft computing optimization involving elements of 

game theory as stated in the thesis of this dissertation. 

Overall, multiobjective optimization algorithms aim to achieve two main goals: place 

found set of solutions close to the true Pareto front and at the same time achieve a diverse and 

widely spread set of solutions. It was proven by Purshouse and Fleming [41] that these two 

objectives are in fact contradictory and usual genetic operators fail to achieve aforementioned 

two features simultaneously.  

Elitist Non-dominated Sorting Genetic Algorithm or NSGA-II, introduced in 2002 by 

Deb [42], is still one of the most widely used algorithms to solve multiobjective optimization 

problems. Its popularity can be demonstrated by the fact that in computational software 

MATLAB it serves as a basic tool for multiobjective optimization in Global Optimization Tool 

(function gamultiobj). MATLAB, according to company brochure [43] is used by over 4 million 

people, primarily engineers and scientists worldwide.  

The three main principles of the algorithm are: 

• elitism mechanism preserving the best solutions, 

• explicit diversity preserving mechanism, and 

• focus on non-dominated solutions. 

During the course of the algorithm, at any generation i, a new offspring population Oi is 

created on the basis of parent population Pi using common genetic operators. Parent and 

offspring populations have the same size and constitute a temporary population Ti with double 

size. Population size may not be changed, so a selection of solutions must be performed. New 

population Ni is filled with non-dominated solutions from population Ti. These solutions are 

removed from Ti and therefore new previously dominated solutions become non-dominated. 

Another set of non-dominated solutions is then transferred from Ti to Ni and so on until they fill 

the number of slots dictated by population size. When the number of slots available in the Ni is 

lower than the current non-dominated set size in Ti then instead of discarding excessive 

solutions, only solutions which improve diversity in Ni the most are transferred to fill the 

remaining slots. The rest of Ti is removed and Ni becomes parent population in the next step. 
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The metric which manages measuring influence of solutions on diversity of population used in 

the algorithm is called crowding distance and is expressed as an area between a solution and 

the closest other solutions in the set. The idea of NSGA-II is illustrated in the Fig. 10.  

The algorithm have found a numerous application such as machining processes [44], 

planetary gearbox optimization [45], workshop scheduling [46], filament winding machine 

optimization [47], electrical distribution network optimization [48], optimization of parameters 

in control systems [49]. 

NSGA-II has found multiple modifications and variants until its author in 2014 

proposed a new Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-

Based Nondominated Sorting Approach called Many-Objective NSGA-II or NSGA-III to 

specifically address difficulties of original NSGA-II in handling problems with a large number 

of objectives [50]. The algorithm has been used to solve constrained and unconstrained 

optimization problems within a range of 2 to 15 objectives, including test problems with 

convex, concave, disjointed, normalized, scaled, and degenerated Pareto fronts, considered 

difficult for many optimization algorithms. NSGA-III was compared with other multiobjective 

optimization algorithm MOEA/D on a set of challenging benchmark functions, including the 

impact of population size on the quality of results [51].  

The idea of NSGA-III is in many ways similar to its predecessor, although it is 

significantly different in the way solutions responsible for maintaining diversity are selected. 

Offspring is generated using genetic operators and consists of equal numbers of elements as 

parent population. Both sets are combined and constitute a population of double size compared 

to the parent populations, which ensures preservation of elite solutions, but requires selection 

and discarding of half of the solution. Non-dominated sorting is used to transfer solutions to an 

offspring population and instead of crowding distance sorting, a new, more complex approach 

is proposed. A set of well-spread reference points is used to select solutions based on the 

diversity they offer to a set of solutions obtained. Reference points can either be preferentially 

supplied by user or if there is no additional information, they can be automatically generated.  

NSGA-III was proven superior to MOEA/D in many, but not all cases of analysed test 

functions and number of objective functions. The implementation of the algorithm was not 

Fig. 10: The idea of NSGA-II  
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shared by original authors, however unofficial implementations, including a C++ 

implementation [52] are available. 

2.4. Finite element method in optimization 

Values of objective functions in optimization of mechanical systems often cannot be 

expressed in the form of analytical functions and have to be computed using numerical methods. 

There are multiple numerical methods suitable for determining quantities of mechanical 

systems: finite element method (FEM), boundary element method (BEM) and finite difference 

method (FDM) are the most popular, but the first one is particularly important due to its 

versatility and availability in CAE software. FEM can be used to solve one-, two- and three-

dimensional problems in the fields such as structural analysis, heat transfer, fluid flow, magnetic 

flux and others [53]. Typically, in optimization problems objectives related to features of 

mechanical systems such as deformations, stresses, temperatures, dynamic response, modal 

frequencies can be obtained automatically using FEM-based CAE software.  

From a mathematical perspective, FEM can be seen as a numerical tool for solving 

partial differential equations governing problems which describe behaviour of mechanical 

systems. The method will be briefly described on the basis of a static structural stress and 

deformation analysis. Other types of problems to which FEM can be applied should be 

understand relatively easy afterwards. Problems concerning other physical fields will be 

discussed in further chapters.  

A body occupying a volume 𝑉 and bounded by surface 𝑆 in 3-dimensional 𝑥, 𝑦, 𝑧 space 

is described by boundary conditions (including loads) and material distribution. The simplest, 

yet important material model used in FEM analyses concerns linear-elastic, isotropic material. 

Assuming static problem, small displacements and strains, behaviour of the deformable body 

under mechanical loads is governed by following equations: 

• Geometric relations: 

 
𝜀𝑖𝑗 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

(12)  

• Constitutive law (Hooke’s law): 

 𝜎𝑖𝑗 = 𝜆𝛿𝑖𝑗𝜀𝑘𝑘 + 2𝜇𝜀𝑖𝑗 or 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (13)  

• Equation of equilibrium: 

 𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0 (14)  

where 𝜀𝑖𝑗 are strain tensor components, 𝑢𝑖 are displacement components, 𝜎𝑖𝑗 are stress 

tensor components, 𝜆 and 𝜇 are Lamé’s parameters, 𝐶𝑖𝑗𝑘𝑙 is stiffness tensor and 𝑏𝑖 are volume 

forces. 

 The basic goal of the FEM analysis is to determine displacement field 𝐮(𝑥, 𝑦, 𝑧) 
representing displacement at any point of the body. Further information on strains and stresses 

can be obtained based on the displacements. Overall, body can be modelled in FEM as: a 3D 

body, 2D plane strain, 2D plane stress, shell, frame, or a truss. Vector of design variables 𝐱 =

[𝑥1, 𝑥2, … , 𝑥𝑛] describes the shape or topology of body, for example its thickness, cross 

sectional area, moment of inertia, characteristic dimensions etc. Optimization task involving 

FEM analysis can be expressed as:  
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optimize (maximise or minimise)  

 𝑓(𝐱,𝐔)  (15)  
under m equality constraints 

 𝑔𝑖(𝐱, 𝐔) = 0, 𝑖 = 1,2, … ,𝑚  (16)  
and p inequality constraints 

 ℎ𝑗(𝐱, 𝐔) ≥ 0, 𝑗 = 1,2, … , 𝑝. (17)  

where 𝐔 is a nodal displacement vector of size ndof used to determine displacement 

field 𝐮(𝑥, 𝑦, 𝑧). ndof expresses the number of degrees of freedom in the system. In this example 

a single objective optimization problem is displayed, but a multiobjective problem consisting 

of a vector of objective functions in place of (15) can be considered accordingly. Partial 

differential equations of equilibrium describe the relation between 𝐮 and 𝐱. Employing FEM 

these differential equations may be transformed into a system of linear equations for 𝐔: 

 𝐊𝐌(𝐱)𝐔 = 𝐏(𝐱)  (18)  

where 𝐊𝐌 is a square stiffness matrix of size ndof x ndof and 𝐏 is a load vector of size 

ndof. Functions 𝑓, 𝑔𝑖 and ℎ𝑗  depend on vector of design variables 𝐱 both explicitly and 

implicitly through 𝐔 as shown in equation (18).  

Overall, FEM requires a geometrical model on which a mesh consisting of elements, 

nodes and shape functions is imposed. The quality of the mesh affects the accuracy of the 

solutions in the method. The geometrical model needs to be supplemented with a set of 

boundary conditions describing loads and displacements on specified part of the boundary. 

Boundary conditions are related to supports, fixed ends, given displacements, tractions, body 

loads and point loads. Strain-displacement and stress-strain relations must be known. The latter 

is expressed by generalized Hooke’s law for linear elastic materials and for isotropic materials 

the two material properties governing the relation are Young’s modulus E and Poisson’s ratio 

ν. On the basis of these information local stiffness matrices for elements are calculated and 

assembled into a global stiffness matrix 𝐊𝐌, which is symmetric, sparse, and banded matrix. 

Having determined stiffness matrix 𝐊𝐌 and global load vector 𝐏, a global displacement vector 

𝐔 can be calculated from equation (18) using matrix algebra and equation solving methods [54].   

2.5. Visualisation and decision making 

Results of multiobjective optimization are in the form of set of solutions, each solution 

being a vector of length corresponding to the number of objective functions. In general, 

visualisation of any data is possible only in two dimensions, therefore displaying multivariate 

data sets in a graphical form requires generation of a two-dimensional representation of a multi-

dimensional data. Effective visualization procedures are vital as the graphical interpretation of 

data acquired from the optimization task is a link supplying the decision maker with the 

knowledge from the analyst. Some techniques such as scatter plots can be easily employed to 

present three-dimensional data sets simply by adding a third axis. It might be possible to 

represent more dimensions in the form of colour or shape of markers, but with the increase of 

dimensionality, the visual representation becomes vague. Overall, visualisation of a 

multivariate data sets can be achieved in two ways, either by reduction of the dimensionality of 

a problem or by symbolic representation as an object (an icon) [55].  
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Selected visualisation techniques will be presented using a set of non-dominated 

solutions obtained during the course of optimization of a microactuator with respect to 6 

objectives. The set consists of 2891 Pareto-optimal solutions and therefore might be challenging 

to present in a way which provides complete, clear, and precise information on the values of 

optimization functions. The problem from a mechanical perspective is further discussed in 

section 5.3 meanwhile at this point only the visualisation of results is considered. 

In the Fig. 11 the information is presented in the form of a 3D scatter plot with first three 

objectives mapped onto the axes of a plot and location of points corresponding to the values of 

optimization function with fourth objective function represented by a colour of point. This 

method does not provide information on the value of objective f5 and f6 and therefore is 

incomplete although it might be helpful to provide insight on trade-offs between selected 

objectives and range of values of obtained solutions. To supplement the information with an 

addition objective, the size of the markers might be decided based on the value of objective f5. 

Fig. 11: 3D scatter plot with f4 mapped in colour 
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Another information is included in the Fig. 12, but the data is still neither complete nor 

precise as it does not include information on the value of objective f6 and the size of the elements 

cannot be precisely measured and linked with a value. Partial information on the value of 

objective f6 can be introduced to the plot by assigning ranges of values of f6 to specific shapes 

of the marker and displaying them on the graph instead of circles.  Data presented in this way 

is hard to handle when precise values are sought. It can be used only for the rough information 

on the trade-offs and ranges of objectives, but it would require additional, likely tabular 

information to read specific information on objective values of selected solutions.  

Fig. 12: 3D scatter plot with f4 mapped in colour and f5 mapped as size of the points 
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Alternative approach to visualisation is utilising parallel coordinates. In this way, 

information on a high number of objectives can be presented in a relatively easy way providing 

precise and complete information, although it is limited to sets with a relatively small number 

of solutions, as the visual representation becomes cluttered with the increase of data points 

representing solutions. In case of objectives of a different magnitude of values, data requires 

normalization to a uniform range (e.g. [0,1]) to be presented effectively.  

In the Fig. 13 values of all 6 objectives and all 2891 solutions are presented after 

normalization of objective function values to a range of [0,1]. Due to a large number of 

solutions, the visualisation is cluttered and therefore vague. This can be overcome by selecting 

a lower number of solutions to be displayed, however at the cost of reducing completeness of 

information (Fig. 14).  

Fig. 13: Plotting in parallel coordinates. 

Fig. 14: Plotting in parallel coordinates (selected 10 solutions). 



30 

 

Another approach to visualisation of multivariate datasets is using scatter plot matrix 

consisting of pairs of objectives, often supplemented with the histograms of objective function 

values (Fig. 15). This approach provides complete information on the values of objective and 

is an easy way to illustrate trade-offs between pairs of objectives as well as the number of 

solutions in selected range of values.  

An interesting approach to visualisation of multidimensional data sets is utilising 

Kohonen’s Self-Organizing Maps (SOMs) [56]. SOMs are used to produce a similarity graph 

of input data. High-dimensional sets of non-dominated solutions are translated into geometric 

relationships of their image points on a regular, usually hexagonal, 2D grids of nodes. It has 

many applications including visualization, clustering, and data mining. 

Every SOM node (unit) is defined by its codebook vector, consisting of map weights. 

Size of codebook vectors is equal to a size of a single input data sample. Codebook vectors' 

values are initialized in the initial phase of establishing a network. Random or linear (Fig. 16) 

initialization are applied, the latter is proven to be more effective. In the training part of the 

algorithm input data is presented to the network and the best-matching unit (BMU) is chosen 

Fig. 15: Scatter plot matrix 
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amongst all map units utilising a Euclidean distance as a measure to be minimized. BMU and 

its neighbours are modified towards an input pattern, therefore the topological order of data is 

maintained in SOM – the data located close to each other in the input space are close to each 

other on the map as well. SOM training is an iterative job, frequently involving rough training 

and fine tuning. Trained SOM can be displayed as a number of grids of coloured nodes. In case 

of optimization results visualization, each grid corresponding to a single objective function and 

nodes corresponding to particular solutions, with the value of criterion shown as unit's colour 

(Fig. 16 a) and b)). Often a measure of similarity between data in the neighbouring units is 

desired to be depicted, thereof another grid called U-matrix, showing the unified Euclidean 

distance between codebook vectors of the neighbouring units (Fig. 16 c)). 

Fig. 16: Presentation of a 20×10 units SOM for the 2 criterion optimization before the 

training, linear initialization only, no input data presented to the network. 

Fig. 17: Self-Organizing Map 
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In the Fig. 17 SOM visualisation of 6-objective Pareto front is shown. Such a 

representation of solutions helps with decision making in a way it enhances the process of 

exclusion and inclusion of solutions based on the range of values of objectives. Decision maker 

can decide to exclude all solutions above or below a certain value of optimization function. This 

can be conveniently done on SOM by marking area related to selected threshold on one of the 

maps and then disregarding the same area on the remaining maps. This process can be repeated 

for many objectives and values to narrow down obtained set of solutions to a smaller set with 

regards to additional established preferences.  The process of decision making enhanced by 

SOM on the example of a search of compromise solution is further discussed in section 5.3. 

In conclusion, decision making, as a step preceding optimization process is an essential 

part of the design process. Decision maker needs to be provided with information acquired 

during the optimization process presented in a way which enables him to each a decision 

regarding a final design of the system. This task is complicated and often requires employing 

visualization techniques to enhance making a decision. Many visualization methods are 

available, but it is often necessary to choose the most appropriate one depending on the 

information to be presented. In this dissertation, solved analytical and numerical mechanical 

optimization problems will be presented utilising scatter plot matrices, 3D scatter plots with 

colour mapping and SOM, based on self-developed and implemented procedures of generating 

maps and plots. 

2.6. Test problems for optimization 

The primary reason of developing new optimization algorithms is to solve optimization 

problems in a way which provides us with good quality of solutions and doesn’t require an 

excessive computational effort at the same time. In case of real optimization problems, the 

solution is naturally unknown beforehand, which makes it hard to assess the performance of 

algorithm at the end of the process of optimization. In order to assess the performance of 

optimization algorithms test problems or benchmarks functions, preferably with known optimal 

solutions are used [40]. The main purpose of these functions is to test the performance of new 

algorithms, compare new algorithms with others and to understand the principles, strengths, 

and flaws of new algorithms. There are many requirements asked of these functions so that they 

could reflect real systems subjected to optimization. For this reason, some controlled difficulties 

in converging to the Pareto front and maintaining a satisfactory spread of solutions are 

introduced. In case of mechanical systems, the solution space is often multimodal and 

discontinuous. The latter feature of solution space is especially prevalent as far as optimization 

functionals are computed using FEM-based CAE software. These programs happen to face 

difficulties when trying to mesh complex geometries of certain variants of parametric models, 

resulting in a discontinuous solution space, as candidate solutions which failed to be meshed 

correctly should not be included in the solution space. It is therefore a vital feature to be 

included in test functions designed to assess performance of algorithms which are supposed to 

work with mechanical systems. 

 Furthermore, it is convenient for the test functions for multiobjective optimization 

problems to be scalable in terms of both the number of variables and the number of objectives. 

There are numerous test functions developed for problems with 2 or 3 objectives [57], but to 

perform a tests concerning higher solution space dimensions, scalable problems are required. 
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Test functions are supposed to be quickly evaluated (unlike most real mechanical 

optimization problems) and thus make it possible for a statistical, parametric, or non-parametric 

method of comparison of obtained sets of non-dominated solutions. Performing statistical tests 

requires multiple runs of an algorithm, with each run requiring a set number of test function 

calls.  

Some of the test functions, which due to their aforementioned qualities were chosen to 

assess performance of a novel algorithm described in this thesis are described in detail in the 

following pages. In total 6 test functions were used for this purpose. 

A representative set of 7 test functions, called  DTLZ Test Problem Suite was introduced 

in [58] and was later expanded with 2 additional functions in [57]. DLTZ problems are fully 

scalable in terms of both number of objectives and design variables, which drew attention of 

many researchers investigating multiobjective optimization algorithms. Problems developed by 

Deb et. al are simple to implement, have known true Pareto-fronts and feature characteristics 

such as multimodality, convex shapes of fronts, bias and discontinuity of  fronts [59]. For each 

DTLZ problem, the design variable domain is of 𝑥𝑖 ∈ [0,1].  

Only functions which will further be used to assess performance of a multiobjective 

optimization algorithm developed in this thesis are described in this chapter: 

• DTLZ1 

DTLZ1 is a simple M-objective test problem with a linear Pareto-optimal front, all 

functions to be minimized. 

 

 

{
 
 
 
 
 

 
 
 
 
 𝑓1(𝐱) =

1

2
𝑥1𝑥2…𝑥𝑀−1 (1 + 𝑔(𝐱𝐌)),

𝑓2(𝐱) =
1

2
𝑥1𝑥2…(1 − 𝑥𝑀−1 )(1 + 𝑔(𝐱𝐌))

.

.

.

𝑓𝑀−1(𝐱) =
1

2
𝑥1(1 − 𝑥2)(1 + 𝑔(𝐱𝐌))

𝑓𝑀(𝐱) =
1

2
(1 − 𝑥1 )(1 + 𝑔(𝐱𝐌))

subject to 0 < 𝑥𝑖 < 1, for 𝑖 = 1, 2, … , 𝑛

 (19)  

 

 

The 𝑔(𝐱𝐌) functional requires |𝐱𝐌| = 𝑘 variables and can take any function as long as 

𝑔(𝐱𝐌) > 0. In this thesis 𝑔(𝐱𝐌) is, following the suggestion of authors in [57], assumed as: 

 𝑔(𝐱𝐌) = 100[|𝐱𝐌| + ∑ (𝑥𝑖 − 0.5)
2 − cos (20𝜋(𝑥𝑖 − 0.5))

𝑥𝑖𝜖 𝐱𝐌

 (20)  
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The total number of variables n depends on the number of objectives and the length of 

𝐱𝐌 and is equal to 𝑛 =  M +  𝑘 –  1. Value of parameter k = 5 is suggested. Pareto optimal 

front is achieved when 𝐱𝐌 = 0 and for a 3D case is shown in the Fig. 18. 

 

 

Fig. 18: True Pareto front of DTLZ1 (M=3) 

 

• DTLZ2 

Test problem DTLZ2 has a spherical Pareto-optimal front as shown in the Fig. 18  

 

{
 
 
 
 
 

 
 
 
 
 𝑓1(𝒙) = (1 + 𝑔(𝐱𝐌)) cos (

𝑥1𝜋

2
)… cos (

𝑥𝑀−1𝜋

2
)

𝑓2(𝐱) = (1 + 𝑔(𝐱𝐌)) cos (
𝑥1𝜋

2
)… sin (

𝑥𝑀−1𝜋

2
)

.

.

.

𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝐌)) sin (
𝑥𝑀−1𝜋

2
)

subject to 0 < 𝑥𝑖 < 1, for 𝑖 = 1, 2, … , 𝑛

where 𝑔(𝐱𝐌) = ∑ (𝑥𝑖 − 0.5)
2

𝑥𝑖𝜖 𝐱𝐌

 (21)  
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Fig. 19: True Pareto front of DTLZ2 (M=3) 

It is suggested to use k = 10 in this case. 

 

• DTLZ3 

DTLZ3 is a more sophisticated problem, based on 𝑓𝑖 functions from DTLZ2, equation 

(21) and 𝑔(𝐱𝐌) as in DTLZ1, equation (20). It was reported that algorithms found it harder to 

converge to true Pareto front in this case than in the previous ones due to many local Pareto-

fronts which can be extensively explored during the course of optimization.  

 

{
 
 
 
 
 

 
 
 
 
 𝑓1(𝒙) = (1 + 𝑔(𝐱𝐌)) cos (

𝑥1𝜋

2
)… cos (

𝑥𝑀−1𝜋

2
)

𝑓2(𝐱) = (1 + 𝑔(𝐱𝐌)) cos (
𝑥1𝜋

2
)… sin (

𝑥𝑀−1𝜋

2
)

.

.

.

𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝐌)) sin (
𝑥𝑀−1𝜋

2
)

subject to 0 < 𝑥𝑖 < 1, for 𝑖 = 1, 2, … , 𝑛

where 𝑔(𝐱𝐌) = 100[|𝐱𝐌| + ∑ (𝑥𝑖 − 0.5)
2 − cos (20𝜋(𝑥𝑖 − 0.5))

𝑥𝑖𝜖 𝐱𝐌

 (22)  
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Fig. 20: True Pareto front of DTLZ3 (M=3). 

 

• DTLZ4 

DTLZ4 problem is based on DTLZ2 with an introduction of 𝑥𝑖 → 𝑥𝑖
𝛼, with the value 

𝛼 = 100 suggested. The parameter 𝛼 introduces an increased dependence on initial 

population when solving this problem. 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑓1(𝒙) = (1 + 𝑔(𝐱𝐌)) cos (

𝑥1
𝛼𝜋

2
)…cos (

𝑥𝑀−1
𝛼 𝜋

2
)

𝑓2(𝐱) = (1 + 𝑔(𝐱𝐌)) cos (
𝑥1
𝛼𝜋

2
)… sin (

𝑥𝑀−1
𝛼  𝜋

2
)

.

.

.

𝑓𝑀(𝐱) = (1 + 𝑔(𝐱𝐌)) sin (
𝑥𝑀−1
𝛼 𝜋

2
)

subject to 0 < 𝑥𝑖 < 1, for 𝑖 = 1, 2, … , 𝑛

where 𝑔(𝐱𝐌) = ∑ (𝑥𝑖 − 0.5)
2

𝑥𝑖𝜖 𝐱𝐌

 (23)  
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Fig. 21: True Pareto front of DTLZ4 (M=3). 

Due to lack of other scalable test problems and several limitations of DTLZ such as  

none of the problems being deceptive or non-separable, a new set of test problems called 

The WFG Toolkit was proposed in [60]. WFG problems are built in a different manner than 

previously described problems. Values of WFG functions are obtained via a series of 

transitions. WFG operates on a vector of parameters x which is derived, through transformation 

functions, from a vector of working parameters (or design variables) z which is directly 

controlled by optimization algorithm. Every transition implements another feature such as 

multimodality or non-separability to a resulting vector. Except for transformation function a set 

of shape functions is also used to determine the geometry of fitness space. To create a test 

problem using the WFG Toolkit it is necessary to establish constraints, a set of transformation 

functions, including transformation parameters if applicable and a set of shape functions. The 

resulting problems are fully scalable in terms of number of objectives and design variables.  
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The general idea of a problem built using WFG Toolkit is as follows: 

 Given: 

𝐳 = {𝑧1, … , 𝑧𝑘, 𝑧𝑘+1, … , 𝑧𝑛} 
Minimise: 

𝑓𝑚=1:𝑀(𝐱) = 𝑥𝑀 + 𝑆𝑚ℎ𝑚(𝑥1, … , 𝑥𝑀−1) 
where: 

𝐱 = {𝑥1, … 𝑥𝑀}

= {max(𝑡𝑀
𝑝 , 𝐴1) (𝑡1

𝑝 − 0.5)

+ 0.5, … ,max(𝑡𝑀
𝑝 , 𝐴𝑀−1) (𝑡𝑀−1

𝑝 − 0.5)

+ 0.5, 𝑡𝑀
𝑝 } 

𝑡𝑝 = {𝑡1
𝑝 , … , 𝑡𝑀

𝑝 } ← [ 𝐭𝑝−1 ← [ …  ← [ 𝐭1  ← [ 𝐳[0,1] 

 𝐳[0,1] = {𝑧1,[0,1], … , 𝑧𝑛,[0,1]} = {
𝑧1

𝑧1,𝑚𝑎𝑥
, … ,

𝑧𝑛
𝑧𝑛,𝑚𝑎𝑥

} 

(24)  

 

where M is the number of objectives, x is a set of M underlying parameters, z is a set of 

n ≥ M working parameters (design variables in the optimization problem) including k position 

parameters and l distance parameters, A are degeneracy constants, S are scaling constants, h are 

shape functions, t are transition vectors (each one of them is a result of using a transformation 

function on a vector). The domain of 𝑧𝑖 ∈ [0, 𝑧𝑖,𝑚𝑎𝑥] and the domain of 𝑥𝑖 ∈ [0,1]. 

In [60] authors suggest a set of transformation functions and shape functions, a selection 

of which will be described in detail. 

Convex shape function: 

 
𝑐𝑜𝑛𝑣𝑒𝑥1(𝑥1, … , 𝑥𝑀−1) =∏ (1 − cos (

𝑥𝑖𝜋

2
))

𝑀−1

𝑖
 

𝑐𝑜𝑛𝑣𝑒𝑥𝑚=2:𝑀−1(𝑥1, … , 𝑥𝑀−1)

= (∏ (1 − cos (
𝑥𝑖𝜋

2
))

𝑀−1

𝑖
) (1 − sin (

𝑥𝑖𝜋

2
)) 

 

𝑐𝑜𝑛𝑣𝑒𝑥𝑀(𝑥1, … , 𝑥𝑀−1) = (1 − sin (
𝑥𝑖𝜋

2
)) 

(25)  

 

Concave shape function: 

 
𝑐𝑜𝑛𝑐𝑎𝑣𝑒1(𝑥1, … , 𝑥𝑀−1) =∏ sin (

𝑥𝑖𝜋

2
)

𝑀−1

𝑖
 

𝑐𝑜𝑛𝑐𝑎𝑣𝑒𝑚=2:𝑀−1(𝑥1, … , 𝑥𝑀−1)

= (∏ sin (
𝑥𝑖𝜋

2
)

𝑀−1

𝑖
) cos (

𝑥𝑀−𝑚+1𝜋

2
) 

 

𝑐𝑜𝑛𝑐𝑎𝑣𝑒𝑀(𝑥1, … , 𝑥𝑀−1) = cos (
𝑥𝑖𝜋

2
) 

(26)  

 

 

Mixed shape function (𝛼 > 0;  𝐴 ∈ {1,2, … }).: 
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𝑚𝑖𝑥𝑒𝑑𝑀(𝑥1, … , 𝑥𝑀−1) = (1 − 𝑥1 −
cos (2𝐴𝜋𝑥1 +

𝜋
2)

2𝐴𝜋
)

𝛼

 (27)  

 

In case of all shape functions 𝑥1, … , 𝑥𝑀−1 ∈ [0,1] and A and α are constants. 

b_falt (bias: flat region) transformation function (𝐴, 𝐵, 𝐶 ∈ [0,1], 𝐵 < 𝐶, 𝐵 = 0 ⇒ 𝐴 =
0 ∧ 𝐶 ≠ 1, , 𝐶 = 1 ⇒ 𝐴 = 1 ∧ 𝐵 ≠ 0 ): 

 
𝑏𝑓𝑙𝑎𝑡(𝑦,𝐴,𝐵,𝐶) = 𝐴 +min(0, ⌊𝑦 − 𝐵⌋)

𝐴(𝐵 − 𝑦)

𝐵

−min(0, ⌊𝐶 − 𝑦⌋)
(1 − 𝐴)(𝑦 − 𝐶)

1 − 𝐶
 

(28)  

 

b_poly (bias: polynomial) transformation function (𝛼 > 0, 𝛼 ≠ 1): 

 𝑏𝑝𝑜𝑙𝑦(𝑦,𝛼) = 𝑦𝛼 
(29)  

 

s_linear (shift: linear) transformation function (𝐴 ∈ (0,1)): 

 
𝑠_𝑙𝑖𝑛𝑒𝑎𝑟(𝑦, 𝐴)  =

|𝑦 − 𝐴|

|⌊𝐴 − 𝑦⌋ + 𝐴|
 (30)  

 

s_multi (shift: multi-modal) transformation function (𝐴 ∈ {1,2, … }, 𝐵 ≥ 0, (4𝐴 +

2𝜋) ≥ 4𝐵, 𝐶 ∈ (0,1) ): 

 

r_sum (reduction: weighted sum) transformation function (|𝐰| = |𝐲|, 𝑤,… ,𝑤|𝐲| > 0): 

 

For all WFG functions the constants are set: 

𝑠_𝑚𝑢𝑙𝑡𝑖(𝑦, 𝐴, 𝐵, 𝐶) = 

=
1 + cos [(4𝐴 + 2)𝜋 (0.5 −

|𝑦 − 𝐶|
2⌊𝐶 − 𝑦⌋ + 𝐶

)] + 4𝐵 (
|𝑦 − 𝐶|

2(⌊𝐶 − 𝑦⌋ + 𝐶)
)
2

𝐵 + 2
 

(31)  

𝑟_𝑠𝑢𝑚(𝐲,𝐰)  = (∑ 𝑤𝑖𝑦𝑖)/
|𝐲|

𝑖=1
∑ 𝑤𝑖

|𝐲|

𝑖=1
 (32)  

 𝑆𝑚=1:𝑀 = 2𝑚 

𝐴1 = 1 

𝐴2:𝑀−1 = {
0, for WFG3
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(33)  
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Working parameter domain is set be of a different magnitude for each parameter: 

 

Based on aforementioned shape and transformation function test problems can be build. 

Authors suggest a series of 9 test functions. Most of these functions have known true Pareto 

fronts although it was proven that WFG3’s true Pareto front is still unknown [61]. 

• WFG1 

WFG1 is a separable, unimodal problem with polynomial and flat bias and both convex 

and mixed geometry of the Pareto front. It is constructed using the following set of 

transformations, shape functions and parameters: 

Shape ℎ𝑚=1:𝑀−1 = 𝑐𝑜𝑛𝑣𝑒𝑥𝑚 

ℎ𝑀 = 𝑚𝑖𝑥𝑒𝑑𝑀 (with α = 1 and 𝐴 = 5) 
t1 𝑡𝑖=1:𝑘

1 = 𝑦𝑖 
𝑡𝑖=𝑘+1:𝑛
1 = 𝑠_𝑙𝑖𝑛𝑒𝑎𝑟(𝑦𝑖, 0.35) 

t2 𝑡𝑖=1:𝑘
2 = 𝑦𝑖 
𝑡𝑖=𝑘+1:𝑛
2 = 𝑏_𝑓𝑙𝑎𝑡(𝑦𝑖, 0.8, 0,75, 0.85) 

t3 𝑡𝑖=1:𝑛
3 = 𝑏_𝑝𝑜𝑙𝑦(𝑦𝑖, 0.02) 

t4 
𝑡𝑖=1:𝑀−1
4 = 𝑟_𝑠𝑢𝑚 ({𝑦(𝑖−1)𝑘

𝑀−1
+1
, … , 𝑦 𝑖𝑘

𝑀−1

} , {
(𝑖 − 1)𝑘

𝑀 − 1
+ 1,

𝑖𝑘

𝑀 − 1
}) 

𝑡𝑖=𝑘+1:𝑛
2 = 𝑏_𝑓𝑙𝑎𝑡(𝑦𝑖, 0.8, 0,75, 0.85) 

 

Fig. 22: True Pareto front of WFG1 (M=3) 

𝑧𝑖=1:𝑛,𝑚𝑎𝑥 = 2𝑖 (34)  
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• WFG4 

WFG4 is a separable, multimodal problem with no bias and a concave geometry of 

Pareto front. It is constructed using the following set of transformations, shape functions and 

parameters. It is constructed using the following set of transformations, shape functions and 

parameters: 

Shape ℎ𝑚=1:𝑀 = 𝑐𝑜𝑛𝑐𝑎𝑣𝑒 

t1 𝑡𝑖=1:𝑀
1 = 𝑠_𝑚𝑢𝑙𝑡𝑖(𝑦𝑖, 30, 10, 0.35) 

t2 
𝑡𝑖=1:𝑀−1
2 = 𝑟_𝑠𝑢𝑚 ({𝑦(𝑖−1)𝑘

𝑀−1
+1
, … , 𝑦 𝑖𝑘

𝑀−1

} , {1, … ,1}) 

𝑡𝑀
2 = 𝑟_𝑠𝑢𝑚({𝑦𝑘+1, … , 𝑦𝑛}, {1, … ,1}) 

 

 

Fig. 23: True Pareto front of WFG4 (M=3). 

Test problems belonging to a WFG toolkit exceed functionality of previous problems in 

a way they allow a combination of features desired of test functions and the choice on which 

features should be exhibited in a constructed test function entirely depend on problem 

designer’s choice. This toolkit can be understood as a set of features from which certain 

characteristics can be drawn to define a scalable problem according to specific needs. 

 

2.7. Performance metrics for multiobjective optimization 

In order to assess performance of optimization algorithms, the resulting Pareto fronts 

have to be compared. In case of a single-objective optimization problem, this would be a simple 

task reduced to comparing the values of the considered function achieved after the optimization 
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process. For the multiobjective problems, the results after the optimization come in form of a 

set of non-dominated (Pareto-optimal) solutions, which stems the necessity to employ other 

comparison methods. For multiobjective problem the definition of quality of obtained set of 

solution is much more complex than in case of a single objective and involves features such as 

[62]: 

• Distance between obtained set of solution and a true Pareto front, 

• Good distribution of obtained solutions, usually uniform is desired, 

• Wide extend of values should be covered by obtained solutions. 

In order to assess said features in obtained solutions multiple approaches are used either 

as standalone performance metrics or as combination of metrics: 
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• Generational distance (GD) 

Generational distance provides information on the distance between obtained Pareto 

front and true Pareto front. It can be considered as an error measure [63]. 

 

GD =
√∑ 𝑑𝑖

2𝑛
𝑖=1

𝑛
  (35)  

where 𝑑𝑖 = min ‖𝑓(𝑥𝑖) − PFtrue(𝑥𝑗)‖ is a distance in the solution space between solution xi 

and nearest solution on the true Pareto front. n is the number of solutions in the analysed set. 

Lower value of GD indicates better performance. 

• Inverted generational distance (IGD) 

Inverted generational distance provides information on both convergence and diversity.  

 
IGD =

∑ 𝑑(𝜈, 𝑋)𝜈∈PFtrue

|PFtrue|
 

(36)  

where X is a set of non-dominated solutions and 𝑑(𝜈, 𝑋) is a minimum Euclidean distance 

between 𝜈 and points in X. Lower value of IGD indicates better performance. 

• Pure diversity (PD) 

Pure diversity metric was introduced in [64] and is determined using a clustering 

algorithm based on distance between solutions.  Higher value of PD indicates a better 

performance. 

• Spacing (S) 

Spacing metric provides information on whether found solutions are evenly distributed 

over the approximation front. 𝑑̅ is mean value of all di and n is the number of solutions. 

 
S =

1

𝑛
∑ (𝑑𝑖 − 𝑑̅)

2𝑖

𝑖=1
 

(37)  

where 𝑑𝑖 is the Euclidean distance in solution space between solution xi and closest solution on 

the true Pareto front.   

Lower value of spacing indicates better performance. 

• Spread (Δ) 

Spread is a metric which gives information on how well found solutions are distributed 

over the solution space and to what extend is the true Pareto front covered [65].   

 
Δ =

𝑑𝑓 + 𝑑𝑙 + ∑ |𝑑𝑖 − 𝑑̅|
𝑁−1
𝑖=1

𝑑𝑓 + 𝑑𝑙 + (𝑁 − 1)𝑑̅
 (38)  

where N is the number of solutions. di is the Euclidean distance between neighbouring solutions 

in the obtained set of solutions, 𝑑̅ is mean value of all di. df and dl are Euclidean distance 
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between extreme solutions and the boundary solutions in the obtained set. Lower value of 

spread indicates better performance. 

• Hypervolume (HV) 

Hypervolume is a metric which considers all features of a good quality Pareto front: 

closeness to true Pareto front, diversity of obtained solutions and their extent. This feature and 

the fact that it does not require any knowledge on true Pareto front makes it a convenient 

indicator of quality of solutions, which at the same time is considered a comprehensive one. 

HV requires defining a reference point W for which the value of hypervolume is determined. 

Hypervolume indicator can be considered as a union of hypercubes constructed using a section 

between a reference point W and solution Xi as a diagonal for all the solutions.  

 
HV =⋃ 𝑣𝑖

|Ω|

𝑖=1
 

(39)  

 

An important downside of HV is its computational complexity, especially in case of 

high-dimensional solution space, calculating HV can be time-consuming. Computational 

complexity of HV is exponential with the number of objectives [66]–[69]. Higher value of HV 

indicates better performance. Graphic interpretation of HV in case of two-dimensional solution 

space is shown in Fig. 24. 

 

 

Fig. 24: HV in case of two objectives, red circles are non-dominated solutions. 
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3. DIFFERENTIAL EVOLUTION – GAME THEORY ALGORITHM 

(DEGT) 

One of the main goals of this dissertation is development of a novel multiobjective 

algorithm to deal with optimization of mechanical problems concerning a large number of 

objectives within the frames of soft computing. Key idea of the algorithm is to use differential 

evolution as a single-objective optimizer combined with elements of game theory to form a new 

multiobjective algorithm DEGT. Author’s idea was implemented in C++ programming 

language, comprehensively tested using mathematical test functions as well as compared with 

well-established multiobjective optimization algorithms. The algorithm was then used to 

optimize mechanical systems both analytical and numerical including multiscale and 

multiphysics simulations. 

Many researchers have been investigating the idea of utilising game theory elements in 

multiobjective optimization. Ameljanczyk used vector optimization methods to solve decision 

models including game problems in [70]. In [71] a game theoretic approach to optimization 

problems using multiple genetic algorithms to solve a multiobjective problems was proven to 

be computationally beneficial.  Multiobjective discrete optimization of laminates using multi-

membered evolution strategy and a cooperative game theory approach was discussed in [72]. 

Ideas of using genetic algorithms enhanced by game theory elements in multiobjective 

optimization and their various applications in engineering problems were presented by Periaux 

et al. in [73]–[75]. In [76] Nash strategies were used coupled with evolutionary algorithms so 

solve multiobjective optimization problems and it was proven that looking for a Nash strategy 

as a preceding step before applying evolutionary optimization algorithm can considerably 

improve the time needed to find the Pareto optimal front. An approach utilising game theory 

elements and fuzzy logic to solve multiobjective optimization design problem was shown in 

[77]. Coevolutionary approach to optimization based on game theory was used to introduce a 

novel multiobjective algorithm in [78]. In [79] three game models: Nash equilibrium game 

model, coalition cooperative game model and evolutionary game model are examined and 

compared with each other proving evolutionary game model is the most effective in terms of 

both computational efficiency and precision. In [80], [81] game theory was used to design a 

multiobjective optimization algorithm coupled with artificial immune systems. A review of 

multiple biologically-inspired methods and game theory in multiobjective optimization was 

presented in [82]. The example of an algorithm utilising elements of game theory to solve a 

multiobjective problem with two objectives and four design variables is shown in the Fig. 25. 
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Fig. 25: Example of using game theory in optimization of a two-objective problem 

3.1. Game theory 

It is likely not possible to indicate a place where or a moment when games were first 

present in the human history. Games have always existed alongside humankind as people made 

strategic decisions to achieve specific goals. Games have been played throughout history for a 

variety of reasons starting with petty motivations such as entertainment or even greed, ending 

on very noble causes such us improvement in medicine, engineering, and other branches of 

science. The decisions made during the games can take many shapes and forms. Games might 

be played by a single player or multiple players and if there are multiple players involved in the 

game, their decisions might either affect and be affected by other players decisions, or on the 

contrary – decisions might be independent and not influence or be influenced by other players. 

The player might want to make his decisions based on a single objective or a group of objectives 

to be fulfilled. Games might be very simple, for example a toss of coin to determine the winner 

can be considered one of the simplest possible games, but thanks to its simplicity, ease of access 

and little time required to be played, it was coined as one of people’s favourite, universal way 

to help resolve situations at random. But games can also have very sophisticated rules, moreover 

situation concerned in a game might have clear, static rules or be dynamic and change over 

time. It is also possible to imagine a situation in which some rules of the games are unknown 

to players and even despite this, they might want to play, take decisions, and observe the 

outcome. Many games are believed to best be taught when you play them.  

With the diversity of games scenarios arose the need to capture these ideas in a formal 

way. Therefore, mathematical, algorithmic, and economic tools were developed to deal with 

decision making processes – to model, analyse and solve game problems.  
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Back in 16th century an Italian mathematician, philosopher, and physician Gerolamo 

Cardano wrote The Book on Games of Chance (orig. Liber de ludo aleae). His passion for 

gambling resulted in a book concerning probability and mathematical laws governing the 

outcome of seemingly random events. The book was only published posthumously in 1663 and 

didn’t have a significant impact on scholars investigating probability. A French writer and 

another gambler, Chevalier de Méré, was a friend of a well-known French inventor and 

physicist Blaise Pascal and presented him with a certain early game theoretic problem. This 

problem was discussed in a series of letters exchanged between Pascal and another French 

mathematician Pierre de Fernat. A modern writer, Keith Devlin, describes the impact of these 

letters in these words: “The Pascal-Fermat correspondence showed that it is possible to use 

mathematics to see into the future” in [83]. Inspired by these letters Pascal wrote Treatise on 

the Arithmetical Triangle (orig. Traité du triangle arithmétique), written in 1654 and published 

in 1665 in which he describes what we today know as famous Pascal’s Triangle. This work is 

considered to be one of the earliest papers on probability and has introduced a new, later broadly 

used term: expected value. In 1657, a Dutch mathematician Christiaan Huygens, influenced by 

Pascal and Fermat, published Exercitationum Mathematicarum where he investigates problem 

of points and brings an early foundation of a game-theoretic approach to a problem of 

probability. Another thinkers, who were successors of Huygen’s works on probability were: 

Pierre Remond de Monmort (1678–1719), Abraham De Moivre (1667–1754) and Jacob 

Bernoulli (1655-1705) but they disregarded Huygen’s and Pascal’s concept of a game theoretic 

approach, focused on reasoning based on the structure of the game and instead proceeded to 

investigate probability problems based on frequency, which was a well-known and universally 

accepted approach among mathematicians at the time [84]. In 1713, a British diplomat James 

Waldegrave in his letters proposed a mixed min-max a solution to a card game Le Her, later 

known as the Waldergrave problem in probability and game theory. In 1838, a French 

mathematician Antoine Augustin Cournot published Researches into the Mathematical 

Principles of the Theory of Wealth (orig. Recherches sur les principes mathématiques de la 

théorie des richesses) where he investigates a problem of duopoly and proposes solution which 

is a Nash equilibrium of the game. Optimal chess strategy was proven to be strictly determined 

in 1913 by a German mathematician Ernst Zermelo in his book On an Application of Set Theory 

to the Theory of the Game of Chess (orig. Über eine Anwendung der Mengenlehre auf die 

Theorie des Schachspiels).  

These previous works sprang novel concepts and gave a significant background to a new 

field of science, which was soon to be created, but it was only until 1928 and the paper On the 

Theory of Games of Strategy [85] (orig. Sur la théorie des jeux or Zur Theorie der 

Gesellschaftsspiele) when game theory emerged as a modern, unique field of mathematics 

thanks to the work of a Hungarian-American mathematician John von Neumann. The main 

innovation in this paper was the proof of minimax theorem for some variants of two-players 

zero-sum games [86] which was later generalised and proven in an alternative way by several 

researchers [87], [88]. In 1944 Neuman, together with a German economist Oskar Morgenstern, 

wrote Theory of Games and Economic Behavior [89] which was a breakthrough work in 

understanding game theory as a multidisciplinary research field. In the book, cooperative games 

of multiple players are considered. A significant observation was made, that in case of games 

with 3 players, the nature of their conflict is no longer strictly competitive, as players can form 

coalitions to draw benefits. The book also introduced two terms: imputation and domination, 

the latter of which, understood as an abstract relation on a set of points is particularly important 
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in the field of multiobjective optimization. Later studies on the history of game theory [90] 

notice that very little attention was given to science concerning conflicts of interest between 

1928 and 1944 and attribute this to the fact, that first publication was directed towards 

mathematicians and the book of 1944 was successful in attracting attention of researchers in 

both mathematical and non-mathematical journals. Since then, game theory was a field of 

extensive research of many scientists in various branches of science, including applied 

mathematics, economics, biology, political science, computer science, military, and 

philosophy. An important person in the development of game theory was an American 

mathematician John Forbes Nash Jr. whose 28-page PhD thesis (1950) on non-cooperative 

games earned him the Nobel Memorial Prize in Economic Sciences in 1994. Nash also authored 

a series of articles [91]–[94] on the essential concept of non-cooperative equilibrium, later 

named Nash equilibrium after him. 12 game theorists have been awarded Nobel prize, the latest 

ones being awarded in the field of economy for Roger B. Myerson, Leonid Hurwicz and Eric 

S. Maskin for their work on mechanism design theory in 2007.  

There are multiple definitions of game theory, although most of them try to encapsulate 

the process of decision making. In [95] three elements of a game in a strategic form are 

distinguished:  finite set of players, strategy and payoff functions. Each player tries to increase 

his payoff function, which might involve helping or hurting other players, called opponents, 

whether or not their best interests are shared. The definition of strategy varies in different fields 

of applicability, for example in case of economy, strategy might be understood as a set of prices 

and in political science as votes. In these cases, strategy is a set of action based on deep analysis 

and thoughtful reasoning, but that’s not always a case. Game theory has successfully explained 

behaviour of animals such as spiders or fish, whose decisions aren’t based on thinking at all. 

The reason for this success is the fact that these animals’ genes programmed them to behave 

rationally, because otherwise they would be extinct, as nature eliminates unfit units in the 

evolutionary process.   

Another definition of game theory presented in [96] emphasizes interaction between 

decision makers, who are rational and reason strategically. The game theory regards abstract 

models which can describe real-life situations. The line between applied and theoretical aspects 

of game theory is vague and if these two sides were to be considered players, they would play 

a cooperative game, as real problems are solved thanks to theoretical advancements, and these 

are motivated and pushed forward by real problems which arise over time. 

Games models can be established in a variety of ways, one of the most basic divisions 

is related to the aspect of cooperation between players: non-cooperative games versus 

cooperative games. In case of non-cooperative games, players are always treated as single 

entities in a game, meanwhile in case of games with cooperation, a group of players can be 

regarded as a single entity. Another way of defining whether a game is cooperative or not is the 

permission to hold communication between players before the game. In cooperative games, 

players are allowed to discuss tactics, form alliances, and make binding agreements. In non-

cooperative games these actions are strictly prohibited. [90] 

Zero-sum games are a specific case of games where a benefit gained by a player always 

equals a loss gained by a player or players.  In other words, a zero-sum game is one in which 

an aggregate gains and losses must be zero. Many well-known games, such as Poker, Chess or 

Go are zero-sum games. On the contrary, non-zero-sum games allow a possibility of a net gain 
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or loss different than zero. This situation is also often prevailing in real decision making 

scenarios, for example regarding stock market, when gain of one investor is not necessary 

linked to loss of another. A well-known paradox known as prisoner’s dilemma (Fig. 26) is an 

example of a non-zero sum game. It was proven in [89] that any non-zero sum game can be 

transformed to a zero-sum game by introducing an additional player representing the global 

gain or loss. 

Fig. 26: Prisoner’s dilemma is a non-zero-sum game. 

Games can also be divided on the basis of order of actions on simultaneous (static) and 

sequential games. In simultaneous games players decide on their actions without prior 

knowledge on the choices of their opponents. In contrast, sequential games are played according 

to a schedule and each player can adjust his moves in relation to opponent’s action. An example 

of a sequential game is chess and rock-paper-scissors is a simultaneous game. 

Another significant division can be made on games with perfect and imperfect 

information about all aspects of the game, including: players, strategies, payoffs and previous 

decisions. Tic-tac-toe, checkers and go are examples of games with perfect information unlike 

poker and bridge, which are games with imperfect information. 

An important, basic concept in the field of game theory, providing a widely used 

solution for strategic games is Nash’s equilibrium. It is applicable to games provided that the 

game is strategic (or otherwise in normal form) and therefore: 

• consists of a finite set 𝑁 of players, 

• a nonempty set of actions 𝐴𝑖 for each of the players 𝑖 ∈ 𝑁 is defined and 

• a set of preference relations ≿𝑖 on 𝐴 = 𝑥𝑗∈𝑁𝐴𝑗  for each of the players 𝑖 ∈ 𝑁 is 

defined. 

If a set of actions is finite, then a game can also be considered finite. The set of outcomes 

𝑥𝑗∈𝑁𝐴𝑗 is defined over 𝐴 rather than 𝐴𝑖 deliberately because each player takes into account not 

only his actions but also actions of other players. 

These limitations constitute a model of a high level of abstraction which is applicable to a broad 

range of real problems.  Players may be single person, a group of people, an abstract entity, 

organization, animal etc. and sets of action can be either very narrow and consist of only a few 

alternatives, or can they be a sophisticated plans that cover a variety of aspects of a specific 

decision. These limitations are relatively easy to fulfil, the more challenging one is related to 

the definition of a set of preferences, which might cover for example how an individual feels 

about a certain outcome caused by his actions or if the entity does not act consciously then for 

example their rate of survival or reproductive success. An informal definition of Nash’s 

equilibrium is a situation in which no player can further improve his payoff by taking any 

possible action unless other players change their action. A more formal definition of a Nash’s 
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equilibrium of a strategic game 〈𝑁, (𝐴𝑖),≿𝑖〉 is a profile of actions 𝑎∗ ∈ A that for every player 

𝑖 ∈ N we have: 

 (𝑎−𝑖
∗ , 𝑎𝑖

∗) ≿𝑖 (𝑎−𝑖
∗ , 𝑎𝑖

∗) for all 𝑎𝑖 ∈ A  (40)  

 

The concept of Nash equilibrium assumes that it is a steady state in which each player acts 

rationally and his expectations towards opponents’ actions are correct. Nash’s equilibrium may 

not exist for all games and if it exists, it might not necessarily be a Pareto-optimal solution. It 

is worth highlighting that the early concept of Nash equilibrium does not examine the process 

of reaching the state of equilibrium, which might be achieved in various ways further 

investigated by many researchers up to this day.  

 

3.2. Differential evolution  

There are numerous approaches to solving optimization problems. Deterministic and 

non-deterministic (heuristic) methods can be distinguished. Deterministic methods include 

gradient methods (e.g., steepest descent, conjugate gradient, Quasi-Newton) and non-gradient 

methods (e.g., Powell, Nelder-Mead). Gradient methods are very effective, but the need to 

calculate optimization functionals gradients is a significant drawback, limiting the application 

of this method in many practical mechanical problems.  Another deficiency of deterministic 

methods (including non-gradient methods) is their tendency to getting stuck in local extremes, 

which is often the case in real engineering optimization problems. Heuristic optimization 

techniques, including bio-inspired, population-based methods came as an answer to the 

aforementioned limitations and found a wide range of applications in the problems of optimal 

design of mechanical systems [97].  

One of such methods is Differential Evolution (DE), a single objective optimizer, which 

was introduced by Price and Storn in 1997 [98] and is acclaimed for its simple structure, ease 

of use, speed and robustness. Simple structure, which is a significant advantage for many 

researches as it considerably eases implementation, does not come at the expense of 

performance, which was proven to be superior to many much more complex algorithms [99], 

[100]. Low number of parameters, whose impact on the performance of the algorithm is well-

studied is a significant advantage of the algorithm. DE has attracted attention of researchers 

improving and modifying the algorithm, some of the variants will be discussed in the 

proceeding parts of this chapter. A considerable study effort has been devoted to application of 

DE to a range of engineering and scientific problems. DE algorithm modified to automatically 

performed local restart of the population was used to solve space trajectory optimization 

problem [101], [102]. A parallel, surrogate based DE algorithm was used to solve coupled 

economic and emission hydrothermal optimization problem in [103]. Voltage stability driven 

load shedding optimization was investigated in [104]. Rural area micro grid energy 

optimization using DE was presented in [105]. Design optimization of microelectromechanical 

(MEMS) systems on the example of a comb-driven micro resonator was examined in [106]. 

Vehicle routing problem was solved using DE in [107].  Apart from applications of DE, some 

attention has been given to the theoretical foundations and analysis of the structure of the 

algorithm [108], [109]. 
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In the original article [98] authors propose a series of variants of an algorithm, denoted 

as DE/X/Y/Z where X denotes vector to be mutated, it can be either random or best (highest 

fitness individual from population), Y is the number of difference vectors used, typically 1, but 

can be more and Z is a crossover scheme, such as binominal crossover. The most popular, basic 

variant of the DE is DE/rand/1/bin and unless it is explicitly stated, this variant is considered. 

Another variant which was early discovered to be especially successful was DE/best/2/bin.  

The DE algorithm utilises selection and mutation as exploration and exploitation 

mechanisms.  Initial population Q0 is a set of parameter vectors xj usually chosen randomly 

from the search space. During the course of optimization, a weighted difference between two 

randomly chosen population members xr and xs is calculated and then added, considering 

crossover rate, to a third one xt to create a new design variables vector. If the resulting vector 

yields an improved objective value, it replaces the former one. DE is a self-adaptive method 

with low number of parameters, which is a significant advantage in comparison with many bio-

inspired methods. The algorithm features an inherent elitism mechanism on the individual level, 

as new offspring solutions can never replace superior parent solutions. Only three parameters 

govern the performance of DE algorithm: crossover rate CR ∈ [0,1], scale factor F ∈ [0,2] and 

population size DEpops>3. Low crossover rates result in preservation of a bigger part of the 

parent solution.  Scale factor is used to calculate a weighted difference when generating 

individuals and can be considered a mutation parameter. Another parameter might be added as 

a termination condition, such as maximum number of iterations DEiter.  In the original paper 

[98] authors suggest that for most cases of optimization the value of F should be set between 

0.4 and 1 and the value of CR between 0.1 and 0.9. Parameters used for the purpose of this 

research are population size DEpops = 6, crossover rate CR = 0.5 and scale factor F = 0.7. Brick 

wall penalty mechanism is used to handle boundary constraint violation. DE algorithm 

pseudocode is shown in Fig. 27 and flowchart is shown in Fig. 28. 
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Fig. 27: Flowchart of DE algorithm in a basic variant 
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i ← 0 

Pseudo-randomly generate initial population Qi of size NP=DEpops; 

for j = 1:NP 

 evaluate objective functions f(xj) for Qi; 

end-for 

while termination condition  

 for j = 1:NP 

  //mutation 

  select three individuals xr, xs and xt from Qi; 

  generate individual xoff = xt + F(xr-xs); 

  //crossover 

  for k=1:n 

   if rand(0,1)<CR 

    xoff,k = xj,k 

   end-if 

  end-for 

  //selection 

  if f(xoff)≤ f(xj) //minimization problem 

   add individual xoff to population Qi+1 

  else 

   add individual xj to population Qi+1 

  end-if 

 end-for 

 i ← i+1 

end-while 

Primal proposal of DE has been modified by many researchers and efficient variants are 

still often used as a single-objective optimizer in different engineering disciplines. 

Modifications of DE algorithm, such as MLSHADE-SPA [17] and SHADEILS [18] were 

proven to be the best performing optimizers in a WCCI'2018 Large-Scale Global Optimization 

Competition and are both considered state-of-the-art algorithms in this field. In [110] authors 

notice that constraint handling mechanism has an essential impact on the performance of DE 

and propose a strategy called Inverse Parabolic Spread (IPS) which is capable of dealing with 

non-linear constraints and by simple variable bounds. Implementing a self-adapting control 

parameters in differential evolution to form a new variant of DE algorithm was proven to 

display improved performance over benchmark problems in [111]. Another approach to provide 

Fig. 28: Differential evolution pseudo-code. 
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a way for self-adapting DE parameters was shown in self-adapting DE (SADE) algorithm in 

which an idea of self-adaptation involves learning from experience of generating promising 

solutions. SADE was comprehensively tested using 26 constrained test functions and compared 

to conventional DE variants and state-of-the-art adaptive DE variants [112]. Differential 

evolution has been used to form multiobjective evolution algorithms (MOEA/D, MOEA/D-

DE), these algorithms were proven to perform similarly or outperform NSGA-II on chosen 

continuous optimization problems and knapsack problem [113], [114]. 

3.3. General idea of a game theoretic approach to multiobjective optimization 

There are multiple analogies in the fields of game theory and multiobjective 

optimization, some of them are shown in the Tab. 2. 

Tab. 2: Analogies between optimization and game theory 

Game theory Optimization 

cooperative game multiobjective optimization 

players objectives 

resources design variables 

looking for a Nash equilibrium looking for a set of Pareto optimal solutions 

 

As a consequence of analogies and similarities between these fields numerous 

algorithms of single-objective optimization can be used with game theory elements to form 

multiobjective optimization tools in a various ways as presented in the previous section. In this 

dissertation the game theory elements were complimented with Differential Evolution 

algorithm to form a novel multiobjective optimization algorithm called DEGT (Differential 

Evolution – Game Theory). The choice of Differential Evolution as a single objective optimizer 

is motivated by its simple structure, ease of use, low number of working parameters and self-

adaptive nature. This selection of desired features is not present in a wide range of other single-

objective optimizers.  

The idea behind coupling differential evolution and elements of game theory comes 

down to treating objectives as players, playing a cooperative game, trying to improve their 

respective objectives with the resources given and sharing the information with each other, 

iteratively looking for a Nash equilibrium.  

Each player is given a part of design variable vector at random as their resources, while 

the rest of the vector is fixed and determined by other players’ choices. 

To assure diversification of solutions the assignment of resources is changed in a way 

each design variable is modified by one and only one player. Assignment of resources is 

changed after each of the players made his move.  

The player's move is to run the single-objective optimization process, using differential 

evolution algorithm to improve one objective at the time using the resources allocated. 

Father of game theory, John Neumann, in his first book, considered to be the beginning 

of modern game theory [85], said: 
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“The fate of each player depends not only on his actions but also on those of the others, 

and their behavior is motivated by the same selfish interests as the behavior of the first player. 

We feel that the situation is inherently circular.” 

This very cycle mentioned in this quote prevails in the idea of multiobjective 

optimization using game theory elements, as every player proceeds to improve his objective 

function, but has to respect decisions of other players, which are also selfish and motivated by 

other objectives. 

The flowchart of a general idea of DEGT is shown in Fig. 29. In the first step a problem 

needs to be defined including expression of objective functions and design parameters. Players 

in the game are linked to certain objectives at this point. First solution is sought concerning first 

objective and then the process is followed by playing consecutive cooperative games using DE 

Fig. 29: Flowchart of DEGT 
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optimizer by each of the players. Optimization proceeds iteratively, new solutions are saved if 

they are non-dominated and discarded otherwise. After finishing satisfying termination 

condition the process is concluded with post-optimization tasks. 

 

To further explain the ideas behind the DEGT algorithm a simple pseudocode is shown in the 

Fig 30. 

i ← 1 

Perform single objective DE optimization on objective 1; 

Save design variable vector of best solution Si; 

Calculate and save values of remaining objectives; 

while termination condition  

 if i% nobj=1 

  assign design variables to objectives; 

 end-if 

 Set values of fixed design variables according to solution Si-1; 

 Perform single objective DE optimization on objective 1+i% nobj; 

 Save design variable vector of best solution Si; 

 Calculate values of remaining objectives; 

 if solution Si is non-dominated 

  save solution Si; 

  remove saved solutions dominated by Si; 

 end-if 

 i ← i+1 

end-while 

 

3.4. Simple example of a game theoretic approach 

In order to present the principles of game theoretic approach to multiobjective 

optimization a simple example can be considered (Fig. 31).  

In case of mechanical problems optimization functions could be related to quantities 

such as: mass, volume, stresses, displacements, modal frequencies etc. and design variables 

could represent for example geometrical structure of an object: length, width, height, inner 

diameter, outer diameter; material properties: Young’s modulus, Poisson’s ratio or boundary 

conditions imposed on an analysed system: fixed or supported. In general design variables 

Fig. 30: DEGT pseudocode 
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describe the design of the system and objectives the describe system’s answers related to 

particular needs identified beforehand.  

For the purpose of an example it is assumed that the optimization problem was identified 

to consider three objectives represented by a vector of optimization functions 𝐟 = [𝑓1, 𝑓2, 𝑓3] 

and the design of the problem is described by a vector of design variables 𝐱 =

[𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5]. The optimization functions might be either minimized or maximized and it 

will not be distinguished in the example, the positive change in objective function will be 

referred to as “improvement”.  

In the first step three players playing a cooperative game are created, so that each one 

of them can manage exactly one objective. Before players make their decisions, they are 

assigned resources in the form of a part of design variable vector available for them to be 

updated. The remaining part of the vector of design variables is fixed and determined by other, 

players choices, based on their previous moves. If a design variable was not yet determined by 

any player before then it can take any feasible initial value. This situation happens only before 

the first move of each player, except for the player who makes his move last, as all other players 

have already made their decisions and thus determined the entire fixed part of the design 

variable vector.  

In the next step, after resources are assigned, players, one by one, proceed to improve 

their respective objectives. In general, the assignment of objectives is performed randomly in 

such a way that each design variable is modified by exactly one player at the time. For the 

purpose of this example let’s assume first assignment of objectives: player 1, who tries to 

improve objective f1 can modify design variables x2 and x5; player 2, who tries to improve 

objective f2 can modify design variable x1 and player 3, who tries to improve objective f3 can 

modify remaining design variables: x3 and x4. Players make their decisions in order, first player 

1 solves a single objective optimization problem with regards to objective f1. The value of 

design variables which are not included in the resources of player 1 take a fixed value during 

the course of optimization. Let’s assume the initial feasible value for each objective can be 0.  

After having finished optimization, a new design with improved value of objective f1 is 

obtained. Vector of design variables before player 1 makes his move: 𝐱 =  [0, 𝑥2, 0,0, 𝑥5]. After 

the single objective optimization process the design variables assigned to player 1 take a new 

value 𝐱 =  [0, 𝑥2𝑁 , 0,0, 𝑥5𝑁] this information is saved and shared with proceeding players. 

Values of remaining objectives are calculated and solution with a set of design variables is 

saved. Player 2 tries to find a design with improved value of objective f2 in a similar manner, 

able to change only the design variable x1 which was assigned to him. Vector of design variables 

before player 2 makes his move: 𝐱 =  [𝑥1, 𝑥2𝑁 , 0,0, 𝑥5𝑁]. Notice that player 2 already uses the 

information shared with him by player 1 but still has no information on proposed values of x3 

and x4.  After the single objective optimization process the design variables assigned to player 

1 take a new value 𝐱 =  [𝑥1𝑁 , 𝑥2𝑁 , 0,0, 𝑥5𝑁] this information is saved and shared with 

proceeding players. Values of remaining objectives are calculated and solution with a set of 

design variables is saved.  Last player performs optimization process with respect to objective 

f3 and is able to update values of design variables x3 and x4 having information on the remaining 

design variables from previous players. Vector of design variables before player 2 makes his 

move is 𝐱 =  [𝑥1𝑁 , 𝑥2𝑁 , 𝑥3, 𝑥4, 𝑥5𝑁]. After all, three players have made their moves a new 

design is obtained: 𝐱 =  [𝑥1𝑁 , 𝑥2𝑁 , 𝑥3𝑁 , 𝑥4𝑁 , 𝑥5𝑁] and saved along with remaining values of 

objectives. All the design variables were able to be updated and all the objectives were able to 
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be improved. After all the players have made their moves, the assignment of resources (design 

variables) is rearranged at random with respect to the principle that each of the design variables 

has to be assigned to exactly one player.  

In the next steps, after the assignment of resources was performed anew, the process is 

repeated in an iterative way until the stop condition is met and reassignment of resources is 

applied every time after the last player makes his move. After each move one of the objectives 

is improved or in a very specific scenario can remain unchanged but can never be worsened. 

Other objectives, not managed by a player making his move at the time, might take worsened 

values due to contradictory nature of objectives in multiobjective optimization problems. 

Whenever a new solution is to be saved, it is convening to compare it with solutions found 

beforehand. If the new solution is dominated by any of the solutions existing in the database, 

then it doesn’t need to be saved and if the solution is non-dominated then any existing solutions 

dominated by a new solution can be removed from the database of solutions. This process can 

be performed either during the run of algorithm, or the set of solutions can be filtered off 

dominated solutions after the optimization process is finished as it is a relatively 

computationally effortless task.   



59 

 

 

Fig. 31: Simple example of a game theoretic approach. Colours indicate players and 

bolded frame indicates design variable is changed at the time. 

 

 

3.5. Implementation 

DEGT algorithm was implemented in general-purpose programming language C++ 

using Visual Studio environment under Windows operating system. The algorithm consists of 

multiple functions related to tasks such as: setting and changing the parameters of the DEGT 

algorithm, invoking DE algorithm to solve single objective optimization by players, setting 

design variables as fixed or free to change depending on resources assigned to a player, 

displaying the information obtained in the current step on the console screen and saving the 

information to log files and checking the termination condition.  

Parameters of the main algorithm which need to be set before starting the optimization 

are: 
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• number of objective functions nobj, 

• number of design variables ndv, 

• termination condition (number of iterations iter or number of objective function 

calls calls), 

• vector of limits imposed on design variables limits. 

Apart from these algorithms, a set of parameters related to DE algorithm needs to be set, 

which includes: 

• number of iterations of DE algorithm DEiter, 

• population size DEpops, 

• crossover rate CR, 

• scaling factor F. 

All these parameters can be either included in the main code of the program or read by 

the algorithm from text file, for the purpose of their easy modification before each run of the 

algorithm without the need of changing the code.  

To start the algorithm, it is necessary to use an admissible solution. It is possible to use 

any solution within the limits imposed on design variables. A first solution can be explicitly 

defined by user. In this case, this solution can be for example an existing design of a mechanical 

system which is about to be optimized. Another application of defining a first solution by user 

is shown in case when the algorithm needs to be restarted after a shutdown. It is then possible 

to include the last found solution in the text file and the algorithm will continue the course of 

optimization starting from this point. This approach is especially useful in case of time-

consuming optimization processes as it helps to prevent complications caused by energy 

shutdowns, hardware of software failures and other situations considering either unexpected or 

scheduled termination of the algorithm. It is worth noting that the algorithm requires only a 

single last solution to restart, which is an important advantage compared to many algorithms 

which require a full history of obtained solutions to continue the course of the algorithm, 

If user decides to save the logs, then the algorithm can save information on vectors of 

design variables and vector of objective function values to save file. By default, the program 

saves information on each solution analysed, including dominated solutions. It is possible to 

filter out the dominated solutions to obtain the set of non-dominated solution also called Pareto-

optimal set or Pareto front.  

Additional functions included in the code to supplement the algorithm are related to the 

calculation of the hypervolume metric for the purpose of testing the algorithm and comparing 

the value of HV for the solutions obtained by DEGT with solutions obtained with other 

algorithms. It is possible to calculate hypervolume for any set of solutions for given reference 

point. For the purpose of a statistical approach to comparison of metrics it is also possible to 

calculate mean and standard deviation of hypervolumes of multiple sets of solutions. 

3.6. Communication with FEM software 

In case of optimization of mechanical systems, a vital aspect of the DEGT algorithm is 

its way of communication with FEM software which is responsible for obtaining values of 

optimization functions. During the course of optimization values of functionals need to be 

calculated multiple times based on a set of design variables specified by an algorithm. All the 
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popular FEM systems provide support for parametric models which are extremely useful in 

case of optimization tasks. In order to obtain value of an optimization functional by FEM 

software a parametric model including: geometry, material properties, mesh and boundary 

conditions and initial conditions for dynamic models should be set up beforehand. After the 

parametric model is designed it should be solved using the set of parameters, which are design 

variables in the optimization process. FEM system then generates geometrical model based on 

supplied parameters and after solving it provides the information on sought quality (e.g., 

deflection at given point, value of maximum equivalent stress) and exports it to a file. DEGT 

algorithm should be able to generate the model based on parametric model for a chosen set of 

parameters, run the solver and read the log file to obtain the value of optimization functional. 

There are many different approaches to setting up parametric models depending on the software 

of choice. In case of popular MSC software (Patran/Nastran) parametric models can be build 

and solved utilising the script language called Patran Command Language (PCL). In case of 

another popular FEM software Ansys parametric models can be build using the graphic user 

interface in the software or using Ansys Parametric Design Language (APDL). 

It is possible to obtain values of optimization functionals using a function built in in the 

program code. The function takes a set of design variables as an input data and returns either a 

set of objective function values, or a single objective value, depending on what is necessary. 

All the commands related to setting up parametric model based on a set of design variable, 

solving it, and reading generated text files to obtain values of optimization functionals should 

be included in the script. This approach might utilise batch files to design and solve problems, 

depending on CAE system used. 

This approach for communication is used in case of a problem of optimization of an 

airfoil system described in section 5.2, where Patran/Nastran software is responsible for 

determining values of optimization functionals. In this problem there are 4 optimization 

functionals, related to: total mass, equivalent stress, displacement, and modal frequency of the 

airfoil system under working conditions. An in-built function airfoil is responsible for obtaining 

the values of optimization functionals. Function airfoil takes two input arguments: a vector of 

design variables vars and an unsigned integer value obj = {1,2,3,4} determining which of four 

objective functions is calculated at the time and returns the value of the target function as 

indicated by obj. To determine the value of the function, a Patran/Nastran software is utilised. 

A parametric model is built based on previously prepared session file and presented vector of 

design variables. Session file is in fact a script in PCL, which is responsible for setting up a 

model, including: creation of a geometric model based on presented parameters (design 

variables), meshing the model, setting up material sections and material properties, applying 

loads and boundary conditions. The aforementioned parts of the process are related to pre-

processing and are realised using Patran software, which is typically used with a graphic user 

interface although in this case, as it’s an automatic process, these are all invoked without the 

need of using the GUI, only based on session file and a batch file to execute session file in 

background mode using Patran/Nastran environment. After the tasks related to pre-processing 

are finished, a solver Nastran is invoked to solve a boundary-value problem and save report 

files for post-processing. Solving the boundary-value problem is typically the most time-

consuming part of the process. After the problem has been solved, function airfoil accesses 

report files and extract information on the value of target objective function. The value of the 

objective output function is then returned by the airfoil function. Fig. 32 shows which part of 

the process are responsible for selected tasks in case of optimization of an airfoil system. 
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Fig. 32: Communication through internal script in case of optimization of an airfoil 

system 

It is worth noting that some of the objective functions might not need to perform all of 

the steps described in Patran/Nastran block. For example, calculation of mass requires only 

creation of geometry, setting up material sections and properties and generation of report file 

and the intermediate stages should be omitted. If the objective function does not require solving 

a boundary-value problem, the time to determine its value is substantially shorter. 

Another approach to communication doesn’t require inference with the code of the 

algorithm and uses external executable file solver.exe instead. If files named solver.exe, 

datain.dat and dataout.dat are located in the location where the algorithm is running then these 

files will be used to obtain values of optimization functionals. solver.exe is responsible for 

solving the problem based on the values of a vector of design variables saved in datain.dat file 

by the algorithm. After solving the problem, the information on optimization functionals should 

be written in dataout.dat file, from which the algorithm obtains sought values. In this approach 

it is not needed to modify the source code of the algorithm, but it is necessary to design file 

solver.exe able to calculate values of optimization functionals and write them to dataout.dat 

based on a values of design variables in datain.dat. Executable file solver.exe can be designed, 

built, and compiled in any way provided it works in a way described beforehand.   

 

Fig. 33: Communication through solver.exe with any CAE system 
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In the Fig. 33 a process of communication with a CAE system of choice, controlled by 

an additional executable solver.exe and documents datain.dat and dataout.dat is shown. This 

approach was used in case of optimization problems related to microactuators and porous 

materials optimization, described in chapter 5, where communication with two CAE systems: 

Patran/Nastran and Marc/Mentat was controlled by solver.exe. 
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4. COMPARATIVE TESTS OF THE DEGT ALGORITHM 

In order to assess performance of the algorithm it was compared with other well-known 

algorithms. The algorithms were presented with a set of test functions (benchmark problems) 

designed in a way to reflect real problems faced by optimization algorithms working with 

mechanical systems. After a given number of function calls the sets of non-dominated solutions 

were assessed using comprehensive hypervolume metric. To observe the performance of the 

algorithm for problems of various dimensionality of solution and design space scalable test 

functions were used.  Test were performed for problems with a range of 3 to 6 objectives and 

10 to 20 design variables. For one of the test functions, extra tests were performed for cases 

with up to 10 objectives. For each instance the algorithm was run 30 times to calculate mean 

and standard deviation of results. The number of 30 runs is understood as a compromise 

between reliability and accuracy of obtained statistical results and low computational time 

required to obtain them. Results analysed were: number of solutions in the set of non-dominated 

solutions and hypervolume metric. To calculate hypervolume metric it is necessary to use a 

reference point. Reference point was chosen in a way to be dominated by all the solutions 

considered in each case and may vary between variants. Termination condition for all the cases 

was 25000 objective function calls. In case of test functions used, the execution time of such a 

task is negligible, although in case of real mechanical problems, where FEM-based software is 

used to obtain value of optimization functions, assuming solving a boundary value problem 

takes 30 seconds, 25000 calls translate to over a week of computational time. Depending on the 

details of the problem and especially on the number of nodes in the FEM model used to obtain 

values of optimization functionals, this time can be considerably increased. For this reason, it 

is an essential feature of optimization algorithms to be able to obtain a good quality of solutions 

under a limited number of function calls. 

Differential evolution parameters used inside DEGT algorithm were: 

• generations DEiter = 5, 

• population size DEpops = 6, 

• crossover rate CR =0,5, 

• scaling factor F = 0,7. 

Population size and number of generations are uncharacteristically low for a regular 

single-objective optimization problem. When optimization is subject to only one fitness 

function, the objective space should be explored in one direction only, trying to focus on 

improving a single quantity described by fitness function. This approach is especially prevalent 

in gradient methods. In this case, however, the idea is to perform single-objective optimization 

multiple times, such an approach can be understood as taking many small steps in various 

directions in the objective space as opposed to taking few large steps. Taking the small steps 

results in more diversified set of solutions and the algorithm is less likely to stuck in local 

optima, as the assignment of resources is often changing. It is worth noting that the 

contradictory nature of objectives results in the possibility to worsen other objectives when a 

contradictory objective is being improved. This serves as a protection mechanism, discouraging 

the algorithm to perform extensive exploitation of objective space around local minima.  
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4.1. DAGT vs NSGA-II vs NSGA-III 

The algorithms chosen to be compared with DEGT are NSGA-II published in 2002 [42] 

which is still among the most popular multiobjective algorithms. MATLAB, a popular multi-

purpose engineering and scientific computing software utilises a controlled, elitist genetic 

algorithm (a variant of NSGA-II) in Global Optimization Toolbox. Function gamultiobj is 

responsible for genetic multiobjective optimization. All the results related to NSGA-II were 

calculated using MATLAB R2021a. 

Second algorithm, NSGA-III were published in 2013 [50] and is an improved version 

of NSGA-II. Authors did not share the implementation of the algorithm so an unofficial C++ 

implementation [52] was used for the purpose of comparison.  

For the purpose of comparison, the default values of parameters, proposed by authors 

of implementations are used in case of both NSGA-II and NSGA-III. 

The default values of parameters of NSGA-II are available in MATLAB documentation 

[115] and default values of parameters of NSGA-III are included in the documentation available 

on the implementation author’s webpage [52]. 

In case of both NSGA-III and DEGT the algorithms were implemented in C++ so code 

of test functions was interchangeable. In case of NSGA-II test functions were rewritten from 

C++ to MATLAB language. 

4.2. Results of the comparison 

Results of the comparison are presented in the form of tables and graphs. Each of the 

following sections is devoted to a specific test function described in detail in section 2.6. For 

each scalable test function a set of variants scaled in terms of number of objectives was analysed 

In case of real test problems, they were transformed to a multiobjective problems by treating 

inequality constraints as minimization fitness functions, where left side of the inequality is 

considered to be a minimization function. Data presented in the table includes: 

• number of objective functions nobj, 

• number of design variables ndv, 

• reference point 𝑟𝑝 = [ℎ, ℎ, … , ℎ] of dimensionality equal to the number of 

objective functions, 

• mean hypervolume metric hv calculated over 30 runs of the algorithm, 

• standard deviation sd of said hypervolume metric set, 

• Pareto size ps. 

Desired results are: high mean value of hypervolume, low value of standard deviation 

and high mean value of Pareto size. High hypervolume indicates results are close to true Pareto 

front, well spread and distributed. Low standard deviation indicates good reproducibility of 

results. Large Pareto size gives analysts a bigger set of solutions to choose from in the final 

decision making process.  

 

4.2.1. DTLZ1 
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Results of comparison between 3 algorithms for DTLZ1 are shown in Tab. 3 and Fig 

34. Best values for each respective test were highlighted. 

Tab. 3: Test function DTLZ1 

DTLZ1 rp DEGT NSGA-II NSGA-III 

nobj ndv h hv sd ps hv sd ps hv sd ps 
3 10 100 9,11E+05 2,24E+04 45,5333 8,91E+05 1,23E+05 69,133 1,00E+06 2,40E-01 25,00 

4 10 100 9,81E+07 5,12E+05 65,6 4,95E+07 2,65E+07 69,6 1,00E+08 1,74E+01 57,00 

5 10 100 9,92E+09 3,70E+07 68,83 6,29E+09 2,46E+09 69,8 1,00E+10 8,73E+03 129,00 

6 20 500 1,53E+16 1,33E+14 109,6 1,26E+16 1,20E+15 70 1,56E+16 2,22E+11 253,00 

 

 

Fig. 34: Test function DTLZ1 

For the DTLZ1 function the superior results in terms of mean hypervolume and standard 

deviation were obtained by NSGA-III. DEGT was proven superior to NSGA-II. The differences 

between results in hypervolume obtained by all three algorithms weren’t significant, especially 

for higher dimensional problems. In case of Pareto size, NSGA-III performed significantly 

better for 6 objectives and significantly worse for 3. 

4.2.2. DTLZ2 

Results of comparison between 3 algorithms for DTLZ2 are shown in Table 4 and Fig 

35. Comparison with NSGA-II was extended to problems with up to 10 objective functions. 

Comparison with NSGA-III was performed only for problem with up to 8 objective functions, 

as further calculations of HV for a high-dimensional Pareto fronts with a large Pareto size were 

extremely time-consuming, but it should be expected for NSGA-III to outperform both 

algorithms for further increased number of objectives. Best values for each respective test were 

highlighted. 

Tab. 4: Test function DTLZ2 

DTLZ2 rp DEGT NSGA-II NSGA-III 

nobj ndv h hv sd ps hv sd ps hv sd ps 
3 10 1,5 2,575 0,021 77,9 2,3304 0,39917 70 2,71 0,001 25 

4 10 1,5 4,30164 0,0339291 115,367 2,8298 0,65657 70 4,58 0,0009 57 

5 10 1,5 6,53032 0,122122 123,233 3,5884 1,0186 70 7,25 0,001 129 

6 20 2 56,17 1,7387 91,5667 20,1852 8,9495 70 63,67 0,01 253 

7 20 2 109,938 4,49336 83,7333 39,3995 20,9655 72,1667 127,58 0,02 465 

8 20 2 215,454 8,94555 73,6667 74,2891 47,2734 73,9 255,321 0,05 793 

9 20 2 431,511 16,804 65,433 165,5719 84,9747 77,3 - - - 

10 20 2 867,913 31,52 67 345,6197 114,9292 78,73 - - - 

3 4 5 6

DEGT 9,11E+05 9,81E+07 9,92E+09 1,53E+16

NSGA3 1,00E+06 1,00E+08 1,00E+10 1,56E+16

NSGA2 8,91E+05 4,95E+07 6,29E+09 1,26E+16
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Fig. 35: Test function DTLZ2 

For 3 to 8 objectives NSGA-III outperformed both algorithms, except for Pareto size in 

case of 3 and 4 objectives, where DEGT obtained larger sets of non-dominated solutions. 

NSGA-II was significantly worse than other two algorithms. 

Comparison with NSGA-II for a problem scaled to 9 and 10 objectives was for clarity 

not included in the figure although it should be noted that superiority of DEGT does further 

increase with the increase of the number of objectives. 
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4.2.3. DTLZ3 

Results of comparison between 3 algorithms for DTLZ3 are shown in Tab. 5 and Fig 

36. Best values for each respective test were highlighted.  

Tab. 5: Test function DTLZ3 

DTLZ3 rp DEGT NSGA-II NSGA-III 

nobj ndv h hv sd ps hv sd ps hv sd ps 
3 10 200 6,58E+06 4,43E+05 37,433 7,55E+06 4,50E+05 68,2667 8,00E+06 3,49 25 

4 10 200 1,53E+09 2,80E+07 50,9333 6,76E+08 4,25E+08 70 1,60E+09 40,82 57 

5 10 200 3,15E+11 2,82E+09 62,9667 1,80E+11 6,76E+10 70 3,20E+11 4,30E+04 129 

6 20 1000 9,58E+17 1,29E+16 86,0667 5,68E+17 1,66E+17 70 9,99E+17 4,23E+12 253 

 

 

Fig. 36: Test function DTLZ3 

In case of DTLZ3 test function, the results were quite similar although in favour of 

NSGA-III. Both NSGA-II and DEGT found more solutions on Pareto front than NSGA-III in 

case of problem scaled to 3 and 4 objectives. 

4.2.4. DTLZ4 

Results of comparison between 3 algorithms for DTLZ4 are shown in Tab. 6 and Fig 

37. Best values for each respective test were highlighted. 

Tab. 6: Test function DTLZ4 

 

For the DTLZ4 problem, DEGT was superior in terms of hypervolume and standard 

deviation for problem with 3 objectives. For problems with 4 objectives DEGT recorded lowest 

value of standard deviation among compared algorithms. For problems with 5 and 6 objectives 

NSGA-III outperformed remaining two algorithms.   
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DTLZ4 rp DEGT NSGA-II NSGA-III 

nobj ndv h hv sd ps hv sd ps hv sd ps 
3 10 1,5 2,35603 0,0798805 18,3667 2,3237 0,38922 70 2,13 0,46 25 

4 10 1,5 4,028 0,129 34,4 3,2666 0,65374 70,4667 4,29 0,42 57 

5 10 1,5 6,505 0,189 53,867 5,0251 1,1466 70,2333 7,26 0,001 129 

6 20 2 58,961 1,629 36,5 37,1281 10,9649 73,5 63,65 0,03 253 
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Fig. 37: Test function DTLZ4 

4.2.5. WFG1 

Results of comparison between 3 algorithms for WFG1 are shown in Tab. 7 and Fig 38. 

Best values for each respective test were highlighted. 

Tab. 7: Test function WFG1 

 

NSGA-III obtained results with highest mean value of hypervolume. However, it is 

worth noting that for problems with 3, 4 and 6 objectives, obtained hypervolume for NSGA-III 

and DEGT recorded a particularly high value of standard deviation which indicates the results 

were not repetitive among 30 runs. For these problems NSGA-II obtained results with lower 

standard deviation. For problem with 5 objectives DEGT found the most repetitive results 

indicated by a low value of standard deviation. For this problem DEGT recorded the most 

solutions on the Pareto front for all examined cases. 

3 4 5 6

DEGT 2,35603 4,028 6,505 58,961

NSGA3 2,13 4,29 7,26 63,65

NSGA2 2,3237 3,2666 5,0251 37,1281
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WFG1 rp DEGT NSGA-II NSGA-III 

nobj ndv h hv sd ps hv sd ps hv sd ps 
3 10 1,5 5,81022 6,13936 316 2,789 0,36315 200 7,6 6,97 25 

4 10 1,5 3,655 2,61 444,1 4,5895 0,46396 200 8,5 9,14 57 

5 10 1,5 4,99 0,113 461,633 7,0836 0,66203 200 7,25 0,19 129 

6 20 1,5 10,9098 15,6042 453,233 10,952 0,68744 200 11,27 0,4 253 
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Fig. 38: Test function WFG1 

4.2.6. WFG4 

Results of comparison between 3 algorithms for WFG4 are shown in Tab. 8 and Fig 39. 

Best values for each respective test were highlighted.  

Tab. 8: Test function WFG4 

WFG4 rp DEGT NSGA-II NSGA-III 

nobj ndv h hv sd ps hv sd ps hv sd ps 
3 10 100 4,228 2,005 192,8 2,6192 0,05585 200 2,64 0,006 25 

4 10 100 4,414 1,136 236,633 3,9786 0,12505 200 5,59 3,38 57 

5 10 100 8,689 2,357 170 5,9205 0,23546 200 7,87 5,75 129 

6 20 500 64,254 19,139 164,633 8,7369 0,30123 200 61,79 0,09 253 

 

 

Fig. 39: Test function WFG1 
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It should be noted that in the Fig. 39 the limits on the vertical axis are set to a value 

lower than the maximum value obtained for the DEGT in case of nobj = 6 because it 

significantly exceeds other results. 

For test problem WFG4 DEGT outperformed other algorithms in terms of mean 

hypervolume for problem with 3, 5 and 6 objectives. For problem with 4 objectives NSGA-III 

obtained better solutions. It is worth noting that results obtained by NSGA-III end DEGT are 

characterised by high standard deviation and both these algorithms had a worse repetitiveness 

rate than NSGA-II nevertheless quality of solutions found by NSGA-II was worse. Over 30 

runs in many cases for DEGT and NSGA-III there were several particularly good solutions, but 

the median hypervolume of solutions was much lower than the mean. For DEGT the results 

were more repetitive, with low standard deviation for all cases.   

4.3. Conclusions 

In general, the tests carried out on a set of benchmark functions indicate that DEGT can 

be considered a viable multiobjective optimization algorithm. The performance of the algorithm 

for most cases was noticeably superior compared to the performance of a NSGA-II algorithm 

and slightly worse than NSGA-III algorithm, although there were some instances in which 

DEGT performed better than both algorithms it was compared with. It should be noted, that for 

either of the compared values: mean hypervolume, standard deviation and mean Pareto size it 

is possible to find a test function and a selected number of objectives, for which DEGT 

outperformed both algorithms. For example: for WFG4, for most cases DEGT recorded the best 

mean values of HV. It is worth noting that WFG4 is a complex test function involving features 

characteristic to many real mechanical optimization problems. For WFG1 in all cases DEGT 

found the highest mean value of number of solutions on the Pareto front. For some cases in 

DTLZ4 and WFG1, the results obtained by DEGT were characterized with the lowest value of 

standard deviation of hypervolume among compared algorithms, which indicates a more 

repetitive nature of obtained set of solutions. Even though NSGA-III outperformed DEGT in 

many cases analysed, the difference was not significant and considerably lower than the 

difference between NSGA-II and DEGT performance, when DEGT was proven superior. The 

tests on mathematical benchmark functions produced satisfying results, proving that the 

algorithm can find good enough results in terms of examined metrics and further tests on 

problems considering mechanical systems with both analytical and numerical formulation of 

objective functions will be presented in the following part of this dissertation. 
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5. REAL MECHANICAL PROBLEMS 

In this chapter performance of DEGT was presented on real mechanical multiobjective 

optimization problems. Six mechanical optimization problems with a varying number of 

objectives and design variables and diverse level of complexity were examined. The former 

three optimization problems are analytical problems, transformed from single objective 

optimization benchmark problems with constraints to form multiobjective unconstrained 

optimization problems. These problems do not require extensive numerical effort to solve any 

optimization objectives and therefore are relatively easy in terms of computational effort and 

time required to be solved. The latter three problems, on the other hand, are complex mechanical 

optimization problems, which require numerical solving of boundary-value problems during 

the course of optimization. In particular: static structural, modal, thermal and multiscale 

analyses need to be performed using FEM-based CAE software. These tasks are time 

consuming processes and hence the need to present an efficient tool optimization tool to 

produce satisfying results under satisfying time limits. The last problem, optimization of a 

multiscale porous material, is particularly time-consuming process, as calculation of any of the 

objective functions requires a preliminary set of 6 analyses in micro scale to determine effective 

elastic constants, 3 analyses in micro scale to determine effective thermal constants and 1 final 

macro-scale analysis to determine optimization functionals. In result, every single candidate 

solution during the optimization process needs 10 boundary-value problems to be solved in 

order to determine values of related objective functions. 

5.1. Selected analytical mechanical problems 

Real mechanical problems naturally deal with many of the difficulties which are 

artificially introduced in test functions. Most test problems related to real mechanical systems 

are single objective problems. Many of these problems include constraints and therefore can be 

transformed to multiobjective problems, by treating inequality constraints as additional fitness 

functions. Real mechanical problems take both discrete and continuous values as working 

parameters, unlike test functions described before, which only use continuous values. In some 

cases, the discrete values of working parameters can be substituted with continuous parameters 

(e.g., arbitrary thickness instead of a standard thickness) but in some cases it wouldn’t be 

physically possible (e.g., number of teeth of a gear can’t be represented by a continuous value). 

In this chapter a selection of 3 analytical mechanical problems based on transformed test 

problems is examined.  

5.1.1. Pressure vessel design 

Test problem considering pressure vessel design (PVD) was introduced in [116]. It is a 

problem with 4 design variables and 4 constraints and was considered by many researchers 

[117]–[120]. 



73 

 

 

Fig. 40: Pressure vessel 

A cylindrical pressure vessel is capped at both ends by hemispherical heads (Fig. 40) 

and is supposed to hold medium under pressure. Vessel is designed to work under pressure of 

3000 psi and its volume must not be lower than 750 ft3. Unlike other examples in this case 

imperial unit system is used instead of metric, following the way it was originally introduced. 

Design of the vessel must follow the American society of mechanical engineers (ASME) boiler 

and pressure vessel code [121]. Total cost, including cost of the materials, welding and forming 

is to be minimized. Design variables, optimization function and constraints are shown in Tab. 

9: 

Tab. 9: Pressure Vessel Design problem: design variables, fitness function and 

constraints 

symbol expression or description notes 

Th Thickness of head, 𝑇ℎ ≤ 99 × 0.0625,  multiple of 

0.0625 in. 

design variable 

Ts Thickness of shell, 𝑇𝑠 ≥ 0.0625, multiple of 0.0625 in. design variable 

R Radius, 𝑅 ≥ 10 design variable 

L Length of cylindrical section, 𝐿 ≤ 200 design variable 

f 𝑓(𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿) = 0.6224𝑇𝑠𝑅𝐿 + 1.7781𝑇ℎ𝑅
2

+ 3.1661𝑇𝑠
2𝐿 + 19.84𝑇ℎ

2𝐿 

fitness function to be 

minimized 

h1 −𝑇𝑠 + 0.0193𝑅 ≤ 0 geometrical constraint 

h2 −𝑇ℎ + 0.0095𝑅 ≤ 0 geometrical constraint 

h3 
−𝜋𝑅2𝐿 −

4

3
𝜋𝑅3 + 750 × 11728 ≤ 0 

volume constraint 

h4 𝐿 − 240 ≤ 0 geometrical constraint 

 

It should be noted that for the aforementioned set of constraints, due to the upper bound 

of 𝐿 being 200, the ℎ4 constraint is satisfied automatically.  Some researchers [122]–[125] 

decided to expand the search region and adjust the upper bond of 𝐿 to 240.  

Left side of the ℎ𝑖 inequalities for 𝑖 ∈ {1,… ,4} can be considered as minimization 

functions for the purpose of transforming the single-objective problem into a many-objective 

problem. 
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In a result of transformation where left side of the constraints inequality is treated as 

function to be minimized, a new multiobjective optimization problem with 5 objective functions 

is created. All the design variables were considered in a continuous domain according to limits 

described in Tab. 9. A resulting set of optimization functions is shown in Tab. 10. 

 

Tab. 10: Transformed Pressure Vessel Design optimization functions 

expression notes 

𝑓1(𝑇𝑠, 𝑇ℎ, 𝑅, 𝐿) = 0.6224𝑇𝑠𝑅𝐿 + 1.7781𝑇ℎ𝑅
2 + 3.1661𝑇𝑠

2𝐿 + 19.84𝑇ℎ
2𝐿 minimization 

𝑓2(𝑇𝑠, 𝑅) = −𝑇𝑠 + 0.0193𝑅 minimization 

𝑓3(𝑇ℎ, 𝑅) = −𝑇ℎ + 0.0095𝑅 minimization 

𝑓4(𝑅, 𝐿) = −𝜋𝑅2𝐿 −
4

3
𝜋𝑅3 + 750 × 11728 

minimization 

𝑓5(𝐿) = 𝐿 − 240 minimization 

 

After transformation of the constraints into minimization functions, the solutions 

preciously violating the constraints are now deliberately accepted in the multiobjective 

problem. One of the aspects of multiobjective optimization and its significant advantage over 

single objective optimization is the fact that it provides extended information on the trade-offs 

between objectives and this feature is explored in this approach. To keep the information on the 

satisfied constrained, the functions are transformed in a way that resulting negative value 

indicates related constraint is satisfied and positive value means it is constrained. The proposed 

change significantly broadens the feasible region in the optimization problem and therefore 

results cannot be directly compared with those of a single-objective constrained problem. The 

best solutions for the single-objective problem found in the literature [126]–[128] produce the 

value of 𝑓1 = 6059.7 approximately. The multiobjective problem was solved using DEGT and 

following parameters: 

• generations DEiter = 5, 

• population size DEpops = 6, 

• crossover rate CR = 0.5, 

• scaling factor F = 0.7, 

• termination condition: 25 000 function calls. 

Due to a simple nature of the analytical problem, the problem did not require extensive 

computational effort and was solved under aforementioned parameters in under one minute 

using a mid-range personal computer.  

The results consist of a set of 449 non-dominated solutions, among which 58 solutions 

satisfy all the constraints imposed on the original problem. The best solution in terms of 𝑓1  

function only produces the value of 𝑓1 = 424.962. For this solution, the value of f4 is positive, 

which translates to a violation of ℎ3 (volume) constraint from the original problem. Among 

found solutions 76.17% fulfil the original ℎ1 constraint, 32.29% fulfil the original ℎ3 constraint 

and 100% solutions fulfil ℎ2 and ℎ4 constraints. This is an additional information on the nature 

of the problem and constraints imposed in it, which wouldn’t have been obtained when 

considering the problem as single-objective only.  
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Discarding the solutions violating any of the constraints, the best solution found 

produces the value of 𝑓1 = 11856.1 which is considerably worse than the solutions found 

previously by researchers considering single-objective problem, which was expected due to the 

expanded solution space which was explored by multiobjective optimizer disregarding 

constraints. The remaining value of the objective functions for aforementioned solution were 

𝑓2 = -0.3299, 𝑓3 = -0.5821, 𝑓4 = -43799.6 and 𝑓5 = -179.496. For the purpose of visualisation 

and decision making, only the solutions satisfying all the constraints were taken. Solutions were 

presented in the form of a scatter-plot matrix including histograms (Fig 41) and in the form of 

3D plot, with one of the objectives represented by colour (Fig. 42).  

 

Fig. 41: Scatter plot matrix and histograms of obtained solutions for PVD. 
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Fig. 42: 3D plot with a colour bar of obtained solutions for PVD. 

 

In case of visualisation using 3D plot and a colour bar, the 𝑓5 objective was disregarded, 

so the information conveyed in this way are limited. In case of this specific problem, the 

objective omitted is derived from a constraint which is always fulfilled due to limits imposed 

on design variables, but in general, visualisation of data in this manner in case of problems with 

more than 4 objectives is always encumbered with a loss of information. 

Alternatively, obtained data set can be presented using parallel plotting. The same data 

presented using this approach is shown in the Fig. 43. For clarity, all the values of optimization 

functionals were normalized to values in the range [0,1] for each objective function separately, 

because the range of objective was of a significantly different magnitude. Normalized value of 

objectives is presented in the vertical axis, horizontal axis represents 5 objectives analysed and 

lines are solutions. 
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To make conclusions on the values of optimization functionals based on the graph in 

Fig. 43, it is necessary to know the minimum and maximum value of each optimization function 

before normalization and therefore this way of presenting the results can only be used when 

supplemented with other methods or by additional information on the said values.   

Including solutions violating original constraints new designs were found in a range 

between 425.521 and 60857.5 for the first objective with median value of 5261.26. For the 

remaining objectives, related to constraints, min, median and max values are shown in the Tab. 

11. 

Tab. 11: Min, median and max values of objectives. 

Objective Min Median Max 

𝒇𝟐 -1.7654 -0.6019 1.2975 

𝒇𝟑 -1.8965 -1.304 -0.1475 

𝒇𝟒 -9.21363e+06 1.04989e+06 1.29088e+06 

𝒇𝟓 -238.931 -148.271 -0.2115 

 

Apart from information on the values of objective, some conclusions on the nature of 

trade-offs between them can be drawn. Results indicate a contradictory nature of objectives 𝑓1 

and 𝑓4 whereas 𝑓2 and 𝑓3 seem to be consistent with each other in large areas of the search 

space. 

  

Fig. 43: PVD solutions visualised using parallel plotting method 
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5.1.2. Speed reducer design 

Speed reducer design problem was introduced in [129] and considers a problem of 

minimization of volume of gear wheels and transmission shafts (Fig. 44). The problem is 

described by 7 design variables and 11 constraints related to permissible stresses and deflections 

in the system. Problem was solved by many researchers [130]–[133]. Design variables, simple 

bounds imposed on them, optimization function and constraints are listed in the Tab. 12. 

Tab. 12: Speed Reducer problem: design variables, fitness function and constraints 

 

symbol expression or description notes 

b face width, 2.6 ≤ b ≤ 3.6 design variable 

m module of teeth, 0.7 ≤ m ≤ 0.8 design variable 

z number of teeth, 17 ≤ z ≤ 28, integer design variable 

l1 length of the first shaft between bearings, 7.3 ≤ l1 ≤ 8.3 design variable 

l2 length of the second shaft between bearings, 7.3 ≤ l2 ≤ 8.3 design variable 

d1 diameter of the first shaft, 2.9 ≤ d1 ≤ 3.9 design variable 

d2 diameter of the second shaft, 5.0 ≤ d2 ≤ 5.5 design variable 

f 𝑓(𝑏,𝑚, 𝑧, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑑1, 𝑑2)
= 0.7854𝑏𝑚2(3.3333𝑧3 + 14.9334𝑧
− 43.0934) − 1.508𝑏(𝑑1

2 + 𝑑2
2)

+ 7.477(𝑑1
3 + 𝑑2

3) + 0.7854(𝑙1𝑑1
2 + 𝑙2𝑑2

2) 

fitness function 

to be 

minimized 

h1 27

𝑏𝑚2𝑧
− 1 ≤ 0 

constraint 

h2 397.5

𝑏𝑚2𝑧2
− 1 ≤ 0 

constraint 

h3 1.925𝑙1
3

𝑚𝑧𝑑1
4 − 1 ≤ 0 

constraint 

h4 1.925𝑙2
3

𝑚𝑧𝑑2
4 − 1 ≤ 0 

constraint 

h5 
√(
745𝑙1
𝑚𝑧 )

2

+ 1.69 × 10−6

110𝑑1
3 − 1 ≤ 0 

constraint 

h6 
√(
745𝑙1
𝑚𝑧 )

2

+ 157.5 × 10−6

85𝑑2
3 − 1 ≤ 0 

constraint 

h7 𝑚𝑧

40
− 1 ≤ 0 constraint 

h8 5𝑚

𝑏 − 1
− 1 ≤ 0 

constraint 

h9 𝑏

12𝑚
− 1 ≤ 0 

constraint 

h10 1.5𝑑1 + 1.9

𝑙1
− 1 ≤ 0 

constraint 

h11 1.1𝑑2 + 1.9

𝑙2
− 1 ≤ 0 

constraint 
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Left side of the hi inequalities for 𝑖 ∈ {1, … ,11} can be considered as minimization 

functions for the purpose of transforming the single-objective problem into a many-objective 

problem. 

For the purpose of transforming this constrained single-objective problem into a 

multiobjective optimization problem the constraints are transformed to minimization 

optimization functions. In a result of transformation where left side of the constraints inequality 

is treated as function to be minimized, a new multiobjective optimization problem with 12 

objective functions is created. All the design variables were considered in a continuous domain 

according to limits described Tab. 12. A resulting set of optimization functions is shown in Tab. 

13.  

  

Fig. 44: Speed reducer design 
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Tab. 13: Transformed Speed Reducer optimization functions 

expression notes 

𝑓1(𝑏,𝑚, 𝑧, 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑑1, 𝑑2)
= 0.7854𝑏𝑚2(3.3333𝑧3 + 14.9334𝑧 − 43.0934)
− 1.508𝑏(𝑑1

2 + 𝑑2
2) + 7.477(𝑑1

3 + 𝑑2
3)

+ 0.7854(𝑙1𝑑1
2 + 𝑙2𝑑2

2) 

minimization 

𝑓2(𝑏,𝑚, 𝑧) =
27

𝑏𝑚2𝑧
− 1 

minimization 

𝑓3(𝑏,𝑚, 𝑧) =
397.5

𝑏𝑚2𝑧2
− 1 

minimization 

𝑓4(𝑚, 𝑧, 𝑑1, 𝑙1) =
1.925𝑙1

3

𝑚𝑧𝑑1
4 − 1 

minimization 

𝑓5(𝑚, 𝑧, 𝑑2, 𝑙2) =
1.925𝑙2

3

𝑚𝑧𝑑2
4 − 1 

minimization 

𝑓6(𝑚, 𝑧, 𝑑1, 𝑙1) =

√(
745𝑙1
𝑚𝑧 )

2

+ 1.69 × 10−6

110𝑑1
3 − 1 

minimization 

𝑓7(𝑚, 𝑧, 𝑑1, 𝑙1) =

√(
745𝑙1
𝑚𝑧 )

2

+ 157.5 × 10−6

85𝑑2
3 − 1 

minimization 

𝑓8(𝑚, 𝑧) =
𝑚𝑧

40
− 1 minimization 

𝑓9(𝑏,𝑚) =
5𝑚

𝑏 − 1
− 1 

minimization 

𝑓10(𝑏,𝑚) =
𝑏

12𝑚
− 1 

minimization 

𝑓11(𝑑1, 𝑙1) =
1.5𝑑1 + 1.9

𝑙1
− 1 

minimization 

𝑓12(𝑑2, 𝑙2) =
1.1𝑑2 + 1.9

𝑙2
− 1 

minimization 

 

Like in previous problem, the functions were transformed in a way that the resulting 

positive value of an objective function indicates violation of a related constraint in the original 

problem, but the violation of these constraints is allowed. The original constrained single-

objective problem presents a difficulty for optimization algorithms in exploring the space of 

admissible solutions due to the number and nature of constraints [134]. The best solutions for 

the single-objective problem found in the literature [135] produce the value of f1 = 3000 

approximately, although many researches accept solutions with slightly violated constraints. 

The multiobjective optimization with DEGT was performed using the same parameters as in 

the previous problem and did not require extensive numerical effort due to the analytical 

formulation of the optimization functionals.  

The results consist of a set of 358 non-dominated solutions, among which 6 solutions 

satisfy all the constraints imposed on the original problem. The best solution in terms of f1 

function only produces the value of f1 = 2540.31. For this solution, the value of f2, f3, f6, f7 and 

f9 are positive, which translates to a violation of four constraints from the original problem. The 
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number of solutions satisfying related constraints in the original problem are presented in Tab. 

14. Constraints h4, h9 and h11 are fulfilled by 100% of solutions and were therefore omitted in 

the table.  

Tab. 14: Percentage of solutions satisfying constraints 

Constraint h1 h2 h3 h5 h6 h8 h10 h11 

% of satisfied solutions 98.04 99.44 99.44 48.88 43.3 5.87 85.2 90.78 

 

It can be noted that for a problem formulated in this way, the constraint which was 

significantly more often violated than any others was the h8 which is related to the ratio between 

module of teeth and face width of the speed reducer. This brings information that the algorithm 

tends to explore areas of the solution space which are originally excluded due to the constraint.  

Discarding the solutions violating any of the constraints, the best solution found 

produces the value of f1 = 3273.65. The remaining value of the objective functions for 

aforementioned solution were f2 = -0.1145, f3 = -0.248, f4 = -0.6371, f5 = -0.8994, f6 = -0.3574, 

f7 = -0.0091, f8 = -0.6957, f9 = -0.0156, f10 = -0.5767, f11 = -0.0405 and f12 = -0.0277. 

It is worth noticing the value of f7 which is the closest to positive value among 

constraint-related objectives and it is derived from the value of h8, previously proven to be the 

most likely to be unsatisfied.  

Solutions, including these which did not satisfy constraints are presented in the Fig 45 

in the form of a scatter plot. Due to the large number of objectives, the data is hard to visualize 

and to present it in an alternative way Kohonen’s Self-Organizing Maps (SOMs) can be used 

(Fig. 46), although it must be noted that SOM approach, unlike scatter plot matrix, is only an 

approximation of the data set. 
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Fig. 45: Scatter plot of obtained solutions for SR 
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Based on the observation of Fig. 45 and Fig. 46 some conclusions on the nature of trade-

offs between objectives can be drawn. Objectives 𝑓2, 𝑓3 and 𝑓5 all seem to have a similar nature 

while objectives 𝑓1 and 𝑓8 are contradictory to them. Pairs of objectives 𝑓9 with 𝑓10 and 𝑓6 with 

𝑓11 present contradictory nature as well. 

 

5.1.3. Stepped cantilever beam 

Stepped cantilever beam problem was introduced in [136] as a problem of a loaded beam 

with 10 design variables and 11 constraints. It can also be considered as a problem with 15 

design variables, adding 5 design variables related to lengths of parts of the beam as shown in 

[137]. Constraints in this problem are related to deflection, stresses from bending and a 

geometrical constraint of a ratio of dimensions of cross section of the beam. Fitness function in 

this problem is total volume of the beam to be minimized.  Problem was solved by many 

Fig. 46: SOMs of obtained solutions for SR 
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researchers [136], [138]–[140]. Tab. 15 presents design variables, fitness function and 

constraints for the variant with 10 design variables, assuming lengths l of steps are equal. 

 

 

Fig. 47: Stepped cantilever beam 

Tab. 15: Stepped Cantilever Beam problem: design variables, fitness function and 

constraints 

symbol expression or description notes 

bi width of step i,𝑏𝑖 ≤ 15𝑐𝑚 design variable, 𝑖 ∈ {1,… 5} 
ci height of step i,𝑐𝑖 ≤ 150𝑐𝑚 design variable, 𝑖 ∈ {1,… 5} 
f 

𝑓 =∑𝑙𝑏𝑖𝑎𝑖

5

𝑖=1

 

fitness function to be minimized, 

total volume of the beam 

h1 6𝑃𝑙

𝑏5𝑐5
2 − 𝜎𝑑 ≤ 0 

constraint, bending stress 

h2 12𝑃𝑙

𝑏4𝑐4
2 − 𝜎𝑑 ≤ 0 

constraint, bending stress 

h3 18𝑃𝑙

𝑏3𝑐3
2 − 𝜎𝑑 ≤ 0 

constraint, bending stress 

h4 24𝑃𝑙

𝑏2𝑐2
− 𝜎𝑑 ≤ 0 

constraint, bending stress 

h5 30𝑃𝑙

𝑏1𝑐1
2 − 𝜎𝑑 ≤ 0 

constraint, bending stress 

h6 𝑃𝑙3

3𝐸
(
1

𝐼5
+
7

𝐼4
+
19

𝐼3
+
37

𝐼2
+
61

𝐼1
) − 𝛿𝑚𝑎𝑥 ≤ 0 

constraint, allowable deflection 

hi 𝑐𝑖−6
𝑏𝑖−6

− 20 ≤ 0 
constraint, geometrical ratio of 

width and height in a cross section 

of (i-6)-th step, 𝑖 ∈ {7,… ,11} 
l 𝐿

5
= 100 cm 

uniform length of a step 

𝜎𝑑 
14

kN

cm2
 

allowable bending stress 

𝛿𝑚𝑎𝑥 2,7 cm allowable deflection 

P 50kN load 

E 210 GPa Young’s modulus 
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Left side of the hi inequalities for 𝑖 ∈ {1, … ,11} can be considered as minimization 

functions for the purpose of transforming the single-objective problem into a many-objective 

problem. 

The Stepped Cantilever Beam problem is a constrained single objective optimization 

problem with 10 design variables and 11 constraints in which optimization function is 

minimizing the total volume of the beam loaded with a transverse force. For the purpose of 

transforming this problem into a multiobjective optimization problem the constraints are 

transformed to minimization optimization functions. In a result of transformation where left 

side of the constraints inequality is treated as function to be minimized, a new multiobjective 

optimization problem with 12 objective functions is created. All the design variables were 

considered in a continuous domain according to limits described Tab. 15. A resulting set of 

optimization functions is shown in Tab. 16. 

Tab. 16: Transformed Stepped Cantilever Beam optimization functionals 

expression notes 

𝑓1(𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5) =∑𝑙𝑏𝑖𝑐𝑖

5

𝑖=1

 

minimization 

𝑓2(𝑏5, 𝑐5) =
6𝑃𝑙

𝑏5𝑐5
2 − 𝜎𝑑 

minimization 

𝑓3(𝑏4, 𝑐4) =
12𝑃𝑙

𝑏4𝑐4
2 − 𝜎𝑑 

minimization 

𝑓4(𝑏3, 𝑐3) =
18𝑃𝑙

𝑏3𝑐3
2 − 𝜎𝑑  

minimization 

𝑓5(𝑏2, 𝑐2) =
24𝑃𝑙

𝑏2𝑐2
2 − 𝜎𝑑 

minimization 

𝑓6(𝑏1, 𝑐1) =
30𝑃𝑙

𝑏1𝑐1
2 − 𝜎𝑑 

minimization 

𝑓7(𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5)

=
𝑃𝑙3

3𝐸
(
1

𝐼5
+
7

𝐼4
+
19

𝐼3
+
37

𝐼2
+
61

𝐼1
) − 𝛿𝑚𝑎𝑥 

minimization 

𝑓𝑖(𝑏𝑖−7, 𝑐𝑖−7) =
𝑐𝑖−7
𝑏𝑖−7

− 20 ≤ 0 
minimization 𝑖 ∈
{8, … ,12} 

𝑙 =
𝐿

5
= 100 cm 

uniform length of a step 

𝜎𝑑 = 14
kN

cm2
 

allowable bending stress 

𝛿𝑚𝑎𝑥 = 2,7 cm allowable deflection 

𝑃 = 50kN load 

𝐸 = 210 GPa Young’s modulus 

Like in previous problem, the functions were transformed in a way that the resulting 

positive value of an objective function indicates violation of a related constraint in the original 

problem, but the violation of these constraints is allowed. In case of a constrained single 

objective problem, the values of f1 reported in the literature [141]–[143] are f1 = 65 000 

approximately. The multiobjective optimization was performed using DEGT and a set of 
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parameters used for the previous problems. Similar to previous problems, this one did not 

require extensive computational effort due to analytical formulation of objective functions and 

computation took less than one minute.  

The DEGT algorithm found a set of 467 non-dominated solutions, among them 20 

solutions satisfied all the constraints from the original problem. The best solution in terms of f1 

displayed value of f1 =21314. This solution violated constraints g1:6 related to allowable stresses 

and deflections. Unlike in previous problem, neither of the constraints were fulfilled by all the 

solutions found. The constraint g6 related to allowable deflection, represented by objective f7 

was the least satisfied constrained among found solutions (Tab. 17). 

Tab. 17: Number of solutions satisfying constraints 

Constr. h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 

% of 

satisfied 

solutions 

68.73 52.46 54.81 50.96 46.9 10.27 94.21 89.51 96.14 97 94 

 

Considering only solutions which satisfied all the constraints, the best found solution in 

terms of f1 presents values of optimization functionals 𝐟 = [𝑓1, 𝑓2, … , 𝑓12] =

[134040,−113.844,−90.9418, −59.2356,−36.8462,−40.5781,−7.5539,−10.7468,… 

…−15.1291,−15.0449, −8.7626,−7.5086]. 

Again, the value of functional 𝑓7 derived from constraint which was least likely to be 

satisfied displays low value, which could be understood as a situation in which fulfilling this 

condition and at the same time having it as low as possible results in a considerably good 

solution in terms of f1.  

All the solutions obtained during the optimization are shown in the Fig. 48. 
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Fig. 48 Scatter plot of obtained solutions for SCB 
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Based on produced scatter plot it is hard to draw clear conclusions regarding trade-off 

between objectives in the problem. The information on max, min and median values of 

objectives is presented in the table.  

Tab. 18: Min, median and max values of objectives. 

Objective Min Median Max 

𝑓1 21314 139827 302134 

𝑓2 -133.836 -109.81 36843.6 

𝑓3 -128.288 -26.6082 245866 

𝑓4 -123.173 -30.3791 56852.2 

𝑓5 -114.919 -4.7904 53044.1 

𝑓6 -111.165 42.3916 827778 

𝑓7 -18.621 1148.98 3.04596e+06 

𝑓8 -19.8827 -15.7228 28.9659 

𝑓9 -19.9308 -16.3686 31.0357 

𝑓10 -19.8054 -15.7488 38.1436 

𝑓11 -19.8562 -15.9233 30.568 

𝑓12 -19.7738 -15.4993 37.659 

 

Analysing values in the above table some information on the objectives related to 

constraints which are hard to be satisfied can be obtained. Objectives 𝑓6 and 𝑓7 which 

correspond to constraints ℎ5 and ℎ6 exhibit positive median value, which provides information 

on their nature being relatively hard to fulfil compared to other constraints. 

 

5.2. Optimization of an airfoil  

Airfoil systems are used to develop an aerodynamic force when moving through the 

fluids. When designing the optimal shape of an airfoil many, often contradictory, criteria must 

be taken into consideration to provide the system with the desired properties, such as high 

endurance, low weight and high lifting force, low aerodynamic drag, high or low stiffness and 

more.  

To meet the multiple requirements asked of airfoil systems multiobjective optimization 

methods can be taken advantage of and enhance the process of design of such structures. 

Airfoils are used in many machines and devices including: propellers, rotors, turbines, 

sailing boats, windsurfers, flying vehicles, etc. In this study, the numerical example considered 

in the optimization problem is based on a real structure of a wing of unmanned aerial vehicle 

(UAV).  

The outer shape of an airfoil consists of a suction surface and a pressure surface, which 

contribute to generation of a lifting force. Designing of an outer shape of an airfoil requires 

computational fluid dynamic simulation which is not covered in this example. The inner shape 

of an airfoil on the other hand has a significant impact on other properties of an airfoil systems, 

such as stiffness, durability, modal properties, and weight. To reduce the mass of a system, 

instead of using full profiles, girders are used to connect and support the outer surfaces. The 
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design of an inner shape of an airfoil is thus crucial in the process of an optimal design of airfoil 

systems as it accounts for fulfilling many requirements asked of them. 

Modern airfoil systems are usually built of durable lightweight materials, such us 

composites, often having anisotropic mechanical properties.  

Considered airfoil design consists of polyurethane foam and composite materials 

reinforced with carbon and glass fabric and a woven roving to connect the girder and the outer 

panel. 

Optimization of airfoil systems was considered by many researchers previously. Lam et 

al. presented multiobjective optimization of an aerostructural design using Kriging Model 

[144]. Ceruti et al. compared hueristic techniques, such as genetic algorithm, particle swarm 

optmization and Monte Carlo method in multiobjective optimization of UAVs manufactured 

by means of rapid prototyping techniques [145]. Berci at al presented a multidisciplinary 

multifidelity approach to airfoil optimization of a small UAV [146]. 

5.2.1. Aims and assumptions 

Aim of this study is to find an optimal design among a set of Pareto-optimal designs of 

an inner geometry of an airfoil system under mechanical loads representing working conditions. 

The optimization process is performed for four criteria at once and thus a multiobjective 

optimization approach is used. Main assumptions of the research include: 

• Outer geometry of the airfoil is not subject to the optimization task. Only the 

structural optimization of an inner geometry is performed, and the outer shape 

is assumed to be fixed and thus no computational fluid dynamics (CFD) analyses 

are performed during the optimization course. 

• Boundary conditions for the static structural analysis are based on a preliminary 

CFD analysis of an airfoil under working conditions. 

• Parametric numerical model, with geometry based on a wing of a real unmanned 

aerial vehicle (UAV) is used as a numerical example.  

• FEM software (MSC Patran/Nastran) is used to solve boundary value problems 

in order to determine values of optimization functionals. 

• Linear-elastic material models are assumed, isotropic and orthotropic for 

selected areas of the model. 
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The preliminary CFD analysis was performed in Ansys Fluent software on a model 

consisting of 363 138 nodes and 257 276 tet10 elements (Fig. 49) assuming velocity magnitude 

𝑣 = 36
𝑚

𝑠
 and angle of attack 𝛼 = 3°. 

 

 The resulting system holds Reynolds number 𝑅𝑒 = 506. The magnitude of pressure 

applied to the wing in the working conditions was determined from a distribution of pressure 

in the model (Fig. 50).  

Polyurethane foam is described with isotropic properties and the remaining materials 

with orthotropic properties. Linear-elastic constitutive model is described by formula (41): 

 

[

𝜎11
𝜎22
𝜎12

]=[

𝑐11  𝑐12  0 
𝑐22 0

.    𝑐33

] [

𝜀11
𝜀22
𝜀12

] (41)  

 

Fig.  49: Discretization of the CFD model 

Fig.  50: Pressure distribution in the CFD model 
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  Where σij, εij, cij are the elements of Cauchy stress, strain, and effective elastic 

constants tensors. These materials are used to define four laminates used in the airfoil. 

Distribution of materials is shown in the Fig. 51.  

This work is an extension of previous studies [147], [148], during which the numerical 

model was experimentally validated. Three-point bending test was conducted on a real structure 

on universal testing machine (MTS Insight System) showing a satisfactory similarity of results 

with the numerical model. 

5.2.2. Formulation of the problem 

Objectives in the optimization problem are devoted to minimization of maximal 

equivalent stresses, minimization of maximal displacements, minimization of total mass of the 

model and maximization of difference between values of modal frequency of a system and a 

given frequency – these are the examples of conditions required of airfoil systems, although 

other criteria based on specific needs can be formulated. Values of functionals used as 

objectives are computed using FEM simulations. Boundary conditions and material properties 

are fixed during the optimization run and geometry of the model, described by design variables 

is changed to fit the declared needs, formally described by functionals (42) – (45):  

Minimization of the maximal value of the equivalent (von Mises) stress of an airfoil 

under given load: 

 𝑚𝑖𝑛
𝑥
 𝑓
1
= max (𝜎𝑒𝑞) (42)  

 

Minimization of the maximal translational displacement of an airfoil under given load: 

 𝑚𝑖𝑛
𝑥
 𝑓
2
= max (𝑢) (43)  

  

Maximization of the minimal difference between any of first 10 modal frequencies 𝑓𝑛 

of an airfoil and a reference frequency 𝑓𝑟 =  30 Hz: 

 𝑚𝑎𝑥
𝑥
 𝑓
3
= min (|𝑓

𝑛
−𝑓

𝑟
|)  ∀𝑛∈{1,2,…,10}  (44)  

  

Minimization of the total mass of an airfoil: 

Fig.  51: Distribution of materials. 1 – carbon fabric 62 g/m2, foam, glass fabric 24 g/m2; 

2 – carbon fabric 62 g/m2, 3 – carbon fabric 160 g/m2; 4 – glass fabric 24 g/m2. 
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min  
𝑥
𝑓
4
= ∫ 𝑑𝛺

𝛺

 (45)  

 

Values of aforementioned functionals are calculated om the base of FEM results 

obtained in MSC Patran/Nastran software utilising a parametric model. Functionals f1 and f2 are 

calculated by performing a static structural analysis under a given load. Functional f3 is 

calculated by running a modal analysis. Problem of maximization of f3 is transformed to a 

minimization problem by multiplying a fitness function value by −1. Functional f4 is calculated 

on the basis of geometry of the model in preprocessor Patran and does not require solving a 

boundary-value problem. 

5.2.3. Numerical model 

Example of parametric numerical was build based on real structure of an UAV wing 

(Fig. 52). Approximate dimensions of the structure are: total length ~1800 mm and transverse 

direction ~200 mm [147].  

 

Fig.  52: Real structure of a UAV wing on which the numerical model was based. 

Wing consists of two parts: centerwing and end part. The aileron is not included in the 

numerical model as its effect on the load transfer is negligible. Three characteristic cross 

sections of a wing can be distinguished: end cross section, middle cross section, and base cross 

section. These geometries are controlled by 24 design variables, defining the inner shape of the 

wing. Design variables and constraints imposed on them are described in Fig. 53 and Tab. 19. 

  

Fig.  53: Design variables controlling the inner shape of the wing. 
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Tab. 19: Design variables and limits imposed on them 

Symbol Design variable Lower 

limit [mm] 

Upper 

limit [mm] 

V1 position of the main girder (base cross section) -5 5 

V2 thickness of the main girder (centerwing) 0.1 0.48 

V3 thickness of the main girder (base cross section) -7 7 

V4 length of the upper roving (base cross section) -5 5 

V5 length of the bottom roving (base cross section) -5 5 

V6 thickness of the roving (centerwing) 0.1 2 

V7 position of the small girder (base cross section) -5 5 

V8 thickness of the carbon fabric (centerwing) 0.05 1 

V9 thickness of the small girder (base cross section) -3 3 

V10 position of the main girder (middle cross section) -5 5 

V11 thickness of the carbon fabric (end part of the 

wing) 

0.1 0.48 

V12 thickness of the main girder (middle cross section) -7 7 

V13 length of the upper roving (middle cross section) -5 5 

V14 length of the bottom roving (middle cross section) -5 5 

V15 thickness of the roving (end part of the wing) 0.1 2 

V16 position of the small girder (middle cross section) -5 5 

V17 thickness of the carbon fabric (end part of the 

wing) 

0.05 1 

V18 thickness of the small girder (middle cross 

section) 

-3 3 

V19 position of the main girder (end cross section) -4 4 

V20 thickness of the main girder (end cross section) -7 7 

V21 length of the upper roving (end cross section) -5 5 

V22 length of the bottom roving (end cross section) -5 5 

V23 position of the small girder (end cross section) -4 4 

V24 thickness of the small girder (end cross section) -1 2 

 

The model is discretized using hex8 and quad4 elements, and the resulting mesh consists 

of approximately 21500 nodes and 19000 elements, depending on the shape of an inner 

structure.  

Preliminary computational fluid dynamics study was performed in Ansys Fluent 

software to determine the pressure distribution of the wing under working conditions, assuming 

velocity magnitude: 𝑣 =  36
m

s
 and angle of attack 𝛼 =  3°. The analysis performed helped 

establish simplified boundary conditions for the following static structural analyses performed 

during the optimization course. 

Simplified boundary conditions applied in the numerical model include a fix in all 

degrees of freedom on one side of the model and an evenly distributed total load 𝑃 =  5kN on 

the bottom surface. Boundary conditions are shown in the Fig. 54 with the geometry flipped 

upside down 
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5.2.4.  Results 

Results of this research were obtained after solving approximately 25 000 boundary 

value problems and consist of a set of 249 Pareto-optimal (non-dominated) solutions found 

during the course of optimization using the parameters described in chapter 3. Values of 

objective functions for the obtained solutions are shown in the figures in two ways. A 3D scatter 

plot with values of the f1 function represented by colour, and the remaining fitness function as 

values on the axes is shown in the Fig. 55. Further examined solutions of interest are marked 

with a circle and named D1-D3 and ED.  Scatter plot matrix of obtained solutions is shown in 

the Fig. 56. Along the diagonal are histogram plots of objective function values.  

 

Fig.  55: 3D scatter plot of obtained solutions 

Fig.  54: Boundary conditions applied to the static 

structural model 
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Fig.  56: Scatter plot matrix of obtained solutions. 

Values of fitness functions of selected solutions are shown in the Tab. 2. Solution D1 

represents the solution with the lowest values of f1 and f2 among the Pareto set. Solution D2 

represents the solution with the lowest value of f4 and solution D3 represents a compromise 

solution, with the value of f4 similar to the existing design, but with improved values of f1 and 

f2. Additionally respective values of objectives of an existing design (ED) based on which the 

parametric numerical model was built are shown as a reference point in Tab. 20. 
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Tab. 20: Values of fitness functions and design variables of selected solutions 

Design ED D1 D2 D3 

f1 [MPa] 6.06 2.9 13.32 3.42 

f2 [mm] 0.9 0.51 2.18 0.69 

f3 [Hz] -8.7 -3.2 -12.7 -0.6 

f4 [g] 482.4 605.89 383.716 477.18 

V1 10 -1.2583 3.4445 4.2395 

V2 0.16 0.2137 0.3311 0.2465 

V3 -5 0.2819 -6.8667 -5.7859 

V4 0  4.3274 -2.2546 4.7214 

V5 0 1.9522 0.1727 -2.3486 

V6 1.2 1.9379 0.1291 1.9846 

V7 0 3.4981 2.5754 1.987 

V8 0.1 0.8806 0.0639 0.8092 

V9 0 1.4691 2.3692 0.0192 

V10 10 -0.7859 -4.7336 3.9142 

V11 0.16 0.1726 0.3601 0.118 

V12 0 5.6053 -6.8564 5.8716 

V13 0 3.1475 1.4107 -3.3297 

V14 0 4.768 -0.8138 1.344 

V15 1.2 1.997 0.4045 0.526 

V16 0 -3.9373 4.6358 3.7997 

V17 0.1 0.9711 0.4932 0.2214 

V18 0 -1.1374 -2.0907 -0.2444 

V19 0 -2.5771 0.8685 -3.5369 

V20 0 -6.0362 3.7904 -0.0829 

V21 0 0.9502 -0.3279 -4.8359 

V22 0 -3.2653 -3.4725 4.6151 

V23 0 -3.4795 -3.8835 0.0078 

V24 0 -0.0928 0.3497 0.4858 
 

Geometric configurations of selected designs, post-processed to show the distribution 

of equivalent stresses are shown in the Fig. 57. Colour spectrum to stress value relation is not 

uniform for the displayed solutions. Colours represent range between the lowest and highest 

values of equivalent stresses for every single solution. 

In general, it can be noticed that 𝑓1 and 𝑓2 appear to be consistent with each other and 

therefore their nature is not conflicting. Both of these objectives are however contradictory to 

objective 𝑓3 and in some areas of solution space to 𝑓4.  

Tab. 21: Min, median and max values of objectives. 

Objective Min Median Max 

𝑓1 2.8946 5.5001 18.1866  

𝑓2 0.4053 0.80785  2.3929  

𝑓3 -15.2 -6.7 -0.1 

𝑓4 373.893 487.734 606.363 
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In Tab. 21 it can be observed that median values of objective function resemble values 

of objective functions obtained for an existing design. It shows that search space was explored 

towards min and max values in a similar magnitude. In the ideal scenario, solution space should 

be explored only in the direction for which values of objective problems are decreasing 

assuming minimization problem. This situation is however impossible due to contradictory 

nature of objectives. 

 

Fig. 57: Geometric configuration and equivalent stress distribution of selected 

solutions. Existing design in the top left, D1 – bottom left, D2 – Top right, D3 – bottom right. 

5.2.5.  Final remarks 

Multiobjective optimization of airfoil systems was presented. Optimization of the 

parameters for the airfoil was solved for four different proposed functionals. More functionals 

related to particular needs asked of airfoil systems can be formulated. New designs better than 

the existing design were found for each optimized objective. Stress and displacement values 

are acceptable even for the lightest structure found. No sweet spots were found in the solution 

space, which was expected due to the contradictory nature of optimized objectives. Application 

of presented method of optimization of an airfoil system can significantly enhance the process 

of its design with respect to the many requirements asked of such systems. Further choice of a 

design among a set of non-dominated designs should be taken according to additionally 

established preferences.  
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5.3.  Optimization of electrothermal microactuators 

Electrothermal microactuators are components of machines and devices in which 

motion is induced as a result of thermal contraction or expansion of conductor materials. To 

achieve temperature change, resistive heating is generated in actuator due to electrical current 

flow utilising Joule’s effect. The material from which they are made must display a high 

electrical resistance value and for that purpose polycrystalline silicone is used. Thermal 

actuators can be considered as microelectromechanical systems (MEMS) used to translate 

electrical signal into force or displacement and in this context are an object of interest of 

nanoscale and microscale engineering [149]. Electrothermal microactuators have found 

application in areas such as automotive, telecommunication, aviation, and medical industries, 

for example in filters, microgrippers, modulators and switches. Electrothermal actuators offer 

numerous advantages over other types of actuators (e.g., electrostatic, magnetostatic, and 

piezoelectric): 

• generate large forces or displacements per unit of volume, 

• work with low actuation voltage, 

• exhibit linear stress-strain relationship even in high temperature, 

• have high accuracy and long lifecycle, 

• require little maintenance, 

• are relatively cheap and easy to manufacture. 

On the other hand, among disadvantages of microthermal actuators there are: slow 

response time and relatively high energy consumption.  

There are two main types of electrothermal microactuators used in MEMS: U-beam and 

V-beam. In the early 1990s U-beam type actuators were first developed and demonstrated and 

it was until the late 1990s when V-beam type actuators were introduced and quickly rose in 

popularity. U-beam actuators are made of two beams (arms), each with a different cross-section. 

When electric current passes through actuator, beams generate a different amount of heat due 

to the difference in beams’ cross section sizes which results in the presence of a hot arm and a 

cold arm. The expansion of the hot arm causes a rotation of both arms therefore generation 

displacement of the tip of the actuator (Fig. 58).   

In case of V-type actuators, the arms have the same cross sections and expand uniformly, 

but the moving central shaft of the actuator, is connected to arms from both sides and a pre-

bending angle is applied in the manufacturing process. Arms are connected on one side to fixed 

anchors and on the other side to a moving shaft. As the electric current passes through, the arms 

are expanded and the bending angle between arms and the shaft is increased therefore moving 

the central shaft. V-type actuator can aggregate force generated by multiple beams [150] 

Fig. 58: U-type electrothermal microactuator 
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resulting in a larger total force compared to a U-type actuator. Chevron type, bent-beam and 

symmetric thermal actuator are other names of V-type actuator which is considered in this 

study. In the Fig. 59 a chevron type actuator consisting of four pairs of arms is presented on the 

left and deformed system including distribution of equivalent stresses is shown on the right. 

During the design of such structures many, often contradictory, requirements asked of 

actuators must be taken into consideration. In the optimization process these requirements are 

expressed in the form of objective functions and constraints. These requirements for actuators 

can concern quantities like: generated displacement and force, electrical or heat loss, maximum 

equivalent stress, dynamic characteristics, and risk of buckling. All the aforementioned 

requirements depend on the geometry of the actuators. For some actuators, with simple 

geometry, analytical solutions related to mechanical, electrical, and thermal quantities can be 

derived, however in case of a complex geometries (multiple arms, shape other than straight) 

these values must be obtained by means of numerical simulations. As the problem involves 

multiple physical fields a coupled electro-thermo-mechanical analysis is necessary. Objective 

functions based on coupled-fields computations tend to exhibit a strongly multimodal nature, 

meaning they have multiple local optima. Hard computing methods are expected to be less 

effective in dealing with such problems and instead soft computing methods are advised to be 

used to perform an efficient optimization process [151]. Many researchers have contributed 

papers devoted to shape optimization of  thermal actuators: in [152]–[154] laterally-driven, 

electro-thermal microactuators are concerned in the context of structural and geometrical 

optimization, in [155] optimal design of actuators with non-uniform lengths, cross sections and 

pre-bending angles of beams was considered, variant analysis in the optimal design of 

electrothermal actuators was investigated in [156], [157] and Particle Swarm Optimization in 

[158]. A lot of researchers investigated topology optimization of electrothermal actuators, 

resulting in complex geometrical designs: output displacement optimization was considered in 

[159]–[161], level-set method in topology optimization was investigated in [162], [163] and 

rotary thermal actuators optimization was studied in [164]. Results of topology optimization 

can provide valuable ideas for the designers of actuators, although applicability of these results 

is limited by complex and thus hard to manufacture shapes of resulting designs. Preceding 

papers dealt with single-objective optimization of actuators and multiobjective problems have 

attracted less attention of researchers: a novel biogeography-inspired multiobjective algorithm 

Fig.  59: V-type electrothermal microactuator 



100 

 

and NSGA-II were used to solve two-objective optimization of U-type actuator in [165] and 

another novel optimization method, combining genetic algorithm, particle swarm optimization 

and improved gradient descent algorithm investigated a similar problem in [166]. NSGA-II and 

multiobjective evolutionary algorithm were used to solve a two-objective optimization problem 

of U-type electrothermal and piezoelectric actuators in [167]. Immune Game Theory 

Multiobjective Algorithm was used to optimize the shape of V-type electrothermal 

microactuator with respect to six objectives in [168] and the example presented further in this 

study can be considered an extension of this work, as it concerns the same optimization problem 

resolved with a different optimization tool. 

5.3.1. Aims and assumptions 

This example concerns a search of an optimal design among a set of Pareto-optimal 

designs of V-type electro-thermal microactuator. Such system works under electric current, 

generating Joule heat and due to thermal expansion displacement and force are generated in the 

central shaft. The optimization process is performed for six criteria at once and thus a 

multiobjective optimization approach is used. Main assumptions of the research include: 

• Weak coupling between thermal, electrical, and mechanical fields. 

• Coupling is performed by subsequently transferring loads between first 

electrical, then thermal and lastly mechanical analyses. 

• Linear buckling is assumed. 

• Friction is neglected. 

• Contact problem is modelled as rigid – deformable and frictionless.  

• Linear-elastic, isotropic material model is assumed for actuator. 

• Rigid surfaced is placed in an offset position within an arbitrary distance from 

actuator to analyse contact and determine force generated by the central shaft. 

• Solutions not generating contact (not enough value of vertical displacement, 

central shaft doesn’t reach the contact surface) are discarded. 

• No penetration is allowed. 

• Parametric numerical model of an actuator is modelled utilising NURBS curves. 

5.3.2. Formulation of the problem 

Objectives in the optimization problem are devoted to minimization of total volume, 

minimization of maximal equivalent stresses, maximization of vertical displacement of central 

shaft, minimization of total heat and maximization of buckling factor and maximization of total 

force generated in the central shaft – these are the examples of requirements asked of 

electrothermal microactuator systems, although other criteria based on specific needs can be 

formulated. Values of functionals used as objectives are computed using FEM simulations. 

Material properties are constant during the optimization run and geometry of the model, 

described by design variables is changed to fit the declared needs, formally described by 

functionals (46) – (51). 

Minimization of the volume of actuator: 

 

min  
𝑥
𝑓
1
= ∫ 𝑑𝛺

𝛺

 

(46)  
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Minimization of the maximal equivalent stress in the actuator (assuming Huber-Mises-

Hencky hypothesis): 

 min
𝑥
 𝑓
2
= max (𝜎𝑒𝑞) (47)  

  

Maximization of the vertical displacement of the tip of central shaft:  

 max
𝑥
 𝑓
3
= 𝑢𝑖  (48)  

  

Minimization of the total heat generated in the actuator: 

 min
𝑥
 𝑓
4
= 𝑞𝑡𝑜𝑡𝑎𝑙  (49)  

 

Maximization of the buckling factor: 

 max
𝑥
 𝑓
5
= 𝑓

𝑏𝑢𝑐𝑘
(𝑃𝑣)  (50)  

  

Maximization of the force generated by the central shaft: 

 max
𝑥
 𝑓
6
= 𝐹𝑐(𝑑𝑔)  (51)  

 

𝑃𝑣 is a vertical external force applied to the top of the central shaft. Force 𝐹𝑐 is calculated 

on the basis of a contact force generated between displaced central shaft and a rigid surface 

placed in an offset position within an arbitrary distance 𝑑𝑔 from the central shaft before 

deformation of the actuator.   

Values of aforementioned functionals are calculated numerically by means of FEM in 

MSC Patran/Nastran and Marc/Mentat software based on a parametric model. Functional 𝑓1 is 

calculated on the basis of geometry of the model in preprocessor Mentat and does not require 

solving a boundary-value problem. Functionals 𝑓2, 𝑓3 and 𝑓6 are calculated by running an 

electro-thermo-mechanical analysis. Functional 𝑓4 is calculated by running an electro-thermal 

analysis. Functional 𝑓5 is calculated by running a buckling analysis. Problems of maximization 

are transformed to minimization problems by multiplying a fitness function value by −1. 
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5.3.3. Numerical model 

In electrothermal microactuators displacement and force are indirectly generated by the 

electrical current 𝐼 passing through conductor material, generating resistive heat according to 

the Joule’s Law: 

 𝑄 = 𝑅𝐼2𝑡  (52)  
where 𝑄 is Joule heat generated, 𝑅 is electrical resistivity and 𝑡 is time.  

Displacement of the central shaft is caused by the thermal strain of the arms due to 

resistive heat generated. Microactuators are usually subjected to the voltage of a magnitude of 

a few volts, which is enough to cause temperature increase to the values over 1200K. Despite 

high temperatures, system maintains its linear characteristic with respect to thermal, electric, 

and mechanical fields. These phenomena are described by partial differential equation of 

electrostatics (53), heat conduction (54), and thermoelasticity (55). 

 𝜙,𝑖𝑖 −
𝜌

𝜀0
= 0 (53)  

   

 𝑘𝑇,𝑖𝑖 + 𝑄 = 0  (54)  
   

 𝜇𝑢𝑖,𝑗𝑗 + (𝜇 + 𝜆)𝑢𝑖,𝑗𝑖 − (3𝜆 + 2𝜇)𝛼𝑡𝑇,𝑖 = 0   (55)  

 

where 𝜙 is electric potential, 𝑇 is temperature, 𝑢 represents the displacement values, 𝜌 is charge 

flux density, 𝜀0 is vacuum permittivity (electric constant), 𝑘 is thermal conductivity, 𝑄 is 

internal heat source, 𝛼𝑡 is the linear expansion coefficient and 𝜇 and 𝜆 are the Lamé constants, 

which can be expressed in the following way: 

 
𝜇 = 𝐺 =

𝐸

2(1 + 𝜈)
, 𝜆 =

𝐸𝜈

(1 − 2𝜈)(1 + 𝜈)
 

(56)  

 

where 𝐺 is shear modulus, 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. 

Partial differential equations (53)-(55) must be supplemented by boundary conditions. 

• Boundary conditions for electrostatic problem: 

 𝑥 ∈ Γ𝜙: 𝜙(𝑥) = 𝜙0(𝑥)  

𝑥 ∈ Γ𝜌: 𝜌(𝑥) = 𝜌
0(𝑥) 

(57)  

 

where 𝜙0 and 𝜌0 are known electric potential and electric charge flux density on the respective 

parts of the boundary Γϕ and  Γρ. 

• Boundary conditions for heat conduction problem: 

 𝑥 ∈ Γ𝑇: 𝑇(𝑥) = 𝑇
0(𝑥)  

𝑥 ∈ Γ𝑞: 𝑞(𝑥) = 𝑞0(𝑥) 

𝑥 ∈ Γ𝑐: 𝑞(𝑥) = 𝛼𝑐(𝑇(𝑥) − 𝑇
∞(𝑥)) 

(58)  
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where 𝑇0 and 𝑞0 are known temperature and heat flux on the respective parts of the boundary 

Γ𝑇 and Γ𝑞. Last boundary condition is a convection condition, where 𝛼𝑐 stands for heat 

convection coefficient and 𝑇∞is ambient temperature around part of the boundary Γ𝑐.  

• Boundary conditions for elasticity problem: 

 𝑥 ∈ Γ𝑢: 𝑢(𝑥) = 𝑢0(𝑥)  
𝑥 ∈ Γ𝑝: 𝑝(𝑥) = 𝑝(𝑥) 

(59)  

 

where 𝑢0 and 𝑝0 are known displacements and mechanical loads on the respective parts of the 

boundary Γu and  Γp. 

Boundary of the body is defined by parts of the boundary where electric, thermal, and 

mechanical boundary conditions are applied. To solve the electro-thermo-mechanical boundary 

value problem, FEM is used. Partial differential equations governing the problem are 

discretized and transformed into a system of algebraic equations. After taking into consideration 

boundary conditions, a resulting system of equations in the matrix form is obtained: 

 𝐊𝐄𝐕 = 𝐈 (60)  
 

 𝐊𝐓𝐓 = 𝐐 + 𝐐𝐄 (61)  
 

 𝐊𝐌𝐔 = 𝐅 + 𝐅𝐓 (62)  

 

where 𝐊𝐄, 𝐊𝐓 and 𝐊𝐌 are global matrices of: electrical conductivity, thermal conductivity, and 

stiffness respectively, assembled by aggregation of local matrices according to FEM 

discretization scheme. V, I, T, Q, U and F are global vectors of: voltage, electric current, 

temperatures, heat fluxes, displacement, and mechanical loads respectively. As weakly 

coupling between physical fields is assumed, electric, thermal, and mechanical analyses are 

solved in a successive manner. Coupling is realised by transferring of loads into subsequent 

analyses. In case of full electro-thermo-mechanical analysis, in the first step equation (60) is 

solved and a vector of heat flux 𝐐𝐄 caused by Joule effect is obtained, which is then included 

in the equation (61), whereas after solving equation (61) a vector of loads 𝐅𝐓 due to thermal 

strain is obtained, which is then included in the equation (62).  

In case of buckling analysis, the FEM formulation of a problem takes the following 

form: 

 [𝐊𝐌 + 𝜆𝑖Δ𝐊𝐆]𝐯𝐢 = 𝟎 (63)  

 

Assuming linear buckling, equation (63) describes the eigenvalue problem, solved by 

the Lanczos method. Matrix Δ𝐊𝐆 is a function of the load increment Δ𝑃, 𝜆𝑖 is the eigenvalue 

and eigenvector 𝐯𝐢 is used to calculate post-buckling deformation mode. 

For the contact analysis, required to determine value of the actuation force, an additional 

rigid surface is placed in an offset position within an arbitrarily chosen distance from the 

location of the tip of the central shaft before deformation of the system. After the deformation, 
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contact between the tip and the surface is established and contact force is measured. As the 

movement of the shaft is in the direction normal to the surface, friction between these elements 

is neglected. Contact is modelled as rigid–deformable and frictionless. Additional constraint 

responsible for maintaining lack of penetration is implemented. 

The parametric numerical model of the actuator is solved by means of FEM to obtain 

values of optimization functionals. It is however possible to obtain related values in an 

analytical way for the actuator with straight arms. The analytical and numerical solutions for 

elasticity problem for such actuators were compared to provide verification of the numerical 

model. Considering constant thickness of the actuator and its relatively small magnitude 

compared to other dimensions as well as constant boundary conditions, two-dimensional 

analytical solution can be used. Analytical solution for displacement 𝑢𝑦 of V-type actuator (Fig. 

60) is provided in [150], [153] as: 

 
𝑢𝑦 =

𝛼𝑡Δ𝑇𝐸𝐴sin𝜑

𝐸𝐴
𝐿 sin2𝜑 +

12𝐸𝐼𝑧
𝐿3

cos2𝜑
+

−𝐹𝑖
𝐸𝐴
𝐿 sin2𝜑 +

12𝐸𝐼𝑧
𝐿3

cos2𝜑
 

(64)  

where 𝛼𝑡 is a thermal expansion coefficient, Δ𝑇 is average increase of temperature due to the 

resistive heat, 𝐸 is Young’s modulus, 𝐴 is cross section area of an arm, 𝜑 is pre-bending angle, 

𝐿 is the distance between anchor and center of the actuator in the 𝑥 direction, 𝐼𝑧 is moment of 

inertia of cross section of an arm and 𝐹𝑖 is an external force applied to the central shaft in the 

direction against 𝑢𝑦.  

The comparison between FEM numerical model and analytical solution (64) was 

performed for the following parameters: 

• average temperature rise Δ𝑇 = 450 K, 

• Young’s modulus 𝐸 = 210 GPa, 

• length of beams 𝐿 = 220 μm, 

• square cross section area 𝐴 = 25 μm2. 

Fig. 60: V-type actuator in the analytical solution 
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Numerical model was prepared in MSC Marc/Mentat utilising plane stress model and 

consisting of quadrilateral four node elements. Mesh density was established after preliminary 

analyses resulting in a model with 6-8 elements per width of a beam to ensure valid results for 

bending arms and therefore the entire actuator model consists of around 10 000 elements and 

11 000 nodes (Fig. 61). 

The analysis was performed for a range of pre-bending angles 𝜑 between 𝜑 = 1° and  

𝜑 = 5°. Obtained results (Fig. 62) prove a good compliance between numerical model and 

analytical solution. The relative error of numerical solution was no more than 2.3% observed 

at the location of the highest displacement value. 

Fig. 61: V-type actuator in the FEM numerical solution 
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Fig. 63: Relationship between pre-bending angle and contact force 

Fig. 62: Comparison between FEM numerical solution and analytical solution 
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Analytical solution (64) can be transformed to investigate the value of force generated 

by the actuator although it is proven to underrepresent interaction between force and 

displacement in case of low displacements or high value of forces [150]. For the practical 

purpose it is best to investigate value of actuation force numerically by introducing a rigid 

contact surface to the model and observe value of contact force after deformation. Said surface 

must be placed within a distance from the tip of the moving part of the actuator in the direction 

of working movement. Value of this distance, further also referred to as a “gap” is crucial in 

the ability to measure contact force. Fig. 63 presents relationship between contact force 

measured on the rigid surface and value of pre-bending angle for different variants of gap value. 

It can be noticed that with the increase of the gap, the maximum measured contact force 

decreases and that for low value of pre-bending angle it is not possible to observe high contact 

forces nevertheless the relationship is not linear and increasing pre-bending angle further at 

some point does not result in the increase of measured contact force and a clear maximum can 

be observed.  

Numerical investigation of the buckling effect can be compared to analytical solution to 

verify the numerical model. Buckling appear when an internal compression force in axially 

loaded arms is greater than the value of critical buckling force. The axial load in arms is equal 

to the reaction force in the anchor of an actuator and can be calculated as [169]:  

 
𝑅 = 𝛼Δ𝑇𝐸𝐴

cos2𝜑

𝐴𝐿2

12𝐼𝑧
sin2𝜑+cos2𝜑

 
(65)  

and critical force is: 

 
𝐹𝑐𝑟 =

𝜋𝐸𝐼𝑚𝑖𝑛
𝛽𝐿2

 (66)  

where 𝐼𝑚𝑖𝑛 is a minor moment of inertia of cross section of beam and 𝛽 is a buckling length 

coefficient. For the purpose of verification, a simple actuator with the same geometry was 

analysed analytically and numerically, for which the value of critical force according to (66) 

was calculated and took value of 𝐹𝑐𝑟 = 419.5 μm. For the numerical investigation, the anchors 

of the actuator were fixed in all degrees of freedom and the central shaft was allowed to move 

along the direction of axis 𝑥 only. Previously calculated critical force 𝐹𝑐𝑟 was applied to the 

moving shaft and the Critical Loading Factor (CLF) was obtained numerically by means of 

FEM. CLF is a ratio between critical and applied load and should take the value of 1.0 to match 

the analytical solution when applied load is equal to the critical force. Obtained value of CLF 

= 1.058 indicates a good compliance of analytical and numerical results for the analysed case. 

Moreover, values of compressive stress obtained from analytical and numerical solution deliver 

similar results, however it is worth noting that the analytical solution takes into consideration 

only the uniaxial stress, while numerical analysis additionally incorporates concentration of 

stresses. 

Presented verification of numerical model compared to analytical solutions for an 

actuator with straight arms can be considered successful as results obtained numerically seem 

to come to a close agreement with analytical solutions. On the basis of analysed geometry of 

the actuator, a new parametric model was established. Parametric model was designed in a way 

to provide a flexible shape whose geometry is controlled by design variables in the optimization 

process. The main requirement for the parametric model was to cover a wide range of candidate 
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solutions, including solutions for which analytical formulas are unknown. To achieve this goal, 

a model described by seven design variables, presented in the Fig. 64 was constructed. To 

ensure axial movement of the shaft symmetry along the vertical axis was assumed. Shape of 

the beam was based on a NURBS curve constituted of four control points. Uniform distribution, 

cubic interpolation of the knot vector and constant value of 1.0 of points’ weights is assumed. 

The four control points create a NURBS control polygon, whose shape can be manipulated by 

design variables and therefore change the shape of a beam. Symmetry of the beam is imposed 

along the centerline. First four design variables define the distance of control points from the 

centreline. The remaining three design variable define value of pre-bending angle 𝜑 and fillet 

radii 𝑅1 and 𝑅2 between the beam and anchor and beam and shaft respectively.  

 

Fig. 64: Geometry and parametrization of the model 

Design variables and limits imposed on then are summarised in Tab. 22. 

Tab. 22: Design variables 

Symbol Design variable Lower 

limit 

Upper 

limit 

P1 position of control point P1 1 µm 20 µm 

P2 position of control point P2 1 µm 20 µm 

P3 position of control point P3 1 µm 20 µm 

P4 position of control point P4 1 µm 20 µm 

𝝋 pre-bending angle 0.001º 12º 

R1 fillet radius between beam and anchor 1 µm 20 µm 

R2 fillet radius between beam and shaft 1 µm 20 µm 

 

Actuator was modelled in a plane stress state with the following material properties of 

a polycrystalline silicon: 

• Young’s modulus 𝐸 =  158 × 103 MPa, 

• Poisson’s ratio 𝜈 =  0.23, 

• thermal conductivity 𝑘 =  140 × 108
W

μmK
, 

• resistivity 𝑅 =  3.3 × 10−11𝑇 Ωμm, 

• linear expansion coefficient 𝛼𝑡 = 3 × 10
−6 K−1. 
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Thickness of the actuator in the z-direction is 10 μm, length of an undeformed beam is 

220 μm, the distance between the tip of undeformed central shaft and rigid contact surface (gap) 

was assumed as 𝑑𝑔 = 2 μm and 𝜇𝑀𝐾𝑆 system of units is used. 

Following boundary conditions were imposed on the system: 

• anchors fixed in all degrees of freedom, 

• temperature 𝑇 = 300 K, 

• electric potential difference between anchors 5 V, 

• vertical load 𝑃𝑣 = 500 μN for the buckling analysis. 

 

5.3.4. Results 

Results of this research were obtained after three independent runs of the DEGT 

algorithm using following parameters: 

• generations DEiter = 5, 

• population size DEpops = 6, 

• crossover rate CR = 0.5, 

• scaling factor F = 0.7. 

For the three runs, different value of objective function calls as termination condition were used: 

50 000, 100 000 and 127 000, giving a total number of 277 000 objective function calls. 

Algorithm produced respectively: 828, 1440 and 1061 Pareto-optimal (non-dominated) 

solutions. The results from three runs were then aggregated to form a set of 2891 solutions. 

After merging three sets, it was necessary to discard solutions dominated by members of a 

combined set of solutions hence the number of non-dominated solutions in a combined set is 

lower than a sum of its components members. 

 Values of objective functions for the obtained solutions are shown in the figures in two 

ways. Scatter plot matrix of obtained solutions is shown in the Fig. 65. Along the diagonal are 

histogram plots of objective function values. Additionally, solutions are presented in the form 

of Kohonen’s Self-Organizing Maps, described in section 2.5. Selected solutions are shown in 

Tab. X including values of objective functions and design variables. Geometry of selected 

solutions is presented in the Fig. 66. 

On the basis of obtained sets of non-dominated solutions and presented graphs some 

general information on relationships between objective functions in the problem can be drawn. 

Objectives 𝑓1 and 𝑓4 have a similar nature. Colours representing objective values on the SOM 

maps for them are in a close agreement and related plot on the scatter plot matrix is 

approximately proportional. On the other hand, objective 𝑓5 displays conflicting nature towards 

these objectives.   
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Tab. 23: Values of fitness functions and design variables of selected solutions  

Design D1 D2 D3 D4 D5 D6 

𝑓1 [μm
3] 109521,3 110828,7 113578,7 123329,3 233154,4 209377,3 

𝑓2 [MPa] 137,156 66,729 907,749 800,637 888,74 1397,96 

𝑓3 [μm] -4,5103 -2,2723 -13,9523 -9,229 -2,0415 -3,8537 

𝑓4 [μW] 3,1261 3,914 3,4224 3,0979 33,2006 16,6609 

𝑓5 [−] -0,3673 -0,9527 -0,0668 -0,4854 -789 -112,7 

𝑓6 [μN] -841,451 -406,973 -145,786 -801,946 -703,381 -7544,8 

P1 [μm] 1,0895 1,307 1,0123 1,0516 2,3209 1,0336 

P2 [μm] 1,0586 1,4216 1,109 1,132 19,498 19,3231 

P3 [μm] 1,1676 1,0225 1,7186 1,0048 18,2076 19,1267 

P4 [μm] 1,0644 1,3784 1,2592 9,1116 13,8266 5,3813 

𝝋 [°] 5,7963 11,785 0,521 2,5687 11,3195 6,8521 

R1 [μm] 1,7875 1,2453 7,6393 1,5735 19,4211 1,0779 

R2 [μm] 5,3327 3,9615 15,5259 13,5593 19,9716 3,6833 

Fig. 65: Scatter plot matrix of solutions for actuator optimization 
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Selected solutions are chosen so as to exhibit extreme values of consecutive objective 

functions. Solution D1 exhibits the lowest value of 𝑓1, solution D2 – lowest value of 𝑓2 and 

further selected solutions likewise. Extreme values are shown using bold font in Tab. 23.  

Except for solutions displaying extreme values of functionals it is crucial to be able to 

choose a compromise solution among a non-dominated set according to established 

preferences. These preferences can be expressed in the form of maximum acceptable value of 

a group of optimization functions. The decision making process utilising SOM, considering 

threshold values of objectives 𝑓2, 𝑓4 and 𝑓6 and final decision with respect to lowest value of 𝑓1 

was presented in the Fig. 67.   

In the first step a threshold value of 𝑓2 = 900 MPa is assumed and only solutions 

satisfying this constraint are accepted. Related area is marked on the SOM using red colour and 

solutions with higher level of equivalent stress are disregarded in the further investigation. The 

decision making process then proceeds to check next threshold for objective 𝑓4 and the area of 

interest is further reduced, only the intersection of areas of acceptable solution is taken into 

further steps. Threshold for 𝑓6 is applied in the similar manner and in the last step only a 

considerably narrowed down area of interest remains. Among this area the best solution with 

regards to objective 𝑓1 is sought by analysing values of codebook vectors of related SOM units. 

Ultimately a compromise solution displaying following values of objective functions and 

design variables is found:  

𝐟 = [164937.5 μm3, 614.1MPa,−3.16μm, 14.89μW,−70.88,−5023.49μN] 

and 𝐱 = [2.47μm, 6.58μm, 14.09μm, 1.95μm, 8.79°, 9.29μm, 17.15μm]. 

 

Fig. 66: Geometry of selected solutions 
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Fig. 67: SOM trained on solutions for actuator optimization and post-

optimization decision making process 
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5.3.5. Final remarks 

Multiobjective optimization of electrothermal microactuators was presented. 

Optimization of the parameters for the actuator was solved for six different proposed 

functionals. More functionals related to particular needs asked of actuators can be formulated. 

A large set of non-dominated solutions was found. Proposed methods of visualisation help to 

draw conclusions on natures of the objectives. Among found solutions, some designs related to 

extreme value of optimization functions were highlighted, compared in terms of design 

variables and geometry of these solutions was shown. Moreover, the process of decision making 

according to established preferences enhanced by SOM was presented and applied to choose a 

single compromise solution. Application of presented methods can improve the design of 

multiobjective actuators. 

5.4. Optimization of multiscale porous material 

Microscale analyses are an important tool in the design process of advanced materials, 

in which geometry and properties of microstructure are taken into consideration. Microstructure 

of materials can strongly influence physical properties such as strength, heat conductivity, 

electrical conductivity, density etc. Microscale characteristics play a crucial role in behaviour 

of materials such as: porous materials or materials reinforced with fibres or particles. 

Microstructure composed of more than one material with dissimilar physical properties can 

provide properties which wouldn’t be available to be obtained using a homogenous material. 

Numerical simulation of such structures in one scale is a very computationally demanding task 

as it would require extremely fine mesh and complex models in order to adequately reflect the 

differences in properties of the microstructure sections. For this reason, multiscale modelling 

can be applied to reduce the complexity of models concerning two or more scales. Many 

phenomena happening on a different magnitude of scale and interacting with each other can be 

investigated in the multiscale model. In the macroscale: mechanical and thermal boundary 

conditions (loads, supports etc.). In the meso- and microscale: inclusions, cavities and even 

defects in the crystal lattice. Multiscale modelling can even be used in problems concerning 

effects happening on a molecular level [170], [171]. In order to analyse the behaviour of a 

system in the macroscale it is necessary to establish information on effective material 

properties. In the process of homogenization, a heterogenous material is transformed to a 

homogenous one described by effective material properties obtained through microscale 

analyses. In case of a simple microstructure geometry, analytical solutions can be used although 

for more complex shapes it is necessary to employ numerical methods. Boundary element 

methods was used to perform numerical homogenization of porous structures in [172]. Finite 

element method, however, is the most popular tool used for numerical homogenization due to 

its universal applicability and availability in the CAE software [170], [173], [174]. 

Multiobjective optimization problems concerning multiscale materials are remarkably 

computationally demanding tasks. During the optimization process in order to search the 

solution space for desirable designs it is necessary to obtain values of optimization functions 

multiple times. In case of multiscale problem, each analysed candidate solution additionally 

requires multiple analyses in the microscale to perform numerical homogenization. For this 

reason, an efficient multiobjective optimization tool is crucial to govern the optimization 

process in such problem to achieve satisfying results in limited time.  
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5.4.1.  Aims and assumptions 

Aim of this study is to find an optimal design of a microstructure of a porous system 

under thermal and mechanical loads with respect to the macroscopic properties. The 

optimization process is performed for four criteria at once and thus a multiobjective 

optimization approach is used. Main assumptions of the research include: 

• Two-scale thermoelastic model is considered. 

• Analysed system in the macroscale consists of an aluminium block under 

thermal and mechanical loads, fixed on one side. 

• Geometry of the model in macroscale is not subject to optimization and does not 

change during the course of optimization. 

• Linear-elastic, isotropic material model is assumed. 

• Microstructure exhibits local periodicity. 

• Representative volume element (RVE) approach coupled with finite element 

method is used for numerical homogenization. 

• Four optimization functions are formulated on the basis of mechanical and 

thermal quantities observed on the micro- and macroscopic level. 

• Parametric numerical model of microstructure is modelled utilising closed B-

spline curves to describe the geometry of the pore. 

 

5.4.2. Formulation of the problem 

Objectives in the optimization problem are devoted to minimization of maximal 

displacements, minimization of maximal equivalent stress, maximization of the heat flux and 

maximization of porosity, which is related to the total mass and cost of the structure. These 

objectives are the examples of conditions required of porous mechanical systems, although 

other criteria based on specific needs can be formulated. Values of functionals 𝑓1 and 𝑓2 used 

as objectives are computed using FEM simulations in macroscale, supplemented by FEM 

simulations in microscale, required in the process of numerical homogenization. Objectives 𝑓3 

and 𝑓4 are obtained in the microscale. Geometry of the microstructure, described by design 

variables is changed to fit the declared needs, formally described by functionals (67) – (70): 

Minimization of the maximal translational displacement of a system under given load 

 𝑚𝑖𝑛
𝑥
 𝑓
1
= max (𝑢) (67)  

Minimization of the maximal value of the equivalent (von Mises) stress of a system 

under given load: 

 𝑚𝑖𝑛
𝑥
 𝑓
2
= max (𝜎𝑒𝑞) (68)  

Maximization of thermal conductivity in the direction along the axis of the bar:  

 𝑚𝑎𝑥
𝑥
 𝑓
3
= 𝑘11 (69)  

Maximization of porosity of the microstructure:  

 

𝑚𝑎𝑥
𝑥
 𝑓
4
=
∫ 𝑑𝛺𝑝𝑜𝑟𝛺𝑝𝑜𝑟

∫ 𝑑𝛺𝑅𝑉𝐸𝛺𝑅𝑉𝐸

 (70)  
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Values of aforementioned functionals are calculated numerically by means of FEM in 

MSC Patran/Nastran and MSC Marc/Mentat software based on a parametric model. Functionals 

f1 and f2 are calculated by running a static structural analysis under a given load. These 

functionals are obtained in macroscale analyses proceeded by a series of microscale analyses 

to establish values of effective material properties. Functional f3 is calculated by running a 

thermal analysis of RVE in microscale. Functional f4 is calculated on the basis of geometry of 

the model in microscale and does not require solving any boundary-value problems. Problems 

of maximization of 𝑓3 and 𝑓4 are transformed to minimization problems by multiplying a fitness 

function value by −1. 

 

5.4.3. Numerical model 

Cuboid aluminium solid of dimensions 100 × 20 × 20 mm fixed on one side and 

subject to thermal and mechanical loads is considered (Fig. 68). Uniform distributed load 𝑃 is 

applied on the surface opposite of the fixed (displacement 𝑢0) side. On both these surfaces 

temperatures 𝑇1 and 𝑇2 are known. 

 

Fig. 68: Macromodel under thermal and mechanical loads 

Boundary conditions and material properties of aluminium are presented in Tab. 24 
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Tab. 24: Boundary conditions and material properties 

Boundary condition or material property Symbol Value 

Displacement 𝑢0 0 

Load 𝑃 360 N (total) 

Temperature 1 𝑇1 0 ºC 

Temperature 2 𝑇2 100 ºC 

Young’s modulus 𝐸 70 GPa 

Poisson’s ratio 𝜈 0.35 

Thermal conductivity 𝐾 200 W/(mK) 

Thermal expansion coefficient 𝛼𝑡 2310-6 K-1 

 

Numerical homogenization utilising RVE concept and finite element method is carried 

out to solve the two-scale thermoelastic problem for a porous system. The aim of 

homogenization is to determine effective material properties of a non-homogenous structure 

and use them to solve macroscale problem. For thermo-elastic problems, the determined 

properties include elasticity constants, thermal expansion coefficients or thermal conductivity 

coefficients [175]. Thermal expansion coefficient does not require homogenization in analysed 

example as it does not depend on geometric configuration of microstructure. Linear 

thermoelasticity problem is described by a set of partial differential equations of heat 

conduction and elasticity, considering thermal strains [176]–[179]: 

 𝑘𝑇,𝑖𝑖 = 0 

𝜇𝑢𝑖,𝑗𝑗 + (𝜇 + 𝜆)𝑢𝑗,𝑗𝑖 − (3𝜆 + 2𝜇)𝛼𝑇𝑇,𝑖 = 0  
(71)  

where 𝑘 is thermal conductivity, 𝑇 is temperature, u is displacement, 𝛼𝑇 is linear expansion 

coefficient, 𝜇 and 𝜆 are Lamé constants.  

Differential equations (71) need to be supplemented with a set of mechanical boundary 

conditions: 

 𝑥 ∈ Γ𝑢: 𝑢(𝑥) = 𝑢0(𝑥)  
𝑥 ∈ Γ𝑝: 𝑝(𝑥) = 𝑝(𝑥) 

(72)  

and thermal boundary conditions: 

 𝑥 ∈ Γ𝑇: 𝑇(𝑥) = 𝑇
0(𝑥)  

𝑥 ∈ Γ𝑞: 𝑞(𝑥) = 𝑞0(𝑥) 

𝑥 ∈ Γ𝑐: 𝑞(𝑥) = 𝛼(𝑇(𝑥) − 𝑇
∞(𝑥)) 

(73)  

where 𝑢0 and 𝑝0 are known displacements and mechanical loads on the respective parts of the 

boundary Γu and  Γp, 𝑇0 and 𝑞0 are known temperature and heat flux on the respective parts of 

the boundary Γ𝑇 and Γ𝑞. Last boundary condition is a convection condition, where 𝛼 stands for 

heat convection coefficient and 𝑇∞is ambient temperature around part of the boundary Γ𝑐. 

Boundary of the body is defined by parts of the boundary where thermal and mechanical 

boundary conditions are applied. To solve the thermo-mechanical boundary value problem, 

FEM is used. Partial differential equations governing the problem are discretized and 

transformed into a system of algebraic equations. After taking into consideration boundary 

conditions, a resulting system of equations in the matrix form is obtained: 
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 𝐊𝐓𝐓 = 𝐐 (74)  
 

 𝐊𝐌𝐔 = 𝐅 + 𝐅𝐓 (75)  

 

where 𝐊𝐓 and 𝐊𝐌 are global matrices of thermal conductivity and stiffness respectively, 

assembled by aggregation of local matrices according to FEM discretization scheme. T, Q, U 

and F are global vectors of: temperatures, heat fluxes, displacement, and mechanical loads 

respectively. As weakly coupling between physical fields is assumed, electric, thermal, and 

mechanical analyses are solved in a successive manner. Coupling is realised by transferring of 

loads into subsequent analyses. 𝐅𝐓 is a vector of loads due to thermal strain obtained from 

equation (74).  

A set of assumptions is taken into consideration in the process of numerical 

homogenization using RVE including: 

• principle of scale separation: 

 𝑙

𝐿
≪ 1 (76)  

where 𝑙 and 𝐿 are characteristic dimensions of a structure in a micro- (RVE) and macroscale, 

• averaging theorem: 

 

〈∙〉 =
1

|Ω𝑅𝑉𝐸|
∫ (∙)𝑑Ω𝑅𝑉𝐸

Ω𝑅𝑉𝐸

 (77)  

where 〈∙〉 denotes the average macroscopic value of a given field over the volume 𝑉 of the RVE, 

• Hill’s condition providing the equality of the averaged micro-scale energy 

density and the macro-scale energy density at the selected point of macro-

structure corresponding to the RVE: 

 〈𝜎𝑖𝑗𝜀𝑖𝑗〉 = 〈𝜎𝑖𝑗〉〈𝜀𝑖𝑗〉 (78)  

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are stress and strain tensors.  

For heat conduction problem Hill’s condition takes the following form: 

 〈𝑇,𝑖𝑞𝑖〉 = 〈𝑇,𝑖〉〈𝑞𝑖〉 (79)  

where 𝑇,𝑖 and 𝑞𝑖 are temperature gradient and heat flux.  

Numerical homogenization using RVE approach with periodic boundary conditions is 

used. FEM analysis in the microscale is performed to obtain average stress and heat fluxes in 

RVE to determine effective material properties according to equation (77). 

Hooke’s law in the microscale takes the following form: 

 〈𝜎𝑖𝑗〉 = 𝐜𝑖𝑗𝑘𝑙
′ 〈𝜀𝑖𝑗〉 (80)  

and Fourier’s law: 
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 〈𝑞𝑖〉 = 𝐤𝑖𝑗
′ 〈𝑇,𝑗〉 (81)  

where 𝐜𝑖𝑗𝑘𝑙
′  is a tensor of elastic constants (using Voigt notation) of the RVE, described by a set 

of nine independent constants and takes the following form: 

 

𝐜𝒊𝒋
′ =

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐21 𝑐22 𝑐23 0 0 0
𝑐31 𝑐32 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐55 0
0 0 0 0 0 𝑐66]

 
 
 
 
 

 (82)  

whereas 𝐤𝑖𝑗
′  is a tensor of thermal conductivity coefficients for non-crystalline anisotropic 

materials which is described by three independent constants and takes the following form: 

 

𝐤𝑖𝑗
′ = [

𝑘11 0 0
0 𝑘22 0
0 0 𝑘33

] (83)  

Determining effective elastic constants requires running six analyses and to determine 

effective thermal constants three analyses are necessary. Initial unitary strain is applied to the 

RVE model and microscale analysis is performed to solve a single column or row of the tensor 

of effective elastic constraints. The same approach is used to calculate values of elements of 

the tensor of effective thermal constants. In total there are 9 microscale analyses required as a 

prerequisite to eventually solving a macroscale analysis resulting in obtaining value of 

Fig. 69: Fitness function evaluation procedure 
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optimization functional (Fig. 69).  MSC.Mentat/Marc software was used for FEM computations 

in both micro- and macroscale. Automatic generation of models for the multiscale analysis was 

performed utilising an in-house procedure implemented in C++ programming language and 

internal MSC script language. 

 

Analyses in the microscale concern RVE model and are based on the parametric model 

in which the geometry of a microstructure is governed by a set of design variables, are shown 

in the Tab. 25 supplemented with limits imposed on them. 

Tab. 25: Design variables 

Symbol Design variable Lower 

limit 

Upper 

limit 

l length of revolve axis 0.1 0.8 

𝑥1 position of control point 1 0.01 0.3 

𝑥2 position of control point 2 0.01 0.45 

𝑥3 position of control point 3 0.01 0.45 

𝑥4 position of control point 4 0.01 0.45 

𝑥5 position of control point 5 0.01 0.3 

𝛼1 rotation angle 1 0° 90° 

𝛼2 rotation angle 2 0° 90° 

 

Geometry of the RVE represents geometry of a single pore in a periodic microstructure. 

Parametric model is developed in a way to provide a high flexibility of shapes, which can be 

described by a limited number of design variables. Geometry of the pore is assumed to be 

axisymmetric and is constructed by revolving a closed B-spline curve of order 4 around an axis. 

Shape of the curve is controlled by 5 design variables representing position of control points 

(Fig. 70b) and length of an axis is controlled by an additional design variable (Fig. 70a). After 

the pore volume is generated (Fig. 70c) it is furthermore rotated around two axes (Fig. 70d). 

The shape of a pore is eventually subtracted from a volume of a full unit block. 

 

a) b) c) d) 

Fig. 70: Design variables 
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After creating the geometry of a RVE it is discretized using tet4 elements (Fig. 71). 

 

5.4.4. Results 

Results of this research were obtained after solving approximately 10 000 boundary 

value problems and consist of a set of 100 Pareto-optimal (non-dominated) solutions found 

during the course of optimization using the parameters described in chapter 3. Values of 

objective functions for the obtained solutions are shown in the figures in two ways. A 3D scatter 

plot with values of the f2 function represented by colour, and the remaining fitness function as 

values on the axes is shown in the Fig. 72. Scatter plot matrix of obtained solutions is shown in 

the Fig. 73. Along the diagonal are histogram plots of objective function values.  

On the basis of presented plots of non-dominated solution some conclusions on the 

relationships between objectives can by drawn. On the 4D (3D + colour) plot, the solutions are 

arranged approximately in line, which indicates the existence of a degenerate real Pareto front 

in the problem. Looking at the scatter plot matrix it can be noticed that this is caused by  

Fig. 71: Discretization of the RVE 
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solutions displaying a similar nature pairwise. Pairs of solutions in this example are 

proportional (𝑓1 − 𝑓3 and 𝑓2 − 𝑓4) or inversely proportional (all remaining pairs). Examining 

the physical nature of considered objectives such situation can be explained. For solutions in 

which the size of pore was small, the thermal conductivity and stiffness was increased and 

therefore values of optimization functionals 𝑓1 and 𝑓3 improved, which however stand in 

conflicting nature of objectives related to volume and equivalent stress in the model, expressed 

in functionals 𝑓2 and 𝑓4. In general, it might be possible to find solutions with low value of both 

objectives which should come in agreement. Such a scenario is possible due to areas of 

increased stress concentration existing in the micromodel – pore of low volume, even though 

usually results in low stress level, might in case of specific shapes exhibit locations of stress 

concentration. Nevertheless, such solutions are not interesting from the optimization point of 

view as they are dominated by other solutions in the solution space.  

  

Fig. 72: 3D scatter plot of obtained solutions with 𝑓2 in colour 
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Among found solutions some solutions were highlighted. Solutions displaying extreme 

values of objectives 𝑓1 and 𝑓3 (ES13), 𝑓2 and 𝑓4 (ES24) as well as two compromise solutions 

(C1 and C2) are presented in detail. Geometry of these solutions is shown in Fig. 74 and values 

of objective functions and design variables in Tab. 26. 

Tab. 26: Values of fitness functions and design variables of selected solutions 

Design E13 E24 C1 C2 

f1 [mm] 0.152926 0.19227 0.162077 0.170551 

f2 [MPa] 133.239 74.6041 110.688 99.7959 

f3 [W/(m·K)] -196.962 -156.136 -186.349 -176.84 

f4 [-] -0.0109179 -0.154978 -0.0559121 -0.0838825 

𝑙  [µm] 0.2543 0.5926 0.2365 0.3875 

𝑥1 [µm] 0.093 0.3076 0.329 0.2941 

𝑥2 [µm] 0.165 0.3437 0.3301 0.343 

𝑥3 [µm] 0.1092 0.3335 0.3454 0.0925 

𝑥4 [µm] 0.1047 0.1397 0.1448 0.3018 

𝑥5 [µm] 0.1437 0.3241 0.1708 0.3064 

𝛼1 [°] 88.4619 42.3712 22.1711 1.8684 

𝛼2 [°] 48.3682 76.4589 89.3652 32.425 

 

  

  

Fig. 73: Scatter plot matrix of obtained solutions 
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5.4.5. Final remarks 

Multiobjective optimization of porous material in the multiscale was presented. 

Optimization of the geometry of microstructure was solved for four different proposed 

functionals. More functionals related to particular needs asked of a porous structure can be 

formulated. A set of 100 non-dominated solutions was found.  Proposed methods of 

visualisation help to draw conclusions on natures of the objectives. Among found solutions, 

some designs related to extreme value of optimization functions were highlighted, compared in 

terms of design variables and geometry of these solutions was shown. Application of presented 

methods can improve the multiscale design of porous systems. 

  

Fig. 74: Geometry of selected solutions 
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6. SUMMARY 

The dissertation investigates the subject of optimal design of mechanical systems for 

many criteria. In the literature review basic information on the process of design are presented 

with special attention given to the optimization tasks. Overview of finite element method as a 

simulation tool from the perspective of optimization of mechanical systems is included. Metrics 

and benchmark functions are reviewed in the context of evaluating performance of 

multiobjective optimization algorithms. Visualisation techniques enhancing post-optimization 

decision making process are described.  

Next part of the dissertation presents developed multiobjective optimization algorithm 

belonging to a group of soft computing methods. Proposed algorithm is based on a differential 

evolution and game theory paradigms. Suggested algorithm takes advantage of a game theoretic 

cooperative approach and eliminates some of drawbacks of other soft computing methods in 

the optimization of mechanical systems. Elements of game theory are introduced along with 

basics of differential evolution. General idea a novel multiobjective algorithm is described and 

presented using a flowchart, a pseudocode and supplemented with an example. Implementation 

of the algorithm in C++ programming language is briefly described. Methods of information 

exchange between developed algorithm and FEM software responsible for numerically 

obtaining values of objective functions during the course of optimization are discussed.  

In the subsequent part of the dissertation, the algorithm is comprehensively tested using 

previously introduced benchmark functions and performance metrics. A set of mathematical 

test functions exhibiting features distinctive of mechanical systems is utilised. Quality of results 

is assessed using a hypervolume indicator. Mean and standard deviation of metrics are 

calculated over 30 runs of algorithm and compared with results obtained by other multiobjective 

optimization algorithms: NSGA-II and NSGA-III. Test problems with a varied number of 

design variables (up to 20) and objective functions (up to 8) are investigated. Within analysed 

framework the developed algorithm was proven to be efficient and competitive with compared 

algorithms.  

Ensuing part of the dissertation provides examples on application of the developed tool 

in the optimal design of mechanical systems. A set of three analytical problems: pressure vessel 

design, speed reducer design and stepped cantilever beam are examined. These analytical 

problems are produced by a transformation of constrained single-objective optimization 

problems into multiobjective problems. Furthermore, the algorithm is used to solve complex, 

numerical problems: airfoil optimization, electrothermal microactuators optimization and 

multiscale porous material optimization. In these problems, values of objective function are 

obtained by means of FEM based on parametric models. For each of analysed problems, 

algorithm found a set of new diverse designs. Results were presented in the form of tables, 

graphs, and figures. On the basis of additional established preferences and using proposed 

visualisation tools, a post-optimization decision making process was aided resulting in a 

narrowed down set of solutions. 

Considering results of provided tests and examples a conclusion can be drawn that an 

algorithm based on differential evolution and elements of game theory can be used as an 

efficient tool in the optimal design of mechanical systems concerning multiple criteria, which 

completes the proof of the thesis. 
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Directions of further development of presented method can be expected in the following 

areas: 

• Modifications of a differential evolution algorithm can be used. 

• Application of parallel computation in the optimization of mechanical systems 

can reduce the time required to solve optimization tasks. 

• Application of meta-models instead of solving boundary value-problems can 

further improve efficiency of the algorithm. 

• The algorithm can be hybridised with a local-search tool to improve the 

exploitation of search space in the regions of interests. 

• Extensive tests on the effect of parameters on the results of optimization can be 

performed, including introducing the idea of self-adaptation. 
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ABSTRACT 

The dissertation investigates the subject of optimal design of mechanical systems for 

many criteria. In the literature review basic information on the process of design are presented 

with special attention given to the optimization tasks. Overview of finite element method as a 

simulation tool from the perspective of optimization of mechanical systems is included. Metrics 

and benchmark functions are reviewed in the context of evaluating performance of 

multiobjective optimization algorithms. Visualisation techniques enhancing post-optimization 

decision making process are described.  

Next part of the dissertation presents developed multiobjective optimization algorithm 

belonging to a group of soft computing methods. Proposed algorithm is based on a differential 

evolution and game theory paradigms. Suggested algorithm takes advantage of a game theoretic 

cooperative approach and eliminates some of drawbacks of other soft computing methods in 

the optimization of mechanical systems. Elements of game theory are introduced along with 

basics of differential evolution. General idea a novel multiobjective algorithm is described and 

presented using a flowchart, a pseudocode and supplemented with an example. Implementation 

of the algorithm in C++ programming language is briefly described. Methods of information 

exchange between developed algorithm and FEM software responsible for numerically 

obtaining values of objective functions during the course of optimization are discussed.  

In the subsequent part of the dissertation, the algorithm is comprehensively tested using 

previously introduced benchmark functions and performance metrics. A set of mathematical 

test functions exhibiting features distinctive of mechanical systems is utilised. Quality of results 

is assessed using a hypervolume indicator. Mean and standard deviation of metrics are 

calculated over 30 runs of algorithm and compared with results obtained by other multiobjective 

optimization algorithms: NSGA-II and NSGA-III. Test problems with a varied number of 

design variables (up to 20) and objective functions (up to 8) are investigated. Within analysed 

framework the developed algorithm was proven to be efficient and competitive with compared 

algorithms.  

Ensuing part of the dissertation provides examples on application of the developed tool 

in the optimal design of mechanical systems. A set of three analytical problems: pressure vessel 

design, speed reducer design and stepped cantilever beam are examined. These analytical 

problems are produced by a transformation of constrained single-objective optimization 

problems into multiobjective problems. Furthermore, the algorithm is used to solve complex, 

numerical problems: airfoil optimization, electrothermal microactuators optimization and 

multiscale porous material optimization. In these problems, values of objective function are 

obtained by means of FEM based on parametric models. For each of analysed problems, 

algorithm found a set of new diverse designs. Results were presented in the form of tables, 

graphs, and figures. On the basis of additional established preferences and using proposed 

visualisation tools, a post-optimization decision making process was aided resulting in a 

narrowed down set of solutions. 
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STRESZCZENIE 

W rozprawie podjęto tematykę optymalnego projektowania układów mechanicznych 

z uwzględnieniem wielu kryteriów. W przeglądzie literatury przedstawiono podstawowe 

informacje na temat procesu projektowania ze szczególnym uwzględnieniem zadań 

optymalizacyjnych. Dokonano przeglądu metody elementów skończonych jako narzędzia 

symulacyjnego z punktu widzenia optymalizacji układów mechanicznych. Dokonano 

przeglądu metryk i funkcji testowych w kontekście oceny wydajności algorytmów 

optymalizacji. Opisano techniki wizualizacji usprawniające proces podejmowania decyzji po 

optymalizacji.  

W następnej części rozprawy przedstawiono opracowany algorytm optymalizacji 

wielokryterialnej należący do grupy metod obliczeń miękkich. Proponowany algorytm oparty 

jest na ewolucji różnicowej oraz elementach teorii gier. Proponowany algorytm wykorzystuje 

kooperacyjne podejście teorii gier i eliminuje niektóre wady innych metod obliczeń miękkich. 

Omówiony podstawy teorii gier i ewolucji różnicowej. Ogólna idea zaproponowanego 

algorytmu została opisana i przedstawiona za pomocą schematu blokowego, pseudokodu oraz 

uzupełniona przykładem. Krótko opisano implementację algorytmu w języku programowania 

C++. Omówiono metody wymiany informacji pomiędzy opracowanym algorytmem a 

oprogramowaniem MES odpowiedzialnym za numeryczne wyznaczanie wartości funkcji celu 

w trakcie optymalizacji.  

W dalszej części rozprawy algorytm jest kompleksowo przetestowany z 

wykorzystaniem opisanych wcześniej funkcji testowych oraz metryk. Wykorzystywany jest 

zestaw matematycznych funkcji testowych wykazujących cechy charakterystyczne dla 

układów mechanicznych. Jakość wyników oceniana jest za pomocą wskaźnika hiperobjętości. 

Średnia i odchylenie standardowe metryk są obliczane dla 30 przebiegów algorytmu i 

porównywane z wynikami uzyskanymi przez inne algorytmy optymalizacji wielokryterialnej: 

NSGA-II i NSGA-III. Badane są problemy testowe o różnej liczbie zmiennych projektowych 

(do 20) i funkcji celu (do 8). Udowodniono skuteczność i konkurencyjność zaproponowanego 

algorytmu. 

W dalszej części rozprawy przedstawiono przykłady zastosowania opracowanego 

narzędzia w optymalnym projektowaniu układów mechanicznych. Analizie poddano zestaw 

trzech problemów analitycznych: projekt zbiornika ciśnieniowego, projekt przekładni oraz 

projekt belki wspornikowej o zmiennym przekroju. Problemy te powstały w wyniku 

transformacji jednokryterialnych zadań optymalizacyjnych z ograniczeniami w zadania 

wielokryterialne. Ponadto, algorytm jest użyty do rozwiązywania złożonych zadań 

numerycznych: optymalizacji profilu lotniczego, optymalizacji mikroaktuatorów 

elektrotermicznych oraz optymalizacji wieloskalowych materiałów porowatych. W tych 

zadaniach wartości funkcji celu są uzyskiwane za pomocą metody elementów skończonych w 

oparciu o modele parametryczne. Dla każdego z analizowanych problemów algorytm znalazł 

zbiór nowych, zróżnicowanych rozwiązań. Wyniki przedstawiono w postaci tabel, wykresów i 

rysunków. Na podstawie dodatkowo ustalonych preferencji oraz przy wykorzystaniu 

zaproponowanych narzędzi wizualizacyjnych wspomagano proces podejmowania decyzji 

pooptymalizacyjnych, w wyniku którego otrzymano zawężony zbiór rozwiązań. 


