Alicja NOWAK, Kazimierz SZTABA Akademia Górniczo-Hutnicza, Kraków

CHARAKTERYSTYKI ODDZIAŁYWAŃ STOCHASTYCZNYCH W STREFIE KLASYFIKACJI WIRÓWKI SEDYMENTACYJNEJ I ICH ZWIĄZKI Z WARUNKAMI PROCESU ROZDZIAŁU

Streszczenie. Oddziaływania stochastyczne zachodzące pomiędzy ziarnami rozdzielanego materiału w procesie klasyfikacji w wirówkach sedymentacyjnych można opisać przy pomocy charakterystyk κ_{σ} i ζ . Współczynnik κ_{σ} opisuje rozproszenie ziarn wskutek działania czynników losowych i ma na celu przybliżenie rzeczywistych krzywych rozdziału do krzywych teoretycznie obliczanych z równania modelowego uwzględniającego jedynie oddziaływania deterministyczne. Charakterystyka ζ obrazuje stopień deformacji strug w pobliżu progu przelewowego wirówki.

W referacie przedstawiono zależności korelacyjne pomiędzy obu wymienionymi charakterystykami a warunkami przebiegu procesu klasyfikacji w wirówce i jego wynikami. Do wyznaczenia tych zależności wykorzystano metodę regresji wielokrotnej. Omówiono również sposób wyznaczania składów ziarnowych fazy stałej produktów rozdziału w wirówce z uwzględnieniem oddziaływań stochastycznych.

THE CHARACTERISTICS OF STOCHASTIC INTERACTIONS IN SETTLING CENTRIFUGE CLASSIFICATION ZONE AND THEIR CORRELATIONS WITH SEPARATION PROCESS CONDITIONS

Summary. The stochastic interactions occurring between grains of separated material in settling centrifuge classification process may be described by coefficients κ_{σ} and ζ . The coefficient κ_{σ} describes the dispersion of grains occurring because of the random factors influence. Its purpose is to approximate the real separation curves by theoretical ones, calculated from the model equation, which includes only the deterministic interactions. The coefficient ζ describes the spout deformation level around the threshold of centrifuge overflow.

In the paper, the analysis of correlation between both characteristics mentioned above and conditions of classification process course in centrifuge, as well its results was done. The method of multiple regression was applied to determine these dependencies. There is also presented the method of determining the grain compositions of separation products solid phase in centrifuge, taking into consideration the stochastic interactions.

1. Wprowadzenie

Analizując bilans sił działających w kierunku promieniowym na ziarna o wielkościach d_i znajdujące się w strefie klasyfikacji wirówki sedymentacyjnej można wyróżnić dwie grupy sił. Pierwsza z nich, w której nie występują oddziaływania o charakterze przypadkowym, wyznacza charakterystykę ruchu ziarna dla przypadku doskonałego, jaki zaszedłby przy idealnym przepływie swobodnym. Do tej grupy zalicza się siły: odśrodkową (P_o), wyporu radialnego (P_l), oporu statycznego ośrodka (P_d) i siłę Coriolisa P_k . W bilansie sił można nie uwzględniać działania siły ciężkości i zależnej od niej siły wyporu. Wartości tych sił są bowiem pomijalnie małe w porównaniu z siłą odśrodkową.

Siła gradientowa (P_g) związana ze zmianą koncentracji ziarn w kierunku bębna wirówki oraz siła pochodząca od uderzeń innych ziarn (P_n), a także inne czynniki zakłócające rzeczywistą postać torów ziarn w wirówce, jak niestabilność przepływu zawiesiny, jej lokalne zawirowania, ewentualny wpływ ślimaka wyprowadzającego wylew itp., powodują przypadkowe odchylenia rzeczywistych torów, a więc i promieni, na których znajdą się ziarna, od odpowiednich wartości, przewidzianych teoretycznie. Odchylenia te mają charakter losowy. W równaniu bilansu sił można więc umownie wyróżnić dwa człony: deterministyczny (D) i stochastyczny (S) i zapisać je następująco [1]:

$$P = \underbrace{P_o + P_w + P_l + P_d + P_k}_{D} + \underbrace{P_g + P_n}_{S}$$
(1)

Znaczna liczba, a także losowy charakter zarówno wartości, jak i kierunków działających na ziarno znajdujące się w strefie klasyfikacji wirówki, zakłócających oddziaływań losowych pozwalają przyjąć, że rozkład rzeczywistych promieni, na których znajdą się ziarna jednakowe co do wielkości i poruszające się w identycznych warunkach, jest rozkładem normalnym o wartości przeciętnej równej wartości promienia obliczonej z równania deterministycznego. Uwzględniając, że obszar klasyfikacji jest w kierunku promieniowym ograniczony walcową powierzchnią wewnętrzną zawiesiny znajdującej się w przestrzeni roboczej i wewnętrzną powierzchnią bębna wirówki, oraz zakładając analogię z przebiegiem krzywych rozdziału w większości procesów klasyfikacji przepływowej przyjęto, że będzie to rozkład logarytmiczno-normalny.

Za wielkość charakteryzującą rozproszenie rozkładu przyjęto odczytywaną z krzywej rozdziału wartość odchylenia standardowego σ . Wartość ta zależy od następujących czynników:

- długości drogi ziarna l im dłuższa droga, tym więcej oddziaływań zakłócających i tym większe rozproszenie,
- wielkości powierzchni rzutowej ziarna F_{ri} większa powierzchnia zwiększa prawdopodobieństwo oddziaływania na ziarno zakłóceń lokalnych, a więc i możliwe rozproszenie ziarn,
- masy ziarna m_i im większa masa, tym większa bezwładność ziarna i mniejsza podatność na czynniki zakłócające, w związku z tym mniejsze rozproszenie.
 Biorąc pod uwagę wyżej wymienione czynniki, można zapisać:

$$\sigma = \kappa_{\sigma} \cdot l \cdot F_{ri} \cdot m_i^{-1} \tag{2}$$

gdzie: κ_{σ} – współczynnik proporcjonalności.

Uwzględniając wyrażenia na F_{ri} i m_i [1] otrzymuje się:

$$\sigma = \kappa_{\sigma}' \cdot l \cdot \frac{\pi d_i^2}{4C_{AN}} \left(\frac{\pi d_i^3 \rho_s}{6}\right)^{-1}$$
(2.1)

oraz

$$\sigma = \kappa_{\sigma} \cdot l \cdot d_i^{-1} \tag{3}$$

gdzie:

$$\kappa_{\sigma} = \kappa_{\sigma}^{*} \frac{3}{2\rho_{s}C_{AN}},$$

d_i – wielkość ziarna,

 ρ_s – gęstość ziarna,

C_{AN} – współczynnik kształtu ziarna.

Wielkość κ_{σ} charakteryzuje rozproszenie ziarn wskutek działania czynników losowych. Wraz z jej wzrostem będzie malała ostrość rozdziału; κ_{σ} = const dla ustalonego materiału i warunków przebiegu procesu.

Inną charakterystyką związaną z oddziaływaniami stochastycznymi w przestrzeni roboczej wirówki sedymentacyjnej jest charakterystyka ζ opisująca zakłócenia ruchu materiału w wirówce w pobliżu progu przelewowego. Zakłócenia te polegają na deformacji torów ziarn.

Może ona występować zarówno w kierunku promieniowym, gdyż promień progu przelewowego r_p jest zazwyczaj mniejszy od promienia wewnętrznego bębna R, jak i w kierunku obwodowym, jeśli próg przelewowy nie obejmuje pełnego obwodu okręgu o promieniu r_p . Deformacja w kierunku promieniowym powoduje, że warstwa zawierająca rzeczywisty przelew ma przy końcu strefy klasyfikacji promień zewnętrzny r_{pt} większy niż promień przelewowy r_p . Aby ilościowo oszacować efekt deformacji strug zawiesiny, wprowadzono współczynnik deformacji [1]:

$$\zeta = \frac{r_{pt}}{r_p} \tag{4}$$

Wielkość tę można znaleźć porównując teoretyczne krzywe rozdziału odpowiadające różnym promieniom r_k przy końcu strefy klasyfikacji z rzeczywistą krzywą rozdziału otrzymaną doświadczalnie w takich warunkach, jakie przyjęto do obliczeń teoretycznych.

2. Wyznaczanie składów ziarnowych fazy stałej w strefie klasyfikacji wirówki z uwzględnieniem oddziaływań losowych

Aby umożliwić przeprowadzenie efektywnych obliczeń, wobec braku możliwości rozwiązania ogólnego równania ruchu dla szerokiej klasy ziarnowej (0, d_m), gdy $d_m > 10 \mu m$, a także trudności w uogólnieniu promienia początkowego położenia ziarna r (t = 0), obliczenia wykonywano dla poszczególnych klas ziarnowych o granicach $d_i + \Delta d$, zastępując źródło powierzchniowe pewną liczbą koncentrycznych źródeł liniowych położonych na promieniach r_j . W celu ujednolicenia oznaczeń wartości promieni w takim układzie, symbolem r_k oznaczono promienie analogicznego podziału przekroju obszaru klasyfikacji na jego końcu. Przy tych założeniach równanie dystrybuanty rozkładu promieni rzeczywistych wzdłuż promienia r_k przyjmuje postać:

$$F(x_{ijk}) = F_{ijk} = \frac{1}{\sqrt{2\pi}} \int_{0}^{x_{ijk}} e^{\frac{-u^2}{2}} du$$
(5)

gdzie:

$$x_{ijk} = \frac{\ln r_k^* - \ln \left[\overline{r_{ijk}} - r_0 \right]}{\sigma_{il}}$$
$$r_k^* = r_k - r_0$$

 r_0 – promień powierzchni wewnętrznej wirującej warstwy zawiesiny $r_0 \equiv r_1$,

 $\overline{r_{ijk}}$ – wartość przeciętna zmiennej r (z równania deterministycznego),

$$\sigma_{il} = k_{\sigma} \cdot \frac{l}{d_i}$$

 d_i – ziarno reprezentatywne *i*-tej klasy, przy klasach o skończonej szerokości przyjęto za nie średnią arytmetyczną granic klasy,

I – długość drogi klasyfikacji,

 k_{σ} – współczynnik proporcjonalności,

i = 1, 2, ..., n – numer klasy ziarnowej,

j = 1, 2, ..., m – numer warstwy w wirówce w miejscu startu ziarn,

k = 1, 2, ..., m – numer warstwy w wirówce na końcu drogi klasyfikacji,

 $k_m = R - promień wewnętrznej powierzchni bębna wirówki,$

każda warstwa nosi numer swojej dolnej granicy, a więc k-ta warstwa jest ograniczona walcami o promieniach r_k i r_{k+1} .

Dystrybuanty rozkładu wzdłuż promienia r_k ziarn o wielkości d_i dopływających z wszystkich promieni r_i są określone wzorem:

$$P_{ik} = \sum_{i=1}^{n} W_{i} F_{ijk}$$
(6)

gdzie: W_j – wagi proporcjonalne do powierzchni pierścieni ograniczonych okręgami o promieniach r_j i r_{j+1} ,

$$W_j = \frac{p_j}{\sum p_j},$$

$$p_j = \pi \left(r_{j+1}^2 - r_j^2 \right).$$

Punktem wyjścia do rozważań nad składem ziarnowym fazy stałej w strefie klasyfikacji wirówki jest uzyskana w wydruku komputerowym tablica wartości P_{ik} dla konkretnego procesu rozdziału, a także funkcja składu ziarnowego nadawy – $\varphi_n(d)$, a stąd zawartości poszczególnych klas ziarnowych w nadawie – a_{0i} . Rozważania prowadzi się dla jednostkowej długości strefy klasyfikacji, usytuowanej w dowolnej odległości od z = 0.

Szczególnie istotne są rozważania dla z = 1, a ściślej dla takiej wartości z, przy której uformowane są już charakterystyki obu produktów rozdziału. W tym miejscu następuje rozdzielenie strug wylewu i przelewu, który kieruje się ze średniego promienia r_{pl} do progu przelewowego r_p .

W tabeli 1 przedstawiono układ tablicy z wartościami P_{ik} otrzymanej w wydruku komputerowym.

Tabela 1

<i>i</i> = <i>k</i> '=	1	2	3	4		<i>m</i> - 1		
1	0	P_{12}	P ₁₃	P ₁₄		$P_{1 m-1}$		
2	0	P ₂₂	P_{23}	P ₂₄		$P_{2 m-1}$		
3	0	P ₃₂	P_{33}	P ₃₄		P _{3 m-1}		
4	0	P_{42}	P_{43}	P_{44}		P _{4 m-1}		
5	0	P ₅₂	P ₅₃	P_{54}		P _{5 m-1}		
n	0	P_{n2}	P_{n3}	P_{n4}		$P_{n m-1}$		

Układ wartości Pik

Wartości P_{ik} mają właściwości liczb rozdziału (rzędnych krzywych rozdziału dla $d = d_i$) na k-tym poziomie. Mnożąc wartości P_{ik} przez a_{ni} otrzymuje się dla danego poziomu k, zawartości *i*-tej klasy ziarnowej, znajdującej się w warstwie ograniczonej promieniami r_0 ($\equiv r_1$) i r_k , w stosunku do jednostki objętości fazy stałej w nadawie [2].

$$a_{nik} = a_{ni} \cdot P_{ik} \tag{7}$$

Suma a_{nik} dla wszystkich wartości *i* daje wychód całej objętości fazy stałej zawartej w tej warstwie w stosunku do nadawy. Jest to więc wychód przelewu, jaki otrzymałoby się odbierając przelew na poziomie *k*:

$$A_k = \sum_{i=1}^n a_{nik} = \gamma_k \tag{8}$$

Wartość A_k proporcjonalna do objętości fazy stałej w warstwie (r_1 , r_k) jest równocześnie czynnikiem normującym przy obliczaniu składu ziarnowego fazy stałej w rozpatrywanej warstwie. Zawartość *i*-tej klasy ziarnowej w tym materiale wyraża się wzorem:

$$a_{ik} = \frac{a_{nik}}{A_k} \tag{9}$$

i oczywiście

$$\varphi_k(d_l) = \sum_{i=1}^l a_{ik} \tag{10}$$

l = 1, 2, ..., i, ..., n.

Aby przeprowadzić obliczenia dla dowolnej warstwy, w tym dla warstwy elementarnej, ograniczonej dwoma kolejnymi promieniami (r_k i r_{k+1}), należy obliczyć tablicę wartości

$$P_{ik, k+1} = P_{ik+1} - P_{ik} \qquad (= \Delta P_{ik})$$
(11)

Układ takiej tablicy pokazano w tabeli 2.

<i>i</i> = <i>k</i> =	1	2	3	4	 <i>m</i> -1
1	$P_{11,2} = P_{12}^*$	P _{12,3}	P _{13,4}	P _{14,5}	 $P_{1 m-1,m}$
2	$P_{21,2} = P_{22}$	P _{22,3}	P _{23,4}	P _{24,5}	 $P_{2 m-1,m}$
3	$P_{31,2} = P_{32}$	P _{32,3}	P _{33,4}	P34,5	 $P_{3 \text{ m-1},m}$
	•				
n	$P_{n1,2} = P_{n2}$	$P_{n2.3}$	$P_{n3.4}$	$P_{n4.5}$	 $P_{n m-1 m}$

Układ wartości Pik k+1

*równość zachodzi, gdyż $P_{i1} = 0$ dla wszystkich wartości i

Dla *k*-tej warstwy (ograniczonej promieniami r_k i r_{k+1}):

$$a_{nik,k+1} = a_{ni} \cdot P_{ik,k+1} \tag{7.1}$$

$$A_{k,k+1} = \sum_{i=1}^{n} a_{nik,k+1} = \gamma_{k,k+1}$$
(8.1)

$$a_{ik,k+1} = \frac{a_{nik,k+1}}{A_{k,k+1}} \tag{9.1}$$

$$\varphi_{k,k+1}(d_i) = \sum_{i=1}^{l} a_{ik,k+1}$$
(10.1)

Prowadząc obliczenia dla dowolnej warstwy, ograniczonej promieniami r_f , r_h ($f \langle h, h-f \rangle$ 1), wykorzystuje się analogicznie metodykę podaną dla warstwy elementarnej, obliczając wartości

$$P_{if,h} = P_{ih} - P_{if}$$
(11.1)

i postępując według wzorów (7.1) do (10.1).

3. Zależności charakterystyk κ_{σ} i ζ od warunków prowadzenia procesu klasyfikacji w wirówce

W celu określenia zależności pomiędzy κ_{o} , ζ , a warunkami prowadzenia procesu rozdziału opracowano wyniki dwóch serii doświadczeń (seria I – rozdział piasku kwarcowego, seria II – rozdział kaolinu – łącznie 73 doświadczenia). Stosowne obliczenia wykonano przy pomocy programu komputerowego [2]. Do wyznaczenia zależności

Tabela 2

korelacyjnych – otrzymanych w wyniku obliczeń – wartości κ_{σ} i ζ od zmiennych parametrów procesu wykorzystano metodę regresji wielokrotnej.

Badano następujące zależności:

$$\kappa_{\sigma} \text{ jako funkcja:} \quad f(\omega), f(\ln \omega), f(L), f(\ln L), f(t), f(\ln t), f(Q_n), f(\ln Q_n), f(\Theta_n), f(Q_p), f(\Theta_p), f(\gamma_p)$$
(12)

$$\zeta \text{ jako funkcja: } f(\kappa_{\sigma}), f(\omega), f(\ln\omega), f(L), f(\ln L), f(t), f(\ln t), f(Q_n), f(\ln Q_n), f(\Theta_n), f(Q_p), f(\Theta_p), f(\gamma_p)$$
(13)

oraz

$$\kappa_{\sigma} = f(\omega, L, t) \tag{14}$$

$$\kappa_{\sigma} = f(t, Q_n, \Theta_n) \tag{15}$$

$$\kappa_{\sigma} = f(\omega, L, Q_n, \Theta_n, Q_p, \Theta_p, \gamma_p)$$
(16)

i

$$\zeta = f(\omega, L, t) \tag{17}$$

$$\zeta = f(t, Q_n, \Theta_n) \tag{18}$$

$$\zeta = f(\omega, L, Q_n, \Theta_n, Q_p, \Theta_p, \gamma_p)$$
⁽¹⁹⁾

gdzie: ω – prędkość kątowa bębna wirówki, rad s⁻¹,

L – długość strefy sedymentacji, m,

t – czas przebywania ziarn w wirówce, s, przy czym w warunkach stałego przepływu zawiesiny wartości t i L pozostają w ścisłym związku,

 Q_n – wydatek przepływu nadawy, m³-s⁻¹,

 Θ_n – koncentracja objętościowa fazy stałej w nadawie, bzw,

 Q_p – wydatek przepływu przelewu, m³·s⁻¹,

 Θ_p – koncentracja objętościowa fazy stałej w przelewie, bzw,

 γ_p – wychód przelewu, bzw.

Wystarczająco dokładne okazały się przybliżenia liniowe badanych zależności. W celu oszacowania istotności współczynników korelacji w równaniach regresji posłużono się wzorem:

$$t = \frac{R}{\sqrt{1 - R^2}}\sqrt{n - 2}$$

gdzie: t - wartość kwantyli rozkładu t-Studenta,

n – liczba pomiarów,

który po przekształceniu przyjął postać:

$$R = \sqrt{\frac{t^2}{n - 2 + t^2}}$$

Wartości *t* odczytano z tabel rozkładu *t*-Studenta z n - 2 stopniami swobody dla poziomu istotności $\alpha = 0.05$. Wynoszą one odpowiednio:

dla serii I	(41 doświadczeń)	<i>t</i> = 1,684
dla serii II	(32 doświadczenia)	<i>t</i> = 1,697
dla serii I+II	(973 doświadczenia)	<i>t</i> = 1,668

Stąd wartości istotnych współczynników korelacji muszą być większe od:

R = 0,260 (dla serii I), R = 0,296 (dla serii II), R = 0,194 (dla serii I+11)

3.1. Wyniki badań

W tabelach 3 i 4 pokazano przykładowo – otrzymane w rezultacie przeprowadzonej analizy statystycznej – współczynniki korelacji występujące w równaniach regresji dla zależności (16) i (19).

Tabela 3

Współczynniki równania

Wartość zmiennej	Nr serii	a(0)	a(1)	a(2)	a(3)	a(4)	a(5)	a(6)	a(7)	R
Rzeczy- wista	1	0,00016	0	-0,00135	1,40241	-0,00278	-1,92292	0,02001	0,00067	0,63472
	2	-0,00025	0	-0,00058	0,13596	-0,00901	0,99426	0,01419	0,00038	0,66512
	1+2	-0,00097	0	-0,00141	6,04166	0,00083	-5,85864	0,00027	0,00167	0,54577
Względna	1	0,49098	-0,54818	-0,50879	0,98667	-0,30309	-1,25093	0,319	1,81435	0,63472
	2	-1,16429	-0,12338	-0,35269	0,13046	-1,5686	0,88053	1,56859	1,62938	0,66512
	1+2	-3.41277	-1,01115	-0,63822	4,81682	0,10878	-4,30845	0,01279	5,4322	0,5458
Standary- zowana	1	0	-0,2511	-0,14273	0.43481	-0,22227	-0,57124	0,57736	0,29327	0,63472
	2	0	-0,03608	-0,06238	0.03734	-0,73959	0,28819	0,92039	0,16687	0,66512
	1+2	0	-0,37698	-0,14497	1.79407	0,06511	-1,72147	0,01619	0,70966	0,54577

 $\kappa_{\sigma} = a(0) + a(1)\omega + a(2)L + a(3)Q_{n} + a(4)\Theta_{n} + a(5)Q_{p} + a(6)\Theta_{p} + a(7)\gamma_{p}$

Tabela 4

Współczynniki równania

Wartość zmiennej	Nr serii	a(0)	a(1)	a(2)	a(3)	a(4)	a(5)	a(6)	<i>a</i> (7)	R
	1	2,67471	-0,00027	-1.64557	-4526,008	0.20195	5396.73	-1,29546	-1,7421	0,72099
	2	1,29432	-0,0005	-0,69217	1071,779	1,28916	-	-1,04605	-0,13589	0,55326
Rzeczywista							1069,745			
	1+2	1,95202	-0,00021	-1,06973	-2738,135	-1,05058	3216,033	3,36518	-0,96868	0,65928
Względna	1	3,03133	-0,09092	-0,23831	-1,24109	0,00864	1,36349	-0,00785	-1,82529	0,72095
	2	1,33437	-0,15522	-0,09224	0,2257	0,0495	-0,20836	-0,02551	-0,12824	0,55323
	1+2	2,12636	-0,06785	-0,1492	-0,67475	-0,04233	0,73092	0,04907	-0,97221	0.65935
Standaryzo- wana	1	0	-0,29143	-0,46762	-3,82491	0,04328	4,35911	-0,10122	-2,06728	0,72107
	2	0	-0.51945	-0,18675	0,73635	0,26711	-0,78911	-0,17123	-0,15033	0,55323
	1+2	0	-0,19637	-0,26307	-1,95108	-0,19671	2,26763	0,48399	-0.98624	0,65932

W oparciu o te wyniki można zapisać najbardziej istotne związki pomiędzy charakterystykami κ_{σ} i ζ a parametrami przebiegu procesu w postaci równań regresji liniowej wielokrotnej.

Dla rzeczywistych wartości zmiennych:

Seria I – piasek kwarcowy

$$\kappa_{\sigma} = 0,00016 - 0,00135L + 1,40241Q_n - 0,00278\Theta_n - -1,92292Q_p + 0,02001\Theta_p + 0,00067\gamma_p$$
(20)

przy 41 punktach, dopasowanie z współczynnikiem korelacji wielokrotnej R = 0,63472.

$$\zeta = 2,67471 - 0,00027 \,\omega - 1,64557 \,L - 4526,008 \,Q_n + + 0,20195 \,\Theta_n + 5396,73 \,Q_p - 1,29546 \,\Theta_p - 1,7421 \,\gamma_p$$
(21)

przy 41 punktach, dopasowanie z współczynnikiem korelacji wielokrotnej R = 0,72099.

Seria II – kaolin

$$\kappa_{\sigma} = -0,00025 - 0,00058 L + 0,13596 Q_n - 0,00901 \Theta_n + 0,99426 Q_n + 0,01419 \Theta_n + 0,00038 \gamma_n$$
(22)

przy 32 punktach, dopasowanie z współczynnikiem korelacji wielokrotnej R = 0,62512.

$$\zeta = 1,29432 - 0,0005\,\omega - 0,69217\,L + 1071,779\,Q_n + + 1,28916\,\Theta_n - 1069,745\,Q_p - 1,04605\,\Theta_p - 0,13589\,\gamma_p$$
(23)

przy 32 punktach, dopasowanie z współczynnikiem korelacji wielokrotnej R = 0,55326.

Dla standaryzowanych wartości zmiennych:

Seria I – piasek kwarcowy

$$\kappa_{\sigma} = -0.2511\omega - 0.14273L + 0.43481Q_n - 0.22227\Theta_n - -0.57124Q_p + 0.57736\Theta_p + 0.29327\gamma_p$$
(24)

przy 41 punktach, dopasowanie z współczynnikiem korelacji wielokrotnej R = 0,63472.

$$\zeta = -0.29143 \,\omega - 0.46762 \,L - 3.82491 \,Q_n + 0.10122 \,\Theta_n + + 4.35911 \,Q_p - 0.10122 \,\Theta_p - 2.06728 \,\gamma_p$$
(25)

przy 41 punktach, dopasowanie z współczynnikiem korelacji wielokrotnej R = 0,72107. Seria II – kaolin

$$\kappa_{\sigma} = -0.03608 \,\omega - 0.06238 \,L + 0.03734 \,Q_n - 0.73959 \,\Theta_n + 0.28819 \,Q_n + 0.92039 \,\Theta_n + 0.16687 \,\gamma_n$$
(26)

przy 32 punktach, dopasowanie z współczynnikiem korelacji wielokrotnej R = 0,66512.

$$\zeta = -0.51954\,\omega - 0.18675\,L + 0.73635\,Q_n + 0.26711\,\Theta_n - 0.78109\,Q_p - 0.17123\,\Theta_p - 0.15033\,\gamma_p$$
(27)

4. Wnioski

Analizując wszystkie wyniki badań statystycznych [1] zauważono, że:

- znacznie wyższymi od krytycznych współczynnikami korelacji charakteryzują się zależności κ_σ i ζ od grupy parametrów technologicznych i ruchowych przebiegu procesu rozdziału (równania (14), (15), (16), (17), (18), (19) niż zależności κ_σ i ζ od poszczególnych przyjętych do analizy parametrów procesu (równania (12) i (13));
- najwyższymi współczynnikami korelacji cechują się zależności $\kappa_{\sigma} = f(Q_n), \ \kappa_{\sigma} = f(Q_p)$ oraz $\kappa_{\sigma} = f(t)$ dla badań serii II i $\kappa_{\sigma} = f(\omega)$ oraz $\kappa_{\sigma} = f(\Theta_p)$ dla badań serii I,
- przy porównywaniu zależności ζ od poszczególnych parametrów procesu najwyższymi współczynnikami korelacji charakteryzują się związki ζ = f(Q_n),

 $\zeta = f(Q_p), \ \zeta = f(t) \text{ oraz } \zeta = f(L) \text{ dla badań serii I.}$

Wyniki analizy statystycznej pozwoliły także zaobserwować różnice w wartościach współczynników korelacji – dla takich samych zależności – występujące pomiędzy serią I a serią II. Jest to spowodowane różnym uziarnieniem materiałów poddawanych procesowi rozdziału. W serii I do wirówki kierowano zawiesinę piasku kwarcowego o uziarnieniu $0\div100\mu m$ i zawartości klasy > 60 µm około 22%. Średnia wielkość ziarna nadawy wynosiła $D = 35,6 \mu m$. W badaniach serii II do sporządzenia zawiesiny zastosowano kaolin również o uziarnieniu poniżej 100 µm, ale o wysokiej (~70%) zawartości klasy <2 µm. Średnia wielkość ziarn nadawy wynosiła w tym przypadku $D = 2,5 \mu m$.

W związku z powyższym wyniki dotyczące połączonych serii doświadczeń (I+II) nie były poddawane szerszej analizie.

Podsumowując wyniki analizy statystycznej, można zapisać następujące wnioski:

1. Występujące w modelu klasyfikacji drobno uziarnionych zawiesin w wirówkach charakterystyki κ_{σ} i ζ powiązane są ze znaczną liczbą parametrów konstrukcyjnych, ruchowych i technologicznych pracy urządzenia.

2. Z podanych równań regresji wielokrotnej wynika, że najsilniejszy wpływ na wartości κ_{σ} i ζ wykazuje natężenie przepływu nadawy Q_n i związane z nim natężenie przepływu przelewu Q_p .

Uwzględniając dodatkowo zmienne standaryzowane, do istotnych czynników wpływających na wartość κ_{σ} można jeszcze zaliczyć koncentrację fazy stałej nadawy (\mathcal{O}_n) i przelewu (\mathcal{O}_p) , a na wartość ζ głównie prędkość kątową bębna wirówki ω .

3. Zaobserwowano różnice w charakterze zależności pomiędzy ζ a natężeniem przepływu nadawy (Q_n) i przelewu (Q_p) oraz pomiędzy κ_{σ} a natężeniem przepływu przelewu (Q_p) dla poszczególnych serii doświadczeń.

Dla materiału grubiej uziarnionego zwiększanie natężenia przepływu nadawy (Q_n) powoduje zmniejszanie deformacji strugi w pobliżu progu przelewowego (lepsze przybliżenie wyników rzeczywistych do teoretycznie przewidywanych).

Przy rozdziale materiału drobno uziarnionego wzrost natężenia przepływu nadawy (Q_n) powoduje zwiększenie wartości ζ .

Odwrotne zależności mają miejsce przy uwzględnieniu natężenia przepływu przelewu (Q_p) ($\uparrow Q_p$ to $\uparrow \zeta$ dla piasku kwarcowego; $\uparrow Q_p$ to $\downarrow \zeta$ dla kaolinu).

Rozpatrując wpływ natężenia przepływu przelewu Q_p na wartość κ_{σ} stwierdzono, że wzrost Q_p powoduje zmniejszenie wartości κ_{σ} dla materiału grubiej uziarnionego i zwiększenie κ_{σ} dla materiału drobniej uziarnionego.

4. Znaczny wpływ uziarnienia fazy stałej zawiesiny poddawanej procesowi rozdziału w wirówce na charakterystyki κ_{σ} i ζ stwarza konieczność prowadzenia odrębnej analizy przebiegu procesu w zależności od średniej wielkości ziarn nadawy *D*.

LITERATURA

- Nowak A.: Charakterystyki rozdziału jednorodnych ziarn mineralnych w wirówkach klasyfikujących. PWN, Warszawa-Kraków 1981.
- Gola R.: Weryfikacja modelu procesu rozdzialu drobno uziarnionych zawiesin w wirówce klasyfikująco zagęszczającej. Praca magisterska pod kierunkiem A. Nowak, 1994.
- 3. Nowak A.: Dokładność klasyfikacji drobno uziarnionych zawiesin w hydrocyklonach i wirówkach sedymentacyjnych, Classification Accuracy of Fine-Grained Suspensions

in Hydrocyclones and Sedimentation Centrifuges. Inżynieria Mineralna, zeszyt specjalny, nr S.2(8), 2002, str. 96-103.

4. Nowak A.: Separation Accuracy in Multistage Systems of Centrifugal Classification. VII Conference on Environment and Mineral Processing, Ostrava, czerwiec 2003.

> Recenzent: Dr hab.inż. Krystian Kalinowski Profesor Politechniki Śląskiej

Artykul opracowano w ramach pracy statutowej 11.11.100.238

Abstract

In balance of forces operating in radial direction on grains of size d_i , which occur in classification zone of sedimentative centrifuge, two groups of them may be divided. The first one determines the characteristics of grain movement in perfect case, which might be occurring by ideal free flow. The second group takes into consideration the stochastic interactions between grains of material being separated in centrifuge. These interactions were described by characteristics κ_{σ} and ζ . The coefficient κ_{σ} describes the dispersion of grains occurring because of the random factors influence. Its purpose is to approximate the real separation curves by theoretical ones, calculated from the model equation, which includes only the deterministic interactions. The coefficient ζ describes the spout deformation level near the threshold of centrifuge overflow.

In the paper, the analysis of correlation between both characteristics mentioned above and conditions of classification process course in centrifuge, as well its results was done. The method of multiple regression was applied to determine these dependencies. From these equations it results that the flow intensity of suspension through centrifuge is the most influencing factor on the values of κ_{σ} and ζ . There is also presented the method of determining the grain compositions of separation products solid phase in centrifuge, taking into consideration the stochastic interactions.