Zbigniew FĄFARA, Stanisław RYCHLICKI Wydział Wiertnictwa, Nafty i Gazu, Akademia Górniczo-Hutnicza, Kraków

WPŁYW WILGOTNOŚCI PIERWOTNEJ NA PRĘDKOŚĆ MIGRACJI SUBSTANCJI ROPOPOCHODNEJ W ŚRODOWISKU GRUNTOWO-WODNYM

Streszczenie. W pracy omówiono zagadnienie zależności przebiegu procesu migracji węglowodorów w przypowierzchniowej warstwie gruntu od pierwotnego nasycenia wilgocią przestrzeni porowej. Przedstawiono określony laboratoryjnie profil głębokościowy zawartości wilgoci i uzyskane wyniki badania migracji pionowej etyliny w modelu gruntu na przygotowanym stanowisku pomiarowym. Zestawiając otrzymane rezultaty przedyskutowano wpływ pierwotnego zawilgocenia na filtrację etyliny.

INFLUENCE OF PRIMARY WETTING ON THE VIELOSITY OF OIL-PRODUCTS MIGRATION IN SOIL-WATER ENVIRONMENT

Summary. The dependence of the hydrocarbons migration in the subsurface soil layer on primary saturation of porous spaces with humidity. A laboratory depth profile of the encapsulated humidity as well as the results of experiments on vertical migration of ethyl gasoline in a soil model on an experimental post are presented. The obtained results were compared and the influence of primary wetting on ethyl gasoline filtration discussed.

1. Wprowadzenie

Próby numerycznego modelowania procesów migracji substancji ropopochodnych w przypowierzchniowej warstwie gruntu wymagają dopasowania modelu teoretycznego do warunków panujących w rzeczywistości. Jednym z bardzo istotnych parametrów, które znacząco wpływają na przebieg zachodzących procesów, jest pierwotne zawilgocenie ośrodka porowatego. Problem ten znalazł się w kręgu zainteresowania wielu publikacji. Opracowano szereg modeli teoretycznych [np. 1, 4, 6, 7], które doczekały się implementacji w

symulatorach numerycznych opisujących los węglowodorów wprowadzonych do środowiska gruntowo-wodnego [np. 4, 6, 8, 9]. Prowadzono także liczne badania laboratoryjne i terenowe mające na celu określenie przydatności opracowanych rozwiązań [np. 4, 5, 8]. Jednym z takich przykładów może być niniejsza praca.

2. Opis teoretyczny problemu

Wylanie substancji ropopochodnej na powierzchni terenu powoduje jej migrację w głąb gruntu wskutek trzech zasadniczych procesów [1, 4, 5, 7]: filtracji pionowej węglowodorów w fazie ciekłej, unoszenia węglowodorów rozpuszczonych i/lub rozproszonych przez filtrującą równolegle fazę wodną oraz dyfuzję i adwekcję par węglowodorów wymieszanych z gazami gruntowymi. Sposób rozdziału całkowitej masy węglowodorów na poszczególne procesy będzie decydował o charakterze migracji. Charakter ten i intensywność zachodzenia każdego z procesów w istotny sposób zależą od pierwotnego nasycenia porów wodą.

Wpływ wilgotności na migrację węglowodorów w modelach teoretycznych zazwyczaj uwzględnia się wprowadzając (dla przepływu trójfazowego) histerezowy model trójparametrowy zależności pomiędzy przepuszczalnością względną, współczynnikiem nasycenia przestrzeni porowej wodą i ciśnieniem kapilarnym (*k-S-P*) [1, 4, 6, 7]. W praktyce pojawiają się problemy z jego wykorzystaniem, głównie ze względu na brak wiarygodnych danych eksperymentalnych. Dlatego w licznych implementacjach wprowadza się uproszczenie, zastępując go dwoma modelami dwuparametrowymi opisującymi odpowiednio zależność pomiędzy przepuszczalnością względną i wilgotnością (model *k-S*) oraz pomiędzy wilgotnością i ciśnieniem kapilarnym (model *S-P*) [4, 6, 9]. Jak pokazały liczne badania laboratoryjne i terenowe, uproszczenie to jest zazwyczaj wystarczające [np. 4, 6].

Wykorzystany w czasie pomiarów model ośrodka gruntowego odpowiada swoimi właściwościami typowym gruntom piaszczystym [3]. Wielkość ziaren sprawia, że efekty kapilarne będą miały ograniczone znaczenie, dlatego decydujący wpływ zawartości wilgoci na przebieg migracji węglowodorów będzie się objawiał w modelu *k-S*. Na rys. 1 przedstawiono typowy kształt histerezy *k-S* dla gruntów piaszczystych, użytej między innymi w trakcie symulacji numerycznej. Na podstawie tego diagramu szacowane są współczynniki przepuszczalności względnej występujące w równaniach filtracji opisujących przemieszczanie się faz ciekłych w kierunku pionowym.

Rys. 1. Histerezy modelu *k-S* dla fazy niezwilżalnej (D – odprowadzanie, I – wprowadzanie) [4] Fig. 1. Hysteretic *k-S* functionals for the nonwetting phase (D – drainage, I – imbibition) [4]

3. Wyniki pomiarów laboratoryjnych

Pomiary laboratoryjne zrealizowano na stanowisku pomiarowym spełniającym kryteria podobieństwa [2], które obejmuje model ośrodka gruntowego w kształcie prostopadłościanu o krawędzi 1,25 m. Na podstawie określonych laboratoryjnie właściwości petrofizycznych [3] model ten można uważać za reprezentanta typowych gruntów piaszczystych (np. porowatość 38%, przepuszczalność 70·10⁻¹² m²). Wewnątrz modelu zainstalowano siedem poziomych perforowanych rurek pomiarowych PCV do badania migracji węglowodorów metodą atmogeochemiczną [3]. Schemat ułożenia rurek zamieszczono na rys. 2 [3]. Rurka oznaczona symbolem P₁ znajduje się na głębokości 25 cm, pozostałe umieszczono w równych odstępach co 15 cm (najgłębsza P₇ jest na głębokości 115 cm). Koło o promieniu R₁ stanowi strefę wprowadzania etyliny na powierzchni modelu (R₁=12 cm, wylano 11 litrów etyliny). Koło o promieniu R₂ stanowi zakres perforowania rurek pomiarowych, oznaczony na lewej części rysunku odcinkiem O₁O₂ (R₂=25 cm).

Na rys. 3 przedstawiono określony laboratoryjnie profil głębokościowy pierwotnego zawilgocenia modelu gruntu. Otrzymano go w efekcie pomiarów zawilgocenia próbek gruntu pobieranych na różnych głębokościach (z krokiem 10 cm) metodą rdzeniowania. Wartości liczbowe wykorzystane do sporządzenia wykresu są średnimi dla rdzenia o długości 5 cm.

Rys. 3. Pierwotne nasycenie porów modelu gruntu wiłgocią Fig. 3. Primary water saturation in model porous media

4. Analiza wyników

Na rys. 4 zamieszczono wyniki pomiarów laboratoryjnych szybkości migracji pionowej etyliny w rozważanym modelu gruntu. Za moment dojścia etyliny na daną głębokość przyjęto punkt czasowy, gdy zarejestrowano w odpowiedniej rurce koncentrację par węglowodorów wybuchowych trzykrotnie przekraczającą poziom tła w powietrzu (ok. 0,2% obj.).

Szybkość filtracji etyliny do głębokości ok. 70 cm utrzymuje się na mniej więcej stałym, wysokim poziomie, wynoszącym 2,55 mm/s. W dalszym odcinku spada ona do ok. 2,22 mm/s (zakres 0,7-1,0 m), by osiągnąć ostatecznie wartość średnią 1,55 mm/s (zakres poniżej 1 m).

Rys. 4. Zmierzona laboratoryjnie szybkość migracji pionowej etyliny w modelu gruntu Fig. 4. Experimental velocity of ethyline vertical migration in solid model

Szybkość migracji pionowej etyliny jest wyraźnie skorelowana z pierwotną zawartością wilgoci w przestrzeni porowej modelu gruntu (rys. 3). Do głębokości ok. 0,6 m wilgotność zmienia się nieznacznie od 3% do 7%. W kolejnym odcinku 0,6-1,0 m wzrost jest nieco bardziej intensywny od 7% do 12%. Poniżej 1 m nasycenie porów wodą znacznie gwałtowniej rośnie od 12% do 34%.

Na podstawie histerezy modelu k-S (rys. 1, krzywa wprowadzania) można oszacować współczynnik przepuszczalności względnej dla fazy niezwilżalnej. W zakresie głębokości 0-0,6 m ma on średnią wartość 0,92 (0,89-0,95). Na głębokości 0,6-1,0 m przepuszczalność względna maleje do ok. 0,85 (0,82-0,89). Poniżej 1 m zmienia się od 0,82 (wilgotność 12%) do ok. 0,49 (wilgotność 34%). W tablicy 1 porównano względny spadek dla średnich zmierzonej szybkości filtracji etyliny i oszacowanego współczynnika przepuszczalności względnej. Dane te wskazują na bardzo dużą zgodność zmian obu parametrów (różnice w wartościach mogą wynikać z przybliżonej metody uśredniania). Wykazana tendencja jest zarazem potwierdzeniem silnego związku pierwotnego zawilgocenia gruntu z przebiegiem procesu migracji węglowodorów w świetle badań laboratoryjnych.

Tablica 1

Korelacja pomiędzy względnymi zmianami wartości średnich prędkości filtracji v i współczynnika przepuszczalności względnej k dla etyliny

lność względna k
%
100
92
65

5. Wnioski

Wychodząc z teoretycznego modelu *k-S* określono charakterystykę zmian współczynnika przepuszczalności względnej dla fazy niezwilżalnej opierając się na eksperymentalnym profilu zawilgocenia modelu gruntu. Dane te porównano następnie z tendencją zmian szybkości filtracji pionowej etyliny, otrzymaną w drodze pomiarów laboratoryjnych, stwierdzając dużą ich korelację. Do podobnych wniosków można też dojść porównując tylko krzywe z rys. 3 i 4. Zamieszczone rozważania są więc wyrazem jakościowych i ilościowych powiązań pomiędzy pierwotnym nasyceniem przestrzeni porowej gruntu wodą a przebiegiem w nim migracji węglowodorów. Stanowią też eksperymentalne potwierdzenie słuszności zastępowania w pracach implementacyjnych dla gruntów piaszczystych modelu k-S-P modelem k-S.

Praca zrealizowana w ramach umowy nr 5 T12A 002 25.

LITERATURA

- Bear J. et al.: Fundamentals of ground-water modeling. Sprawozdanie z realizacji projektu Agencji Ochrony Środowiska USA nr EPA/540/S-92/005, Oklahoma 1992 (<u>www.epa.gov/ada/</u>).
- Fąfara Z.: Wykorzystanie analizy podobieństwa do projektowania laboratoryjnego stanowiska pomiarowego do badania rozprzestrzeniania się zanieczyszczeń ropopochodnych w gruncie. Zeszyty Naukowe AGH Górnictwo i Geoinżynieria, z. 4/2, Kraków 2004.
- Fąfara Z., Rychlicki S.: Wpływ właściwości gruntu na migrację węglowodorów na podstawie badań laboratoryjnych. Zeszyty Naukowe AGH Wiertnictwo Nafta Gaz, z.2, Kraków 2005.
- Guarnaccia J., Pinder G. et al.: NAPL: simulator documentation. Sprawozdanie z realizacji projektu Agencji Ochrony Środowiska USA nr CR-820499, the University of Vermont, Burlington, 2000 (<u>www.epa.gov/ada</u>).
- Newell C. J. et al.: Light nonaqueous phase liquids. Sprawozdanie z realizacji projektu Agencji Ochrony Środowiska USA nr EPA/540/S-95/500, Oklahoma 1995 (<u>www.epa.gov/ada/</u>).
- Newell C. J. et al.: Calculation and use of first-order rate constants for monitored natural attenuation studies, Sprawozdanie z realizacji projektu Agencji Ochrony Środowiska USA nr EPA/540/S-02/500, Oklahoma 2002 (<u>www.epa.gov/ada/</u>).
- 7. Schuth F. i in.: Handbook of Porous Solids. Wiley-Vch, vol. 4, Weinheim, Niemcy 2002.
- Weaver J. S.: The hydrocarbon spill screening model (HSSM). Sprawozdanie z realizacji projektu Agencji Ochrony Środowiska USA nr EPA/600/R-94/039, Austin, Texas 1995 (www.epa.gov/ada/).
- Williams J. R. et al. : Estimation of infiltration rate in the vadose zone: Application of selected mathematical models, Sprawozdanie z realizacji projektu Agencji Ochrony Środowiska USA nr EPA/600/R-97/128b, Oklahoma 1998 (<u>www.epa.gov/ada/</u>)