Joanna KOMOREK, Rafał MORGA Politechnika Śląska, Gliwice

CHARAKTERYSTYKA PORÓWNAWCZA WŁASNOŚCI OPTYCZNYCH WITRYNITU, SPORYNITU I SEMIFUZYNITU, PODDANYCH OBRÓBCE TERMICZNEJ, NA PRZYKŁADZIE WĘGLA Z POKŁADU 405/1 KWK JANKOWICE

Streszczenie. Celem przeprowadzonych badań była charakterystyka zmian refleksyjności, anizotropii optycznej i kształtu indykatrysy optycznej witrynitu, sporynitu i semifuzynitu, zachodzących pod wpływem wygrzewania w temperaturze od 400 do 1200 °C, w atmosferze argonu. Po wygrzewaniu przeprowadzonym w 1200 °C spośród badanych składników petrograficznych najniższą refleksyjnością średnią i anizotropią optyczną odznacza się sporynit. Cechy witrynitu i semifuzynitu upodabniają się do siebie.

COMPARATIVE CHARACTERISTICS OF OPTICAL PROPERTIES OF VITRINITE, SPORINITE AND SEMIFUSINITE SUBJECTED TO THERMAL TREATMENT – CASE STUDY OF COAL FROM 405/1 SEAM, THE JANKOWICE MINE

Summary. The objective of the study was to characterize changes of reflectance, reflectance anisotropy and RIS shape of vitrinite, sporinite and semifusinite subjected to thermal treatment at temperature of 400–1200 °C, in argon atmosphere. After heating at 1200 °C sporinite is characterized by the lowest random reflectance value. Properties of vitrinite and semifusinite become similar.

1. Wprowadzenie

Głównym składnikiem koksu jest matrix (masa podstawowa). Tworzy się ona przede wszystkim z witrynitu, poprzez stadium mezofazy, i spaja inne składniki koksu. Zbudowana jest z domen anizotropowych, o różnym kształcie i wielkości. Towarzyszą jej anizotropowe i izotropowe fragmenty inertynitu i składniki mineralne [6, 7, 18].

Witrynit poddany obróbce termicznej wykazuje wzrost zdolności odbicia światła oraz dwójodbicia już w temperaturze 350–400 °C [4, 14]. Zmiany własności optycznych witrynitu oraz produktów jego przeobrażenia (mezofazy, matrix) następują w ścisłym powiązaniu z przemianami, zachodzącymi w ich strukturze wewnętrznej. Charakter i intensywność tych zmian jest uzależniona przede wszystkim od własności materiału wyjściowego, w tym od jego stopnia uwęglenia i podatności do koksowania [7, 11, 13, 15]. W większym stopniu wpływa na nie wzrost temperatury, niż wydłużanie czasu wygrzewania. Najwyższą anizotropią witrynitu i matrix odznacza się koks powstały w temperaturze 1200 °C po obróbce termicznej koncentratów, reprezentujących substancje typowo grafityzujące (węgiel typu 35.2A i 35.1) [11, 13]. Refleksyjność i dwójodbicie matrix osiąga wtedy wartości typowe dla grafitu [11, 18]. Może to oznaczać, że wewnętrzna struktura matrix odznacza się wyższym stopniem uporządkowania niż struktura witrynitu. Witrynit po wygrzaniu go w temperaturze 1200 °C ma taki sam charakter optyczny jak w surowym koncentracie, mimo iż w niższych temperaturach, zwłaszcza w fazie uplastycznienia, mogą następować jego zmiany [11, 13].

Macerały grupy liptynitu reagują na wzrost temperatury podobnie jak witrynit i wykazują systematyczny wzrost wartości refleksyjności i anizotropii, aż do temperatury 1000 °C. Stwierdzono, że zmiany własności optycznych sporynitu są wyraźniejsze, gdy jest wygrzewany oddzielnie (w koncentracie), niż gdy jest poddawany oddziaływaniu temperatury wespół z innymi macerałami [14]. W przypadku węgla niskouwęglonego (R_r =0,83 %), z koncentratu liptynitowego powstaje koks o strukturze mozaikowej. Masa podstawowa (matrix) koksu liptynitowego, a także zawarty w niej "metasporynit", odznaczają się wyższą refleksyjnością i anizotropią niż witrynit [10]. Stałe produkty karbonizacji liptynitu charakteryzują się ponadto większą anizotropią i lepiej uporządkowaną strukturą wewnętrzną, niż produkty karbonizacji witrynitu z tego samego węgla [2, 5, 10]. Mogą być odróżnione po silniejszej anizotropii niż matrix koksu powstałego w całości z witrynitu [3, 18].

Macerały grupy inertynitu zachowują się podczas obróbki termicznej w zróżnicowany sposób, a część z nich jest reaktywna w procesach koksowania i upłynnienia [12, 16, 18]. Można je podzielić na trzy kategorie [18]:

- a) Inertynit niereaktywny (niespiekający się) tworzy w koksie niestopione inkluzje. Jest to fuzynit i wysokorefleksyjny semfuzynit.
- b) Częściowo reaktywny (spiekający się), anizotropowy, inertynit rozpoznawalny w koksie, choć krawędzie ziaren są rozmyte, wskutek częściowego stopienia z matrix

koksu. Zaliczany jest tu średnio- i niskorefleksyjny makrynit i semifuzynit oraz odpowiadająca im część inertodetrynitu.

c) Całkowicie reaktywny spiekalny inertynit – często nierozróżnialny od matrix koksu.
 Zaliczany jest tu głównie niskorefleksyjny inertynit.

Reaktywny inertynit przechodzi całkowicie lub częściowo w stan plastyczny, a część niereaktywna praktycznie nie poddaje się działaniu temperatury i zachowuje pierwotną strukturę w koksie [12]. Wartości refleksyjności różnych form semifuzynitu zmieniają się znacząco w procesie karbonizacji i uwęglenia [1, 17]. Wpływ temperatury może powodować, że semifuzynit i witrynit osiągną podobną refleksyjność i będą nierozróżnialne od siebie. W procesie koksowania refleksyjność średnia niereaktywnego izotropowego inertynitu rośnie, dochodząc do ok. 6 %, po obróbce w 1000 °C [18].

2. Cel badań

Celem przeprowadzonych badań była charakterystyka zmian własności optycznych witrynitu, sporynitu i semifuzynitu, zachodzących pod wpływem wygrzewania w temperaturze od 400 do 1200 °C, w atmosferze argonu. Badania stanowią kontynuację wcześniejszych prac, poświęconych cechom optycznym witrynitu i pozwolą na zinterpretowanie i porównanie zmian cech optycznych głównych składników węgla. Badania poszerzą naukowe podstawy do projektowania i prowadzenia procesów przetwórstwa chemicznego wegla.

3. Metodyka badań

Obiektem prac były koncentraty witrynitowe, liptynitowe i inertynitowe. Zostały one sporządzone z bruzdowej próbki węgla, pobranej z pokładu 405/1 KWK Jankowice (R_r =0,70 %). Próbka została pomniejszona i rozdrobniona do frakcji poniżej 0,1 mm, a następnie poddana wzbogacaniu w cieczach ciężkich (mieszanina tetrachlorku węgla i toluenu), w celu otrzymania koncentratów.

Wygrzewanie przeprowadzono w temperaturach: 400, 500, 600, 800, 1000 i 1200 °C przez czas jednej godziny. Próbki wprowadzane były do pieca w temperaturze pokojowej. Tempo rozgrzewania pieca wynosiło 60 °C/min.

Z koncentratów poddanych obróbce termicznej sporządzono preparaty mikroskopowe (brykiety) do badań w świetle odbitym. W ramach pracy wykonano następujące analizy:

- składu petrograficznego koncentratów,
- średniej przypadkowej (random-ang.) (R_r) wg ISO 7404-5 oraz pozornej maksymalnej (R_{max}') i minimalnej (R_{min}') refleksyjności: witrynitu, sporynitu i semifuzynitu na próbce wyjściowej oraz w wygrzewanych koncentratach.

Stosując metodę i program komputerowy Kilby'ego [8, 9] wyznaczono następnie wartości rzeczywistych refleksyjności: maksymalnej (R_{max}), pośredniej (R_{int}) i minimalnej (R_{min}) oraz obliczono wartości dwójodbicia (R_{bi}), refleksyjności średniej (R_{mean}), oraz współczynników R_{st} (opisującego charakter optyczny) i R_{am} (będącego miarą anizotropii optycznej) dla witrynitu, sporynitu i semifuzynitu oraz produktów ich obróbki termicznej. Dla semifuzynitu obliczono również wartości średniej refleksyjności maksymalnej (\overline{R}_{max}) i minimalnej (\overline{R}_{min}).

Do badań wykorzystano mikroskop do światła odbitego Axioskop firmy Zeiss, z mikrofotometrem. Zastosowano ciecz immersyjną o współczynniku załamania światła $n_0 = 1,5176$ w temperaturze 23 °C, przy długości fali świetlnej λ =546 nm. Pomiary prowadzono w świetle spolaryzowanym.

4. Wyniki

4.1. Koncentrat witrynitowy

Witrynit w surowym koncentracie (zawartość Vt = 92 %) odznacza się refleksyjnością średnią $R_r=0,70$ % ($s_r=0,05$ %). Wartości rzeczywistych refleksyjności wynoszą: maksymalnej (R_{max}) – 0,80 %, pośredniej (R_{int}) – 0,71 % i minimalnej (R_{min}) – 0,60 %. Dwójodbicie (R_{bi}) ma wartość 0,20 %, a współczynnik R_{am} – 0,05 (tabl. 1). Charakter optyczny jest dwuosiowy ujemny.

Po wygrzaniu koncentratu w temperaturze 400 °C stwierdzono wyraźny wzrost wartości refleksyjności średniej (R_r) (tabl. 1). W miarę obróbki termicznej następują dalsze zmiany wartości tego parametru. Wzrost wartości refleksyjności rzeczywistych odbywa się

w zróżnicowanym tempie, czego efektem jest stopniowe zwiększanie się wartości dwójodbicia (R_{bi}) (tabl.1, rys. 1a, 2a).

Tablica 1

Т	Rr	Sr	R _{max}	R _{int}	Rmin	R _{bi}	Rincan	R _{st}	R_{am}
[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]		
	0,70	0,05	0,80	0,71	0,60	0,20	0,70	-3,30	0,05
400	0,94	0,06	1,04	0,95	0,86	0,18	0,95	-0,89	0,04
500	1,82	0,08	1,95	1,83	1,68	0,27	1,82	-3,67	0,03
600	2,66	0,17	2,87	2,63	2,34	0,53	2,61	-2,83	0,04
800	4,95	0,30	5,46	5,01	4,41	1,05	4,96	-4,40	0,04
1000	5,82	0,22	6,20	5,78	5,15	1,05	5,71	-6,27	0,04
1200	10,77	0,58	11,77	10,27	8,06	3,71	10,03	-6,36	0,07

Cechy optyczne witrynitu

Po wygrzaniu koncentratu w temperaturze 1200 °C stwierdzono, że wartość refleksyjności średniej wynosi 10,77 % ($s_r=0,58$ %), a rzeczywistych refleksyjności odpowiednio: 11,77 %, 10,27 % i 8,06 %. Dwójodbicie ma wartość 3,71 %, a współczynnik $R_{\rm am} - 0,07$. Witrynit zachowuje dwuosiowy ujemny charakter optyczny.

W karbonizacie powstałym w temperaturze 1200 °C stwierdzono obecność masy podstawowej (matrix), jednak jej niewielka ilość nie pozwala na przeprowadzenie wiarygodnych pomiarów.

Opisane przeobrażenia mają charakter analogiczny do stwierdzonego w trakcie wcześniejszych badań, przeprowadzonych na próbkach witrynitu o podobnym stopniu uwęglenia [11, 13].

4.2. Koncentrat liptynitowy

Sporynit w koncentracie liptynitowym (zawartość L=82 %), w stanie surowym, odznacza się średnią refleksyjnością (R_r) równą 0,18% ($s_r=0,04$ %) (tabl. 2). Wartości rzeczywistych refleksyjności wynoszą odpowiednio: maksymalnej (R_{max}) – 0,28 %, pośredniej (R_{int}) – 0,18 % i minimalnej (R_{min}) – 0,12 %. Dwójodbicie (R_{bi}) ma wartość 0,16 %, a współczynnik R_{am} – 0,16. Charakter optyczny jest dwuosiowy dodatni.

Istotne zmiany cech optycznych zaczynają się podczas obróbki koncentratu w temperaturze 500 °C. Następuje wtedy gwałtowny wzrost wartości refleksyjności średniej do 1,7 8% i dwójodbicia do 0,33 % (tabl. 2; rys. 1b, 2b). Rozkład punktów w diagramie Kilby'ego staje się chaotyczny – można w nim wyróżnić kilka populacji wyników, a oznaczenia rzeczywistych refleksyjności mogą być obarczone błędem. Dzieje się tak dlatego,

iż spory, ulegając przeobrażeniu, stopniowo zmieniają swoje cechy optyczne. Od 600 °C diagramy ponownie są czytelne, a wyznaczenie wartości refleksyjności rzeczywistych nie stwarza problemów.

Tablica 2

Т	R _r	S _r	R _{max}	R _{int}	R _{min}	R _{bi}	R _{mean}	R _{st}	Ram
[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]		
	0,18	0,04	0,28	0,18	0,12	0,16	0,19	8,21	0,16
400	0,20	0,05	0,29	0,23	0,17	0,12	0,23	-1,32	0,11
500	1,78	0,17	1,98	1,82	1,65	0,33	1,82	0,00	0,03
600	2,42	0,24	2,88	2,54	2,20	0,68	2,54	0,00	0,05
800	4,64	0,36	5,00	4,58	3,80	1,20	4,46	-9,56	0,05
1000	6,29	0,35	6,90	6,16	4,83	2,07	5,96	-9,44	0,07
1200	8,01	0,38	8,55	8,04	6,81	1,74	7,80	-13,44	0,04

Cechy optyczne liptynitu

Tablica 3

Cechy onlyczne mairix liniy	mitu
-----------------------------	------

Т	R _r	S _r	R _{max}	R _{int}	R _{min}	R _{bi}	Rmean	R _{st}	Ram
[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]		
500	2,14	0,14	2,41	2,12	1,90	0,51	2,14	4,53	0,05
600	2,70	0,20	3,23	2,70	2,20	1,03	2,71	0,81	0,07
800	4,77	0,41	5,43	4,71	3,84	1,59	4,66	-3,12	0,07
1000	6,40	0,59	7,80	6,45	4,35	3,45	6,20	-7,15	0,11
1200	7,23	0,59	8,59	7,14	5,36	3,23	7,03	-3,48	0,09

Zaobserwowano, że sporynit zmienia swój charakter optyczny od dwuosiowego dodatniego (w surowym koncentracie), poprzez dwuosiowy dodatnio-ujemny (po obróbce w niższych temperaturach), po wyraźnie dwuosiowy ujemny (począwszy od 800 °C).

Po zastosowaniu temperatury 1200 °C wartość refleksyjności średniej (R_r) wzrasta do 8,01 % (s_r =0,38 %). Wartość rzeczywistej refleksyjności maksymalnej (R_{max}), pośredniej (R_{int}) i minimalnej (R_{min}) wynosi, odpowiednio: 8,55 %, 8,04 % i 6,81 % (tabl. 2; rys. 1b, 2b). Dwójodbicie (R_{bi}) ma wartość 1,74 %. Współczynnik R_{am} ma natomiast wartość 0,04. Charakter optyczny jest dwuosiowy ujemny.

Przeprowadzono również pomiary na matrix powstałym w wyniku karbonizacji koncentratu liptynitowego (tabl. 3; rys. 1c, 2c). Stwierdzono, że odznacza się ono niższymi wartościami refleksyjności od sporynitu, przy większej anizotropii optycznej. Charakter optyczny matrix zmienia się, podobnie jak sporynitu – od dwuosiowego dodatniego po dwuosiowy ujemny.

4.3. Koncentrat inertynitowy

W ramach badań przeprowadzono pomiary na semifuzynicie. W surowym koncentracie (zawartość I=76%) jego refleksyjność średnia (R_r) wynosi 2,53% ($s_r=0,59$ %) (tabl.4). Wysoka wartość odchylenia standardowego i układ punktów na diagramach Kilby'ego

- Rys.1. Zależność między R_{max}, R_{min} i temperaturą T: a. witrynit, b. liptynit, c. matrix liptynitu, d. semifuzynit
- Fig.1. Relationship between R_{max}, R_{min} and temperature T: a. vitrinite, b. liptinite, c. liptinite matrix, d. semifusinite

- Rys.2. Zależność między rzeczywistymi refleksyjnościami, a refleksyjnością średnią: a. witrynit, b. liptynit, c. matrix liptynitu, d. semifuzynit
- Fig.2. Relationship between the true reflectances and mean reflectance:
 a. vitrinite, b. liptinite, c. liptinite matrix, d. semifusinite

dowodzą, że odznacza się on istotnym zróżnicowaniem genetycznym. Z tych względów odstąpiono od określenia wartości refleksyjności rzeczywistych dla surowego koncentratu i karbonizatów otrzymanych w temperaturze od 400 do 600 °C, włącznie. Dla zobrazowania zachodzących przeobrażeń posłużono się natomiast średnią refleksyjnością maksymalną (\overline{R}_{max}) i średnią refleksyjnością minimalną (\overline{R}_{min}).

Stwierdzono stopniowy wzrost wartości obu tych parametrów od 2,65 % ($s_{rmax}=0,59$ %) i 2,27 % ($s_{rmin}=0,52$ %) w surowym koncentracie do 3,84 % ($s_{rmax}=0,73$ %) i 3,35 % ($s_{rmin}=0,67$ %) po zastosowaniu temperatury 600 °C (tabl. 4). W miarę zwiększania temperatury rośnie również wartość refleksyjności średniej (R_r .).

Tablica 4

Т	R _r	SI	R _{max}	S _{max}	R _{min}	Smin	R _{max}	R _{int}	R _{min}	R _{bi}	Rnican	R _{st}	R _{am}
[°C]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]		
	2,53	0,59	2,65	0,59	2,27	0,52	n,o,	n,o,	n,o,	n,o,	n,o,	n,o,	n.o.
400	2,76	0,68	2,82	0,68	2,46	0,59	Π,Ο,	n,o,	n,o,	n,o,	n,o,	n.o.	n,o,
500	3,40	0,77	3,54	0,80	2,99	0,70	n,o,	n,ō,	Π,Ο	11.0,	n.o.	n.o.	n,o,
600	3,68	0,70	3,84	0,73	3,35	0,67	n,o,	n,o,	n,o,	n,o,	n,o,	n,o,	n,o,
800	5,41	0,46	5,71	0,49	4,99	0,39	6,60	5,40	4,40	2,20	5,47	3,00	0,08
1000	5,97	0,42	6,37	0,37	5,16	0,57	6,84	5,85	4,01	2,83	5,57	-0,88	0,10
1200	10,42	1,02	10,80	0,87	9,18	0,90	12,32	10,24	7,60	4,72	10,05	-3,92	0,09

Cechy optyczne semifuzynitu

Obróbka w 800 °C spowodowała, że pozostała jedynie niereaktywna część semifuzynitu. Odnotowano dalszy, bardzo silny wzrost wartości średniej refleksyjności maksymalnej i minimalnej, przy jednoczesnym zmniejszeniu się wartości odchylenia standardowego. Diagramy Kilby'ego stają się jednoznaczne, a określenie wartości rzeczywistych refleksyjności jest proste. Świadczy to o ujednoliceniu się populacji, na której przeprowadzono pomiary. Jednak i ten, niereaktywny semifuzynit, w miarę dalszego zwiększania temperatury zmienia swoje cechy optyczne. Po zastosowaniu 1200 °C refleksyjność średnia (R_r) wynosi 10,42 %, średnia refleksyjność maksymalna (\overline{R}_{max}) – 10,80 %, średnia refleksyjność minimalna (\overline{R}_{min}) – 9,18%. Wartości rzeczywistych refleksyjności wynoszą: maksymalnej (R_{max}) – 12,32 %, pośredniej (R_{int}) – 10,24 % i minimalnej (R_{min}) – 7,60 %. Wartość dwójodbicia (R_{bi}) osiąga 4,72 %. Współczynnik R_{am} ma wartość 0,09. Semifuzynit ma dwuosiowy ujemny charakter optyczny (tabl. 4; rys. 1d, 2d).

W poddanym obróbce koncentracie nie stwierdzono matrix w ilości umożliwiającej przeprowadzenie wiarygodnych pomiarów.

5. Wnioski

- W surowym koncentracie sporynit odznacza się większą anizotropią optyczną niż witrynit.
- Po wygrzaniu witrynitu w temperaturze 1200 °C jego refleksyjność średnia (R_r) osiąga wartość 10,77 % (s_r=0,58 %), Wartość rzeczywistej refleksyjności maksymalnej (R_{max}), pośredniej (R_{int}) i minimalnej (R_{min}) wynosi, odpowiednio: 11,77 %, 10,27 % i 8,06 %. Dwójodbicie ma wartość 3,71%. Witrynit zachowuje dwuosiowy ujemny charakter optyczny.
- Sporynit po zastosowaniu temperatury 1200 °C ma refleksyjność średnią (*R_r*) o wartości 8,01 % (*s_r*=0,38 %). Wartość rzeczywistej refleksyjności maksymalnej (*R_{max}*), pośredniej (*R_{int}*) i minimalnej (*R_{min}*) wynosi odpowiednio: 8,55 %, 8,04 % i 6,81 %. Dwójodbicie (*R_{bi}*) ma wartość 1,74 %. Charakter optyczny jest dwuosiowy ujemny.
- Matrix karbonizatu, uzyskanego w wyniku obróbki termicznej koncentratu liptynitowego ma niższe wartości refleksyjności przy większej anizotropii optycznej. Charakter optyczny jest dwuosiowy ujemny.
- 5. Semifuzynit w próbce surowej odznacza się występowaniem różnych form genetycznych o zróżnicowanej refleksyjności i cechach optycznych. Dlatego niezbędne jest oddzielne prowadzenie pomiarów dla każdej z tych form, wyróżnionych na podstawie cech morfologicznych i refleksyjności. Po obróbce w 800 °C pozostaje w karbonizacie tzw. niereaktywny semifuzynit o spójnych cechach optycznych, które jednak podlegają dalszemu przekształceniu.
- 6. Po zastosowaniu 1200 °C refleksyjność średnia semifuzynitu (R_r) wynosi 10,42 %. Wartości rzeczywistych refleksyjności wynoszą: maksymalnej (R_{max}) – 12,32 %, pośredniej (R_{int}) – 10,24 % i minimalnej (R_{min}) – 7,60 %. Wartość dwójodbicia (R_{bi}) osiąga zatem 4,72 %. Współczynnik R_{am} ma wartość 0,09. Semifuzynit ma dwuosiowy ujemny charakter optyczny.
- 7. Po wygrzewaniu przeprowadzonym w 1200 °C spośród badanych składników petrograficznych najniższą refleksyjnością średnią i anizotropią optyczną odznacza się sporynit. Cechy witrynitu i semifuzynitu upodabniają się do siebie.

LITERATURA

- Bustin R. M., Guo Y.: Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals. Int. Journal of Coal Geol., vol. 38, 1999, s. 237-260.
- 2. Goodarzi F.: A comparison of optical properties of carbonized sporinite and vitrinite concentrates of coals of the same rank. Journal of Microscopy, vol.132, 1983: 279-288.
- Goodarzi F.: Retention of liptinitic structure in vitrinite chars. Fuel, vol. 63, 1984, s. 239-244.
- 4. Goodarzi F., Murchison D. G.: Optical properties of carbonized vitrinites. Fuel, vol. 51, 1972, s. 322 328.
- 5. Goodarzi F., Murchison D. G.: Influence of heating rate variation on the anisotropy of carbonized vitrinites. Fuel, vol.57, 1978, s. 273-284.
- 6. Gray R. J., Devanney K. F.: Coke carbon forms: microscopic classification and industrial applications. Int. Journal of Coal Geology, vol. 6, 1986, s. 277-297.
- Jasieńko S., Biegańska C., Świetlik U., Kidawa H.: Atlas mikroskopowych typów struktur występujących w węglach kamiennych i koksach. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 1997.
- 8. Kilby W. E.: Recognition of vitrinite with non-uniaxial negative reflectance characteristics. Int. Journal of Coal Geology, vol. 9, 1988 s. 267-285.
- 9. Kilby W. E.: Vitrinite reflectance measurement some technic enhancements and relationships. Int. Journal of Coal Geol., vol. 9, 1991, s. 201-218.
- Komorek J., Morga R., Krzeszowska E.: Relationship between optical properties of sporinite and vitrinite subjected to the thermal treatment in laboratory conditions. Proc. of 9th Coal Geology Conference, Prague 2001.
- 11. Komorek J., Morga R: Vitrinite reflectance property change during heating under inert conditions. Int. Journal of Coal. Geol., vol. 54, 2003, s. 125-136.
- 12. Kruszewska K., Dybova-Jachowicz S.: Zarys petrologii węgla. Wyd. UŚl., Katowice 1997.
- Morga R., Komorek J.: Zmienność cech optycznych i struktury witrynitu poddanego oddziaływaniu temperatur w zakresie 400–1200 °C. Prace Geologiczne PAN nr 152, Kraków 2004.
- 14. Murchison D. G.: Petrographic aspect of coal structure: reactivity of maceral in laboratory and natural environment. Fuel, vol.70, 1991, s. 296 315.
- Pusz S., Duber S., Kwiecińska B.K.: Microtexture of thermally treated anthracites. Abstracts of the TSOP/ICCP session. The 53rd meeting of the International Committee for Coal and Organic Petrology. Copenhagen, Denmark, August 12-19, 2001, s. 118-122.
- Sakurovs R., Lynch L. J., Barton W. A.: Molecular conformation and stability of coal macerals. In: Schobert H.H. et al. (Eds): Coal Science II, Amer. Chem. Soc., 1991, s.111-126.
- 17. Smith G. C., Cook A. C.: Coalification paths of exinite, vitrinite and inertinite. Fuel, vol. 59, 1980, s. 641-647.
- Taylor G. H., Teichmüller M, Davis A., Diessel C. F. K., Littke R., Robert S.: Organic Petrology. Gebr. Borntraeger, Berlin – Stuttgart 1998.