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Summary. In this paper the feature selection methods applied to discovering 
differentially expressed genes in microarray experiments are compared. This 
compareson includes both filter and optimal subset selection methods. The simulated 
and biological datasets are used as the microarray gene expression data, and the 
ability of selected genes for classification is also considered. 
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PRZEGLĄD PORÓWNAWCZY METOD SELEKCJI GENÓW 
RÓŻNICUJĄCYCH W EKSPERYMENTACH MIKROMACIERZOWYCH 
DLA KLASYFIKACJI 

Streszczenie. W artykule porównano metody selekcji cech zastosowane do 
wykrywania genów różnicujących w eksperymentach mikromacierzowych. 
Porównanie zawiera zarówno metody statystyczne, jak i metody poszukiwania 
optymalnego podzbioru cech. Jako dane mikromacierzowe wykorzystano 
symulowane zbiory danych oraz dane biologiczne. Przedstawiono ponadto 
przydatność wyselekcjonowanych genów do klasyfikacji. 

Słowa kluczowe: selekcja cech, wielokrotne testowanie hipotez, eksperyment 
mikromacierzowy, uczenie nadzorowane  
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1. Introduction 

A common problem in genetics was how to discover genes which were responsible for 
some diseases. Nowadays microarrays technology was used to monitor expression levels of 
genes. The expression levels in samples were compared in order to discover the genes which 
separate the classes properly. There were three kinds of treatment to solve this problem: 
filter, wrapper and embedded methods. The filter method used only ordered individual 
feature filter to selected features. In the wrapper method features selection was connected 
with the predictor. The idea of the wrapper approach was simple. The induction algorithm 
was run on the dataset, usually partitioned into internal training and holdout sets with 
different sets of features removed from the data. The feature subset with the highest 
evaluation was chosen as the final set on which to run the induction algorithm. The resulting 
classifier was then evaluated on an independent test set that was not used during the search. 
In the embedded method, however, the features selection was precisely connected with the 
predictor.  

In this article we concentrated on the filter and the wrapper methods. We compared 2 
filter methods and 1 wrapper method. The filter methods were statistical methods while the 
wrapper method was the optimal subset selection method. We compared all of the methods 
on simulated and biological data. In statistical methods we used traditional two-sample t-test 
and raw p-value algorithm to estimated p-values. The p-values were corrected with 
Benjamini & Hochberg (BH) method and with Bonferroni (B) method et al. [6]. We applied 
FDR method of Dudoit et al [2]. These methods were compared with an optimal subset 
selection RFE method. We also discussed the results of classification on the selected genes. 

None of these methods was restricted to any specific microarray technology. In the real 
gene data applications the gene expression level may had been suitably preprocessed. In this 
article we used both preprocessed simulated data and biological data.  

2. Methods 

Let : 1,..., , 1,...,ijX x i M j N⎡ ⎤= = =⎣ ⎦  denote the gene expression levels matrix with the 

rows corresponding to genes and columns to individual microarray experiments (arrays), and 

let 1,..., Ny y , { }1,1iy ∈ −  be the array class labels.  
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2.1. Filter methods 

Let Xi denote the random variable corresponding to the expression level for gene i and let 
Y denote the response of covariate. Let the null hypothesis for that gene i be not differentially 
expressed (DEG), will be as: 

:iH There is no association between Xi and Y 

It is important to choose appropriate test statistics. Because of the fact that we have only 
two kinds of samples in our dataset, we use the t-test. For gene i we used two sample 
t-statistic given with equation 
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where )(ix j is the mean expression of gene i in class j, nj is the number of samples in class j 

and S2
j (i) is the variance of gene i in class { }1,1j∈ − . 

The null hypothesis shows that the gene is not differentially expressed and such 

hypothesis is rejected for large values of t .  

We used permutation resampling method to estimate p values because we did not know 
the distribution of the expression values in microarray experiments,. To calculate p values we 
used the raw p-value algorithm [4] which can be summarized in the following way: 

For the each permutation b=1,…,B 
1. Permute the n columns of the data matrix X 
2. Compute the statistic t1,b,…., tM,b for each hypothesis 

After B permutations, the permutation p-values for hypothesis Hi is: 
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Assuming the type I error at the level α  hypothesis H is rejected when p α≤ . But this is 

a classical situation when only one null hypothesis is tested. A typical microarray experiment 
measures expression levels of thousands of genes simultaneously so it is a multiple testing 
problem. In this situation two types of errors can occur: type I error of false positive when 
a gene is declared to be DEG (differentially expressed genes) when it is not, and type II error 
or false negative, when the test fails to identify a truly DEG. To control the type I error we 
cannot use the threshold for p-values (obtained with the raw p-value algorithm) but there are 
many generalizations of this error to multiple testing situation in the literature. One 
possibility to define type I error in multiple hypothesis testing problems is the false discovery 
rate (FDR). FDR is an expected value of the proportion of type I errors among the rejected 
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hypotheses, thus ( )/E V R  where V is the number of false positives and R is the number of 

rejected hypotheses. There are many definitions of FDR in the case 0R = , we choose the 
definition of Benjamini & Hochberg to put / 0V R =  when 0R = . In the consequence we 
have: 

( )| 0 Pr 0VFDR E R R
R

⎛ ⎞= > >⎜ ⎟
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 (3) 

Multiple testing correction adjusts the individual p-value for each gene to keep the overall 
error rate below the specified threshold. Adjusted p-value for FDR is defined as: 

{ }inf :  is rejected at FDRi ip Hα α= =%  (4) 

We used a Benjamini & Hochberg procedure [5, 6] to calculate the adjusted p-values 
given below: 
1. The p-values of each gene are ranked from the smallest to the largest 
2. The largest p-value remains 
3. The second largest p-value is multiplied by the total number of genes divided by its rank. 

If it is less than α, it is significant 
4. Every next gene is multiplied as in previous step 

Another type to define type I error in multiple hypothesis testing problems is the family-
wise error rate (FWER). FWER is defined as the probability of at least type I error.  

)0VPr(FWER >=  (5) 
where V is the number of false positives. Method which we used to calculate adjusted p-val-
ues for FWER was Bonferroni procedure [5, 6]. The procedure was described below: 
1. The p-values of each gene is multiplied by the number of genes in the gene list. 
2. MpvaluepvalueCorrected ⋅=_  

3. If the corrected p-value is still below the error rate, the gene will be significant 
The probabilities and expectation given above are conditional on the true hypothesis  

{ }0HH iMiM 00
== ∈I  

where { }0H:iM i0 == . 

2.2. Optimal subset selection 

The recursive feature elimination (RFE) [7] is a backward feature elimination procedure, 
which iteratively removes non-discriminative features in the binary classification problem. 
The algorithm can be summarized as follows: 
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Let : 1,..., , 1,...ijX x i N j L⎡ ⎤= = =⎣ ⎦  be the training set of size L, where ijx is the value of i-

th feature for a j-th sample and 1,..., Ly y , { }1,1iy ∈ −  be the class labels. Moreover let 

[ ]1, 2,...,S N=  denotes surviving feature list and []R =  feature ranking list. 

while []s ≠  do: 

1. Train the linear SVM classifier obtaining Lagrange multipliers vector [ ]1,..., Lα α α=  and 

compute the weight vector j j j
j

w y xα=∑ . 

2. Compute the ranking of all the remaining features according to the following criterion 

( )2
i ic w=  

3. Eliminate from the list S the lowest ranked feature k, that is the feature with the lowest 

value of ic  and fix ( ): ,R S k R= ⎡ ⎤⎣ ⎦ .  

Linear SVM is usually used in gene selection application because the gene expression 
samples tend to be linearly separable. To make the algorithm faster one can eliminate more 
than one feature every time.  

2.3. Estimating error rates  

For each dataset we classified the samples of the test dataset using linear support vector 
machines classifier with parameter setting the regularization parameter C equals 0,1. To 
estimate error rates we use the Jackknife resampling which is the special case of the bootstrap 
procedure et al. [4] and k-fold cross validation procedure et al. [4]. The Jackknife method we 
used as follows: we selected a single sample of the test dataset, learned the classifier on the 
remaining samples and classify the chosen sample obtaining the error rate. Error rate was 
equal to 0 if the sample was classified correctly or to 1 if it was not. This step was repeated 
for 1000 times. Every time we selected a sample from full set of samples. The bootstrap 
(jackknife) error rate JER  was the mean error rate from each step. So the error rate was: 
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1
)(1  (6) 

where n was the number of repetitions and )(ier was the error rate in i-th iteration. In this 

article we used n being equal to 1000. The k-fold cross validation method we used as follows: 
we randomly divided dataset for k subsets of equal size. We trained classifier k times, each 
time leaved out one of the subsets from training, but using only the omitted subset to compute 
error rate. This step was repeated for every k subsets. The k-fold cross validation error rate 

CVER  was the mean error for each k subsets. It could be expressed in the following form: 
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where k was the number of subsets and )(ier was the error rate in i-th iteration. In this article 

we used k equals to 5. 
We used percentiles of the CVER  and JER  error distribution to find the end points of the 

confidence intervals. We used 1000 CVER  and JER  values estimated in the way given above 

to estimate the distribution. For the significant level α  the confidence interval was bounded 
at / 2α  and 1 / 2α−  percentiles so the confidence interval was defined by: 

( )2/12/ ; αα −= ppCI  (8) 

where 2/αp  was / 2α  percentile. 

3. Experimental results  

3.1. Datasets 

The methods described in the previous section were compared on several simulated DNA 
microarray datasets. Firstly, we prepared datasets consisting of two groups of 15 arrays with 
2000 genes. Two datasets IS01, IS05 with 1% (20) and 5% (100) differentially expressed 
genes were generated according to the article by Broberg [1] using normal distributions with 
parameters given in Table 1. Only the last three rows represented differential expression. 

Table 1
Means and standard deviations used in IS01, IS05 

Group 1 Group 2 
1μ  1σ  2μ  2σ  

−8 0,2 −8 0,2 
−10 0,4 −10 0,4 
−12 1 −12 1 
−6 0,1 −6,1 0,1 
−8 0,1 −8,5 0,2 
−10 0,4 −11 0,7 

We assumed an equal probability of every model from the first three rows for non-
differentially expressed genes and from the second three rows of the table for DEGs. It means 
that if the gene was simulated as one of the DEGs (one of the 20 genes for IS01 and one of 
the 100 genes for IS05 dataset) we choosed one of the three last rows from the table with 
equal probability 1/3 and generate expression values for 15 arrays from group 1 and 15 arrays 
from group 2 using normal distributions with parameters given in the selected row from the 



A comparative review of the selection methods for discovering … 43 

table. For instance, let gene i be one of the DEGs and we choose the last row from the table 
to generate its expression values. It means that we generated 15 numbers for the first group 
from the N(−10; 0.4) distribution and 15 numbers for the second group from N(−11; 0,7) 
distribution. For non DEGs we chosed one of the first three rows from the table with equal 
probability 1/3 and generated expression values of all 30 arrays from the same normal 
distribution with parameters given in the selected row of the table. 

We also generated another datasets including two groups of arrays with 21 arrays 
belonging to the first group and 19 arrays to the second one. Each array includes 2000 genes, 
the proportion of DEGs was set equal to 1% that is we have 20 differentially expressed genes 
in these datasets. Firstly, we independently generate each entry of the 2000 40×  matrix from 
the standard normal distribution. Secondly, we add a value of 2 to the first 100 genes in the 
first group to model differentially expressed genes. Thus, first 100 genes in the first group 
were normally distributed with mean 2 and all the elements of the whole matrix were 
stochastically independent. Afterwords, we independently generated 40 random numbers 

1 40,...,a a  from the standard normal distribution. Then, for the fixed correlation value  we 

applied the following transformation for each entry of the generated matrix: 

, where  was the number of gene and  was the 

number of sample, so that for any  and j we had . Using the 

procedure described above, we generated training and test datasets called CS02 and CS06, 
with chosen correlation strength at the level of 0.2 and 0.6 respectively. 

We also compared all of this methods on the leukemia dataset from [6] and available at 
http://www.broad.mit.edu. The dataset came from a study of gene expression in two types of 
acute leukemias: acute lybphoblastic leukemia (ALL) and acute myeloid leukemia (AML). 
Training set contained 38 cases (27 ALL and 11 AML) and test dataset contained 34 cases 
(20 ALL and 14 AML) both with 7129 genes. 

3.2. Results 

We applied exactly the same experimental scheme for each simulation dataset. Firstly, we 
calculated raw p-values from the t-test. We used 10000 permutations to estimate them. 
Secondly, we controlled FDR at level α equals to 0,01. Next we applied Benjamini & 
Hochberg correction on this p-values. We also applied Bonferroni correction on estimated 
p-values and compare the results with results after Benjamini & Hochberg correction. On the 
basis of the results we built a linear SVM classifier and estimated the error rate with two 
methods: bootstrap and k-fold cross validation with k equals to 5. We estimated confidence 
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interval at the level 0,95. For optimal subset selection method (RFE) we applied this method 
on the original dataset and we also built exactly the same classifiers. 

For the leukemia dataset the procedure was as in the case of the simulation dataset. 

3.2.1. Simulation data 

For the IS01 dataset, after raw p-value calculation 34 genes had p-values less than 0,01.  
In the second dataset IS05, p-value of 176 genes was less than 0,05. These results show that 
the correction of the p-values was necessary. We applied two different correction methods 
Benjamini & Hochberg and Bonferroni. After we applied the Benjamini & Hochberg 
correction in the first dataset 18 genes were discovered as significant genes, assuming that 
FDR was equal to 0,01. Two of these 18 genes were incorrectly recognized as significant 
genes. Four genes were not recognized at all. In the second dataset IS05 67 genes were 
discovered as significant genes after Benjamini & Hochberg correction. Three of these genes 
were incorrectly recognized as significant genes, 37 genes were not recognized at all. We 
compared this result with results after Bonferroni correction. On the IS01 dataset Bonferroni 
method recognize only 11 genes. All of them were recognized properly. Nine genes were not 
recognized at all. Similar situation was in the case of the second dataset IS05. Fifty four 
genes were recognized as significant genes. We noted that these two methods have different 
stringent level. The Bonferroni (B) method was more stringent that Benjamini & Hochberg. 
We also noticed that in the Bonferroni method less false positives are allowed. Whereas in 
Benjamini & Hochberg method less false negatives are allowed. The 11 genes recognized by 
Bonferroni method in the IS01 dataset were also discovered by Benjamini & Hochberg in the 
same dataset. In IS05 dataset we had exactly the same situation. All genes recognized by 
B method were also discovered by BH method. It was known that  which the 
results correspond with. These two methods control different types of error. Benjamini & 
Hochberg control FDR whereas Bonferroni controls FWER. In both cases the control was 
strong it means that the control is for every possible choice of where . 

For the CS02 datasets, after raw p-value calculation 43 genes had p-values less than 0,01. 
In the second dataset CS06 p-value of 43 genes was less than 0,01. After both Benjamini & 
Hochberg and Bonferroni correction, 19 of 20 genes were discovered as differentially 
expressed in the CS02 dataset. Thus we observed one false negative and there were no false 
positives. When the correlation was stronger (for CS06 dataset) these algorithms (BH, B) 
gave only 14 of 20 DEGs. There were no false positives as well, but the number of false 
positives raised to 6. Note that in CS02 dataset, where the results were better than in CS06 
dataset, more genes had p-values less than 0,01. It could suggested that the correlation values 
have an impact on the number of p-values which were under a specified threshold. Also the 
number of permutation, which were used to calculate raw p-values, could be too small to 
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discover the difference between BH and B methods or some preprocessing should be applied 
before we started. We want to examined it in the feature work. To built the classifier on these 
dataset we tuned the regularization parameter C in the validation procedure. In the IS01 
dataset regularization parameter C equaled 100 for B method and 10 for BH method. In IS05 
dataset for both methods regularization parameter C equaled 1. For the IS01 dataset the 
results were better than we had expected. For Bonferroni (B) method the best error rates 
estimated by 5-fold cross validation were for 6÷8 genes. The error rate equaled 0 and the 
confidential interval was also 0. We noted the mean error rate for two genes and it equaled 
0,0303. The worst error rate was for one gene and it equaled 0,233 in confidence interval 
[0,2; 0,3]. In Jackknife case the results were even better. For 4 genes the error rates equaled 
0. We also noted the mean error rate for two genes and it was 0,033, and the worst was for 
one gene and it equaled 0,266 in the confidence interval equaled [0,238; 0,293]. For 
Benjamini & Hochberg (BH) method, in both error estimation cases the best error rate was 
noted for 6 and 8 genes and it equaled 0. The worst error rates, in both cases, were for one 
gene and it equalled 1 and 0,522 for Jackknife and 5-fold cross validation respectively. It 
could be explained by the fact that in the results, there could be genes which were not 
significant genes but had small p-value. For the IS05 dataset the results were similar to IS01 
dataset. For Bonferroni (B) method the best error rates estimated by 5-fold cross validation 
were when the numbers of a gene was bigger than 6 genes. The error rate equaled 0 and the 
confidential interval was also 0. The mean error rate equaled 0,04. The worst error rate was 
for one gene and it equaled 0,1 in confidence interval [0,066; 0,166]. In Jackknife case the 
results were even better. For 6 genes the error rates were equaled 0. We noted the mean error 
rate for two genes and it was 0,003, and the worst was for one gene and it equaled 0,066 in 
the confidence interval equaled [0,051; 0,083]. For Benjamini & Hochberg (BH) method in 
both error estimation cases we also noted the best error rate for 6 and 8 genes and it equaled 
0. The worst error rates in both cases were for one gene and it equaled 0,2 and 0,167 for 
Jackknife and 5-fold cross validation respectively. 

For BH and B methods in the CS02 and CS06 dataset parameter C equaled 0,1. The genes 
selected with BH and B algorithms provide proper classification results for the CS02 dataset. 
For the CS02 dataset error rates obtained with the Jackknife method for 1 to 20 genes and the 
obtained confidence intervals were the best for 12 and 13 and equaled 0. Confidence interval 
is also equaled zero. The mean error rate in CS02 dataset was 0,027 for 15÷17 genes. We 
noted the worst results for 3 genes. The error rate was 0,18 and the confidence interval was 
[0,1; 0,25]. Error rates estimated by k-fold cross validation were similar. We also noted the 
best error rate for 13 genes. The confidence interval equaled [0; 0,05]. We also noted the 
mean error rate for 15÷17 genes which were bigger and equaled 0,064. The worst results as 
in the case of Jackknife procedure were for 3 genes and equaled 0,175. Confidence interval 



46 K. Stąpor, A. Brückner, P. Błaszczyk 

equaled [0,125; 0,225]. In the CS06 dataset the results were not as good. In both error 
estimation method we had very similar results. The best error rate was for 7 and 12 genes and 
equaled 0,17 for Jackknife and for 5-fold cross validation, in the confidence interval 
[0,1; 0,25], the worst error rate was for one gene and equaled 0,35 in the confidence interval 
[0,27; 0,44] for Jackknife and 0,3 in confidence interval [0,2; 0,4] for 5-fold cross validation. 
Also mean error rate was very similar in both cases and equaled 0,213 and 0,211 for 
Jackknife and 5-fold cross validation respectively.  

The method of the optimal subset selection group was RFE (Recursive Feature 
Elimination). The result was not satisfactory. On the dataset IS01 in first 20 genes only 10 
genes was discovered properly. In the first 1000 genes 19 genes were discovered properly. 
The last gene was on the 1478th place! There was a similar situation in IS05 dataset. In the 
first 100 genes only 41 were discovered properly. In the first 200 genes only 60 genes were 
discovered properly. RFE discovered properly each gene in the first 1760 genes! There was a 
better situation in CS02 and CS06 datasets. Recursive feature elimination algorithm (RFE) 
found all DEGs in the first 50 selected genes, but in the first 20 selected genes (notice that in 
the CS datasets there were only 20 truly DEG) only 14 and 11 genes were selected correctly 
for the CS02 and CS06 dataset respectively. It means that for CS02 in the first 20 genes there 
were 6 false positives and for the CS06 there were 9 such genes. Note that in the RFE 
algorithm the ranking criterion was computed using information about single gene but the top 
ranked genes were not necessarily the ones that are individually most relevant. 

To build the classifier on these dataset we tuned the regularization parameter C in the 
validation procedure. In the IS01 dataset regularization parameter C equaled 100 for RFE 
method. In IS05 dataset for both methods the regularization parameter C equaled 1. For IS01 
dataset and 5-fold cross validation method we noted the best error rate for 5 and 12 genes and 
it equaled 0,03 and 0,06 with confidence interval [0; 0,10] and [0; 0,13] respectively. For 
Jackknife method the error was similar but the confidence interval was smaller. For 5 genes, 
we noticed error rate equaled 0,067 with confidence interval [0,051; 0,083]. The worst error 
rate for number of genes was bigger than 15. In both cases the error rate was equaled 0,1 in 
confidence interval equaled [0,083; 0,19]. The mean error rate was for 6 – 8 genes and it 
equaled 0,051 in both methods. For IS05 dataset the results were even better. For a number of 
genes bigger than 39 we noted that error rates equaled 0 in confidence interval also equaled 
0. The mean error rate in both cases was 0,015 in confidence interval [0,070; 0,02]. We 
noticed the worst error rate for one gene. In both cases it equaled 0,233 in confidence interval 
[0,2; 0,295]. Although RFE did not discover more than 50% genes, the error rate was 
satisfactory. It can be explained by the fact that RFE select these genes for which predictor 
performance is the best, not these which are the most statistically significant.  
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For RFE methods in the CS02 and CS06 dataset parameter C equaled 0,1. The genes 
selected with RFE algorithm provide proper classification results for the CS02 dataset. For 
the CS02 dataset we obtained error rates with the Jackknife method for 1 to 20 genes. The 
obtained error rates were the best for 17 and equaled 0. Confidence interval is also equal to 
zero. The mean error rate in CS02 dataset was 0,053 for 12 genes. We noted the worst results 
for one gene. The error rate was 0,15 and the confidence interval was [0,08; 0,22]. The error 
rates estimated by 5-fold cross validation were similar. We also noted the best error rate for 
17 and it equaled 0. The confidence interval equaled [0, 0,025]. We also noted the mean error 
rate for 7-8, 15 genes which was bigger and equaled 0,059. The worst results, as in the case 
of in Jackknife procedure, were for one gene and equaled 0,150. Confidence interval equaled 
[0,100; 0,200]. In the CS06 dataset the results were not as good. We obtained very similar 
results in both error estimation methods. The best error rate was for 14-15 genes and equaled 
0,025 for Jackknife and for 5-fold cross validation, in the confidence interval [0; 0,075], the 
worst error rate was for one gene and equaled 0,25 for Jackknife and 0,225 for 5-fold cross 
validation in the confidence interval [0,20; 0,275] for Jackknife and [0,17; 0,34] for 5-fold 
cross validation. What is more, the mean error rate was very similar in both cases and 
equaled 0,097 and 0,098 for Jackknife and 5-fold cross validation respectively. The details 
are shown on the figures below. The solid line indicate error rates estimated by the Jackknife 
method. The dash line indicate the 5-fold cross validation method. 

 
Fig. 1. Error rates for CS06 and BH method 
Rys. 
1. 

Błąd klasyfikacji dla zbioru CS06 i metody BH 
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Fig. 2. Error rates for CS06 dataset and RFE method 
Rys. 2. Błąd klasyfikacji dla zbioru CS06 i metody RFE 
  

3.2.2. Biological data 

For the biological dataset we applied exactly the same methods as in the case of 
simulated dataset. First, we calculated raw p-values form the t-test estimated from 10 000 
permutation, corrected by Benjamini & Hochberg correction algorithm with the significance 
level α which equaled 0,01 and with Bonferroni correction method with the same level α. 
Before we applied the correction methods, in the dataset there were 861 genes of the p-value 
less than 0,01. After Benjamini & Hochberg correction 193 genes were discovered as 
significant genes. We had another situation when we applied Bonferroni correction. Only 112 
genes were discovered as differentially expressed in the leukemia dataset. All of these genes 
were also discovered by BH method. When we applied RFE method in the first 50 genes, 
there were only 6 genes discovered previously by BH or B methods. In the first 193 genes 
there were 36 genes discovered previously by BH and B. It is gene X59350_at (no. 4324). In 
first 1 000 genes there were 117 common genes for BH and RFE and 70 common genes for B 
and RFE. Tables of common genes for B,BH and RFE are given in a table 2.  

For BH and B we noted the best classification result for 24 genes and it equaled 0,029 in 
confidence interval equaled [0,02; 0,04]. The mean error rate was not that satisfactory. It 
equaled 0,136 in confidence interval [0,117; 0,156]. The worst error rate was for 3 genes and 
equaled 0,41 in confidence interval [0,38; 0,443]. For RFE classification, the result was the 
best for the first 24 genes. The error rate equaled 0,03 in confidence interval [0,019; 0,04]. 
We noted the worst result for 3 genes. The error rate equaled 0,413 in confidence interval 
[0,383; 0,442]. We noted an average error rate for the first 17÷21 genes. The error rate 
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equaled 0,136 in the confidence interval [0,117; 0,156]. The result for k-fold cross validation 
was very similar. The classification rates were shown in the fig. 3. 

Table 2 
Common genes in B, BH and RFE methods for 

leukemia dataset 
No. Id. Gene name 
1 804 'HG1612-HT1612_at' 
2 1133 'J04990_at' 
3 1249 'L08246_at' 
4 1674 'M11147_at' 
5 1704 'M13792_at' 
6 1882 'M27891_at' 
7 1909 'M29696_at' 
8 2121 'M63138_at' 
9 2288 'M84526_at' 
10 2354 'M92287_at' 
11 2402 'M96326_rna1_at' 
12 2642 'U05259_rna1_at' 
13 4196 'X17042_at' 
14 4211 'X51521_at' 
15 4328 'X59417_at' 
16 4847 'X95735_at' 
17 5191 'Z69881_at' 
18 5772 'U22376_cds2_s_at' 
19 6200 'M28130_rna1_s_at' 
20 6201 'Y00787_s_at' 

 

 
Fig. 3. Error rates for leukemia dataset and RFE method 
Rys. 3. Błąd klasyfikacji dla zbioru leukemia i metody 

RFE 
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4. Conclusions 

To sum up, this paper compared some existing methods for discovering differential 
expressed genes, from both filter and optimal subset selection groups, applied to the 
simulated and biological datasets. Each method gave a different set of features. For the 
leukemia dataset the difference between methods was more visible. Only 6 genes were 
common for all methods. It suggested of using some kind of preprocessing. For these 6 genes 
the classification error rates were very good, so it can implied that these genes were truly 
differential expressed genes.  

There was no simple answer which multiple testing procedure to use because the results 
were very similar to them. Some of the DEGs were not discovered, especially in the IS05 
datasets. It could be because the corrections of the p-values were too strong. We also 
investigated the performance of the methods for the classification. The obtained classification 
rates across the compared filter methods were very similar. The classification rates using 
genes obtained from the optimal subset selection group were worse. The classification rate 
was surprisingly low when we used the genes selected by RFE algorithm for the IS01 dataset. 

In conclusion, there were a large number of methods selecting differential expressed 
genes in the literature. We compared only some of them, we obtained very similar results for 
the filter methods. Of course the results could depended on the test used. We used the 
standard t-test, which had some limitations. The main disadvantage was the restriction of 
only two classes in the dataset. In the real microarray experiments we often had to find DEGs 
in the datasets where the number of classes was more than two. In the future we would like to 
compare some methods for doing so, and propose some improvements. 

At the end we would like to thank prof. Andrzej Świerniak for valuable comments. 
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Omówienie 

W artykule przedstawiono porównanie metod selekcji cech zastosowanych do wykrywa-
nia genów różnicujących w eksperymentach mikromacierzowych. Wśród omawianych metod 
są metody statystyczne, takie jak: ranking cech wykorzystujący test T z poprawką Benjamini 
& Hohberga [7], zapewniającą kontrolę błędu pierwszego rodzaju FDR na określonym 
poziomie dla wielokrotnego testowania hipotez. Ponadto, porównanie uwzględnia metody 
poszukiwania optymalnego podzbioru cech, takie jak algorytm Recursive Feature 
Elimination (RFE) opisany w [6]. Oceniono również przydatność wybranych przez 
omawiane metody genów dla klasyfikacji szacując błąd i przedziały ufności dla błędu dwoma 
metodami: bootstrapową (Jackknife) oraz k-fold cross validation. Porównania dokonano przy 
użyciu specjalnie symulowanych zbiorów mikromacierzowych, zawierających różne liczby 
genów różnicujących czy zakładających zależności korelacyjne pomiędzy genami na 
ustalonym poziomie. Na zbiory symulowane składają się poziomy ekspresji 2000 genów w 
30 próbkach dla zbiorów IS01, IS05 natomiast dla zbiorów CS02 i CS06 w 40 próbkach, 
pochodzących z dwóch klas. Wykorzystano również dostępne pod adresem 
http://www.broad.mit.edu dane biologiczne, dotyczące dwóch typów białaczki: acute 
lybphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Choć wybrane geny 
różnicujące za pomocą omawianych metod często się różnią, nie zaobserwowano istotnej 
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przewagi któreś z metod selekcji dla klasyfikacji, błędy dla różnych metod były na 
podobnym poziomie, ponadto otrzymane metodą Jackknife i Cross Validation nie różniły się 
znacznie. 
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