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Chapter 9. UMAP-BASED GRAPHIC REPRESENTATION OF 

POLCOVID CHEST X-RAY DATA SET HETEROGENEITY 

9.1. Introduction 

When analysing real problems, on real data, the researchers want to have a great un-

derstanding of underlying structures and existing patterns, which usually requires use of 

sophisticated and accurate visualisation techniques. In many fields, real datasets often 

have high dimensionality, which makes the computations complicated and time-

consuming. Visualisations of high-dimensional data is difficult or even impossible in 

some cases. One way to overcome this issues is dimensionality reduction by projection 

of a data into low-dimensional space. However, most of the techniques are mainly 

dedicated to tabular data, making the projections of images less reliable. 

Uniform Manifold Approximation and Projection (UMAP) is an embedding technique 

that projects high-dimensional data points into low-dimensional space [1]. It is a useful 

tool for data visualisation and pre-processing, with the potential to be used as  

a clustering method. Despite being mainly used for tabular data, some attempts have 

been made to apply UMAP to image data analysis. 

The first usage of the UMAP embedding in the scope of image data analysis was de-

scribed in the original paper [1]. Images was firstly vectorized and then passed to UMAP 

procedure. The experiments were made using the Pen digits [2], COIL 20 [3] and COIL 

100 [4] datasets. This method was also used in other articles [5–7] which operated on 

MNIST [8], Fashion-MNIST [5], USPS [9] and Afro-MNIST [10] datasets. 
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(a) COIL-20    (b) COIL-100      (c) MNIST 

Fig. 9.1.  Example images from commonly used benchmark datasets (a) COIL-20, (b) COIL-100,  

(c) MNIST 

Rys. 9.1.  Przykładowe obrazy z powszechnie używanych zestawów danych porównawczych (a) COIL-20, 

(b) COIL-100, (c) zbiór MNIST 

These datasets consist of clearly defined, low-resolution images with a neutral back-

ground, either black or white. Image shapes are adjusted so the Region Of Interest (ROI) 

is dominant. However, these properties are not commonly seen in all real world image 

data sets, where the object of interest could be present in different locations across set 

of images, could have varying sizes and could be displayed with diverse backgrounds. 

The ability to generate embeddings that will separate different categories of images in 

the 2D plane could be very helpful in medical image analysis to reveal differences and 

similarities between the analysed groups. There are examples of UMAP usage in this 

context in articles [11–13]. Each of them, aimed to describe structures of a Tumours and 

Nodules in Computed Tomography scan (CT), Positron Emission Tomography (PET) 

or Magnetic Resonance imaging (MRI) images. In those cases, ROI is located exactly 

on the area of interest. It is different in analysis of chest X-Ray (CXR) images, where 

we observe different shapes, alignment, intensities, background values, artefacts but 

more importantly, ROI placement. The place in which a disease that define lung change 

occurs is heterogeneous in shape and placement. Thus, it is very hard to precisely 

indicate it in the CXR image. Forcing the use of whole or a part of CXR image region, 

where in such a case the UMAP procedure could potentially capture information that is 

not related to the biological differences observed in a lung region. 

The goal of the study was to obtain visual separability of analysed disease entities on 

UMAP plots in order to make this information useful for further analysis. This study 

proposes a novel method of semi-supervised UMAP embedding creation, suitable for 

the CXR image analyses. The method is robust to the ROI placement, image size, image 

alignment and type of background. 
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9.2. Materials and Methods 

 
Fig. 9.2. POLCOVID database example images. (a) Example images from POLCOVID database,  

(b) Example images from POLCOVID database with segmentations 

Rys. 9.2.  (a) Przykładowe dane z bazy POLCOVID, (b) Przykładowe dane z bazy POLCOVID wraz  

z segmentacjami 

In the study, images from the POLCOVID database were used. POLCOVID is an orig-

inal and unique COVID-19 database containing X-Ray images. A data incorporated 

within the database were collected from Polish hospitals in the CIRCA project (COVID-19 

RTG/CT-Based Diagnosis). The considered subset of POLCOVID database data con-

sisted of 4956 CXR images, 2578 of which were normal (healthy), 1174 were non-

COVID pneumonia and 1204 were COVID-19 (with positive RT-PCR test result). The 

images were collected from 24 different clinical hospitals in Poland, so they were 

acquired with different RTG devices and with different parameters of image scanning. 

Therefore, the dataset is heterogeneous in terms of pixel intensity and image resolution. 

9.2.1. Image pre-processing 

The images had to be properly standardised, in order to minimise the batch effect of 

obtaining data from various sources. The presence of white artefacts, like text on image, 

has a significant impact on the pixel intensity distribution of an image. To overcome this 

problem, 0.25% of extreme pixel intensity values were removed from images before the 

standardisation to the range of [0, 1]. This step made the image distributions closely 

related. All images were resized to 512x512 pixels. 
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9.2.2. Radiomic Features 

Radiomic Features [14–17] are a large set of numerical values aimed towards describing 

medical image fragment indicated by a given ROI. The usage of radiomic features was 

proven to be effective in task of cancer detection and evaluation [11–13] both in terms 

of UMAP visualisation and diagnostic potential. The extraction of the radiomic features 

was made using python package pyradiomics [18]. 

9.2.3. Features preprocessing 

In the method’s pipeline, in the first step, from the set of whole features those with 

variance equal to zero were filtered out. Remaining features were scaled to the range of 

[0,1]. For the initial dimension reduction, the PCA technique [19] were used from which 

the features which explained from 85% to 95% variance were taken. This percentage 

value was adjusted depending on the final amount of PCA components. 

9.2.4. U-Net segmentation 

U-Net [20] is a neural network architecture for image semantic segmentation. For the 

purpose of lung region segmentation some hyper-parameters and features of the model 

were adjusted. On the course of experiments, the final U-Net based model consisted of 

4 encoding and decoding layers with SELU activation function [21], Batch 

Normalisation and Dropout with drop out coefficient of 0.5. The number of filters for 

each convolutional layer ranged from 32 to 512 depending on depth of the convolutional 

layer. The input images were resized and padded to the shape of 512x512. Neural 

network were trained using over 5200 train images with hand crafted lung masks. 

9.2.5. Effect size 

Effect size is a quantitative measure of the strength, of a phenomenon calculated on the 

basis of data [22], in contrast to p-value which indicates whether an effect exists, not 

how great it is. 
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9.2.6. Features selection 

Features selection process was based on the effect size. The non-parametric Kruskal-

Wallis test [23] was performed on the features calculated for each group of patients and 

for each feature an effect size was computed. Then, the features were ordered according 

to the effect size (Figure 9.7) as a measure of feature importance in the task of 

distinguishing the patient categories. Final number of selected features were decided on 

the course of experiments described in the Results in subsection 3.4. 

9.3. Results 

9.3.1. UMAP on whole images 

The most common approach for applying UMAP on images is flattening the images into 

vectors and storing them in a tabular manner. This method was successful while dealing 

with the distinction between classes on datasets like Fashion-MNIST [5] or COIL-100 

[1, 4]. The result of the standard UMAP approach applied to the POLCOVID CXR 

dataset is shown on the scatter plot in Figure 9.3. The hyperparameters used for UMAP 

are as follows: metric=euclidean, n_neighbors=500 and min_dist=0.8. 

 

Fig. 9.3.  Result of the UMAP procedure on the vectorized images 

Rys. 9.3.  Rezultat techniki UMAP wyliczonej na obrazach zwektoryzowanych 

The scatter plot, in this case, does not provide any useful information. In the data, there 

is a lot of points, which makes it hard to properly presents them on the scatter plot. 

Another approach is to use kernel density estimate (kde) plots, also called density plots. 

Figure 9.4 presents the same UMAP embedding visualisation on kde plot. 

But still a proper distinction between classes is not provided. While part of COVID im-

ages is slightly repulsed from the clump of clusters, clusters representing pneumonia 
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and normal images overlap almost entirely. This is also not coherent with medical ex-

pert knowledge. Images from normal class should be driven further away from both 

COVID and pneumonia. Clusters shown in Figure 9.4 result from UMAP based on 

probably inappropriate features. 

 

Fig. 9.4.  Result of the UMAP procedure on the vectorized images 

Rys. 9.4.  Rezultat techniki UMAP wyliczonej na obrazach zwektoryzowanych – izolinie 

9.3.2. UMAP on radiomics from whole images 

To address issues occurring while calculating UMAP on vectorized images, we propose 

moving from the vectorized space into the feature space. Feature space is defined on the 

basis of radiomic features 2.2. 

Initially, the whole image is considered as the ROI for radiomics calculations. Before 

the application of the UMAP procedure, features were pre-processed using pipeline 

described in subsection 2.3. The resulting embedding is presented in Figure 9.5. 

 

Fig. 9.5.  Result of UMAP on radiomic features calculated from whole images 

Rys. 9.5.  Rezultat techniki UMAP wyliczonej na  podstawie cech radiomicznych całych obrazów 

As seen in Figure 9.5, there is a difference in the distribution of subsequent classes. 

While COVID images are forming one cluster, pneumonia and normal have multiple, 

scattered clusters. 
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9.3.3. UMAP on all radiomics from the lung regions 

As the results are still not satisfying we propose to narrow down the ROI in order to 

gain access to the information more relevant to the problem. 

According to [24–26] the most relevant information about the state of the patient are 

present within the lungs. Therefore, lung regions were extracted from the images and 

treated as a new ROI. The segmentation was done with the use of U-Net neural network 

architecture described in subsection 2.4. The results of the segmentation are shown in 

Figure 9.2b. The chosen radiomic features were calculated on the extracted lung regions 

and the UMAP procedure was conducted as before, with a change to the UMAP metric 

from ’euclidean’ to ’seuclidean’. Results are presented in Figure 9.6. 

 

Fig. 9.6.  Result of the UMAP procedure on lung radiomic features 

Rys. 9.6.  Rezultat techniki UMAP wyliczonej na podstawie cech radiomicznych wysegmentowanych  

płuc 

The separation between classes is more visible but the number of clusters is overes-

timated. Also, a major part of normal class images overlaps with the smaller COVID 

cluster. Those results indicate that there still could be features that attract unrelated 

clusters towards each other. 

9.3.4. UMAP on selected radiomics from the lung region 

In contrast to [11–13] we are looking for information enveloped, hidden within the ROI 

and not directly indicated by it. In order to create UMAP embeddings more suited 

towards considered problem of normal, pneumonia and COVID distinction, we propose 

a semi-supervised embedding method with feature selection. The feature selection is 

based on effect size, 2.5 and described in subsection 2.6. 

Three subsets of the features were considered based on the created ranking. Firstly, 

features with at least a small effect size (2  0.01) were taken into consideration. This 
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resulted in 71 radiomic features that were fed into UMAP. However, the results were 

not satisfactory, the number of features was too high. In the second attempt, a line 

connecting the highest and the lowest effect size values on the bar plot (Figure 9.7) was 

drawn. Euclidean distance from each bar to the line was calculated and two shortest 

distances were chosen and marked on the plot that pointed to the threshold cut-offs for 

the feature selection. With the first cut-off point (2  0.04), a set of 13 features was 

included and with the second cut-off point (2  0.03), a set of 30 features was included. 

For both feature sets the UMAP procedure was conducted. 

While both, 13 and 30 features UMAP were created, the one with 30 features was 

selected. The parameters were same as in the previous section’s UMAP. 

 
Fig. 9.7.  Feature importance ranking based on calculated effect sizes 

Rys. 9.7.  Ranking ważności cech na podstawie obliczonych wielkości efektów 

 

Fig. 9.8.  Result of the UMAP procedure on lungs features 

Rys. 9.8.  Rezultat techniki UMAP wyliczonej na podstawie wybranych cech radiomicznych 

wysegmentowanych płuc 
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As shown in Figure 9.8, healthy (normal class) patients are clearly separated from the 

pneumonia and COVID patients. While COVID and pneumonia cluster overlaps, pneu-

monia has disjointed parts from the COVID cluster. COVID cluster concentration point 

lays partially beyond the pneumonia cluster and its edges have some independent parts. 

9.4. Discussion 

All figures shown up to this point, represented image embeddings created in order to 

differentiate disease entities. While the embeddings were shown in a form of density 

clusters, each cluster consisted of some points and each point indicated image form the 

POLCOVID data base. In order to compare proposed approach with a pure image vec-

torization, 12 example images from each class are shown on Figures 9.9 and 9.10. 

Images are taken from a vicinity of the most representative class density estimates. 

 
Fig. 9.9.  Example images of each class from most prominent clusters of UMAP on vectorized images (4) 

Rys. 9.9.  Przykładowe obrazy dla każdej klasy z najbardziej widocznych klastrów UMAP na zwekto-

ryzowanych obrazach 

At a first glance it is difficult to infer on what basis the images are distributed. Due to 

its high cluster overlap (Figure 9.4) the prominence of the features characteristic for pa-

tient state is not obvious. According to UMAP original paper [1], a UMAP embedding 

is also meant to distribute clusters preserving their inter-cluster differences. Most rep-

resentative COVID cluster seams to consist of some studies with relatively low patho-

logical lung involvement mixed together with thous showing relatively high patholo-
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gies. Cluster of pneumonia disease with quite significant lung changes seems to be to 

close to the cluster of normal studies. On the Figure 9.10 the distribution of the clusters 

is much easier to interpret. COVID cluster with prominent pathological lung 

involvement is driven further away from the normal cluster, which does not contains 

aggressive changes. Pneumonia cluster has its points distributed close to the COVID 

cluster indicating similarities in lung abnormality. Normal cluster distributes itself 

between two most prominent clump of points, both laying quite far from pneumonia and 

COVID clusters. All around, the final shape creates structure similar to letter ”U”.  

It seems to indicate a shift from the changes with most prominent pathological lung 

involvement (upper left corner,) to the one with the lowest pathological lung 

involvement (upper right corner). 

 
Fig. 9.10.  Example images of each class from most prominent clusters of UMAP on lungs radiomic  

features (8) 

Rys. 9.10.  Przykładowe obrazy każdej klasy z najbardziej wyróżniających się skupień UMAP na  

wybranych cechach radiometrycznych płuc. 

9.5. Conclusion 

Obtained clusters in UMAP embedding are more readable and interpretative visualisa-

tion of disease distribution across the embedding, leading to much more meaningful 

conclusions. 
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UMAP-BASED GRAPHIC REPRESENTATION OF POLCOVID CHEST  

X-RAY DATA SET HETEROGENEITY 

Abstract 

Visualisation is an essential step in the process of understanding the data. Char-

acterisation of underlying structures is often difficult, especially when dealing with large 

number of dimensions. Uniform Manifold Approximation and Projection (UMAP) 

technique can solve this problem by transforming high-dimensional data to low-

dimensional embedding. In image analysis, the dominant approach to define input of the 

UMAP procedure is to transform image into a single-column vector. This is justified for 

images where the key information is included in the dominant structures clearly visible 

on the image. In the case of chest X-ray imaging, in COVID-19 patients, the biological 

changes are subtle and hard to indicate in a single region of interest (ROI), but play  

a key role in medical diagnosis. We have analysed the data from POLCOVID database, 

which contains 4956 lung radiographs collected from 24 Polish hospitals. The dataset 
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includes radiographs of healthy subjects (n=2578), COVID-19 patients (n=1204) and 

pneumonia patients (n=1174). We propose a novel method of determining and select-

ing radiomic features to visualise significant differentiation of radiographs between 

patient groups in UMAP space. Our approach achieves significantly more interpreta-

tive UMAP embedding of the disease distribution. 

Keywords: UMAP, chest X-Rays, COVID-19, radiomics, images. 

 

  


