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Chapter 10. TUMOR DETECTION ON HE-STAINED 
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LEARNING METHODS: CHALLENGES AND SOLUTIONS 

10.1. Introduction 

Each year millions of people are diagnosed with cancer around the world. Therefore, 

research in many disciplines is constantly being done to understand the disease and 

ultimately increase the survival. One of the areas that provides research opportunities is 

digital pathology, which is the presentation of pathological images on a computer screen 

instead of a microscope and glass slides [1]. This opens up further possibilities for 

analyses based on processing these high-resolution images and using them, e.g. for 

tumor area detection tasks [2]. In the classical approach, the pathologist looks at the 

whole-slide image (WSI), analyses it carefully and marks the tumor region with  

a marker. This solution has one major drawback, namely the long time needed to carry 

out the assessment. Then, there is the human factor, where fatigue occurs after looking 

at images for a long time, directly affecting the expert's judgement. One possible 

solution is to use deep learning methods that can handle such task by operating on  

a scanned slide image [3]. In supervised deep learning, where data training samples are 

associated with class labels, we identify three major tasks in digital pathology: 

classification, regression and segmentation, and the main purpose is to train a model 

which is able to work on unknown test image based on optimizing loss function [3]. 
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This manuscript presents the difficulties that must be taken into account when starting 

the task of detecting tumor regions in hematoxylin and eosin (HE) stained 

histopathological images. In section 2, we described the data that were used and the deep 

learning model created for detection task. In section 3, we presented issues devoted to 

usage of deep learning methods in HE stained images analysis that we found during our 

research, such as differences in tissue staining between the slides, magnification used 

during slide scanning, image patching to prepare data for model building, and diffferent 

type of prediction methods. 

10.2. Materials and methods 

10.2.1. Data 

Four breast cancer datasets were used in this study. The IDC_regular_ps50_idx5 dataset 

[2] consist 162 whole slides prepared in magnification 40x. From it, 277 524 patches in 

size 50 x 50 were extracted and downsampled to the 2.5x magnification (198,738 images 

without cancer, and 78 786 images containing cancer). The file name consists of the 

patient identifier and the X and Y coordinates from which the patch was extracted.  

A 0 indicates no cancer and a 1 indicates the presence of cancer. BreastPathQ dataset 

[4] contains 96 images scanned at 20x magnification where 64 images contain tumour 

tissue. 2 579 patches in size 512 x 512 were extracted from the entire WSI images and 

each include expert opinion about cancer cellularity, i.e. proportion of cancer region to 

tissue region (from 0 to 1). Another dataset used in the research is TCGA-BRCA [5], 

which includes WSI for 1098 patients. Images have been prepared at 20x or 40x 

magnification. All images have been lossy compressed using JPEG with values between 

30 and 70. Data contained in TCGA were collected from many sites all over the world 

in order to reach their accrual targets. The last collection used is BreCaHAD [6] which 

consist of 162 histopathological images of breast tissue from cancer patients. Each 

image has size 1360 x 1024 and was prepared in 40x magnification. The dataset contains 

various cases of tumor malignancy obtained from archived surgical pathology cases. All 

datasets used in this work were derived from publicly available sources. Example image 

from each dataset is shown in Figure 10.1. 
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Fig. 10.1.    Sample image from each dataset: (A) IDC_regular_ps50_idx5, (B) BreastPathQ, (C) BreCaHAD, 

(D) TCGA-BRCA 

Rys. 10.1.  Przykładowy obraz z każdego zbioru danych: (A) IDC_regular_ps50_idx5, (B) BreastPathQ, 

(C) BreCaHAD, (D) TCGA-BRCA 

10.2.2. Models 

The results presented in this manuscript were obtained using AlexNet deep 

convolutional neural network architecture, which is commonly used in image 

classification task [7]. AlexNet is composed of 3 convolutional layers, one max pooling 

layer, two average pooling layers, and 3 fully connected layers. The last layer uses 

softmax as an activation function. As deep learning framework, we selected open source 

framework Caffe, which was initially developed for deep learning vision solutions and 

allows rapid prototyping [8]. The models were trained on the datasets 

IDC_reguls_ps50_idx5 and BreasthPathQ due to the class labels held by the experienced 

pathologists and tested on the two other datasets. We note that the training time for each 

model is about 30 h on a NVIDIA Tesla C2075 graphic card using CUDA 9.0. 
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10.3. Results and discussion 

10.3.1. Magnification of scanning 

When looking at WSI from different sources, it can be notice that such images often 

differ in resolution. This is due to hardware aspects such as the magnification of the 

microscope used by the scanner, the numerical aperture of the objective and the sensor 

used (size and number of individual pixels) [9, 10]. A model trained on a WSI dataset 

of a certain magnification will not perform well with images scanned on a different 

magnification, because the desired regions will have other sizes and properties sought 

by the neural network. To overcome this problem, the apparent magnification difference 

(factor K) can be calculated and downsampling could be applied. There are several ways, 

but here we decided to calculate the average values for each K x K window and insert 

them instead of the pixel squares. However, this approach also has its drawbacks. While 

there is no problem when the height and width of the WSI are multiples of the number 

representing the apparent magnification, it arises in the opposite situation. If K is an 

integer, it is possible to crop the image by removing excessive pixels, but when doing 

so we lose a part of the WSI that may be valuable. If K is a floating point number, such 

a solution may not suffice (if accuracy is to be achieved) because the WSI size divisible 

by a factor of K will never be reached. 

Regardless of the method, the use of downsampling itself involves a significant loss of 

information. It is especially visible when the factor K has a large value (Figure 10.2). 

The larger the K, the more distant and less detailed the image is. 

 

Fig. 10.2.  WSI fragment (500 x 500 px) showing the effect of downsampling on the primary image. 

From left, magnification: (A) 40x, (B) 20x, (C) 10x, (D) 5x 

Rys. 10.2.  Fragment WSI (500 x 500 px) pokazujący efekt próbkowania w dół na obrazie bazowym.  

Od lewej, powiększenia: (A) 40x, (B) 20x, (C) 10x, (D) 5x 
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The effect of different magnification is also seen in a tissue region detection task  

(Figure 10.3). All elements from the 20x magnification dataset were downsampled  

(K = 8) to obtain 2.5x. The neural network model was then trained and the 2.5x (64 x 64) 

and 20x (512 x 512) image predictions were made (Figure 10.3 B, C). As can be seen, 

the prediction of the image before downsampling (Figure 10.3 C), although it appears 

more detailed (consisting of more patches), contains much more noise, indicating a large 

number of false positives.  

 

Fig. 10.3.  From left: (A) input image, (B) model prediction, (C) model prediction for the image with 

inappropriate magnification. The green color indicates that the network has classified the 

region as a cancer, while the red color indicates no cancer 

Rys. 10.3.  Od lewej: (A) obraz wejściowy, (B) predykcja modelu, (C) predykcja modelu dla obrazu  

z nieodpowiednim powiększeniem. Kolor zielony oznacza, że sieć sklasyfikowała region 

jako nowotwór, natomiast kolor czerwony oznacza brak nowotworu 

10.3.2. Variation in tissue staining 

The next problem concerns the colors observed on the slides (Figure 10.4). The visible 

variations in the tissue staining stage are due to several factors. One of them is the lab 

protocols applied by individual laboratories. Also, parameters such as tissue thickness, 

staining concentration and staining time affect the final color. The second aspect is the 

variety of whole slide scanners that are on the market. The production of digital slides 

consists of several stages that largely depend on certain hardware or software properties. 

Unfortunately, manufacturers do not have commonly used standards, so there are visible 

differences in the final color of each structure [11]. 
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Fig. 10.4.  Comparison of the WSI staining between slides 

Rys. 10.4. Porównanie barwienia WSI pomiędzy szkiełkami 

A trained neural network may interpret staining variation as analysing images from  

a different cohort. It is enough for the input slides to have more intense coloring to cause 

improper prediction of the well-trained deep learning model (Figure 10.5). 

 

Fig. 10.5.  Output image of the deep network, when given a part of the slide with more intense staining. 

From left: (A) expert opinion (in green), (B) prediction 

Rys. 10.5.  Obraz wyjściowy sieci głębokiej, po podaniu fragmentu szkiełka z bardziej intensywnym 

barwieniem. Od lewej: (A) opinia eksperta (na zielono), (B) predykcja 

One solution to this problem is tissue stain normalization. There are several algorithms 

available, but in our experiments we used the method introduced by Azevedo, et al. [12]. 

The effects of tissue stain normalization are shown in Figure 10.6. 
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Fig. 10.6.    Example of tissue stain normalisation. Left: original images (A, C), right: normalised images (B, D) 

Rys. 10.6.  Przykład normalizacji barwienia tkanek. Po lewej: obrazy oryginalne (A, C), po prawej: obrazy 

znormalizowane (B, D) 

10.3.3. Selection of image patch size 

When preparing a deep learning model, selection of hyperparameters or patch size might 

have much greater impact on the outcome than selection of network architecture itself 

[2, 3]. Choosing proper window size is a task-specific, time-consuming and problematic 

process. The small patch size is a frequently used in H&E image analysis, since it is not 

hardware limited and can be a good solution for the small number of images available 

for network training. Unfortunately, the disadvantage of this solution is the lack of 

information about the environment outside the patch, which generates opposite 

information at the edges of the two patches. Two tumor detection models trained on the 

same dataset with different patch window sizes can give much different prediction 

results (Figure 10.7). For the smaller window size (Figure 10.7C) prediction is much 

better on the borders of each structure, however smaller tissue components, like invidual 

lymphocytes, are also predicted as cancer. On the other hand, when patch size is too big 

(Figure 10.7B), the detected cancer region is much more imprecise. 
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Fig. 10.7.  Prediction results for models with different windows size: (A) input image, BreastPathQ  

dataset (B) window size 227 x 227 and (C) window size 32 x 32 

Rys. 10.7.  Wyniki predykcji dla modeli z różnymi rozmiarami okien: (A) obraz wejściowy (zbiór 

danych BreastPathQ), (B) rozmiar okna 227 x 227 oraz (C) rozmiar okna 32 x 32 

The observed effect of sharp edges resulting from the merging of adjacent patches  can 

be removed using a method of overlapping windows. To do this, a prediction must be 

made for the windows located at the boundaries of neighbours patches. When generating 

the output image for more values at a single point, an average score, min or max value 

can be determined (Figure 10.8). 

 

Fig. 10.8.  Removal of sharp edges artifacts: (A) input image (BreastPathQ), (B) output image without 

overlapping, (C) output image after overlapping with max value per pixel 

Rys. 10.8.  Usuwanie artefaktów ostrych krawędzi: (A) obraz wejściowy (BreastPathQ), (B) obraz 

wyjściowy bez nakładania, (C) obraz wyjściowy po nałożeniu z wartością maksymalną na 

piksel 

10.3.4. Prediction methods 

Image classification with deep neural network is done to assign a class for the entire 

patch or each individual pixel. In order to achieve higher accuracy, a pixel-level 

classification method can be used, but it results in a significant increase in computation 

time. For example, tissue presented on Figure 10.9 consists of 978 patches with size  
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32 x 32. The time required to perform the prediction for each pixel and generate the 

output image was 130 minutes. Remember that WSI images can be very large, which 

translates into tens of thousands of small patches. If the goal is to identify the tumor 

region for further analysis, e.g. to count cells in this region, image classification at the 

patch level will allow faster computations and could lead to obtain satisfactory results 

(Figure 10.9D). 

 

Fig. 10.9.  Classification per pixel and patch results (A) input image (IDC_regular_ps50_idx5),  

(B) expert opinion (C) output image, prediction per pixel, (D) output image, prediction per 

patch 

Rys. 10.9.  Wyniki klasyfikacji na piksel i wycinek: (A) obraz wejściowy (IDC_regular_ps50_idx5),  

(B) opinia eksperta, (C) obraz wyjściowy predykcja na piksel, (D) obraz wyjściowy 

predykcja na wycinek 

10.4. Conclusions 

In this paper we presented how deep learning models can be used to analyze HE-stained 

histopathological images and discussed what problems can be encountered during 

process of model development, training and prediction. Breast cancer region detection 

task was used here as an example. Due to the use of different WSI scanners for data 

acquisition and different stain preparations the input data may vary greatly and thus they 

require more complex pre-processing algorithms. Also, the hardware limitations 



124 

 

resulting in long computation time, make it necessary to choose compromise solutions 

of varying accuracy. Obtaining a universal solution for histopathological image analysis 

is a lengthy process. We hope that the issues presented in our work, together with the 

proposed solutions, will contribute to the development of the field of digital 

histopathology. 
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TUMOR DETECTION ON HE-STAINED HISTOPATHOLOGICAL  

IMAGES USING DEEP LEARNING METHODS: CHALLENGES  

AND SOLUTIONS 

Abstract 

The advent of digital histopathology has opened up new possibilities for the processing 

and analysis of high-resolution tissue images using deep learning methods. While 

working to develop a model to detect region of breast cancer on HE-stained tissue slide, 

we encountered several major complications. The aim of this work is to describe these 

challenges and propose several solutions. We addresses the following issues and showed 

their impact on the performance of the deep learning model: (i) variation in tissue 

staining, (ii) different magnification of scanning, (iii) selection of size of the image 

patch, (iv) usage of patch-based or pixel-based model prediction method. The analysis 

were done using deep learning model consisting of convolutional layers that was 

constructed on several independent datasets. We believe that this publication is a good 

starting point for image analysis practicioners who wants to construct deep learning 

models on histopathological images. 

Keywords: digital pathology, histopathological images, HE-staining, deep learning, 

tumor detection. 

 


