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Chapter 12. TUMOR SUBCLONAL RECONSTRUCTION PIPELINES – 

COMPARISON OF RESULTS 

12.1. Introduction 

Tumors arise from mutated single cells in the multistep evolutionary process, driven by 

two phenomenons: 1) the occurrence of new mutations, which can drive the tumor 

progression, and 2) the process of selection, which eliminates weak populations of cells 

and promotes the growth of the strongest ones. The resultant population is usually highly 

heterogeneous - even if the resulting evolutionary process has a branching, rather than 

a linear structure, old populations might not be entirely replaced by the new ones. This 

polyclonal nature of cancer carries a serious clinical impact: disease relapses and 

evolution of therapy-resistance [1], clonal cooperation [2] and, in general, poor 

prognosis. The knowledge of tumor subclonal structure might be the key to the 

development of effective, personalized cancer therapies and the improvement of 

patients’ survival. 

However, despite the recent advances in Next Generation Sequencing (NGS), the 

recognition of clonal structure of the tumor is still not a trivial task. Since the sequencing 

of single cells is still an expensive technology, struggling with the issue of accurate and 

uniform amplification of the whole genome, bulk sequencing remains the main method 

of tumor genotyping. Information provided by bulk sequencing is however averaged 

over the millions of cells and the distinction of subclonal populations, especially if they 

are small and share similar cellular prevalences, is therefore hard or even impossible. 

Over the last decade, numerous algorithms aiming to resolve tumor heterogeneity from 

the bulk sequencing data have been created. Most of them define subclones by cluster- 

ing together the detected single-nucleotide variants (SNVs) with similar allelic fre- 
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quencies, usually correcting them according to the detected copy number variation 

(CNV) of the mutation loci. Next, they estimate the cellular frequencies of detected 

subclones, which might be followed by the inference of phylogenetic relationships 

between them. Unfortunately, until now no golden standard of tumor clonality analysis 

has been established [13]. Lack of independent and wide assessment of the existing 

approaches makes the methodology selection a hard process. In this work, we apply and 

compare the results of few pipelines, consisting of two different methods of copy- 

number changes detection and two most common algorithms for the reconstruction of 

tumor subclonal structure.  

12.1.1. Overview of the chosen algorithms 

Tests of the selected algorithms were performed on two datasets, for which multiple 

samples per patient were available. The first one included 4 female patients with HER2 

positive breast cancer (BRCA), for which we performed Whole Exome Sequencing 

(WES) of two tumor samples (primary tumor and lymph node metastasis) along with 

the one normal sample. The second dataset, consisting of control-diagnosis-relapse 

triplets of samples from 11 patients with acute myeloid leukemia (AML) was retrieved 

from European Genome-phenome Archive (EGA) [4]. From both datasets we extracted 

2 BRCA and 8 AML patients for which the number of detected high-quality 

non synonymous/intron/intergenic mutations did not exceed 3,000 to decrease the 

required computing time. 

Two popular algorithms for the clonal reconstruction were tested: PhyloWGS [5] and 

PyClone [6], both supporting simultaneous analysis of multiple samples per patient and 

using SNVs as well as CNVs associate mutations into clones. In addition, PhyloWGS 

performs the evolutionary analysis of detected clones, generating and evaluating 

thousands of possible phylogenetic trees, which is not done by PyClone and might be 

performed using additional software like ClonEvol [7]. Two more algorithms were 

considered but were finally discarded for different reasons: SciClone [8]- which only 

clusters the mutations on the copy-number (CN) neutral regions, whereas CNVs were 

found common in our samples and CliP [9] - due to the lack of the multi-sample mode. 

Two methods of CNVs detection were used: FACETS [10] and TitanCNA [11]. They 

were chosen since both support the latest version of the reference genome (hg38), 

providing integer allele-specific copy numbers and easy integration with the 
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PhyloWGS, through the available CNV parser. We did not apply the popular GATK 

workflow for somatic CNV detection as it does not calculate integer CN.SNV and Indel 

mutations were called using Mutect2 [16]. 

Application of the two selected algorithms of clonal reconstruction to the mutation calls 

from two methods of CNV detection and one of SNV/Indel detection resulted in  

4 pipelines being tested in this work (Fig. 12.1). In addition, as the NGS-based tumor 

purity estimates may significantly differ from the pathologist’s assessments [3], to 

investigate the impact of purity estimations on the reconstruction results, all 4 pipelines 

were run twice: 1) with the purity estimates delivered by CNV callers and using default 

100% purity only if the estimate was missing or below 0.1, and 2) assuming the perfect 

purity of all samples. 

 

Fig. 12.1.   Graph representing the 4 pipelines run in the study 

Rys. 12.1.  Graficzne przedstawienie 4 kombinacji metod zastosowanych w pracy 

12.2. Results  

12.2.1. CNV callers – comparison of FACETS and Titan calls 

Both FACETS and Titan were run to call changes in total and minor allele copy numbers 

(Fig. 12.2). FACETS returned a single solution for each sample, Titan generated four 

different solutions across a set of given ploidies (2, 3) and numbers of clusters (1, 2) and 

successfully chose the optimal solution in all samples except those from the patient 

AMLRO-9, which except for some small regions was CN-neutral among non-sex 
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chromosomes according to FACETS. The computational time required by both methods 

was significantly shorter for FACETS than for Titan (data not shown). 

For one patient (AMLRO-6) FACETS and Titan consistently showed different main 

ploidy (Titan: 3, FACETS: 2) and for 4 patients in both datasets (AMLRO-2 and 3, G30 

and G31) Titan showed significantly different results for paired tumor samples, whereas 

all FACETS results for these patients were concordant. 

Both algorithms were found prone to the detection of numerous, short CN calls, equally 

distributed along the genome, which after manual inspection should be classified as 

noise. The occurrence of these artifacts was more common in the FACETS results and 

among samples with limited or no true large-scale CN changes.  

 
Fig. 12.2.  Comparison of CNV calls obtained from FACETS and Titan. The left heatmap presents total 

CN changes, the right one changes in the minor allele CN. Gray – regions not reported by  

a caller. CNV callers are annotated on the right. Sample namings for AML: Dx – diagnosis, 

Rx – relapse; for BRCA: P1 – primary tumor, L1 – lymph node metastasis. Titan results for 

AMLRO-9 are missing, as it could not choose the optimal solution. Values above 6 were 

trimmed 

Rys. 12.2.  Porównanie wyników detekcji mutacji CNV otrzymanych za pomocą algorytmów FACETS 

i Titan 
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12.2.2. CNV callers - comparison of purity estimates 

FACETS and Titan estimations of sample purities (Fig. 12.3) were significantly 

discordant and often incomplete or misleading. FACETS estimated purity of 14 out of 

20 samples with values within the range from 0.16 to 0.81. In turn, Titan returned purity 

estimations of 18/20 samples, from which 8 were equal or almost equal to 0. These 

misleading values were associated with the nearly diploid state of samples and may 

impact the further analysis if propagated through the fully automated pipelines. 

12.2.3. Clonal reconstruction - comparison number of clones 

We found only the PhyloWGS to give a stable number of clusters, regardless of the 

dataset, CNV caller used, and the usage of estimated purity values or assuming them to 

be perfectly pure. In contrast, the number of clones returned by PyClone depended on 

all of these factors and in some cases differed by up to two orders of magnitude: starting 

from the few for AML dataset with FACETS calls and purity estimations,through 

dozens for the same dataset with other methods’ combinations, up to the hundreds for 

BRCA dataset. Interestingly, when all purities were set to 1 the number of clones grew 

for the AML and decreased for the BRCA dataset. Therefore, we found only the 

PhyloWGS to be detecting a reasonable and predictable number of clones irrespective 

of the other methods used. 

 

Fig. 12.3.  Comparison of purity estimations from FACETS and Titan. Gray - missing estimation. 

Sample namings as in fig. 12.2. Pearson correlation coef. = 0.72, p = 0.0039 

Rys. 12.3. Porównanie czystości próbek estymowanych za pomocą algorytmów FACETS i Titan 

12.2.4. Clonal reconstruction - comparison of mutation to clone assignments 

Pairwise similarities of the results of selected pipelines were measured using two 

different similarity measures: Adjusted Rand Index (ARI) and Adjusted Mutual 

Information (AMI), both returning negative or close to 0 values for independent 

classifications and equal to 1 for the perfect match (Fig. 12.4). The range of obtained 
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values varied among the patients,lower among such cases like G30,G31,and 

AMLRO2,and significantly visibly higher for others, e.g. AMLRO15 (Fig. 12.4a). 

Therefore, average index values might correspond to the clonal distinguishability or 

detectability feature of given tumors. 

Pipelines were more convergent when the purity estimates from CNV callers were not 

used but all samples were assumed to be 100% pure (Fig. 12.4a vs 12.4b). In association 

with the differences in the number of detected clones (Sec. 2.3) it shows that both 

algorithms significantly differ in how they deal with impure samples. Interestingly, 

under the assumption of the perfect purities, PyClone results were less affected by the 

choice of the CNV caller than the results of PhyloWGS. 

Direct comparison of the results of the same pipelines obtained with and without the 

purity estimates from CNV callers showed significant differences between PhyloWGS 

and PyClone (Fig. 12.4c). The former showed a moderate agreement of both runs, even 

for those cases where purity estimates were missing or faulty and were assumed equal 

to 1 in both runs. The results returned by the latter matched nearly perfectly in such 

cases but were almost independent for some other cases.Again,a potential explanation 

for that might be related to the different number of detected clones which we cannot 

explain. 

Table 12.1 

The numbers of clones detected by sets of algorithms. FAC - FACETS, NA – pipeline 

did not completed within 4 days or was not run due to missing CNV calls, * – Only the 

purities above 0.1 were used in the analysis. Purities below this threshold, as well as 

the missing values, were replaced with 1 

with purity estimation* all tumor purities set 1 

PyClone PhyloWGS PyClone PhyloWGS 

patient FAC. Titan FAC. Titan FAC. Titan FAC. Titan 

AMLRO2 3 3 7 6 33 21 6 6 

AMLRO3 2 13 NA NA 14 16 8 6 

AMLRO6 2 2 6 4 7 6 7 7 

AMLRO8 2 16 7 7 18 16 5 5 

AMLRO9 4 NA 7 NA 4 NA 5 NA 

AMLRO10 2 5 NA 7 17 21 6 6 

AMLRO11 3 16 5 5 25 17 8 5 

AMLRO15 14 15 9 6 13 15 9 6 

G30 217 109 13 9 66 83 8 8 

G31 91 122 17 10 66 66 13 10 
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Fig. 12.4.  The similarity of mutation-to-clone assignments by pipelines. Similarity measured by 

Adjusted Rand Index (ARI) and Adjusted Mutual Information (AMI). Panel a) presents 

results obtained with purity estimations from CNV corresponding, where only the values 

missing or below 0.1 were replaced with 1 (run 1). Results on panel b) were obtained with 

all required purity values set to 1 (run 2). Panel c) compares the results from both runs of the 

same combination of methods. Pearson coefficient of correlation of ARI and AMI = 0.92,  

p < 2.2e-16 

Rys. 12.4.  Heatmapa zgodności przypisań mutacji do klonów uzyskanych przez różne kombinacje 

metod 

12.3. Discussion 

In this study, we established and compared the results of 4 different pipelines consisting 

of Mutect2 for SNV/Indel calling, two CNV callers: FACETS and Titan, and two 

methods of clonal reconstruction: PhyloWGS and PyClone. In addition, all pipelines 

were tested with and without the use of purity estimations derived from CNV callers. 

We found that change at any step of the analysis causes significant changes in the clonal 

reconstruction results. The level of similarity of different pipelines’ results depended 
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more on the patient being analyzed than the pair of pipelines being compared. We found 

that pipelines using the same clonal reconstruction algorithm but different CNV caller 

were the most similar ones when PyClone was used and the most divergent in the case 

of PhyloWGS. This tendency was more visible when all samples were assumed to be 

perfectly pure than when we used the purity estimations from CNV callers. 

Interestingly, we identified the significant effect of the purity estimation values used in 

the analysis, which we did not find reported in the previous studies. Especially in the 

pipelines involving PyClone change in the purity value had an unpredictable effect on 

the results, leading to nearly independent clusterization among some patients and only 

slightly affecting the results for the others. The number of clones detected by PyClone 

significantly differed if the purity estimations changed, in contrast to PhyloWGS which 

identified a similar and reasonable number of clones regardless of the used purity values. 

Limitations of this study involve the limited number of methods used and the lack of 

alternative SNV/Indel callers, which have been reported to be an additional source of 

variation [12, 13]. Another limitation of our work is the automatization of the workflow 

running the selected pipelines. The obtained results possibly could be improved by the 

manual inspection of eg. CNV calls, which could reduce the number of the noise and 

false CN calls. Unfortunately, the evaluation of accuracy provided by the wide spectra 

of available methods still needs to be done. To perform such evaluation the knowledge 

of the ground truth is needed, which requires the simulation of the synthetic data or 

usage of the real bulk sequencing data supported by single-cell sequencing. 

12.4. Matherials and methods 

Materials. Whole Genome Sequencing results for 7 men and 4 women with AML were 

downloaded as hg19-aligned BAM files from the EGA (ID: EGAD00001003234). One 

normal and two tumor samples (diagnosis/relapse) were sequenced from each patient. 

BRCA cohort consisted of 4 female patients diagnosed with HER2+ breast cancer, from 

whom one normal and two tumor samples (primary tumor and lymph node metastasis) 

were obtained. Libraries for in cohort were prepared using the Agilent SureSelect v6 kit 

and subjected to the Whole Exome Sequencing. 
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Processing and SNV/Indel calling for AML data. Aligned BAM files were processed 

using MarkDuplicates/BaseRecalibrator from GATK toolkit (v4.1.1.0) [17]. Somatic 

mutations were identified with MuTect2 and annotated using VEP [18]. Variants from 

both tumor samples were combined using GATK’s CombineVariants tool. Finally, we 

removed the variants that failed to pass at least one of the filters in both samples. 

Processing and SNV/Indel calling for BRCA data. Raw reads were aligned against 

human genome hg38 using BWA-MEM (v0.7.17) [15] and processed using 

MarkDuplicates/BaseRecalibrator from GATK (v4.1.4.0) [17]. Somatic mutations were 

called with Mutect2, filtered using FilterMutectCalls, and annotated using VEP. 

Detection of CNV changes. Integer, allele-spicefic copy numbers were detected  

using FACETS [10] and Titan [11]. FACETS input files were prepared with the 

command snppileup -g -q10 -Q10 -P100 -r25,0 -d10000 snp.vcf.gz pileup.csv.gz 

normal.bam tumor.bam, where SNP file for hg38 was downloaded from 

ftp.ncbi.nlm.nih.gov/ snp/organisms/human_9606/VCF/00-common_all.vcf.gz and for 

hg19 from ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606_b151_GRCh37p13/VC-

F/00-common_all.vcf.gz. Then FACETS was run using run_facets.R script from 

aleighbrown/facets_snakemake GitHub repository [19] with nhet = 15. Titan was run 

using the snakemake workflow for Standard WGS/WES analysis available through the 

Titan GitHub repository. 

SNVs/Indels and cases filtering. bcftools were used to remove the 

synonymous/intron/intergenic variants, variants with MMQ below 50 or average 

coverage in tumor samples below 10. Then only the patients with less than 3000 

mutations were kept to shorten the computational time (<4 days for PhyloWGS). 

Analysis of tumor structure. CNV calls and filtered SNVs/Indels were parsed to the 

PyClone input format using custom scripts. For PhyloWGS, snakemake workflow 

created by A.L Brown [14, 20] was used to prepare input files and run the algorithm 

with 20 MCMC chains.PhyloWGS write_results.py script was run with–include-

multiprimary –max-multiprimary 1 options to prevent it from throwing an error when 

only multiprimary trees were created. The best tree was extracted using an approach of 

the default browser of PhyloWGS results (selection of the tree with the highest density). 

Results analysis and visualization. All results were analyzed and visualized using  

R (v4.0.3) and RStudio. Adjusted Rand Index and Adjusted Mutual Information for pairs 
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of results were calculated using ARI and AMI functions from the aricode package 

(v1.0.0). Visualizations were prepared using ggplot2 and ComplexHeatmap packages. 
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TUMOR SUBCLONAL RECONSTRUCTION PIPELINES –  

COMPARISON OF RESULTS 

Abstract 

Tumors arise in a complex evolutionary process, which leads to the development of  

a heterogeneous population of malignant cells, composed of distinct cell subpopulations 

called clones. This clonal heterogeneity has been associated with cancer relapse and 
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drug resistance, both leading to poor prognosis. Among the methods of clonal 

heterogeneity analysis important place belongs to the algorithms that use bulk DNA 

sequencing data to identify subclonal tumor populations. Unfortunately, although many 

such tools have been developed during the last decade, no gold standard of analysis has 

been yet established. Here we compare the results of 4 analysis pipelines consisting of 

two clonal reconstruction algorithms: PyClone and PhyloWGS, and two CNV callers: 

FACETS and Titan. We found, that aside from the known factors affecting results like 

the choice of the CNV detection method, inaccuracies of the sample purity estimations 

are another significant source of variation. 

Keywords: clonal evolution, tumor heterogeneity, subclones, clonal reconstruction. 

 


