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Mikołaj STRYCZYŃSKI, Ewa MAJCHRZAK1 

Chapter 3. MODELING OF ONCOLOGICAL HYPERTHERMIA USING 

DUAL-PHASE LAG EQUATIONS 

3.1. Introduction 

Oncological hyperthermia is a method of complementary treatment of neoplastic diseases 

which consists in the targeted application of thermal energy in the treatment of cancer.  

It is a method supporting chemotherapy and radiotherapy [1-4]. Modeling of hyperthermia 

allows one, among others, to determine the power density of external heating and the 

duration of the procedure, which will ensure the destruction of cancerous tissues. 

In this work, a single blood vessel and surrounding biological tissue with a tumor region 

is considered. The temperature distribution is described by the system of dual-phase lag 

equations (DPL) [5-8] supplemented by the boundary and initial conditions. The effect of 

the heating technique (e.g. ultrasound, microwave, etc.) is taken into account by 

introducing the source function Qext into the equation describing the temperature 

distribution in the tumor region [9]. When the heating time text is achieved, the source 

function Qext is equal to zero. The absorbed total energy density Qext text is kept constant, 

but different heating schemes (heating power density Qext and heating duration) are 

considered. The formulated problem is solved using the implicit scheme of the finite 

difference method. To estimate degree of the tumor destruction the Arrhenius integral  

is used [10-13].  
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3.2. Mathematical model 

A single blood vessel and surrounding biological tissue with a tumor region, as shown 

in Figure 3.1, is considered (axisymmetric problem). 

 
Fig. 3.1.  Domain considered 

Rys. 3.1.  Rozpatrywany obszar 

Blood temperature is described by the equation [5] 
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and cb is the specific heat of blood, ρb is the mass density of blood, λb is the thermal 

conductivity of blood, v is the blood flow velocity in the axial direction, τTb is the 

thermalization time, Qmet b is the metabolic heat source, while Tb = Tb(r, z, t) is the blood 

temperature, r, z are the spatial coordinates and t denotes the time. 

Temperature field in the tissue with a tumor is described by equation 
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and c is the specific heat, ρ is the mass density, λ is the thermal conductivity, τq is the 

relaxation time, τT is the thermalization time, wb is the blood perfusion rate, Ta is the 

arterial blood temperature, Qmet is the metabolic heat source, Qext is the source function 

associated with the external heating (heating power density) and T = T(r, z, t) is the 

tissue temperature. It should be noted that the same values of thermophysical parameters 

for tumor region and healthy tissue are assumed here. 

Only the tumor sub-domain is heated, hence 
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where text is the exposure time, while Q0 is a constant value. 

On the contact surface between blood vessel and biological tissue the continuity 

condition of temperature and heat flux is assumed 

( , ) :
b

c

b

T T
r z

q q

=
 

=
            (6) 

On the outer surface of the tissue the constant temperature (body core temperature) is 

accepted. For z = 0, z = Z the no-flux conditions are assumed. 

The initial conditions are also known [5] 
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Tissue damage can be estimated on the basis of the so-called Arrhenius integral [13] 
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where P is the pre-exponential factor, E is the activation energy, R is the universal gas 

constant (R = 8.314472), T is the temperature in Kelvin and tF is the end time of analysis. 

A value of damage integral A(r, z, tF) = 1 corresponds to a 63% probability of cell death 

at a specific point (r, z), while A(r, z, tF) = 4.6 corresponds to a 99% probability of cell 

death at this point.  

The problem formulated is solved using the implicit scheme of the finite difference 

method. The details are presented in [5-7]. 
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3.3. Results of computations 

The thermally significant blood vessel of dimensions R = 0.001 m, Z = 0.02 m is 

considered. The blood flow velocity is equal to v = 0.2 m/s. The heating target volume 

is specified as 0.0015 m ≤ r ≤ 0.0025 m and 0.005 ≤ z ≤ 0.015. The following values of 

thermophysical parameters are assumed: thermal conductivities λb = 0.488 W/(mK),  

λ = 0.5 W/(mK), specific heats cb = 3770 J/(kgK), c = 4000 J/(kgK), mass densities ρb 

= 1060 kg/m3, ρ = 1000 kg/m3, metabolic heat sources Qmet b = Qmet = 245 W/m3, blood 

perfusion rate wb = 0.5 kg/(m3s), arterial blood temperature Ta = 37℃ [5], relaxation 

times  τqb = τq = 3 s and thermalization times τTb = τT = 1 s [8]. The initial temperature 

of tissue and blood is equal to Tp = 37℃, on the outer surface of the tissue the boundary 

temperature equals 37℃. The following parameters in the Arrhenius integral (8) are 

assumed: P = 3.1·1098 1/s, E = 6.28 ·105 J/mol [9]. 

The absorbed total energy density Qext text is kept constant as 240·106 J/m3, but different 

heating schemes are taken into account:  Qext = 120 MW/m3, text = 2 s;  

Qext = 60 MW/m3, text = 4 s; Qext = 30 MW/m3, text = 8 s and Qext = 20 MW/m3, text = 12 s). 

The computations were performed until tF = 20 s. 

3.3.1. Temperature distribution 

In Figures 3.2–3.5 the temperature distribution after 20 s is shown. As can be seen, the 

method of heating the tumor affects the temperature distribution in the tissue.  

 
Fig. 3.2.  Temperature distribution after 20 s (Qext = 120 MW/m3, text = 2 s) 

Rys. 3.2.  Rozkład temperatury po 20 sekundach (Qext = 120 MW/m3, text = 2 s) 
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Fig. 3.3.  Temperature distribution after 20 s (Qext = 60 MW/m3, text = 4 s) 

Rys. 3.3.  Rozkład temperatury po 20 sekundach (Qext = 60 MW/m3, text = 4 s) 

 
Fig. 3.4.  Temperature distribution after 20 s (Qext = 30 MW/m3, text = 8 s) 

Rys. 3.4.  Rozkład temperatury po 20 sekundach (Qext = 30 MW/m3, text = 8 s) 

 
Fig. 3.5.  Temperature distribution after 20 s (Qext = 20 MW/m3, text = 12 s) 

Rys. 3.5.  Rozkład temperatury po 20 sekundach (Qext = 20 MW/m3, text = 12 s) 

In Figure 3.6 the temperature courses at the central point of tumor are presented. In the 

case of short heating duration the temperature rises faster and reaches higher values 

compared to the longer heating time. 

3.3.2. Arrhenius integral 

Figures 3.7–3.10 illustrate the distribution of Arrhenius integral after 20 seconds for 

various heating schemes. Dashed lines correspond to the tumor region. Sub-domain 

between 1 and 4.6 corresponds to the [66% – 99%] probability of tissue destruction, 

while sub-domain where Arrhenius integral is greater than or equal to 4.6 corresponds 

to the 99% probability of tissue destruction.  
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As can be seen, for heating scheme: Qext = 20 MW/m3, text = 12 s (Figure 3.9) the 

cancerous tissue is not destroyed. The most effective heating scheme is: Qext = 120 MW/m3 

and text = 2 s (Figure 3.7).  

 

 
Fig. 3.6.  Temperature history at the central point of tumor 

Rys. 3.6.  Przebieg temperatury w centralnym punkcie nowotworu 

 
Fig. 3.7.  Arrhenius integral distribution after 20 s (Qext = 120 MW/m3, text = 2 s) 

Rys. 3.7.  Rozkład całki Arrheniusa po 20 sekundach (Qext = 120 MW/m3, text = 2 s) 

 
Fig. 3.8.  Arrhenius integral distribution after 20 s (Qext = 60 MW/m3, text = 4 s) 

Rys. 3.8.  Rozkład całki Arrheniusa po 20 sekundach (Qext = 60 MW/m3, text = 4 s) 
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Fig. 3.9.  Arrhenius integral distribution after 20 s (Qext = 30 MW/m3, text = 8 s) 

Rys. 3.9. Rozkład całki Arrheniusa po 20 sekundach (Qext = 30 MW/m3, text = 8 s) 

 
Fig. 3.10.    Arrhenius integral distribution after 20 s (Qext = 20 MW/m3, text = 12 s) 

Rys. 3.10.  Rozkład całki Arrheniusa po 20 sekundach (Qext = 20 MW/m3, text = 12 s) 

3.4. Conculsions 

The single blood vessel surrounded by the biological tissue with a tumor has been 

considered. Different heating schemes of tumor, it means heating power density Qext and 

heating duration text, under the assumption that the total energy density Qext text is 

constant, have been taken into account. The blood and tissue temperature fields have 

been described by the dual-phase lag equations supplemented by appropriate boundary 

and initial conditions. The problem has been solved by implicit scheme of finite 

difference method.  

The calculations carried out showed that a short heating time and high heating power 

density guarantee successful tumor destruction.  
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MODELING OF ONCOLOGICAL HYPERTHERMIA USING  

DUAL-PHASE LAG EQUATIONS 

Abstract 

In the paper a single blood vessel and surrounding biological tissue with a tumor region 

is considered. The blood and tissue temperature fields are described by the dual-phase 

lag equations supplemented by appropriate boundary and initial conditions. The degree 

of destruction of tumor was estimated on the basis of the so-called Arrhenius integrals. 

The problem was solved using the implicit scheme of the finite difference method. The 

main purpose of the work is to analyze various heating schemes (power density and 

heating duration text) and to investigate which of the schemes is more effective in order 

to destroy the tumor tissue: short heating time and high power density, or long heating 

time and low power density. It turned out that the first of these options is more effective.  

Keywords: oncological hyperthermia, dual-phase lag equation, finite difference 

method, Arrhenius integral. 

 


