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Anna SKORUPA1, Alicja PIASECKA-BELKHAYAT 

Chapter 5. APPLICATION OF FUZZY FINITE DIFFERENCE  

METHOD IN HEAT AND MASS TRANSFER DURING 

CRYOPRESERVATION PROCESS 

5.1. Introduction 

Cryopreservation is a process in which organs, cells, tissues or other biological 

constructs are preserved by cooling samples to a very low temperature (between –80ºC 

to –196ºC). During cryopreservation, the biological activity of the tissues is reduced or 

completely stopped and then the physiological temperature is restored again. Successful 

cryopreservation does not significantly affect the basic functions of cryopreserved 

biological tissues or cells, such as their mechanical properties [1,2]. Cryopreservation 

has many practical applications, including medicine. The process is used to preserve 

stem cells (tissue engineering research) or to cryobank transported organs  

(in transplantology) [3]. 

In recent years, the success of cryopreservation of cells and tissues has gradually 

increased, thanks to the use of cryoprotectants and temperature control equipment. It is 

important to choose, depending on the cell type, the right cooling rate, heating rate and 

the CPA, which is used to reduce the amount of ice formed at a given temperature.  

A cryoprotectant that is commonly used during an articular cartilage cryopreservation 

is dimethyl sulfoxide (DMSO). In order to avoid the formation of ice regardless of the 

cooling and heating rates, the liquidus tracking method is used. In the LT process, the 

temperature decreases/increases gradually during addition/removal of cryoprotectant, 

and the thermophysical state of the articular cartilage sample remains on or above the 

liquidus line so that no ice is formed, independently of the cooling/warming rate [4, 5]. 
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In the present study, the numerical analysis of the articular cartilage sample 

cryopreservation process including heat and mass transfer proceeding is presented. In 

the model, the liquidus-tracking protocol for the cryopreserved articular cartilage sample 

is simulated. Additionally, in the mathematical model, thermophysical parameters such 

as thermal conductivity and volumetric specific heat are given as fuzzy numbers because 

they cannot be determined in a deterministic way and their values are approximated in 

an experimental way. The problem discussed has been solved using the fuzzy finite 

difference method algorithm using α-cuts and the rules of directed interval arithmetic 

[6, 7]. The application of α-cuts allows one to simplify mathematical operations in the 

fuzzy number set. In the research, the thermal proceeding is modelled using the fuzzy 

Fourier equation, whereas the cryoprotectant transport through extracellular matrix are 

described by fuzzy mass transfer equation. 

5.2. Fuzzy governing equations 

Thermal processes proceeding in the axially symmetrical heterogeneous articular 

cartilage sample can be described by the fuzzy energy equation [5,8] 
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where   is the fuzzy thermal conductivity, c  is the fuzzy volumetric specific heat, T  is 

the fuzzy temperature, t is the time, r and z denote the cylindrical coordinates. 

The considered equation (1) is supplemented by the boundary conditions of the 2nd or 

3rd type (see Fig. 5.1) and initial condition 
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where bulkT  is the temperature of the bathing solution, T0 is the initial temperature and γ 

is the the natural convection heat transfer coefficient [5,8]. 

 
Fig. 5.1.  Domain considered and boundary conditions 

Rys. 5.1.  Schemat rozpatrywanego obszaru oraz warunki brzegowe 

The modelling of the cryoprotectant transport through the extracellular matrix can be 

written as follows 
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where 
dC  is the fuzzy cryoprotectant concentration in the extracellular matrix, while dD

is the fuzzy diffusion coefficient of the cryoprotectant in the extracellular matrix 

estimated by the Einstein-Stokes equation [8, 9] 
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where Bk  is the Boltzmann constant, sr  is the radius of the spherical particle molecule 

and   is the dynamic viscosity.  

The mathematical model (see equation (3)) should be supplemented by the boundary-

initial conditions (see Fig. 5.1) 
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where 
bulkC  is the cryoprotectant concentration in the bathing solution (the coefficient 

0.9 relates to the real mass exchange between the sample and the bathing solution) and 

C0 is the initial cryoprotectant concentration [5, 8]. 

The presented mathematical model does not include the phenomenon of phase changes. 

This is due to the fact that the LT method is used to model heat and mass transfer. The 

LT protocol regulates the temperature and concentration in such a way that the 

temperature of the sample is above or on the liquidus line, which eliminates the 

probability of ice crystallization in cells – see the calculated eutectic temperatures and 

the melting points of tissue in [4]. 

5.3. Fuzzy finite difference method 

Numerical model of thermal processes and mass transfer proceeding in domain of tissue 

is based on the fuzzy finite difference method in the version presented in [6, 10]. At the 

beginning, a time grid with a constant step Δt and a geometrical mesh are introduced. 

The boundary nodes are located at the distance 0.5 h or 0.5 k with respect to the real 

boundary (h, k are the steps of regular mesh in directions r and z), respectively. 

The approximate form of the interval energy equation (1) for the internal nodes ( , )i j

and the transition 1f ft t− →  is the following 
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are the shape functions of differential mesh, while the fuzzy thermal resistances are 

defined as follows: 
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The final approximate form of the interval mass equation (3) for the internal nodes ( , )i j

and the transition 1f ft t− →  is the following  
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where the fuzzy diffusion resistances between the central node and the adjoining ones 

are the following: 
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The system of equations (6) and (9) has been solved using the assumption of the stability 

condition for explicit differential scheme [10]. The method of attaching boundary 

conditions is discussed in detail in [8]. 

More information about the fuzzy finite difference method and fuzzy trapezoidal 

numbers used in the next part of the paper can be found in [6, 7]. 

5.4. Results of computations 

As a numerical example, the heat and mass transport in the homogenous 

cylindrical articular cartilage sample of dimensions H = 1 mm and R = 3 mm  

has been anlysed. The following thermophysical parameters as fuzzy  

trapezoidal numbers have been introduced: thermal conductivity 

 0.05 , 0.025 , 0.025 , 0.05 = −  −  +  +   and volumetric specific heat 
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 0.05 , 0.025 , 0.025 , 0.05c c c c c c c c c= − − + + , where λ = 0.518 W·m-1·K-1 and  

c = 3.924·106 J·m-3·K-1. The mathematical model has also been supplemented by: initial 

temperature in tissue domain T0 = 22°C, initial cryoprotectant concentration C0 = 0% 

(w/w) and heat transfer coefficient γ = 525 W·m-2·K−1. Additionally, to determine the 

diffusion coefficient, the following input data have been used: the Boltzmann constant 

kB = 1.38·10−23 J·K−1, radius of the spherical particle molecule rs = 2.541·10−10 m and 

the dynamic viscosity η = 1.996·10−3 Pa·s [5, 8]. 

In this work, the LT protocol proposed by Pegg et al. [4] and improved by Yu et al. [5] 

was applied. It consists of seven steps in cooling and addition phase and six steps in 

warming and removal phase. This approach prevents ice crystal formation without 

causing toxicity, because temperature and concentration of bathing solution for each 

step are properly regulated. The values of temperature (Tbulk) and concentration (Cbulk) 

of bathing solution in respective steps, which refer to boundary conditions in numerical 

model, can be found in Tab. 5.1. 

Table 5.1 

The assumption of the LT protocol [5] 

Phase Step Time 
Temperature  

of bathing solution 

Concentration  

of bathing solution 

  t [min] Tbulk [ºC] Cbulk [%(w/w)] 

C
o
o
li

n
g
  

an
d

 a
d

d
it

io
n

 

1 10 22 10 

2 9.8 22 20 

3 18.2 -5 29 

4 25 -8.5 38 

5 19.8 -16 47 

6 26.4 -23 56 

7 23.8 -35 63 

W
ar

m
in

g
  

an
d

 r
em

o
v

al
 

1 23.8 -35 56 

2 26.4 -23 47 

3 19.8 -16 38 

4 25 -8.5 29 

5 18.2 -5 20 

6 29.85 22 0 

The simulaton has been performed using the finite difference method (FDM) with the 

rules based on fuzzy analysis for trapezoidal numbers with application of α-cuts and the 
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directed interval arithmetic [7, 8]. The following assumption in numerical model was 

introduced: time step ∆t = 0.001 s, mesh steps h = 0.0001 m and k = 0.00005 m, numbers 

of nodes: 10 x 30. 

Fig. 5.2 illustrates the history of the temperature over time for transition from 22°C to  

–5°C from step 2 to step 3 in the cooling and addition phase for α equal to 0 and 0.75, 

where two curves represent the beginning and the end of α-cuts. The obtained results 

refer to the point with the coordinates r = 0.1 mm and z = 0.45 mm.  

Fig. 5.3 shows the history of the concentration over time for transition from 22°C to  

–5°C from step 2 to step 3 in the cooling and addition phase for the same values of 

parameter α and in the same point. The gaps between the lines on the graphs are narrow, 

therefore the zoom for 19-20 s was made. 

 

(a) 

 

(b) 

Fig. 5.2.  History of temperature over time from 22ºC to –5ºC for: α = 0; (b) α = 0.75 

Rys. 5.2.  Wykres zależności temperatury od czasu przy przejściu z 22ºC do –5ºC dla: (a) α = 0;  

(b) α = 0.75 

 

(a)  

 

(b)  

Fig. 5.3.  History of concentration over time from 22ºC to –5ºC for: α = 0; (b) α = 0.75 

Rys. 5.3.  Wykres zależności koncentracji od czasu przy przejściu z 22ºC do –5ºC dla: (a) α = 0;  

(b) α = 0.75 
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Table 5.2 contains a comparison of obtained temperatures and concentration with the 

values given by Yu et al. [5]. The computed interval temperatures coincide with the 

values proposed in the experiment. On the other hand, the concentrations determined in 

the simulation differ from the values both suggested in the experiment and studied by 

Yu et al. [5]. The discrepancies are visible mainly for those steps, in which higher 

concentration of bathing solution is assumed (e.g. step 7 in the cooling and addition 

phase or step 1 in the heating and removal phase). 

Table 5.2 

Interval values of temeprature and concetration at the end of each step 

Phase Step Temperature [°C] Concentration [%(w/w)] 

  
proposed 

in [5] 

obtained  

in simulation 

proposed 

in [5] 

calculated 

in [5] 

obtained  

in simulation 

   α = 0 α = 0.75   α = 0 α = 0.75 

C
o
o
li

n
g
  

a
n

d
 a

d
d

it
io

n
 

1. 22 
[22.00, 

22.00] 

[22.00, 

22.00] 
10 6.80 

[7.839, 

7.839] 

[7.839, 

7.839] 

2. 22 
[22.00, 

22.00] 

[22.00, 

22.00] 
20 15.73 

[16.663, 

16.663] 

[16.663, 

16.663] 

3. -5 
[-5.51, 

-4.54] 

[-5.31, 

-4.70] 
29 23.23 

[25.837, 

25.840] 

[25.838, 

25.840] 

4. -8.5 
[-9.37, 

-7.71] 

[-9.03, 

-7.00] 
38 32.22 

[34.138, 

34.140] 

[34.139, 

34.140] 

5. -16 
[-17.64, 

-14.51] 

[-17.00, 

-15.05] 
47 37.32 

[42.096, 

42.106] 

[42.099, 

42.104] 

6. -23 
[-25.36, 

-20.86] 

[-24.44, 

-21.64] 
56 44.30 

[50.336, 

50.342] 

[50.337, 

50.341] 

7. -35 
[-38.58, 

-31.75] 

[-37.20, 

-32.93] 
63 47.50 

[56.595, 

56.608] 

[56.598, 

56.606] 

W
a
rm

in
g
  

a
n

d
 r

em
o
v
a
l 

1. -35 
[-38.58, 

-31.75] 

[-37.20, 

-32.93] 
56 - 

[50.503, 

50.491] 

[50.501, 

50.493] 

2. -23 
[-25.36, 

-20.86] 

[-24.44, 

-21.64] 
47 - 

[42.364, 

42.358] 

[42.362, 

42.359] 

3. -16 
[-17.64, 

-14.51] 

[-17.00, 

-15.05] 
38 - 

[34.404, 

34.394] 

[34.402, 

34.396] 

4. -8.5 
[-9.37, 

-7.71] 

[-9.03, 

-7.00] 
29 - 

[26.161, 

26.159] 

[26.162, 

26.160] 

5. -5 
[-5.51, 

-4.54] 

[-5.31, 

-4.70] 
20 - 

[18.236, 

18.233] 

[18.236, 

18.233] 

6. 22 
[22.00, 

22.00] 

[22.00, 

22.00] 
0 - 

[0.023, 

0.023] 

[0.023, 

0.023] 
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Figure 5.4 presents results of calculation at the given point after 20 s of step 3 in cooling 

and addition phase for particular α-cuts. It can be seen that the intervals between 

respective temperatures or concentrations are wider for lower values of parameter α. 

 

(a) 

 

(b) 

Fig. 5.4.  Interval temperature (a) and interval concentration (b) at the given node after 20 s of step 3 in  

cooling and addition phase for chosen values of parameter α. 

Rys. 5.4. Przedziały temperatur (a) oraz przedziały koncentracji (b) w danym węźle po 20 s kroku 3 w fazie  

chłodzenia i dodawania dla wybranych wartości parametru α. 

5.5. Conclusions 

In the paper, the numerical analysis of heat and mass transfer phenomena during 

crypreservation is presented. The process is considered in the 2D axialy symmetrical 

articular cartilage sample. The discussed problem has been solved using fuzzy Fourier 

equation and fuzzy mass diffusion equation. In the numerical simulation, the fuzzy FDM 

has been applied, assuming that the parameters, such as volumetric specific heat and 

thermal conductivity, are defined as trapezoidal fuzzy numbers.  

The application of FDM gives the solutions as intervals. This type of analysis allows for 

a better interpretation of real phenomena, because imprecise parameters determined 

experimentally are entered into the model as fuzzy numbers. 

Furthermore, using α-cuts during numerical modelling allows to avoid complicated 

arithmetic because it lets one consider fuzzy numbers as directed interval values. It can 

be also concluded that the intervals are narrower for the higher values of parameter α. 
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The obtained results have been compared with the results of the experiment. While the 

fuzzy temepratures include suggested values, the concentrations differ from the 

calculations presented in [5]. It can be caused by estimation of the diffusion coefficient 

using the Einstein–Stokes model (compared with the diffusion coefficient in [5]).  

It should be noted that obtianed data are not fully comparable. In the work of Yu et al 

[5], in addition to using a different way to calculate the diffusion coefficient, a model of 

mass transport across the cell membrane is also included. 

In the future, it is planned to extend the presented model with the mass (cryoprotectant) 

transport across cell membrane. 
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APPLICATION OF FUZZY FINITE DIFFERENCE  

METHOD IN HEAT AND MASS TRANSFER DURING 

CRYOPRESERVATION PROCESS 

Abstract 

In the paper, the numerical analysis of heat and mass transfer proceeding in the articular 

cartilage sample subjected to a cryopreservation process is presented. The two-

dimensional, axially symmetrical model with fuzzy thermophysical parameters  

is considered. The base of the heat transfer model is the fuzzy Fourier equation, while 

the phenomenon of cryoprotectant transport through the extracellular matrix is described 

by the fuzzy mass transfer equation. The liquidus tracking (LT) approach was used to 

control the temperature and the concentration of cryoprotectant (CPA) to prevent the 

formation of ice regardless of the cooling or heating rate. The problem under discussion 

was solved using the fuzzy finite difference method using α-cuts with the application  

of the rules of directed interval arithmetic. Additionally, the trapezoidal approximation 

of fuzzy articular cartilage thermophysical parameters is applied. In the final part of the 

paper, the results of numerical simulations are compared with the results of experiments 

carried out for deterministically defined thermophysical parameters. 

Keywords: cryopreservation, heat and mass transfer, fuzzy finite difference method, 

fuzzy numbers, directed interval arithmetic. 

 


