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Maciej DŁUGOSZ 

Chapter 8. GENOME VARIANT CALLING IN CONTEXT OF  

SEQUENCING READS CORRECTION 

8.1. Introduction 

Illumina DNA sequencers produce a huge amount of data in lowering costs [16] Such  

a data has a form of short (about 100–150 bp) sequences called reads. A number of reads 

applications is long: cancer mutation discovery, genetic disorders analysis, genome de 

novo assembly, and many others. Data processing have to cope with many of technical 

problems, including huge data size, not uniform reads distribution within a genome, lack 

of reads covering (i.e. originating from) some of the genome regions, reads shorter than 

many of repeating fragments of a genome, and presence of sequencing errors. 

The last problem is partially solved thanks to some built into algorithms strategies of errors 

tolerance. Besides, there was developed a group of specialized algorithms (correctors) 

aiming at the detection and elimination of the errors. The efficacy of those is often 

experimentally evaluated by simulating sequencing in silico or observing the impact of 

the correction on solving typical problems, like reads mapping. However, as the author 

knows, there is no thorough comparative analysis of such impact on real, full pipes of data 

processing. There were some tiny trials, but they were limited to two human chromosomes 

and generating simple statistics [1], or counting false-positive variants for simple model 

organism C. elegans [2]. More advanced experiments was presented in [3], however, the 

algorithm introduced therein, Coval, is a mixture of methods improving reads mapping, 

so it is not a correction algorithm sensu stricto. Moreover, the paper does not involve 

a comparison of other algorithms. 
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As variant calling (VC) is a crucial process in clinical genetic testing [4], it is necessary 

to scrupulously explore all of its aspects. In this paper, the author shows experimental 

results of the first thorough evaluation of different correction algorithms impact on variant 

calling utilizing Illumina sequencing reads. 

The experiments were performed with reads of two full genomes. A number of correctors 

were chosen to test various ideas of a correction. The corrected reads were utilized to 

perform the entire short VC process. Resulting variants sets were compared to a ground 

truth sets to measure the VC quality and, indirectly, the correction quality. Such an 

approach is a novel method of error correction algorithms evaluation. The obtained results 

give an overview on existing correctors quality and verify reasonability of correction 

utilization in VC application. 

8.2. Sequencing data processing 

8.2.1. Error correction 

Typically, algorithms deployed to correct reads errors exploit, i.a., redundancy of the 

sequencing data. The redundancy level is measured with sequencing depth, which is 

defined as a ratio of the sum of all reads lengths and the genome length. 

Error correction efficacy and strategies are varied. In a paper [5] correctors were 

categorized into three types: (i) k-spectrum-based, (ii) suffix tree/array-based, 

(iii) multiple sequence alignment-based. Also a type (iv) hidden Markov-model-based 

was proposed [6]. Moreover, some of the algorithms fulfill traits of different groups 

(hybrid algorithms), and some of them are difficult to include to any of them. 

8.2.2. Variant calling 

The process of VC is a multi-stage task. Typically, it includes mapping of the reads to the 

reference genome, which is defined as aligning reads to the genome fragments, which 

sequences characterise high similarity to those reads, which suggests, that the reads 

originate from that fragments. Existing differences between reads and the genome 

fragment sequences can be caused by variants present in the sequenced genome or by 

other factors, like sequencing errors. 
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Reads mapping is a general task of different reads processing pipelines. In the context of 

VC it is followed by specialized processes responsible for proper variant determining, 

filtering, or annotating. In one of the simplest situations as a result two types of variants 

are obtained: single nucleotide variants (SNVs), which are differences of single genome 

bases, and short indels, which are leaks of short sequences in the proband genome or 

additional sequences appearing there. Evaluation of VC quality is possible with the 

utilization of available for some organisms ground truth variant sets, which represent our 

best knowledge about variants present in the sample. 

8.3. Methods and data 

8.3.1. Experimental data 

The experiments aimed at determining the impact of Illumina reads correction on the 

quality of variant calling results. The experiments performed on a few sets of reads. It has 

to be emphasised, that availability of variant ground truth sets is limited. One of such sets 

for human is the oft-used Genome in a Bottle [7], however, the choice of the second 

organism posed a problem due to a leak of publicly available sets. Finally, Arabidopsis 

thaliana was selected, which is a model organism with ground truth sets introduced as  

a result of 1001 Genomes Project [8]. In the case of human, there were also available 

confident call regions file, which was utilized in the experiments. 

The following reads sets were used: SRR1945754 of sequencing depth ca. 180× for A. 

thaliana, and ERR174324, ERR174325, ERR174326 for human, each of the depth ca. 

15×. To parametrize the sequencing depth, the data was prepared as followes: 

• for A. thaliana pairs of reads were randomly shuffled, and the subset of the pairs was 

extracted to achieve depths of 30×, 60×, 90×, 

• for H. sapiens three sets of reads pairs were used: ERR174324, concatenation of 

ERR174324 and ERR174325 and concatenation of all of three ones; such an approach 

was possible due to performing sequencing on the same sample, with the same 

machine etc.; it allowed to obtain sets of depths ca. 15×, 30×, 45×. 
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8.3.2. Error correction algorithms 

Due to a plenty of existing algorithms, the limited set of them was selected, treating as 

criteria of choice being in the group of newest, most popular, or characterising of best 

quality noticed by other authors. The highest popularity of (i) algorithm type legitimizes 

its overrepresentation, whereas (iv) is represented only by one algorithm (PREMIER [9]) 

and as it is not publicly available, it was not analysed in the experiments. Fiona [10], 

initially appointed to experiments, representing the hybrid solution of groups (ii) and (iii), 

was also omitted, as its resulting reads had quality indicators decreased to the level, that 

caused VC returning no results. Table 8.1 presents correction algorithms compared in the 

experiments. 

Table 8.1 

Correction algorithms 

Algorithm Type Version Describing paper 

RECKONER (i) 1.2 [11] 

Musket (i) 1.1 [12] 

RACER (i) – [13] 

BLESS (i) 1.02 [6] 

Blue (i) 1.1.3 [14] 

Lighter (i) 1.1.2 [15] 

BFC (i) BFC-ht, version r181 [2] 

Karect (ii) 1.0 [16] 

SAMDUDE others Uploaded 2 May, 2018 [1] 

The majority of the algorithms need parametrization. The mostly required parameter is 

the oligomer (k-mer) length k. It was determined by performing a sequence of corrections 

with different odd k values and, if the correction succeeded, followed by VC. The value 

of k resulting in the best value in terms of F1-score was chosen. Actually, some of the 

algorithms have more sophisticated methods of the parameter determination, however, 

they are rather rules-of-thumb (e.g. BLESS needs to get k maximising the number of 

correcting changes in reads and such that the number of k-mers in data, speculated to 

represent correct sequences, be in some range, depending on a genome length). Choosing 

the best k gives insight into the potential of the algorithms. As k-mer length determining 

is an interesting problem itself, some of its results were observed. 

The other parameters were genome length, sequencing depth (which ones were 

determined with information from a database [17]), number of reads k-mers (which was 



93 

 

determined by a tool for k-mers counting KMC [18]), ploidy for Karect (haploid for  

A. thaliana and diploid for H. sapiens). For Lighter probability α, accordantly with authors 

guidelines, value 3.5/(sequencing depth) was chosen. Musket and Blue required so-called 

cutoff threshold and it was determined in a way, as RECKONER does. 

All the input reads were paired. For correctors not supporting paired reads, the paired files 

were concatenated (by attaching a file of the latter reads to the end of a file of the first 

reads), then corrected, and finally split in a site of the concatenation. 

8.3.3. Variant calling pipeline and its evaluation 

To perform VC the reads were mapped with BWA[19] and variants were called with 

Strelka [20]. To evaluate the VC quality tool hap.py [21] was used. It returns statistics of 

variants set: TP, FP, FN, meaning as follows: number of detected true positive, false 

positive, and false negative (missing) variants. To compare results, it is convenient to 

define sensitivity (as TP/(TP+FN)), precision (as TP/(TP+FP)), and F1-score as their 

harmonic mean. All the values are independently defined for SNVs and indels. 

8.4. Results 

The experiments were performed on a server equipped with 256 GB of RAM and two 

Intel Xeon E5-2670 v3 processors, 12 cores (24 threads) each. The timeout limit of 

correction was set to 24 hours for every run. 

8.4.1. Variant calling results 

Fig. 8.1 shows the quality of VC for A. thaliana, separately for SNVs and short indels. To 

give a deeper view into the results, adequate sensitivity and precision graphs were shown. 

The “(raw)” designation denotes reads with no correction, acting as control cases. Figure 

8.2 shows analogical results for H. sapiens. 
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Fig. 8.1.  VC results for A. thaliana; † – timeout. 

Rys. 8.1. Wyniki detekcji wariantów dla A. thaliana. 

Definitely better results of human VC are caused by the confident call regions utilization. 

It was observed, then after resignation of that, results were weaker, but the comparison of 

different correctors was analogical (results not shown). 
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Fig. 8.2.  VC results for H. sapiens; for selected RACER results numbers are given instead of the bars;  

✻ – lack of memory; † – timeout; ‡ – algorithm crashes 

Rys. 8.2.  Wyniki detekcji wariantów dla H. sapiens; dla wybranych wyników algorytmu RACER 

zamieszczono liczby zamiast słupków 

For all the A. thaliana experiments a low precision was observed. In many cases the 

correction caused increase of the quality, however, some of the algorithms caused its 

decline. The best algorithms was BFC (for SNVs) and Musket (for indels). Interesting is, 

that increasing the sequencing depth caused significant precision decline. 
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In the case of H. sapiens, Musket and Lighter return results of the same quality as the 

uncorrected data, what suggests, they actually do not correct the reads. They were run with  

a small value of k=13, as bigger values resulted in even weaker quality. Unfortunately, in 

most of the other cases the results were worse than before the correction. It means, that the 

correction destroyed the reads. Especially, the decrease of quality is visible for sensitivity, 

what means, that less number of variants is detected; as in most of the cases precision did not 

changed significantly, correction did not caused appearing a non-existent variants. For this 

organism increasing sequencing depth typically caused quality improvement in terms of all 

the measures. 

It is noticeable, that RACER worked poorly for low sequencing depth reads. SAMDUDE 

finally was able to correct only the smallest set of the reads. As Blue crashed in all the human 

reads sets, its results are available only for A. thaliana. 

8.4.2. Oligomer length impact 

 
Fig. 8.3.  Oligomer length impact on A. thaliana VC; sequencing depth 60× 

Rys. 8.3.  Wpływ długości oligomeru na detekcję wariantów A. thaliana; głębokość sekwencjonowania 60× 

 
Fig. 8.4.  Oligomer length impact on H. sapiens VC; sequencing depth 30× 

Rys. 8.4.  Wpływ długości oligomeru na detekcję wariantów H. sapiens; głębokość sekwencjonowania 30× 
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Fig. 8.3 show the k-mer length impact on F1-score for A. thaliana and H. sapiens, 

respectively. In some cases, the best value was the bound of the tested k values sequence. 

It means, that the following values caused some problems with its execution. Lighter 

undergoes the highest impact of k-mer length. In the case of Lighter and Musket the 

aforementioned observation, that they achieve the best results for small k values is visible 

(but they rather do not perform any correction). 

8.5. Summary 

The results show, that in the case of A. thaliana performing error correction is reasoned, 

as it allows slightly better results to be obtained. However, despite a significant number 

of correction algorithms and thorough analysis of the k-mer length, the differences are not 

huge, therefore utilizing them has not to be treated as a crucial part of variant calling. 

Unfortunately, in the case of long, mostly repeated human genome, the correction even 

causes the results quality decline. 

In some cases correction k-mer length impact is not significant for variant calling, but in 

the others is crucial. It means, that it is necessary to put a big effort to determine this value 

properly. 

It has to be in mind, that error correction is an additional stage of a data processing. As 

experiments prove, some of the algorithms are not able to correct reads in a day, which is 

rather a liberal limit. Requiring such a long time in practice disqualifies an algorithm. 
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GENOME VARIANT CALLING IN CONTEXT OF  

SEQUENCING READS CORRECTION 

Abstract 

One of the most widely used tool in genomics is DNA sequencing, especially of Illumina 

technology. Its multiple applications include variant calling, which aims at determining 

variants present in a proband genome. However, presence of sequencing errors could 

impact quality of calling results. There has not been performed thorough analysis of error 

correction efficacy in terms of variant calling. This paper addresses that problem, for 

different state-of-the-art correction algorithms and two different-sized genomes. 

Moreover, the impact of oligomer length – main parameter of many of correction 

algorithms – on results quality is shown. 

Keywords: DNA sequencing, variant calling, read error correction. 

 


