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PROTEOMIC DATABASES IN THE MASS SPECTRA ANALYSIS – 
ARCHITECTURE OF SOFTWARE OF COMPREHENSIVE MASS 
SPECTROMETRY DATA PROCESSING 

Summary. This paper presents assumptions of the protein mass spectra analysis 
software. All the spectra are modeled with Gaussian Mixture Models. Estimation of 
model parameters is done by means of an Expectation-Maximization algorithm. The 
obtained parameters are used for a further biological analysis. The software is 
integrated with four huge protein databases available on-line. The biological 
information about proteins may be achieved on the chosen level of some detail.  
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ZASTOSOWANIE MIESZANIN GAUSSOWSKICH ORAZ 
PROTEOMICZNYCH BAZ DANYCH W ANALIZIE WIDM 
MASOWYCH – ARCHITEKTURA SYSTEMU INFORMATYCZNEGO 
KOMPLEKSOWEGO PRZETWARZANIA DANYCH 
SPEKTROMETRYCZNYCH 

Streszczenie. Artykuł przedstawia założenia systemu służącego analizie widm 
masowych białek. Widma są modelowane za pomocą mieszanin rozkładów 
normalnych. Oszacowanie ich parametrów oparte jest na algorytmie Expectation-
Maximization. Uzyskane parametry są poddawane dalszej analizie biologicznej. 
System jest zintegrowany z czterema dużymi białkowymi bazami danych dostępnymi 
on-line. Informacja biologiczna dotycząca zawartych w widmie białek może być 
uzyskana na wybranym stopniu szczegółowości. 

Słowa kluczowe: mieszaniny rozkładów normalnych, spektrometria masowa, 
białkowe bazy danych  
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1. Introduction 

The presented project is dedicated to a mass spectrometry data analysis. The mass 
spectrometry is a widely used technique of tissue samples processing. It performs a samples 
ionization. Ions obtained in this process are accelerated by an electric field and finally hit in 
a detector. The goal of a mass spectrometry is to measure the mass due to charge (m/z) 
values. M/z values and ions intensities are presented in  form of the mass spectrum. This 
technique may be applied in the determination of compounds isotopic composition, 
compounds identification and compounds mixtures, compounds structure determination. In 
some medical and biological application mass spectrometry can be used for early diagnosis, 
monitoring disease progression or treatments effects [1]. 

Mass spectrometry techniques differ in types of ion source and mass analyzers. The 
MALDI-TOF [4] technique is widely applicable in a proteomic research. The MALDI 
(Matrix-Assisted Laser Desorption/Ionization) is known as a soft ionization technique. These 
samples are mixed with a highly absorbing matrix, which, when bombarded with a laser, 
stimulates process of laser energy transformation into the excitation energy [2]. After this 
process analyte molecules are sputtered and spared. The TOF (time of flight) is a type of 
detector which determines the mass of ions. It is done on the basis of time of particular ions 
drift through the spectrometer. Obtained in a such way velocities and intensities [2] of ions 
are proportional to the mass-to-charge (m/z) ratio. 

The row mass spectra obtained from the spectrometer need before analysis some 
preprocessing steps. Reliable results of analysis may be achieved after use of a set of steps 
involving: binning, interpolation, normalization, baseline correction, normalization, 
denoising, peaks detection [3] and alignment [2]. The sort of used preprocessing techniques 
depends on peaks detection and quantification method. One of the most important 
preprocessing steps is denoising, especially a baseline correction. Baseline is a special case of 
noise, intensifying especially in initial part of the spectrum, where M/Z values are low. 
Removal of this kind of noise flattens and averages the spectrum. The baseline correction is 
essential for further analysis and improves the quality of it. It is usually performed with 
multiple shifted windows with defined width. Normalization and interpolation are useful 
techniques helpful analyzing and comparing few spectra simultaneously. Interpolation is 
useful during the unification of measurements points [5] along with m/z axis of all spectra. 
Normalization [4] is scaling all spectra to a single value of area under the curve. This scaling 
is usually done forthe total ion current (TIC) value or for the constant noise. 

The MALDI-TOF technique has an extensive application in the proteomic research. 
Spectrometry data usually has a form of mass spectrum, implementing dependency M/Z 
values (horizontal axis) and ions intensities (vertical axis). Proteomic data are of a great 
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importance for the problem of an early-stage cancer detection. MALDI, as well as SELDI 
(Surface Enhanced Laser Desorption/Ionization) provides high-resolution measurements. 
However, a problem exists is high-dimensional data sets which need to be processed in 
a reasonable time. 

In general, data sets should be analyzed as follows: preprocessing, peak detection, 
identification of biomarkers, classification [6]. There are some methodologies proposed for 
markers identification. In [7,8] were presented methodologies based on data binning, whereas 
in [9,10,6] were considered mass spectrometry peaks to represent biological information. 

Mass spectra analysis has an extensive reflection in the literature. Peaks identification 
process may be performed with usage of comparison of apex and surrounding noise level 
[11], minimal value of true peak area threshold [9,10,2] or local maxima and choose peaks 
higher than a noise-proportional, non-uniform threshold[12,13]. Also a mean spectrum may 
be applied [14] as well as peak clusters [15]. Peaks was also decomposed with a sum of 
constituent functions [16]. Dijkstra [17], Kempka [18] and Noy & Fasulo [19] proposed also 
a decomposition with mixture models. Those papers however do not use mixture models in 
the context of a biomarkers search.  

Another issue which needs to be stressed is a problem with a normalization and 
a redundancy of biological data. There are some proteomic and biological databases, which 
offer access to a more or less structured data. However, proteomics is quite a young filed of 
science and data gained by different research centers were devoid of a general enforced 
structure. Such structures are created and introduced nowadays, but it is a hard task which 
needs a lot of time to be accomplished. That is why different databases have the same data 
labeled with different standards. This makes usage of those data especially difficult in the 
context of a software development.    

2. Methods 

The method used for spectra analysis consists of Gaussian Mixture Model [20] 
(GMM)decomposition.. The single spectrum is modeled with the GMM where each peak  
representation is a particular Gaussian distribution. A proper determination of GMM 
components gives a precise spectrum decomposition. Obtained results (parameters of peaks) 
may be used for a biological context determination.  

This mixture model is defined as a combination of a finite number of single probability 
distributions. The mixture model is defined with eq. (1). 

∑
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where K  is the number of mixture components, Kkkp ,...2,1, = describes mixture parameters 

including weights ( Kkk ,...2,1, =α , ∑
=

=
K

k k1
1α ).   

Set of parameters in the mixture depends on types of included distribution. In case of 
Gaussian distribution it is a mean kμ  and a standard deviation kσ . Each mixture component is 

given also with weight, which represents its share in the whole mixture. 
Number of mixture parameters depends on a number of mixture components. Solving 

complex mixtures are needed for an algorithm, which is able to estimate parameters in 
a reasonable time with a defined accuracy. An Expectation - Maximization (EM) algorithm is 
one of well known methods of a hidden and unknown parameters estimation. Gaussians are 
a proper type of a distribution, because they are suitable for a spectra noise modeling.  

The EM algorithm is an iterative, nonlinear method. It is composed of two steps: an 
Expectation (E) and a Maximization (M) performed in a loop. A step E (eq. 2) calculates 
a conditional probability of belonging of sample xn to kth component. A step M is the most 
time consuming part of EM and it consists in calculation of new parameters values. Eq. 3 
presents a form of M step adjusted to the Gaussian distribution. 
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The EM algorithm in presented form uses only one dimensional data. Application EM 
algorithm to two dimensional mass spectrometry data needs proper modifications. 
A weighted version of EM [21, 22], was adjusted to the MS data. The second dimension 
represents intensities, which may be described as repeats of corresponding m/z values. 
Therefore, appropriate multiplications needs to be performed. A weighted version of the EM 
remains the E step unchanged (eq. 2), because the value of probability that a sample xn 
belongs to kth component does not change. So, independently of number of the xn repetition 
in a vector, calculated probability is always the same. The calculations of the M step need to 
be performed in a slightly different way. Proper formulas are presented in eq. 4.  
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The EM algorithm is needed for initial values. It is essential to choose proper initial 

values, because it reduces time needed for calculations and probability of local maximum 
problem occurrence. Stopping in a local maximum may lead to an inaccuracy and a poor 
repeatability of results. 

Two more issues concerns the number of mixture components and the stop criterion. The 
number of mixture components needs to be known before the run of the algorithm. It may be 
estimated with a Bayesian Information Criterion (BIC) [23]. This criterion is based on a value 
of a likelihood function. The optimal number of criterion should maximizes eq. (5) 

( ) ( )nkLBICkxp lnln2|ln2 +⋅−=≈⋅−  (5) 

where x  is a sample of size n and k  is the number of estimation parameters. )|( kxp  is 
the likelihood of the observed data. L  is the maximized value of the likelihood function for 
the estimated model.  

To estimate the number of components differently we can use a standard peaks detection 
method. Such method based on fast finding local maxima and minima works. Their results 
may be used as a support in the initial parameters calculation and estimation of number of 
components. The choice of convergence criterion and accuracy is equally important. Criteria 
may be based on consecutive values of parameters or likelihood function and it may be 
calculated with a chosen distance. The use of the likelihood function (eq. 5) enables an 
employing maximum likelihood rule which states, that the higher value of likelihood function 
is, the better parameters estimation can be gained. The usage of the maximum likelihood rule 
gives a certainty of the stability, because of the monotonicity of the likelihood function. 
A broader view of the stop criterion problem is available in [24].  

3. Software project  

This article presents a project of the mass spectra analysis software. The idea of the 
system is to enable a decomposition of a single or a multiple spectra. There also should be 
possible to perform a biological analysis of achieved results. Therefore, presented project is 
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divided into two parts. The first one is dedicated to the spectra analysis. The second one is 
responsible for a biological context of achieved information.  

Both modules are indented to work independently. They might exchange data or be used 
as two separated programs (fig. 1).  
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Detailed conditions

General conditions
Form

MS data

1. Defining conditions and data 2. Spectra decomposition

Data

Mathematical model architecture

- variables and parameters
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- graphical interpretation
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6. Presentation and saving data

Report
DB

 
Fig. 1. A flowchart presenting data processing in the system 
Rys. 1. Schemat przedstawiający przetwarzanie danych w systemie 

  

3.1. Project of spectra analysis software  

The spectra analysis module is designed as a standalone application. It is composed of 
a main decomposition module and a few associated  sub-modules. The first level of a data 
flow diagram of  the spectra analysis module is presented at fig. 2. 

The main function of this module is the spectra decomposition  with the GMM mixture 
model. This function performs one of two possible scenarios. The first one is  processing all 
spectra sequentially, one by one using the method described in a Section 2 of this article. 
However, processing many spectra this way lengthens their calculations time, especially 
when the defined accuracy is high. In such cases the second method could be applied. This 
method performs calculations using the mean spectrum.  

The mean spectrum calculation, compared to single spectrum decomposition, needs two 
more preprocessing steps. They are: interpolation, which standardizes m/z values (X axis) 
and normalization to Total Ion Current, which is needed for a spectra adjustment. A mean 
spectrum is calculated with eq. 6:  
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represents the ith element of the intensities vector of jth spectrum. K  is the number of spectra 
in the data-set and N  is the uniformed size of all spectra.  

 
Fig. 2. DFD diagram of the spectra analysis module
Rys. 2. Diagram DFD modułu analizy widm  
  

The mean spectrum is modeled with the GMM and decomposed with the EM algorithm. 
Obtained values of means ( kμ ) and standard deviations ( kσ ) remain constant for every single 

spectrum in the set. Weights, however, needs to be obtained separately for each spectrum. 
The weight estimation is performed with widely known Least Squares methods. 

Decomposition can be done after few steps of a data preparation. It is done by additional 
modules of the software. Data in  form of a textual data are loaded and prepared in a Loading 
data module. The next step is a configuration. Settings involve a specification of : 
• a special type of decomposition (with or without mean spectrum), 
• a source and range of the EM initial data (randomization or with support of standard 

peaks determination algorithm), 
• the accuracy of calculations, 
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• the number of components, 
• preprocessing options (such as binning mask, baseline correction window, normalization 

and interpolation options, trimming and propriety checking). 
Number of components may be defined directly but also a module of= a components 

determination number could be used. This module performs support of a standard peaks 
determination algorithm and also enables the BIC simulation. The last method last longer, but 
it gives clear and precise results.  

The model checking module is designed to validate and control system settings before or 
at the beginning of decomposition. It enables viewing results of preprocessing performed by 
the Preprocessing module and checks possibility of use of defined settings. In particular, it 
enables checking baseline correction results and gives information about initial distribution 
of mixture model components. 

The mean spectrum calculation module enables checking of the mean spectrum shape 
after defined preprocessing steps.  

Results of the decomposition may be saved and transferred to the second module called 
a Biological context module. 

3.2. Project of biological context module  

This project concerns an application supporting results analysis. Results may be 
transferred directly from the spectra analysis software or they may be entered manually. The 
project assumes the possibility of passing through a four-steps path. Each step enables 
displaying data with a different level of biological context. Levels need to be achieved 
sequentially. The user may stop at any level and may go back to all previously generated 
levels. The diagram in Fig. 3 presents details of each level. 

The Level0 is responsible for loading data and it gives the possibility of user data 
uploading. There is a possibility of choosing particular MS data transferred from the spectra 
analysis software. At this level the user may give some additional information specifying 
detailed search criteria. Those criteria includes: species, the MS platform, the possibility of 
double and triple charges. These criteria may be inserted manually or loaded from the user 
profile. Registered users are also provided with the possibility of saving results and history 
viewing as well as adding comments and sending data to the other users. 

The Level1 is the m/z value level. The data chosen in Level1 are matched for further 
analysis. The m/z values are sent to an EPO-KB (Empirical Proteomic Ontology Knowledge 
Base) database [25]. The EPO-KB, after applying defined criteria, returns names of the found 
proteins. These results are obtained with a defined percentage tolerance. The results are 
presented for one spectrum at the time with references for further analysis and links to 
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original results in the EPO-KB service. References and links concerns single proteins. The 
original results include particular detailed information about a specific protein. 
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Fig. 3. Flowchart of the biological context module 
Rys. 3. Schemat działania modułu informacji biologicznej  

 
The EPO-KB is a knowledge base containing biomarkers linked to proteins, peptides and 

their modifications [26]. This database contains also information about associated diseases 
taken from the literature. Proteins and peptides are associated with a range of m/z values. 
Additional conditions like post-translational modifications, biofluids, the MS method result 
in the necessity of some defining range of m/z values instead of a single one. The EPO-KB is 
based on an OWL ontology [epo1], which represents a knowledge linking m/z values to 
peptides and proteins on the MALDI and SELDI platforms. The knowledge base enables also 
entries of the additional m/z ratio to protein links. The ontology developed in the EPO-KB 
includes such elements as an ionized method, a type of a mass spectrometer, a type of 
a matrix and a biological sample, a laser power and charging of proteins (single, double or 
triple). 

The Level2 of the biological context module is a protein level. This level is available 
after choosing proteins in the Level1. Detailed information about specific protein is obtained 
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from an UniProt database. Data are filtered by such searching criteria as a name of the protein 
and, if needed, by a species type. Displayed results contains detailed information about 
proteins, such as entry name, status of reviewing process, organism, gene names and 
identifiers, features, GO annotations. More specific information are available on original 
UniProt page of the specific protein. Links to those pages and references for further analysis 
paths are also presented. 

The UniProt database [27,28], produced by the UniProt Consortium, is repository of 
a protein sequence and an annotation data. Information are taken from the literature and other 
biological database and resources. The UniProt has implemented extended mechanisms of the 
data integration, standardization and redundancy avoidance. It is updated every 3 weeks. 
Information are available in XML and RDF formats. UniProd is composed from four main 
modules: the UniProt Archive, the UniProt Knowledgebase, the UniProt Reference Clusters 
and the UniProt Metagenomic and Environmental Sequence Database. Some of those 
databases have manually annotated records with proper literature information, the other have 
implemented some automated mechanisms. The database is extended and it covers such 
information as proteins, enzymes, biologically relevant domains and sites, post-translational 
modifications, subcellular locations, tissue specificity, splice isoforms, associated diseases or 
abnormalities as well as a history of all protein sequences and a metagenomic data. 

The Level3 of the biological context module is a genes level. The Level2 enables 
displaying detailed information about genes coding a particular protein chosen at an earlier 
level. Those information are presented through a NCBI service. Searching may be based on 
a gene name or a gene identifier, whereas the gene identifier enables to return more accurate 
and precise information about a particular gene, its role, status, lineage and related data. From 
this level there is also possibility to get a gene pathways data from the KEGG database. It is 
the level4 of the module. User may obtained such information as details of a pathway, 
a structure, sequences, references to other databases. 

The National Center for a Biotechnology Information (NCBI) [29] is an organization 
providing huge databases available online through the Entrez search engine. It provides the 
integrated database giving an access to a variety of genomes, sequence maps, chromosomes, 
integrated genetic and physical maps. This service enables finding organized information 
about organization of genes, its mappings as well as a comprehensive data about its structure, 
location, activities and association with a disease. It also makes the searching of biomarkers 
possible. It is composed of such databases as the GenBank DNA database with a widely 
known sequence comparison algorithm – BLAST. Other popular databases are: GEO 
(A Gene Expression and Hybridization Repository), dbSNP (Database of Nucleotide 
Sequence Variation) or Macromolecular Structure Databases. There are also available 
mechanisms of the data flow and processing as well as querying and linking the data. 
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The KEGG (Kyoto Encyclopedia of Genes and Genomes) [30] is a database of genomic, 
chemical and systemic functional information. It integrates plenty of tools and entry points 
such as BRITE ontologies, GENES databases or LIGAND database of chemical compounds 
and reactions. KEGG PATHWAY, responsible for mapping genomic or transcriptomic 
content of genes to the KEGG is provided also for global map of metabolic pathways. The 
KEGG, similar to other mentioned databases and services is available online and gives an 
access to resources through API, XML and FTP.  

4. Summary 

The presented project is a comprehensive bioinformatics tool enabling spectra pre-
processing and analyzing. The use of the Gaussian Mixture Model decomposition enables 
a particular work with different types of spectra and options settings support minimizes risk 
of improper parameters selection. This method is slower than common spectra analysis 
techniques based on the local maxima and minima, although the computational time is 
acceptable. The second part of the system helps in extraction of biological information. It 
enables collecting essential information in one place with the possibility to save results. 
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Omówienie 

Artykuł przedstawia założenia systemu służącego do analizy widm masowych typu 
MALDI-TOF. Główna metoda analizy widm polega na przeprowadzeniu dekompozycji 
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w oparciu o mieszaniny rozkładów normalnych. Do oszacowania ich parametrów 
wykorzystywany jest algorytm Expectation-Maximization oraz metoda Największej 
Wiarogodności. Przed analizą właściwą dane muszą być poddane analizie wstępnej, która 
pozwoli na ich normalizację, uśrednienie, usunięcie z nich szumu.  

Uzyskane w ten sposób wyniki mogą zostać poddane dalszej analizie. Polega ona na 
zbadaniu biologicznych właściwości próbki. Uzyskane w procesie analizy wartości m/z 
umożliwiają określanie składu białkowego próbki oraz uzyskaniu informacji o znalezionych 
białkach i genach je kodujących. System jest zintegrowany z czterema dużymi białkowymi 
bazami danych dostępnymi on-line. Informacja biologiczna dotycząca zawartych w widmie 
białek może być uzyskana na wybranym stopniu szczegółowości. Stopnie te obejmują: 
poziom wartości stosunku masy do ładunku, poziom białek, genów oraz ścieżek genowych. 
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