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IMAGE COLORIZATION WITH COMPETITIVE PROPAGATION 
PATHS AND CHROMINANCE BLENDING 

Summary. This paper presents a new method for image colorization based on 
manually added scribbles. First, we determine color propagation paths in the image by 
minimizing geodesic distance from the scribbles using Dijkstra algorithm. After that, 
blending distance is calculated along each path to determine final chrominance. The 
results are compared with those obtained with other existing methods. 
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KOLORYZACJA OBRAZÓW ZA POMOCĄ RYWALIZUJĄCYCH 
ŚCIEŻEK PROPAGACJI ORAZ MIESZANIA CHROMINANCJI 

Streszczenie. Artykuł przedstawia nową metodę koloryzacji obrazów na podsta-
wie ręcznie naniesionych mazów. Pierwszym krokiem jest znalezienie ścieżek propa-
gacji barwy w obrazie poprzez minimalizację odległości za pomocą algorytmu Dijk-
stry. Następnie obliczana jest odległość barwna wzdłuż każdej wyznaczonej ścieżki 
i na jej podstawie dokonywane jest mieszanie chrominancji. Wyniki działania 
algorytmu są porównane z otrzymanymi za pomocą innych istniejących metod. 

Słowa kluczowe: koloryzacja obrazów, mieszanie chrominancji 

1. Introduction 

Image colorization is an automatic or user-assisted process of adding colors to a grayscale 
image. Usually, the purpose of this transformation is to enhance visual attractiveness of 
monochrome photographs or videos which color versions are not available, but can be also 
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treated as a method of image segmentation and marking regions of interest, e.g. in case of 
medical images. Not only are image colorization algorithms used for adding colors to 
grayscale images, but also for color modifications known as recolorization, color transfer 
between images or extracting certain image regions (so called matting).   Applications of 
image colorization include colorization of old movies (which is quite controversial for many 
artists, but desired in the mass culture world), enhancing old photographs with faded colors, 
segmentation of medical images, interior design or make-up simulators and many others. 
Noteworthy, image colorization techniques may enhance functionality of multimedia 
databases, e.g. to generate dynamically various color versions of the same image or to 
represent an image as a set of regions of unique chrominance. 

Usually, the colorization is performed based on a set of manually-added color scribbles to 
a grayscale image as presented in Fig. 1. After that, the image is colorized automatically by 
spreading the scribbles in the luminance channel. Ideally, the image would be segmented and 
colored independently on how precisely the scribbles are placed, but in practice the result 
strongly depends on scribbles’ initial positions due to poor color propagation algorithms. 
Therefore, color propagation and chrominance blending are challenging tasks addressed by 
computer vision community. 

 
Fig. 1. Examples of images with manually added scribbles  
Rys. 1. Przykłady obrazów z ręcznie naniesionymi mazami 

1.1. Related work 

Image colorization attracts considerable attention from the academia world and various 
methods have been already proposed. Overview of the existing techniques is presented in this 
section. There are also some commercial applications which support the colorization, but 
they require high user’s interaction and experience. 

The first method of adding colors to the image was proposed by Gonzalez and Wintz [2] 
in a form of luminance keying. It operates based on a function which maps every luminance 
level into color space. Obviously, the whole color space cannot be covered in this way 
without increasing manual input from the user. Welsh et al. proposed a method of color 
transfer [11] which colorizes a grayscale image based on a given reference color image. This 
method matches textural and luminance information and can be performed automatically, but 
gives better results with user assistance. Sykora et al. [10] proposed an unsupervised method 
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for image colorization by example, which at first matches similar image feature points to 
predict their color. After that, the color is spread all over the image by probabilistic 
relaxation. Horiuchi [3] proposed an iterative probabilistic relaxation, in which a user defines 
colors for selected grayscale values, based on which the image is colorized. 

There are also a number of methods which are focused on using the prior information 
delivered by a user in a form of color scribbles. Levin et al. [7] formulated an optimization 
problem based on an assumption that neighboring pixels of similar intensity should have 
similar color values under the limitation that the colors indicated in the scribbles remain the 
same. Yatziv and Sapiro [12] proposed a method for determining propagation paths in the 
image by minimizing geodesic distances from every scribble. Based on the distances from 
each scribble, pixel color is obtained by blending scribble chrominances. In other works, the 
color is also propagated from scribbles with probabilistic distance transform [9], using 
cellular automaton [6] or by random walks with restart [5]. 

1.2. Outline of the proposed method 

Our research was focused on image colorization based on manually-added scribbles. The 
color propagation paths are calculated by minimizing local pixel distance integrated along the 
path using Dijkstra algorithm [1]. Usually in other well-established colorization techniques 
[9, 12] the distance between two neighboring pixels is proportional to a difference in their 
brightness. This performs correctly for colorization of vast plain areas, but often fails for 
textured surface (e.g. human hair). Therefore, we decided to adapt the distance to every 
scribble depending on the textural properties of the region where the scribble is placed. 
Details of the path optimization are described in section 2.  

Usually the distances, based on which the paths are optimized, are used for determining 
weights for chrominance blending as well. However, we propose to separate these two tasks 
and determine the weights based on the path properties. Details of this algorithm are 
presented in section 3. Experimental results and comparisons with Levin [7] and Yatziv [12] 
methods are presented in section 4. The paper is concluded in section 5. 

2. Color propagation paths  

In order to colorize a monochromatic image Y based on a set of n initial scribbles }{ iS , 

first it is necessary to determine the propagation paths from each scribble to every pixel in the 

image. A path from pixel x to y is defined as a discrete function [ ] 2,0:)( Nltp →  which maps 

position in the path to pixel coordinate. The position is an integer ranging from 0 for the path 
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beginning ( xp =)0( ) to l for its end ( ylp =)( ). Also, if aip =)(  and bip =+ )1( , a and b 

are neighboring pixels. The paths should be determined in such a way that number of desired 
chrominance changes along the path is minimal.  

2.1. Propagation paths optimization 

In our approach the paths are determined by minimization of a total path cost: 
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where dist is a local distance between two neighboring pixels, defined in section 2.2. The 
minimization is performed with Dijkstra algorithm [1, 4] in the following way: 
1. A pixel queue Q is initialized with all pixels belonging to a scribble.  

2. Distance array D which covers all pixels in the image is created. Every pixel Qq∈ is 
assigned with a zero distance (D(q)=0) and all remaining pixels are initialized with an 
infinite distance. 

3. A single pixel q is popped from the queue and for each of its 8 neighbors Ni(q) the 
following actions are performed: 

4. Local distance dist(q,s) between q and its neighbor s is calculated to find a total cost of 
ps. 

5. If C(ps) is smaller than a current distance D(s), the distance is updated and the pixel s is 
added to the queue Q and it is associated with a new path ps. 

6. If the queue is empty, the algorithm finishes. Otherwise, point (3) is repeated. 
With the described algorithm optimal propagation paths and distances from the scribble 

to every pixel are obtained. Noteworthy, the optimal paths depend on how the distance 
between two neighboring pixels is calculated.  

Yatziv and Sapiro [12] define the path by minimizing integrated luminance gradient in 
the direction of the path. Hence, the local distance is defined as intensity differences between 
subsequent pixels in the path. This is an interesting approach, appropriate to determine paths 
which are supposed to cross easily plain areas without strong edges and suitable for such 
images, in which luminance difference is proportional to probability of chrominance change. 
This approach is similar to a traveler who intends to cross an island with beaches along the 
coast and mountains in the centre. He would choose a longer way along the coast rather than 
a shorter one across the mountains. However, if he is placed in the centre, the effort of getting 
to the coast will be quite high. This is reasonable, but if a scribble is added to a rough area of 
the image (e.g. human hair), the distance will grow rapidly. Moreover, it often does occur 
better to join two points which belong to the same rough area by leaving that area with 
minimal cost, taking a longer way along a plain area and getting back to the rough area.  It 
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would be desired by a traveler, but it is not suitable for image colorization. We would prefer 
not to leave the rough area, because it is likely to have uniform chrominance, so the number 
of chrominance changes along the path would be two instead of zero.  

When a scribble is placed in a rough area, it is better to follow high gradients without 
much cost, making it similar to an idea of intelligent scissors proposed by Mortensen [8] for 
interactive image segmentation. With an intelligent scissors tool a user performs object 
segmentation using a mouse. The algorithm finds the shortest path between the starting point 
and a mouse pointer in such a way, that the path is sticky to the strongest gradient. Local cost 
between two neighboring pixels depends on the laplacian zero-crossings, gradient magnitude 
and direction. Basically, the cost is lower if the path follows the gradient direction and the 
gradient magnitude of the path pixels is high. 

2.2. Local distance between pixels 

During our study we developed two ways of calculating the local distances, namely plain 
distance and gradient distance. The first one is similar to those used in other colorization 
methods, and its aim is to minimize intensity changes along the path. It is calculated as: 
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where hp is the normalization factor which determines how sensitive the distance is, 
depending on local intensity changes. Its value was empirically set to 30 on the basis that it 
delivered the best results for the tested images. This kind of distance is suitable for 
determining paths in uniform regions which texture is not characterized by strong gradients.  

However, for objects which texture is not smooth, the paths are not found correctly in this 
way and also the distance from a scribble grows rapidly when high gradients are crossed. 
Therefore, in such cases the distance should be inversely proportional to gradient strength, so 
that the path obtained by distance minimization is sticky to high gradients. In order to obtain 
it, the propagation direction should be taken into account, so that the distance is smaller if the 
path follows the edge. We define a gradient distance as: 
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where γ  is an angle between the gradient vector in y and propagation direction from x to y. 

The normalization factor hg has the same purpose as in (2). Here it was set to 0.5, taking into 
account that both distance metrics should be balanced with each other. 
 Propagation paths obtained by minimizing these two distances, as well as the distance 
used by Yatziv [12], are presented in Figs. 2 and 3. Fig. 2 shows propagation paths from 
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a hair scribble to a grid of pixels rendered over a background image of gradient magnitude. 
Fig. 3 presents propagation paths to a selected pixel of human hair reached from two different 
scribbles added to hair and skin region. Total path cost and length are also given in the figure. 
The path leading from the hair scribble should not leave the hair region which is obtained 
only with the gradient distance (c). However, the path leading from the skin scribble is 
acceptable only for Yatziv (a) and plain (b) distance. In case of the gradient distance the path 
crosses an eye which is definitely incorrect. 
a) b) c) 

Fig. 2. Propagation paths determined based on: a) Yatziv’s distance, b) plain distance, c) gradient 
distance 

Rys. 2. Obraz ze ścieżkami wyznaczonymi na podstawie: a) odległości Yatziva, b) odległości gładkiej, 
c) odległości gradientowej  
 

a) b) c) 

C(p)=0.35, l=83 C(p)=4.6, l=169 C(p)=1.14, l=83 

 

 

C(p)=0.16 
l=65 

C(p)=1.38 
l=66 

 

C(p)=1.53 
l=66 

Fig. 3. A single point accessed by three different paths obtained with: distances: a) Yatziv’s distance, 
b) plain distance, c) gradient distance 

Rys. 3. Ścieżki wiodące do wybranego punktu otrzymane na podstawie: a) odległości Yatziva, b) odle-
głości gładkiej, c) odległości gradientowej  
 

This example shows clearly that the distance type used for determining a path should 
depend on a texture which is expected to be colorized. This choice may be done by a user 
who adds the scribbles and a potential colorization application may have various scribble 
brushes associated with certain distance metrics. However, in our method we provide 
automatic selection as well with a competitive approach. For every scribble we start the 
propagation algorithm with both types of paths and for each pixel we select that kind of path, 
with which the distance is smaller. Hence, for harsh surfaces the gradient paths usually 
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prevail while on smooth areas the plain paths propagate better. This selection can be done 
either separately for every pixel or for a whole scribble. 

We also investigated possibility of changing the path type dynamically during 
propagation. For every pixel the distance type was set to that one, for which the integrated 
value along the path was smaller. However, the experiments showed that it is better to 
preserve the same path type with the competitive approach rather than changing it 
dynamically. 

3. Chrominance blending 

Once the propagation paths are found, it is necessary to determine chrominance for every 
pixel in order to add colors to a grayscale image. Existing colorization methods which 
operate based on the distance transforms perform chrominance blending using the same 
distance with which the paths have been optimized. The final pixel chrominance is calculated 
as a weighted mean of scribbles’ colors defined by a user and the weights are obtained as a 
function of the total path cost. Usually two or three strongest components are taken into 
account which provides a good visual effect of smooth color transitions.  

This is a reasonable technique which usually gives satisfactory visual results. However, 
we found it better to separate the path optimization problem from chrominance blending, 
because proper propagation paths are a necessary, but not a sufficient condition of correct 
image colorization. We calculate the weights based on the image properties along the paths, 
but we do not use the same distances as for determining the paths. We calculate the final 
color value v(x) of a pixel x in a similar way as in [12]: 
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where vi is chrominance of i-th scribble and wi(x) is its weight in pixel x. We use YCrCb color 
space for the blending and we calculate color values separately for Cr and Cb channels. We 
obtain the weights with a formula: 
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where )(xCb
i is a blending distance from i-th scribble to pixel x. The blending distance can be 

the same as those used for path optimization defined in Eq. (2) and (3), but we calculate it as: 
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where iσ  is a scribble strength normalized from 0 to 1 and α  equals 0.02. With this distance 

we add a topological penalty which causes shorter paths be preferred over the long ones.  
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Also we give a possibility of defining the scribble strength which is crucial for rough 
indication of region size that should be affected by the scribble. Colorization algorithms are 
low-level image operations and do not extract image features. In this case knowledge about 
the image content is user-exclusive and may be used for limiting the strength of scribbles 
added to small parts, e.g. human eyes. 

Noteworthy, the same metric can be used for path optimization, but then the determined 
paths often make it impossible to colorize the image correctly. On the other hand, the 
distances used for the path optimization are often insufficient for correct image colorization. 
Therefore, by separating the local path distance from the blending distance, the method is 
more flexible and delivers better results.  
a) b) c) 

 
d) e) f) 

 
Fig. 4. Propagation paths and colorization results obtained for various local distances and blending 

distances 
Rys. 4. Ścieżki propagacji oraz wynik koloryzacji uzyskany dla różnych odległości lokalnych oraz 

odległości używanych do mieszania barw 
 

This is explained in Fig. 4, where an artificial maze image is colorized: (a) – original 
image with scribbles, (b), (c) – propagation paths to two selected pixels and colorization 
result obtained for local distance and blending distance calculated as in Eq. (6), (d) – paths 
obtained for local distance calculated with Eq. (1) and colorization result without (e) and 
with (f) topological penalty. The propagation paths are different in both cases and those 
determined with Eq. (6) do not allow to colorize the image correctly (c). On the other hand, if 
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the blending distance is the same as the local distance, the blending weights are equal all over 
the image (e). Also the same effect was obtained with Levin and Yatziv methods. Only 
application of our blending technique gives the expected result. 

(a) (b) (c) (d) 

 

 

 
Fig. 5. Examples of colorization result: input image with: a) scribbles, b) results obtained with 

Levin’s, c), Yatziv’s, d) our algorithm (d) 
Rys. 5. Przykłady koloryzacji obrazów: a) obraz wejściowy z mazami, b) wynik otrzymany 

metodą Levina, c) Yatziva, d) wg zaproponowanego algorytmu  
 

4. Colorization results 

The proposed method was compared with two well-established colorization techniques 
proposed by Levin [7] and Yatziv [12]. The first one is published in the form of MATLAB 
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code and for the latter a Java applet is available to colorize a fixed set of images (for others 
we used our implementation of Yatziv’s algorithm). We applied the competitive approach to 
choose between gradient and plain distance (section 2.2.). In majority of cases we set the 
scribble strength to 1, however we reduced it to 0.1 for eyes and lips. We evaluated the 
colorization only on the basis of the obtained visual result as this is commonly adapted 
practice in image colorization. 

The colorization results are presented in Fig. 5 and 6. In Fig. 5 the subsequent columns 
show an original image with input scribbles (a) and colorization result obtained with the 
following algorithms: Levin’s (b), Yatziv’s (c) and ours (d). It may be observed that our 
method performs much better for areas with high gradients like human hair. The hair regions 
are almost perfectly segmented from the background which makes it possible to achieve very 
natural colorization result (the images of women in Fig. 5 and 6). Noteworthy, this cannot be 
achieved with two other methods, in which the hair scribble quickly loses with the 
background scribbles (Yatziv’s result for the woman in Fig. 5 and 6 and Levin’s result in 
Fig. 6). In case of the woman in Fig. 5 the hair scribble dominates the background with 
Levin’s method (b) and hair also is incorrectly segmented. It may be also noticed that due to 
the topological penalty an image of the tennis ball (Fig. 5) is colorized better with our method 
than with the Yatziv’s. Thanks to that improvement, the background scribble does not win in 
the hand area which is closer to the hand scribble. In case of Yatziv’s method a very plain 
background implicates almost zero cost for scribble propagation. 

In general, our method delivers the best visual results for the analyzed cases.  
Noteworthy, the result obtained with two other algorithms can be improved if more scribbles 
are added, but our assumption was to colorize images with as few scribbles as possible to 
achieve natural effect with minimal effort. The presented examples demonstrate that the 
colorization process can be definitely facilitated with the proposed method.  

5. Conclusions and future work 

In this paper we presented a new method for image colorization based on manually added 
scribbles. Our main contribution is utilization of two metrics of local distance for path 
optimization and competitive selection of the most appropriate one. Moreover, we proposed 
to make distinction between the path cost and blending weights which we consider to be two 
separate problems. The presented experimental results show that with our method image 
colorization is more intuitive and good visual results can be obtained by adding relatively few 
scribbles compared with other popular methods. 
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The main directions of possible improvement are concerned with more advanced methods 
for determining the blending weights and with colorization of image sequences. We are 
planning to investigate possibility of determining the blending weights based on statistical 
analysis of pixels along the path and also to utilize texture descriptors for that purpose. This 
may allow for creating decision rules used for the chrominance blending. Another challenge 
would be to colorize an image sequence based on a set of scribbles added to only one frame. 
Finally, the colorization techniques can be applied to multimedia databases, allowing them to 
store not only annotated images, but also their segmented parts which can be easily extracted 
and moved to other locations. 

a) b) 

c) d) 

Fig. 6. Examples of colorization result with: b) Levin algorithm, c)Yatziv algorithm, d) our 
algorithm (d) 

Rys. 6. Koloryzacja za pomocą metody: b) Levina, c) Yatziva, d) oraz zaproponowanej   
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Omówienie 

Koloryzacja obrazów jest procesem polegającym na dodawaniu barwy do obrazu mono-
chromatycznego. Może być on realizowany automatycznie, aczkolwiek najczęściej jest 
wykonywany przy wsparciu człowieka. Głównym celem koloryzacji jest podniesienie 
atrybutów estetycznych obrazu, zdjęcia bądź sekwencji wideo, których barwne wersje nie są 
dostępne. Ponadto, algorytmy koloryzacji są również wykorzystywane w celu segmentacji 
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lub wycinania fragmentów obrazu (tzw. matting), co może znaleźć zastosowanie 
w rozszerzeniu funkcjonalności multimedialnych baz danych.  

Koloryzacja dokonywana jest najczęściej przy wsparciu użytkownika, który nanosi na 
obraz mazy o pożądanym kolorze. Następnie mazy są propagowane w obrazie, a każdemu 
pikselowi przypisywana jest barwa na podstawie odpowiednio zdefiniowanej odległości od 
mazów oraz oryginalnej wartości w kanale luminancji. 

W ramach opisanych badań została zaproponowana nowa metoda wyznaczania ścieżek 
propagacji barwy oraz mieszania barw na podstawie odległości od poszczególnych mazów. 
Ścieżki są wyznaczane z wykorzystaniem algorytmu Dijkstry na zasadzie minimalizacji 
sumy odległości lokalnych pomiędzy sąsiadującymi pikselami. Przeprowadzone badania 
pozwoliły na wyciągnięcie wniosku, że sposób liczenia odległości lokalnych powinien być 
uzależniony od rodzaju tekstury, w ramach której ma być dokonywana propagacja. 
W związku z tym zostały zaproponowane dwie metryki oraz podane kryterium doboru 
najbardziej odpowiedniej dla koloryzowanej tekstury. Ponadto, oryginalnym wkładem 
autorów jest oddzielenie odległości służącej do optymalizacji ścieżki od odległości 
wykorzystywanej do mieszania barw, co zdecydowanie poprawia rezultat końcowy 
koloryzacji. 

W ramach badań eksperymentalnych dokonane zostało porównanie zaproponowanej 
metody z dwiema innymi wiodącymi metodami koloryzacji. Pozwoliło ono na analizę moc-
nych stron metody oraz na wyznaczenie kierunków dalszych prac nad udoskonaleniem 
algorytmu. Wśród nich należy wymienić analizę statystyczną pikseli wzdłuż każdej ze ście-
żek, wykorzystanie deskryptorów tekstury do obliczania wag przy mieszaniu barw, a także 
koloryzację całych sekwencji obrazów. 
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