
STUDIA INFORMATICA 2010
Volume 31 Number 2A (89)

Marcin BUDNY, Katarzyna HARĘŻLAK
Politechnika Śląska, Instytut Informatyki

COMPARISON AND SYNCHRONIZATION OF DATABASE
SCHEMAS

Summary. This paper covers a problem of comparison of two relational database
schemas, which may appear during work on a daily basis of both application develop-
ers and database administrators. In order to solve this problem, a set of mechanisms
for application automating this task was suggested. Among those mechanisms there
are transformation of database schemas to object model, data type mapping and diffe-
rential DDL script generation.

Keywords: database schema comparison, object data model, DDL scripts

PORÓWNYWANIE I SYNCHRONIZACJA SCHEMATÓW BAZ
DANYCH

Streszczenie. W artykule zaproponowano zbiór mechanizmów pozwalających na
automatyzację procesu porównania i synchronizacji schematów baz danych. Mecha-
nizmy te, obejmujące transformację schematów baz danych do opracowanego uniwer-
salnego modelu danych, mapowanie typów danych oraz generacje skryptów DDL
przetestowano w przykładowej aplikacji.

Słowa kluczowe: synchronizacja schematów baz danych, obiektowy model da-
nych, skrypty DDL

1. Introduction

When participating in a team project, a developer very often uses code repositories like
CVS, SVN or Visual SourceSafe. This introduces a defined work cycle in which some repeti-
tive phases can be distinguished (Fig. 1). A developer, who implements functionality in an
application, begins his work with getting the latest version of the source code. From this mo-

432 M. Budny, K.Harężlak

ment, he works with its local copy, so that his changes do not influence other people’s work.
The same rule applies to application’s database. Each developer should work with his local
copy of the database, so that his changes do not have a negative effect on other team mem-
ber’s work.

Fig. 1. The work cycle in development team

Rys. 1. Cykl pracy programisty

There should also exist a template copy of an application’s database containing all the objects
required to run an application compiled from the latest repository source code. After making
the changes, the application is initially tested by a developer (also in an automated way).
When the new functionality is ready, a developer commits his changes to the code repository
and applies database modifications to the template database copy.

During the last phase, some problems may emerge, since it is a common scenario for two
developers t edit the same source code file simultaneously. The conflicts that can be a result
of this situation are handled by tools integrated with source code repository. It is much more
complicated when similar problems involve the database. It requires manual creation of DDL
scripts, which will introduce changes a developer was working on locally to the template
database. This creates a possibility of an error.

This paper discusses the problem of automated comparison and integration of database
schemas maintained by the same or different Relational Database Management Systems
(RDBMS). This activity is part of both developer and database administrator’s daily work. Its
automation will allow avoiding many errors and increase productivity.

1.1. Example of database schema synchronization

To understand the problem better, an example situation in database application develop-
ment team will be analyzed (Fig. 2). In the beginning the version of the template database is
2.01. Developer C has not made any changes to the database, so his local copy of database is
the same as template. Developers A and B made different sets of changes in their local data-

Comparison and synchronization of database schemas 433

base copies and as a result, versions 2.01.a and 2.01.b were created. During the change com-
mitting phase both developers will synchronize their local databases with the template and
version 2.02 will be created. At this point, the need for automated synchronization process
becomes apparent. Developer A would use a tool application to generate DDL script, execu-
tion of which would result in the template database having same structure as version 2.01a
database. Developer B would follow the same path. Ability to easily browse a list of changes
and decide which of them should be applied is also of significant importance.

Fig. 2. A situation in development team
Rys. 2. Obraz sytuacji w zespole programistów

1.2. Other usage scenarios

Another potential usage of the application is migration of database schema to different
RDBMS. It is a common requirement for database application to run on two or more
RDBMS. In this situation, the development team has to create DDL scripts for each RDBMS
by hand. Suggested approach can remedy this situation by automating that process. Migrating
a schema from RDBMS Oracle to RDBMS SQL Server will be performed by comparing
Oracle schema containing objects with empty SQL Server database. The application will
generate scripts creating all objects in SQL Server database.

Some other usage is to facilitate the database administrator’s work. In the world of enter-
prise applications it is common to have two instances of database, one of which is testing
environment and the other – production environment. IT department employees, who are re-
sponsible for installing business application updates, often do this in the test environment
first. When no problems are found, the update is installed in production environment. While
performing those tasks, the database administrator often wants to quickly check database
schema changes between two application versions. This task can be facilitated by suggested
solution, which will present the list of changes in an easy to understand, graphical fashion.

There are some tools on the market that perform tasks similar to those described earlier,
but they have some limitations. For example the SQL Compare tool by RedGate [9] company

434 M. Budny, K.Harężlak

as well as Microsoft Visual Studio Team System for Database Professionals [8] support only
RDBMS SQL Server. The DBCompare application by Automated Office Systems [1] on the
other hand supports different RDBMS thanks to usage of ODBC libraries, but it does not
preserve RDBMS specific features of objects and cannot generate differential scripts.

2. Universal object model

Database

+Name

Schema

+Name

Table

+Name

Column

+Name
+Autoincremented

PrimaryKeyConstraint

+Name
+Enabled

UniqueKeyConstraint

+Name
+Columns
+Enabled

TableCheckConstraint

+Name
+Definition
+Enabled

DataType

+DataTypeEnum
+Length
+Precision
+Scale

Index

+Name
+Unique

IndexColumn

+Ordinal
+Descending

ForeignKeyConstraint

+Name
+Enabled

ForeignKeyColumn

NotNullColumnConstraint

+Name
+Enabled

1

11

1

1

11

1

+ReferencedColumn
1

*

+ConstraintColumn
1

1

Sequence

+Name
+MinValue
+MaxValue
+StartValue
+IncrementBy

Trigger

+Name
+Definition
+Enabled

Fig. 3. Universal object model of database schema
Rys. 3. Uniwersalny model obiektowy schematu bazy danych

To achieve the goal, information on database structure has to be gathered and placed in
data structures enabling easy comparison.

Information gathering is performed by querying certain system elements of selected data-
base servers. Definitions of most database objects are usually stored by RDBMS in relational

Comparison and synchronization of database schemas 435

structures. The information is contained in several tables and related with foreign keys. Each
object feature is stored in a separate column. This applies to objects like: tables, columns,
indexes, keys, synonyms, users, roles or sequences. Other objects like: views, triggers, pro-
cedures and functions are stored in form of text definition in language being a SQL variation
specific to given RDBMS. For SQL Server system it is T-SQL [6] and for Oracle system –
PL/SQL [7]. Analysis of those objects is considerably more difficult and requires creation of
interpreters for RDMBS specific languages.

The other task is to prepare data structures to store information loaded from system
tables. It is more complicated since it involves solving the problem of RDBMS servers not
being fully compatible. Some mechanisms may not be implemented or may be built different-
ly, example of which are autoincrementing columns.

To perform this task, universal object model of data structures was proposed. All data-
base objects loaded from RDBMS are transformed to this model. This way it is possible to
compare objects regardless of their source system. Figure 3 shows simplified data object
model. It represents objects, definitions of which can be obtained by querying metadata
stored in relational structures [3].

Objects of the model and their relations are forming a tree (except for foreign keys). The
Database class representing a database is the root of this tree. This class contains a collection
of Schema class instances, which represent database schemas. This class in turn contains col-
lections of Sequence and Table class instances. In a similar way other database objects are
represented. Detailed description of this model is available in [3].

3. Application architecture

One of the requirements for application integrating database schemas of different
RDBMS is a modular structure. This requirement is important if this tool is to be universally
and easily extensible with support of different RDBMS. It is assumed, that extending the ap-
plication does not require modifications to existing application code.

3.1. Plugin mechanism

The realization of architecture requirements of the application called from now on
CompDb will require implementation of plugin mechanism. Application plugin is a library
containing some functionality, which extends software’s capabilities. In this paper, a plugin
will be responsible for handling a certain RDBMS.

436 M. Budny, K.Harężlak

Presentation layer

Application logic layer

Plugin for SQL Server system Plugin for Oracle system

Plugin common functions library

Fig. 4. General architecture diagram of CompDb application
Rys. 4. Ogólny diagram modelu architektury aplikacji CompDb

Installation process of the plugins should be easy and require only copying the plugin’s

library to application’s directory. The application should automatically detect which RDBMS
are supported by scanning provided plugins.

During the research, plugins for SQL Server and Oracle systems were created. Diagram
in the figure 4 presents a general view of the CompDb application’s architecture in UML
notation [4435]. According to application layering rules, the presentation and logic layers
were separated [2]. The presentation layer, which is user graphical interface, performs all
database comparison operations according to user’s commands by using logic layer func-
tions. Inside the logic layer, the universal object model was defined. This model also contains
functions required to compare database objects.

Each application plugin is placed in a separate library. It should be noted, that dependen-
cy between plugin and application logic is inverted. This removes the need for application to
know the list of all plugins during compilation phase and allows them to be copied to applica-
tion’s directory subsequently. The application also contains a mechanism automatically de-
tecting plugins on a startup. There is also a library, common to all plugins, which makes crea-
tion of new plugins easier without the necessity to duplicate the code.

Comparison and synchronization of database schemas 437

3.2. Packages composing application layers

Presentation layer – CompDb – Highest level package in which the user interface is de-
fined. Classes contained in this package are responsible for displaying information and react-
ing to user generated events.

Application logic layer – CompDb.Core – Universal object model is defined in this
package. All calls to application plugins from CompDB and CompDb.Core packages are per-
formed through interfaces. This way, the mentioned packages are not directly depending on
particular plugins and, therefore, dynamic plugin loading is possible.

SQL Server system plugin – CompDb.Provider.SqlServer – A sample plugin for
RDBMS SQL Server. For the Oracle system, another package named
CompDb.Provider.Oracle was prepared. The plugin package contains classes responsible for
loading database object definitions from RDBMS and transforming them to universal data-
base model. It also contains classes able to generate differential scripts suitable for given
RDBMS, basing on differences detected during two databases comparison phase. Additional-
ly, the plugin defines user interface for inputting RDBMS connection parameters.

Common plugin library – CompDb.ProviderUtils – This package contains helper
classes for plugins, which make their implementation easy and reduce the necessity to dupli-
cate the code.

4. Database data types

One of the most difficult elements to compare in databases maintained by different sys-
tems are data types. Each RDBMS has its own data type set used during creation of tables
and stored procedures. Often a certain data type defined by SQL 2003 standard in given
RDBMS is only an alias to another data type. This results in different behaviour of equally
named data types on different systems. What is more, equally named data types often have
a completely different meaning in different RDBMS. An example of this situation is the
TIMESTAMP data type, which in both Oracle system and SQL 2003 standard [7, 10]
represents a point in time, but in SQL Server it is used for versioning rows in a table and is an
alias for ROWVERSION data type [6]. A point in time in this system is represented by the
DATETIME type.

To compare data types from different RDBMS possible, a concept of universal data types
was introduced. Those types are based mostly on the SQL 2003 standard, but there are also
types, which are not in the standard, yet are often implemented by RDBMS.

438 M. Budny, K.Harężlak

CompDb.Core

CompDb

CompDb.Providers.SqlServer

IModelProvider IScriptGeneratorIConnectionSettingsView

CompDb.ProviderUtils

Presentation layer

Universal object model
operations

Plugin for SQL Server loaded
dynamically.
Loading database schema,
script generation.

Common tools for all plugins.

IProperties

Fig. 5. Architecture model
Rys. 5. Model architektury

A plugin supporting certain RDBMS is responsible for transforming data types specific to

this RDBMS to universal data type. Additionally, information about length, precision and
scale is stored. During the database comparison phase, universal data types are compared.
This way it is possible to compare two databases maintained by different RDBMS while
keeping the application plugins unaware of each other’s existence. During the differential
script generation phase, universal data types are transformed to data types specific to a given
RDBMS.

In order to transform database data types to universal data types, it is necessary to define
a transformation map, called from now on the data type mappings. They are defined by each
plugin separately. In order to make modifications to this mappings as easy as possible, they
are stored in a XML file containing following information:
• for each database data type, corresponding universal data type is defined,
• for each universal data type, corresponding database data type is defined,
• for specific database data types, which cannot be directly derived from universal data

type, a format is defined.
The last piece of information requires additional explanation. It is a common situation

when a RDBMS has a specific data type, which is not present in SQL 2003 standard. The
MONEY data type from SQL Server system representing an amount of money can serve as an
example here. Its transformation to universal data type results in Numeric type. This way

Comparison and synchronization of database schemas 439

some information is lost. During creation of a column of this data type in destination database
maintained by SQL Server system, a different data type will be used than this of correspond-
ing column in source database (NUMERIC(19, 4) instead of MONEY). To avoid this effect,
the application stores column’s original data type in addition to the universal one. If com-
pared databases are maintained by the same RDBMS, this additional information is used to
create a column of data type identical with this in source database.

A sample mapping XML file fragment for SQL Server system is presented on below list-
ing. Inside the DatabaseToUniversalMapping tag, there is information about transformations
from database data type to universal data type. The Mapping tag contains information about a
single data type. Inside the UniversalToDatabaseMappings tag, there are transformations
from universal data type to database data type described. The SpecificTypeFromat contains
information about formats of data types specific to the RDBMS.

<?xml version='1.0' encoding='utf-8' ?>
<Mappings xmlns='http://marcin.budny/MappingsSchema'>

 <DatabaseToUniversalMappings>
 <Mapping>
 <From DatabaseDataType='VARCHAR' />
 <From DatabaseDataType='CHARACTER VARYING' />
 <To UniversalDataType='CharacterVarying' />
 </Mapping>
 …
 </DatabaseToUniversalMappings>

 <UniversalToDatabaseMappings>
 <Mapping>
 <From UniversalDataType='CharacterVarying' />
 <To DatabaseDataType='VARCHAR(@L)' />
 </Mapping>
 …
 </UniversalToDatabaseMappings>
 <SpecificTypeFormats>
 <Format DataType='MONEY' As='MONEY'/>
 …
 </SpecificTypeFormats>

</Mappings>

It should be noted, that database data types mapped to universal data types can have
many-to-one relation, while the inverse mappings can only be in one-to-one relation. The
XML schema used to validate the XML mapping files was also created during the research.

Pseudo-code transforming data types specific to this RDBMS to universal data type is
presented in the listing below.

public GetUniversalDataType(){
 search in mapping XML file for database type;
 if (found > 1)
 return “error found in XML file”;

if (found = 0)
mark database type as unknown;

else
get the name of the universal data type;

create and return the object describing data type;
}

440 M. Budny, K.Harężlak

Table 1 shows some of universal data types created in order to perform SQL Server and
Oracle systems data type mappings.

Table 1
SQL Server 2005 and Oracle data types with corresponding universal data types

Universal data type SQL Server 2005 Oracle 10.2g
Character(L) CHAR(L) CHAR(L)
Character Varying(L) VARCHAR(L) VARCHAR2(L)
Character Large Object VARCHAR(MAX) CLOB
National Character Large
Object

NVARCHAR(MAX) NCLOB

Binary Large Object VARBINARY(MAX) BLOB
Numeric(P, S) NUMERIC(P, S) NUMBER(P, S)
Decimal(P, S) DECIMAL(P, S) NUMBER(P, S)
Smallint SMALLINT SMALLINT
Integer INT INT
Bigint BIGINT NUMBER(19, 0)
Float(P) FLOAT(P) FLOAT(P)
Real REAL REAL
Double Precision DOUBLE PRECISON DOUBLE PRECISION
Boolean BIT (not available)
Date DATETIME DATE
Time DATETIME TIMESTAMP
Timestamp DATETIME TIMESTAMP
Row Version ROWVERSION UROWID
Unique Identifier UNIQUEIDENTIFIER (not available)
Xml XML XMLType
Date DATETIME DATE

5. Differential script generation

Generation of differential DDL scripts, basing on differences detected during two data-
base schema comparison, is another important task of an application plugin including classes
responsible for DDL scripts generation. Every class knows how to modify one specific type
of an object. This is achieved by passing universal object model element to static methods of
this class, which perform given operation (creation, deletion or updating). If given object has
substandard ones (for example tables have collection of columns), creating or updating me-
thod is responsible for calling methods performing appropriate actions on subordinate ob-
jects. How this action should by executed is described by ComparisonInfo.ComparisonResult
property, which is possessed by every object of the universal object model. Its value is set
during database schema comparison.

Comparison and synchronization of database schemas 441

Classes generating differential scripts call methods recursively, going deep into universal
object model hierarchy. Each method returns string containing a part of the differential script.
Method of root object returns merged string from all levels of the hierarchy. The string is
presented to the user of the application.

During differential scripts generation there is often a necessity to take into consideration
dependency between database objects. Following examples explain such situations.

There is a foreign key FK_AB joining two tables A and B. In case, when differential
script includes creation operations of tables A and B, it should be taken into account that for-
eign key FK_AB can be created only when the tables A and B already exist. Similarly during
deletion of those tables, foreign key FK_AB must be removed first.

There is a primary key PK_A built on column KolA in table A. During data type chang-
ing for column KolA in SQL Server System, it is necessary to delete primary key and to
recreate it after finishing this operation. To meet these requirements, statements of constraints
creation are placed at the end of the differential script, while statement of deletion of such
object is located at the beginning of the script.

6. Application’s operation algorithm

The application implementing mechanisms described earlier performs its tasks in four
steps.

Step 1: Load all plugins from DLL files residing in application’s directory.

public LoadPlugins(string path){
initiate empty list of plugins;
for each *.DLL file in path{

 load plugin from file;
if (plugin != null)

add plugin to the plugin list;
}
return pluginList;

}

Step 2: Load database objects from both source and destination database and transform
them to universal object model. Data type mapping is also performed in this step. A plugin
supporting the RDBMS on which a database resides is responsible for carrying out those
tasks. Pseudo-code presented below, uses loading columns as an example.

private void LoadColumns(){
 initiate columns dictionary;
 load columns definition from the system view;
 for each returned column{
 if (table, which a column belongs to, exists){
 initiate new column;
 get name;
 if (NOT NULL constraint exists for the column){

442 M. Budny, K.Harężlak

 create NOT NULL constraint object;
 get the universal data type for the column;

assign the column to the table;
add to the columns dictionary;

 }
 }
 }
 add autoincrement feature for appropriate columns;
}

Step 3: Compare object models. This task is performed recursively, beginning at the root
of the object tree and moving towards the leaves. Since two databases are compared, there are
two object trees in operation memory, one of which represents source database and the other
– destination database. Therefore the comparison algorithm has to process both trees simulta-
neously. Objects are selected for comparison on given tree level by name. In RDBMS it as-
sumed that objects of given type have unique names in scope of one database schema. The
comparison and storage of found differences is performed by CompDb’s application logic,
which is not aware of objects’ source RDBMS. Detailed description of the algorithm of two
database schemas comparison was include in [3], while general algorithm is presented in
pseudo-code below.

public void CompareCollections(){

initiate empty lists of objects;
for each object in current collection{

if (object in collection){
add the object to the existing objects list;
mark that no action is required for the object;

}
else{

add the object to the list of objects for creation;
mark the object „to create”;

}
}
for each object in currently compared list{

if (object does not exist in current collection){
add the object to list of objects for dropping;
mark the object „to delete”;

}
}

}

Step 4: Pass the list of found differences to plugin supporting destination RDBMS. The
plugin is responsible for generation of differential DDL script in SQL dialect specific to giv-
en RDBMS. The following pseudo-code presents the example of column creation.

public static string Create(Column column){
change column universal data type to database data type;

 format statement for column creation;
statement = CreateColumnStatement, Name, dataType, column.Nullable ? "NULL"

 : "NOT NULL");
if (column is autoincremented)

 statement += IdentityStatement, StartValue, IncrementBy);
return statement;

}

Comparison and synchronization of database schemas 443

7. Summary

This paper covers a problem of two relational database schemas comparison, which may
appear during work on a daily basis of both application developers and database administra-
tors. In order to solve this problem, a set of mechanisms was suggested for application auto-
mating this task. Among those mechanisms there are transformation of database schemas to
object model, data type mapping and differential DDL script generation.

This functionality was implemented in CompDb application, which allows comparing da-
tabases maintained by SQL Server and Oracle systems. This application has a module-based
architecture, which allows extending the functionality with support for additional RDBMS.
That ability was achieved with mechanism of autonomous application plugins. Thanks to
object model of database objects, it is possible for objects originating from SQL Server sys-
tem to be used later for the generation of DDL scripts with plugin supporting the Oracle sys-
tem. The application’s operation effects are all satisfactory.

BIBLIOGRAPHY

1. Automated Office Systems. DBCompare. http://www.automatedofficesys-
tems.com/products/dbcompare/, 2007.

2. Boodhoo J.P.: Design Patterns: Model View Presenter. http://msdn.microsoft.com/en-
us/magazine/cc188690.apsx, 2008.

3. Budny M., Harężlak K.: Usage of the universal object model in database schemas compari-
son and integration, International Conference On Man-Machine Interactions,
http://icmmi.polsl.pl, 2009.

4. Comparison of different SQL implementations. http://troels.arvin.dk/db/rdbms/, 2007
5. Fowler, Martin. UML Distilled: A Brief Guide to the Standard Object Modeling Language.

Addison-Wesley, 2003..
6. Microsoft. SQL Server Books Online. http://msdn.microsoft.com/en-

us/library/ms130214.aspx, 2008.
7. Oracle. Oracle Database Online Documentation 10g Release 2. http://www.oracle.com/pls-

/db102/homepage, 2008.
8. Randell, Brian A. Introducing Visual Studio 2005 Team Edition for Database Professionals.

http://msdn.microsoft.com/en-us/magazine/cc163472.aspx, 2007.
9. Red Gate. SQL Compare.http://www.red-gate.com/products/SQL_Compare/index.htm,

2007.
10. SQL 2003 Standard. http://www.wiscorp.com/sql_2003_standard.zip, 2007

444 M. Budny, K.Harężlak

Recenzenci: Dr inż. Bożena Małysiak-Mrozek
Prof. dr hab. inż. Henryk Rybiński

Wpłynęło do Redakcji 14 stycznia 2010 r.

Omówienie

W artykule omówiono problem porównania i synchronizacji schematów baz danych –
utrzymywanych przez te same lub różne Systemy Zarządzania Bazą Danych (SZBD). Przed
problemem tym, często w swojej codziennej pracy, stają zaawansowani użytkownicy – pro-
gramiści w ich grupowej pracy, jak również administratorzy baz danych.

W celu rozwiązania tego problemu zaproponowano szereg mechanizmów, które zaimple-
mentowano w przykładowej aplikacji. Aplikacja ta wyposażona została w mechanizm wty-
czek, dzięki czemu uzyskano łatwą jej rozszerzalność o obsługę kolejnych serwerów baz da-
nych. Do zadań wtyczki należy pobranie z serwera definicji obiektów i przekształcanie ich na
opracowany w tym celu uniwersalny model obiektowy. Szczególnym aspektem tego prze-
kształcenia jest obsługa typów danych. Niemal każdy SZBD posiada typy danych, które nie
mają odpowiednika zarówno w standardzie SQL 2003, jak i w innych SZBD, dlatego wtycz-
ka musi zawierać odpowiednią mapę przekształceń typów danych. Mapa ta zawarta została w
pliku XML.

Dwie bazy danych porównywane przez aplikację wczytywane są do pamięci w postaci
uniwersalnego modelu obiektowego. Logika aplikacji zajmuje się ich porównywaniem i za-
pamiętywaniem różnic. Na podstawie tak znalezionych różnic generowane są skrypty różni-
cowe DDL. Wtyczka aplikacji musi znać składnię DDL właściwą dla obsługiwanego przez
nią SZBD, jak również musi uwzględniać wszelkie zależności pomiędzy wykonywanymi w
skrypcie operacjami.

Addresses

Marcin BUDNY: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16,
44-100 Gliwice, Polska, marcin.budny@gmail.com .
Katarzyna HARĘŻLAK: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16,
44-100 Gliwice, Polska, katarzyna.harezlak@polsl.pl .

	1. Introduction
	1.1. Example of database schema synchronization
	1.2. Other usage scenarios

	2. Universal object model
	3. Application architecture
	3.1. Plugin mechanism
	3.2. Packages composing application layers

	4. Database data types
	5. Differential script generation
	6. Application’s operation algorithm
	7. Summary

