
Silesian University of Technology

Faculty of Mechanical Engineering

Department of Fundamentals of Machinery Design

Doctoral dissertation

Model-Based Adaptive Path Planning

Algorithm for Unmanned Aerial Vehicles

MSc, Eng. Mateusz Kosior

Primary Supervisor:

PhD, DSc, Eng. Piotr Przystaªka, Associate Professor

Secondary Supervisor:

PhD, Eng. Wawrzyniec Pan�l, Assistant Professor

Gliwice, 2022

Contents

List of used acronyms and symbols iv

1 Introduction 1
1.1 Scientific background and motivation . 2

1.1.1 Missions in Poland . 3
1.1.2 Missions in the Arctic . 4

1.2 Aim . 4
1.3 Scientific problem . 5
1.4 Scope . 5
1.5 Acknowledgments . 6

2 UAV modeling 7
2.1 Coordination frames . 7
2.2 Wind triangle . 9
2.3 Kinematic guidance model . 10
2.4 Dynamic guidance model . 11
2.5 Dynamic vs kinematic . 13
2.6 Dubins paths . 13

2.6.1 Dubins car paths . 13
2.6.2 Dubins airplane paths . 14
2.6.3 Alternative approaches . 15

2.7 Summary . 15

3 Environment modeling 16
3.1 Environment map . 16
3.2 Terrain map . 18

3.2.1 Voxel-based terrain map . 18
3.2.2 Discrete terrain map . 19
3.2.3 Continuous terrain map . 19
3.2.4 Collision checking . 20

3.3 Wind map . 21
3.3.1 Discrete wind map . 21
3.3.2 Continuous wind map . 23
3.3.3 Checking wind velocity . 23
3.3.4 Limitations and possible improvements 23

3.4 Airspace map . 23
3.4.1 Prism-based airspace segmentation . 24
3.4.2 Collision checking . 24
3.4.3 Limitations . 25

3.5 Measurement maps . 25
3.5.1 Checking measurement value . 26
3.5.2 Limitations . 26

3.6 Summary . 26

Contents ii

4 Adaptive Path Planner 27
4.1 Path planning . 27
4.2 Adaptive planning vs non-adaptive planning . 27
4.3 General form of the algorithm . 28
4.4 Global Path Planner . 30

4.4.1 Problem statement . 30
4.4.2 Defining the criteria . 32
4.4.3 Pollutant concentration . 37

4.5 Local Path Planner . 38
4.5.1 Problem statement . 38
4.5.2 Kinematic constraints . 39
4.5.3 Finding obstacle-free admissible path . 39

4.6 Simulation . 40
4.7 Summary . 41

5 Verification study 42
5.1 Specification of Twin Stratos . 42
5.2 Path quality metrics . 42

5.2.1 General metrics . 43
5.2.2 GPP-specific metrics . 45
5.2.3 LPP-specific metrics . 46

5.3 General research plan . 47
5.4 Verification of the models . 48

5.4.1 Terrain map . 48
5.4.2 Wind map . 49
5.4.3 Kinematic guidance model . 50
5.4.4 Discussion . 53

5.5 Global Path Planner . 53
5.5.1 Effects of the criteria . 53
5.5.2 Comparison of the chosen single-objective optimization methods 58
5.5.3 Discussion . 66

5.6 Local Path Planner . 67
5.6.1 Test setting . 67
5.6.2 Implementation of the LPP algorithm . 68
5.6.3 Comparison of chosen RRT algorithms . 72
5.6.4 Tuning the chosen algorithm . 78
5.6.5 Validation of adaptive re-planning in simulation 79
5.6.6 Discussion . 88

5.7 Adaptive Path Planning for pollution sampling 89
5.7.1 Modifications of criteria . 90
5.7.2 Smog profiling over Żywiec . 90
5.7.3 Black carbon concentration over Kongsvegen 94
5.7.4 Discussion . 97

5.8 Summary . 100

6 Summary 101
6.1 Conclusions . 102
6.2 Future remarks . 103

Bibliography 104

Contents iii

Abstract 114

Streszczenie 115

Used hardware and software 116

Appendices 117

A Elementary terms and definitions 118

B Chosen path planning algorithms 121
B.1 Path planning strategies . 121

B.1.1 Deliberative strategy . 121
B.1.2 Reactive strategy . 121

B.2 Path planning algorithms . 122
B.2.1 Dijkstra’s algorithm . 122
B.2.2 A* algorithm . 123
B.2.3 D* algorithm . 124
B.2.4 Visibility Graphs . 125
B.2.5 Rapidly-exploring Random Tree algorithm 127
B.2.6 RRT* algorithm . 128

B.3 General optimization algorithms . 130
B.3.1 Genetic Algorithm . 130
B.3.2 Particle Swarm Optimization algorithm 132
B.3.3 Ant Colony Optimization algorithm . 133
B.3.4 Improved Grey Wolf Optimizer . 134

B.4 Other algorithms . 135
B.5 Summary . 136

List of used acronyms

Algorithms
ACOR Ant Colony Optimization for Con-

tinuous Domains
APP Adaptive Path Planner (GPP

+ LPP)
GA Genetic Algorithm
GPP Global Path Planner
I-GWO Improved Grey Wolf Optimization
LPP Local Path Planner
PSO Particle Swarm Optimization
RRT Rapidly-exploring Random Tree
VG Visibility Graph

Unmanned vehicles and airspace
AUP Airspace Use Plan
HALE High-Altitude Long Endurance
HAPS High-Altitude Pseudo Satellite
RPA(S) Remotely Piloted Aircraft (System)
NFZ No-Fly Zone
RTH Return-To-Home (safety maneuver)
TS Twin Stratos (a HALE UAV)
UA Unmanned Aircraft
UAS Unmanned Aircraft System
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UMS Unmanned System
UUP Updated Airspace Use Plan
UxV Unmanned Vehicle (general term)

Metrics
CT Computation time
CFE Cost function evaluations
COST Cost returned by the cost function
EEE Estimated energy expenditure
FT Time of flight
LEN Path length
NCOL Number of colliding waypoints
NTREE Number of RRT vertices in the

whole tree
NPTS Number of waypoints along a path
NRRT Number of RRT vertices on the

shortest path
SMOO Path smoothness

Institutions, regions, authorities
CEDD Central European Drone Demon-

strator (Poland)
EASA European Union Aviation Safety

Agency
ICAO International Civil Aviation Organi-

zation
LEADER Long-endurance UAV for collecting

air quality data with high spatial
and temporal resolutions (project
name)

NIST National Institute of Standards and
Technology

NORCE Norwegian Research Centre
PANSA Polish Air Navigation Services

Agency
SAE Society of Automotive Engineers
SUT Silesian University of Technology

(Poland)
UW University of Warsaw (Poland)

Measurements and meteorology
BC Black Carbon
ECMWF European Centre for Medium-

Range Weather Forecasts (weather
model)

GFS Global Forecast System
PBL Planetary Boundary Layer
SLCF Short Lived Climate Forcer

Other acronyms
AGL Above Ground Level
AMSL Above Mean Sea Level
ENU East-North-Up coordinate system
GCS Ground Control Station
HIL Hardware-in-the-Loop
MBD Model-Based Design
MIL Model-in-the-Loop
NED North-East-Down coordinate system
PIL Processor-in-the-Loop
ROI Region of Interest
SIL Software-in-the-Loop
SRTM Shuttle Radar Topography Mission

Contents v

List of used symbols

Aircraft modeling
D2D admissible Dubins car path
D3D or D admissible Dubins airplane path
F i inertial frame
Fv,Fv1,Fv2 vehicle frames
Fb body frame
i, j,k unit vectors along x, y and z axes
~va velocity relative to air (airspeed)
~vg velocity relative to ground
~vw velocity relative to wind
ψ heading or yaw angle
θ pitch angle
φ roll angle
γ inertial-referenced flight-path angle
γa air-mass-referenced flight-path angle
χ course angle
χw horizontal wind angle
χc crab angle
β sideslip angle
α angle of attack
pn, pe, h inertial north, east and height (neg-

ative down) UAV positions in F i

b controller constant
(·)c (as superscript) controlled variable
g standard acceleration due to gravity
Fdrag, Flift drag and lift force, respectively
Fthrust thrust force of the propulsion
ρ air density
S total wing area
CD, CL drag and lift coefficient, respectively
m total mass of the aircraft

Operators
(·)T transposition
‖·‖ length of a vector or a segment
card(·) cardinality
free (·) obstacle presence at a waypoint
wind (·) wind velocity at a waypoint
pollution (·) pollution intensity at a waypoint
∠(·) angle between the arguments
N (·) normal (Gaussian) distribution

Environment maps
M environment map (general term)
Mt terrain map (general term)
MV

t voxel-based terrain map
MD

t ,M
C
t elevation based terrain map: discrete

and continuous, respectively
Mw wind map (general term)
MD

w ,M
C
w discrete and continuous wind map,

respectively
Ma airspace map
42D horizontally-aligned polygon
43D vertically-aligned prism (NFZ ROI)
Mm measurement map (general term)
MD

m,M
C
m discrete and continuous measure-

ment map, respectively
Mo obstacle map (terrain map

+ airspace map)

Adaptive Path Planner
PG,PL global and local path (general term)
w,W waypoint and an array thereof
C, C multi- and single-objevitve cost function
cn cost function of the n-th criterion
S,p scenario and its parameters
Ω constraints and boundaries function
Ωk kinematic constraints of the UAV
g array of global mission-specific settings
sfn scaling factor of the n-th criterion
Pctrl power required by the UAV controller and

peripherals
E array of reference energy data
4m horizontally-aligned measurement polygon

General denotation concept
~x vector in strict mathematical sense
x,X (bold) 1D and nD arrays, n > 1
x,X (regular italics) scalar
X (calligraphic) general (abstract) term
xn (numerical subscript) x indexed by n
xn, xn (superscript or non-numerical subscript)

context-dependent annotation

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have been gaining more and more popular-
ity [1–3], despite the fact the historical development of UAVs began in the mid-19th century [1].
According to Cifaldi et al., the first Remotely Piloted Aircraft Systems (RPASs) date back to
the mid-1800s [4].

Zhao et al. noted a growth in the number of papers concerning path planning for UAVs. The
rate of growth was increasing slightly for the first 7 years from 2008. Between 2014 and 2016
there was a slight fluctuation. They reported, however, that the years 2017 and 2018 showed
a more significant increase [5].

According to Pehlivanoglu et al., UAV will be more effective and cost efficient when they
achieve the ability to intelligently modify their internal plan based on the environment. Path
planning, especially adaptive path planning, is one of the areas which could benefit from in-
creased autonomy [3]. Thus, path planning and trajectory1 generation are both fundamental
areas for the development of Unmanned Aerial Systems (UASs). Both provide the ability to
figure out a way to efficiently and safely travel through an environment under a set of con-
straints [6].

It is important to note obstacles are not only solid objects. Weather conditions also play
an important role in aviation. Garcia et al. argue that complicated weather conditions caused
many fatal aircraft accidents. Moreover, UAVs are more susceptible to unfavorable weather than
manned aircrafts – mostly due to the usually small size of the former. Hence, avoiding dangerous
weather conditions is a key issue in unmanned flights [7].

In their work from 2020, Dhulkefl et al. highlight great attention that UAVs received over
the past 10 years – both military and civil applications [1]. UAVs are willingly used to perform
tasks considered unnecessary, repetitive or too dangerous for manned operations [6].

Introducing combat UAVs is one of the trends clearly visible in modern aerial weapon equip-
ment [8, 9]. As noted by Ling and Hao, more and more UAVs have been used to carry out
military missions. These missions include target detection, target destruction, close-in recon-
naissance, precision bombing, high definition recording, electronic warfare and damage assess-
ment [3, 9]. Contemporary UAVs are often employed to track, protect, or provide surveillance
of a ground-based vehicle [10]. Especially useful for this task are multi-UAV convoys [11]. The
research on UAVs is considered fundamental to battle effectiveness of the air force and thus is
strictly related to safeness of nations [8].

Civil UAV applications are especially popular in Europe. According to a research by Cifaldi et
al., in April 2016 there were 2500 European operators compared to 2342 operators located in the
rest of the world. Moreover, they convince it is estimated the UAV industry may be worth 10% of
the aviation market. Estimated demand could reach 10 billions EUR per year by 2035, and over
15 billions EUR per year by 2050 [4]. Civil applications include goals, such as reconnaissance,
search and rescue, weather observation, aerial mapping and cinematography [3, 6]. Also, UAVs
in construction sites provide constant monitoring, access hardly-reachable and dangerous areas
and support post-disaster reconstruction [12].

Nevertheless, many of these missions are restricted by the capacity of fuel tanks or batteries.
Therefore, many UAVs are solar-powered. High-Altitude Long Endurance (HALE) UAVs are
a subgroup of these aircrafts. HALE UAVs are highly-efficient unmanned aircrafts designed to

1 Schøler et al. distinguish the term trajectory from path – a trajectory includes time, while a path does not [6]

1.1. Scientific background and motivation 2

fly above the atmospheric flight region and below the spacecraft flight region (approximately
20 to 100 km) [13]. Depending on the efficiency of the platform, as well as sun conditions, they
have the potential to stay airborne indefinitely. Moreover, due to their maneuverability, they are
a serious alternative to balloons and airships. HALE UAVs can take the role of measurement
platforms and also satellites. Hence their alternative name, High-Altitude Pseudo Satellites
(HAPSs) [13].

Atmospheric density at 20 km is less than 10% of such at sea level. Dynamic pressure available
to lift an airplane is minimal and is compensated with high velocities [13]. Therefore, reaching
such altitude is a challenge for a streamlined aircraft with relatively humble battery capacity.
Nevertheless, finally reaching that altitude grants the nearly-infinite source of solar power. This
promise encouraged several teams of scientists to develop such aircrafts since the first solar
powered flight Sunrise in 1974 [13].

This thesis tries to address some of this issues found in fixed-wing meteorological measure-
ment platforms, especially HALE UAVs. The thesis proposes a two-level Adaptive Path Planner
(APP), which provides an optimized path for such aircraft. The path must assure safety and
reliability of the mission. To be feasible, the path also must be subject to the constraints of
the UAV. Thus, APP considers obstacle avoidance and optimization of the path according to
minimal energy expenditure and beneficial wind conditions.

1.1 Scientific background and motivation

The thesis is directly related to the major task of international project Long-endurance UAV for
collecting air quality data with high spatial and temporal resolutions (LEADER)2. The goal for
the project is to develop a High Altitude Long Endurance (HALE) UAV as a mobile research
platform for measuring the composition of the atmosphere via e.g. sampled aerosol measure-
ment [14]. The EU review [15] on black carbon (BC) highlights the role observations from ships
or aircraft play in understanding distinct episodes of long-range transport.

Forest fires as well as contrails induced by air traffic in the tropopause region are the major
sources of BC transport [14]. Gilardoni et al. in their report [16] define BC as “a component of
submicrometer aerosol particles”, which “impacts the regional radiation balance by absorbing
incoming solar radiation (direct effect), altering cloud distribution and their radiative properties,
and reducing snow and ice surface albedo after deposition” [16].

Nevertheless, the authors of [15] note the extreme costs of intensive field campaigns related
to BC observations. Thus, providing an energy-efficient, mostly autonomous and thus relatively
cheap scientific platform for investigating the sources, sinks and transport of BC becomes cru-
cial. Moreover, it will help to improve the knowledge how the transport of both natural and
anthropogenic aerosols impacts clouds and their properties [14].

The LEADER project addresses these concerns and recommendation. The project is a di-
rect response to the POLNOR 2019 call according to the programme Applied Research financed
by The National Centre for Research and Development (Poland)3. The project is held by the
Silesian University of Technology (SUT, Poland) in collaboration with the Norwegian Research
Centre (NORCE, Norway), the University of Warsaw (UW, Poland) and SkyTech ELAB Sp. z
o.o. (Poland). The project is multidisciplinary and encompasses engineering and technology, me-
chanical engineering and aerospace engineering [14]. The missions conducted during the project
are divided into two categories based on the geographical region.

2Homepage of the LEADER project: https://polnor-leader.eu/?lang=en [27.06.2022]
3Homepage of the Applied Research programme: https://eeagrants.org/archive/2014-2021/programmes/

PL-Applied%20Research [27.06.2022]

https://polnor-leader.eu/?lang=en
https://eeagrants.org/archive/2014-2021/programmes/PL-Applied%20Research
https://eeagrants.org/archive/2014-2021/programmes/PL-Applied%20Research

1.1. Scientific background and motivation 3

1.1.1 Missions in Poland

The Polish missions considered by the LEADER project focus on evaluating the performance
of the HALE UAV and its equipment. The missions will be carried out over selected regions in
southern Poland to measure the spatial distribution of pollutants, that is:

� Smog distribution in the planetary boundary layer (PBL) during cold season.

� Biomass burning and mineral dust events in the middle and upper troposphere (up to
15 km) during spring and summer.

� Vertical transport of aerosol through PBL [14].

Smog distribution

The smog in Poland is a major concern, especially due to the increased emission from hard coal
burning by heating systems in the winter months. Previous research provided information about
smog concentration at lower altitudes. Nevertheless, the 3D aerosol distribution in megacities
and rural areas is still unknown. For this purpose, low altitude flights, i.e., up to 1–2 km, are
planned for vertical and horizontal gradient measurements. They will be carried out mostly over
Central European Drone Demonstrator (CEDD)4 due to the legal regulations in Poland [14].

Biomass burning and mineral dust events

The biomass burning and mineral dust transport usually occurs in the middle and upper tropo-
sphere. The HALE UAV is therefore expected to fly between 3 km and 12 to 15 km. Unlike smog
distribution, the transport is usually observed on a large scale, so the measurements can be done
over any region of Poland. The strategy of this measurement will focus on vertical profile than
horizontal gradient flight [14].

Measurements of biomass burning and dust events can be done between spring and late
summer. During spring the source of biomass burning is usually grass fires in Ukraine and
Russia (Kaliningrad Oblast). In the summer, forest wildfires are the main sources, where the
long-range transport from Ukraine, Siberia, Canada and the USA can be observed in the upper
troposphere as well as in the lower stratosphere [14].

Vertical transport of aerosol

The vertical transport of aerosol will be measured between free atmosphere and PBL. The UAV
will fly mostly in the lower troposphere, as the height of PBL usually varies between 0.5 and
2.5 km. Unlike previous measurement objectives, the measurements of vertical aerosol transport
are unrestricted by season. Like biomass burning, the exact localization of the measurements is
not important [14].

The research will be carried out as horizontal or vertical profiles. Horizontal profiling aims
at measuring the horizontal gradient of pollution concentration in the lower troposphere (up
to 2.5 km). The focus of the vertical profiles is to understand the relation between variability
of pollution concentration and thermodynamic parameters. The measurements conducted by
the UAV will be used in conjunction with ground-based observations performed in the mobile
laboratory [14].

4Homepage of the CEDD project (in polish): https://cedd.pl [28.11.2021].

https://cedd.pl

1.2. Aim 4

1.1.2 Missions in the Arctic

The Arctic missions in the LEADER project will focus on investigating the role of the Short
Lived Climate Forcers (SLCFs) on the climate. The lack of SLCF measurements in the eastern
part of the Arctic is noted by the AMAP assessment [17], for example.

The missions will be held over Svalbard (Norway). The major regions of interest include the
surroundings of Ny-Ålesund, the glaciers Holtedahlfonna and Kongsvegen (Fig. 1.1), as well as
eastern regions of Svalbard [14].

Fig. 1.1: Glaciers found in Svalbard [18]

The scope of the LEADER project considers several measurements in the Arctic, such as:

� The profiles and spatial variability of BC concentration.

� Aerosol composition for source validation, and then to compare forest fires with antro-
pogenic sources.

� Cloud condensation nuclei.

� Meteorological parameters such as temperature and relative humidity.

� Atmospheric turbulence and radiation [14].

1.2 Aim

The aim of the dissertation is to design and verify the model-based adaptive path planning
algorithm for pollution sampling with a HALE UAV which flies autonomously in a limited
environment. The design principles of the algorithm must allow it to be feasible for deployment
in the UAS designed for the LEADER project.

1.3. Scientific problem 5

1.3 Scientific problem

To conduct pollution measurements, especially at higher altitudes, the HALE UAV developed
for the LEADER project is required to stay airborne for prolonged amounts of time. Never-
theless, the energy resources of the UAV are very limited and the aircraft is subject to much
more restrictive kinematic constraints than, for example, a multirotor. Therefore, to fulfill the
requirements of the project, the flight path of the UAV must be optimized for minimal energy
expenditure while subject to kinematic constraints of the HALE aircraft. Optimization must
also take into account the environment of the UAV to minimize detrimental effects of wind and
to avoid collisions with potential obstacles, which requires the environment model. Moreover,
the environment can change during a mission, so the planner must be adaptive. Based on these
requirements and limitations, the following scientific tasks were identified:

� Formulate the theoretical basis of a model-based adaptive path planning algorithm for
pollution sampling.

� Formulate the theoretical basis of an environment model, which considers the components
of the scene important for flight safety and energy conservation.

� Define the multi-criteria optimization problem considering obstacle avoidance, minimum
energy expenditure, measurement strategy and kinematic constraints of the HALE aircraft
and verify the results in model-based simulations.

� Identify the optimization criteria and formulate the objective function.

� Compare several different path planning and optimization algorithms and find the best
one for energy-efficient adaptive path planning.

� Compare the energy expenditure measured for the path generated by the algorithm and
for the reference path supplied by a human expert.

� Validate the adaptive path planning algorithm in simulation on use cases similar to these
described in the LEADER project, that require dynamic re-planning of the path.

1.4 Scope

The thesis focuses on the model-based Adaptive Path Planner (APP) for a UAV, especially its
application for pollution sampling with a HALE aircraft. The APP algorithm features dynamic
recalculation of the flight path while the UAV is airborne to adapt to changing mission parame-
ters, such weather conditions or the appearance of a new obstacle. Note that APP is not meant
to handle the flight in dangerous weather conditions – its task is to adapt to environment to
avoid such scenarios.

The dissertation addresses many issues in the field of mechanical engineering, including the
formal description of a novel model-based adaptive path planning algorithm, optimization for
minimum estimated energy expenditure, modeling the UAV and its environment, as well as
a verification study, which employs Model-in-the-Loop (MIL) simulations.

Chapter 1 contains an introduction to the scientific problem raised in the thesis, as well
as its motivation and scientific background. The chapter covers also some of the measurement
scenarios considered in the LEADER project, and thus in the thesis.

Chapter 2 describes the fundamentals of modeling a fixed-wind UAV, such as coordina-
tion frames, wind triangle and Dubins airplane paths. Also, a few simplified guidance models
(four kinematic and one dynamic) of the aircraft are presented. It should be noted that while
the LEADER project also addresses developing the full non-linear dynamic model of a HALE
aircraft, it is a task handled by other team. Hence, it is beyond the scope of the thesis.

1.5. Acknowledgments 6

Chapter 3 introduces the concept of the environment map, which is used to model the crucial
components of the scene. For this purpose, four distinct models (maps) are proposed: a terrain
map, a wind map, an airspace map and a measure map.

Chapter 4 contains the formal description of the model-based APP algorithm and its com-
ponents. First, a general idea of adaptability in path planning is discussed. Then, the general
form of APP is given specifying the role of model-based approach. Afterwards, the components
of APP: Global Path Planner (GPP) and Local Path Planner (LPP) are described indepen-
dently. GPP implements a global optimization algorithm to solve a multi-criteria problem of
providing a feasible path optimized for minimum energy expenditure. LPP uses fast stochastic
algorithms to provide a fallback path in case of emergency. The path must be collision-free and
subject to the kinematic constraints of the UAV, but its optimality is sacrificed for computation
performance.

Chapter 5 describes brief a verification study on environment and UAV models, as well as the
extensive model-based validation tests of APP in simulation. The first part compares different
implementations of the terrain map and validates the wind map. The second one focuses on
GPP. The effects of the global optimization criteria are verified independently. Then, various
flavors of single-objective global optimization algorithms are compared in MIL simulation and the
optimal solution for GPP is chosen. The third part covers the extensive tests of LPP, including
the comparison of different RRT-based algorithm, choosing the optimal one, and then calibrating
it on a challenging environment map. Next, LPP is validated on the series of use cases, which
require adaptive re-planning. Finally, APP is validated on two mission scenarios inspired by the
LEADER project.

The final pages summarizes the research, while focusing on the author’s contribution to
modeling and model-based adaptive path planning. Detailed conclusions and considerations for
future work presented afterwards conclude the thesis.

Appendix A contains definitions of selected terms related to path planning, optimization and
autonomy, which are important for the thesis.

Appendix B is a brief state-of-the-art analysis of different path planning and global optimiza-
tion algorithms. The first part focuses on path planning algorithms – both exact (Dijkstra’s, A*,
D*) and stochastic (RRT and RRT*). The second part describes selected general optimization
algorithms for global optimization (GA, PSO, ACO and I-GWO).

1.5 Acknowledgments

The research described in the thesis was carried out and financed under the project Long-
endurance UAV for collecting air quality data with high spatial and temporal resolutions (LEADER),
which is implemented under the programme Applied Research under Norwegian Financial Mech-
anisms 2014 – 2021 (NOR/POLNOR/LEPolUAV/0066/2019-00).

Wind forecast data was acquired via Meteomatics Weather API Connector for MATLAB [19].
The research used a license available thanks the courtesy of Meteomatics AG.

The major part of computations was done in MATLAB. License for MATLAB, as well as for
its several toolboxes, was provided by the Department of Fundamentals of Machinery Design of
Silesian University of Technology.

The thesis was written as the part of the project SymIn – Simulations in Engineering,
implemented as part of module V – Doctoral studies, task 28 – Interdisciplinary training at the
Doctoral School under the project Silesian University of Technology as a Center for Modern
Education based on research and innovation (POWR.03.05.00-00.z098/17-00).

2. UAV modeling

The chapter focuses on the basic concepts of path description, as well as on kinematic and
dynamic models of the UAV. Particular attention is paid to the UAV guidance models used by
the model-based simulations in the verification study.

2.1 Coordination frames

A model may use many different coordinate systems or frames. Choosing the adequate frame de-
pends on the context. For example, Beard and McLain in [20] define seven different coordination
frames. The frames used throughout the thesis are described below. Unless otherwise stated, the
thesis refers to the inertial frame by default. Other frames frequently used in aerospace engi-
neering, as the stability frame and the wind frame, are described in-detail, e.g., in [20].

Inertial frame

The inertial (or North-East-Down, NED [20])1 frame F i is the coordinate system fixed to earth.
Its origin is defined at an arbitrary home location [20]. Hence, F i (Fig. 2.1) is completely static,
i.e., its position and orientation never changes. It can be understood as a global coordinate
system, to which other frames refer. Unit vectors ii, ji, ki reflect axes x, y, z, respectively.

Fig. 2.1: The inertial coordinate frame F i [20]

Vehicle frames

The vehicle frame Fv (Fig. 2.2) is bound to the UAV’s center of mass, and thus follows the
position of the aircraft. Axes, however, are always aligned to the inertial frame.
The vehicle-1 frame Fv1 is the same as Fv with added positive right-handed rotation ψ (heading
or yaw angle) around kv (Fig. 2.3, on the left) [20]. In other words Fv1 considers the heading
of the UAV, but not the two other angles.

The vehicle-2 frame Fv2 bases on Fv1, but adds another positive right-handed rotation θ
(pitch angle) – this time around jv1 (Fig. 2.3, on the right) [20]. So Fv2 is aligned with the UAV,
excluding its roll angle.

1Named according to the convention to align x and y axes to the north and the east, respectively. The resulting
z axis points down to complete the right-handed CS.

2.1. Coordination frames 8

Fig. 2.2: The vehicle frame Fv [20]

Fig. 2.3: The vehicle-1 frame Fv1 (left) and vehicle-2 frame Fv2 (right) [20]

Body frame

The UAV’s body frame Fb adds up on the Fv2 by adding the final, third rotation. It rotates the
Fv2 around iv2 by the roll angle φ, as seen in Fig. 2.4. Fb is fully aligned with the aircraft, unlike
Fv, Fv1 and Fv2. The unit vector ib points out of the nose of the aircraft and jb is perpendicular
to ib and points out of the right wing. The last unit vector, kb, is perpendicular to the other two
unit vectors and points out of the UAV’s belly [20].

Fig. 2.4: The body frame Fb (front view)

2.2. Wind triangle 9

2.2 Wind triangle

Wind influences heavily the performance of UAVs, especially the smaller ones. For example,
wind often accounts for 20% to 50% of the total airspeed of miniature air vehicles2. Wind is
also a major factor for HALE aircrafts, that try to conserve energy by using their propulsion
sparingly [20].

Let ~va be airspeed of the UAV, that is, its velocity vector relative to the surrounding air
mass flowing around it. Now, let ~vg be the UAV’s velocity relative to ground and ~vw be the wind
velocity. The relation between the three vectors is called the wind triangle. In vector notation it
is given by

~va = ~vg − ~vw. (2.1)

The vector ~vg is defined relative to F i using the course angle χ and the inertial-referenced
flight-path angle γ. The course angle χ is measured in the horizontal plane from ii (true north)
to the ~vg projection, as shown in Fig. 2.5. Similarly defined is the horizontal wind angle χw. The
angle ψ is the yaw angle, as discussed in section 5. The angle χc between ib and ~vg is called the
crab angle, while β represents the sideslip angle, which is zero in steady and level flight.

Fig. 2.5: The wind triangle projected onto the horizontal plane [20]

Fig. 2.6 illustrates the angle γ, which is measured in the vertical plane between the projections
of ~vg and the horizontal plane. The angle γa denotes the air-mass-referenced flight-path angle,
i.e., the angle between the projection of ~va and the horizontal plane. The other angles are the
pitch angle θ (see section 5) and the angle of attack α. If the vertical component of ~vw is zero,
so is α.
According to Beard and McLain, “in steady, level flight, ~va is commonly aligned with ib, meaning
the sideslip angle β is zero” [20]. Hence, considering the angles given above and assuming β is

2 That is, the aircrafts with wingspan of less than 1.52 m (or 5 feet [20]).

2.3. Kinematic guidance model 10

Fig. 2.6: The wind triangle projected onto the vertical plane [20]

zero, the wind triangle equation (2.1) expressed in F i can be alternatively formulated as

vg

cosχ cos γ
sinχ cos γ
− sin γ

−
vwnvwe
vwd

 = va

cosψ cos γa
sinψ cos γa
− sin γa

 . (2.2)

where vg = ‖~vg‖, va = ‖~va‖ and vwn, vwe, vwd denote the NED components of ~vw„ i.e., along ii,
ji, ki, respectively.

2.3 Kinematic guidance model

To verify the proposed algorithm, the fixed-wing UAV will be modeled with a reduced-order
kinematic guidance model. The model is described in-detail by Beard and McLaine in [20].
The main simplification of the model is eliminating complex aerodynamic forces acting on the
airframe. This implies force- and moment-balance equations of motion are deliberately neglected.
The model, however, considers wind influence via vector summation and also covers the behavior
of the aircraft’s autopilot.

Kinematic guidance models of a fixed-wing UAV are available in different flavors. The sim-
plest model assumes the autopilot controls airspeed, altitude and course angle. The correspond-
ing equations of motion are given by

ṗn = va cosψ + vwn

ṗe = va sinψ + vwe

χ̈ = bχ̇ (χ̇c − χ̇) + bχ (χc − χ)

ḧ = bḣ

(
ḣc − ḣ

)
+ bh (hc − h)

v̇a = bva (vac − va)

where pn and pe are horizontal positions in F i along north and east axes and h is height. The
variable va denotes airspeed, ψ is the yaw angle in Fv1 and χ represents course angle in F i.
Wind velocity vector is described by components vwn, vwe, vwd in the inertia frame F i (NED)3.
Autopilot’s constants are given as b with the corresponding subscript. The c superscript denotes
the variable controlled by the autopilot [20].

Alternatively, course angle may not be controlled directly by the rudder. Instead, roll angle
can be used according to the coordinated-turn condition, which is thoroughly explained in [20].

3 This convention assumes wind is blowing to the positive direction of the axis. For example, positive wn
means wind blowing from south to north. Conversely, it would be called southerly wind using the meteorological
convention.

2.4. Dynamic guidance model 11

As the result, the equations of motion are modified to

ṗn = va cosψ + vwn

ṗe = va sinψ + vwe

ψ̇ =
g

va
tanφ

ḧ = bḣ

(
ḣc − ḣ

)
+ bh (hc − h)

v̇a = bva (vac − va)
φ̇ = bφ (φc − φ)

where φ denotes the roll angle in Fb and g is the standard acceleration due to gravity. The third
model further increases fidelity by controlling altitude indirectly through the flight-path angle.
The model is described by the equations

ṗn = va cosψ cos γa + vwn

ṗe = va sinψ cos γa + vwe

ḣ = va sin γa − vwd
χ̇ =

g

vg
tanφ cos (χ− ψ)

γ̇ = bγ (γc − γ)

v̇a = bva (vac − va)
φ̇ = bφ (φc − φ)

(2.3)

where γ is flight-path angle in F i and vg denotes the velocity of the aircraft relative to ground.
These guidance models assume the fixed-wing UAV flies under a coordinated-turn condition,
with zero side-slip (steady flight) [20]. The autopilot included in the model controls airspeed,
flight-path angle and roll angle. Despite considering wind influence, the model is relatively simple
when compared to dynamic models. Thus, it is possible to process it using the UAV’s onboard
computation module. Unless otherwise specified, the model (2.3) will be the default kinematic
guidance model used in the thesis.

Nevertheless, the concept of kinematic guidance models can be further expanded, e.g., by
implementing load factor. It will not be used in this research, however. Further information on
kinematic guidance models can be found, e.g., in [20].

2.4 Dynamic guidance model

By neglecting aerodynamic forces entirely, the kinematic guidance model introduces an impor-
tant limitation especially visible in the case of HALE UAVs. Lift force changes significantly
between starting/landing conditions (near ground level) and the maximal achievable altitude of
several kilometers.

As noted above, kinematic models are usable to be implemented in embedded controllers due
to their relative simplicity and low computation effort. Nevertheless, if limited computation per-
formance is not an issue, e.g., during simulation in the ground control station, the aerodynamic
forces should not be neglected.

A dynamic guidance model includes lift, drag, and thrust forces aligned as in Fig. 2.7.
Therefore, it can successfully model the behavior of the HALE UAV in changing air density.
Nevertheless, the dynamic guidance model is still simpler than a full non-linear aircraft model
presented, e.g., in [20].

Introducing dynamics to the model requires defining forces affecting the aircraft. Let Fthrust
be the resultant thrusting force component generated by the propulsion, which acts along the

2.4. Dynamic guidance model 12

Fig. 2.7: External forces acting on the UAV along the ib axis at roll angle of φ [20]

aircraft’s iv2 axis. Now, assume Fdrag represents drag force acting along the same axis, but
having opposite direction

Fdrag =
1
2
ρv2
aSCD

where ρ represents air density, S is total wing area and CD denotes drag coefficient. The last
force considered by the dynamic guidance model is lift Flift given by Bernoulli’s law

Flift =
1
2
ρv2
aSCL

where CL denotes the aircraft’s lift coefficient. The corresponding equations of motion for the
model are finally given by

ṗn = vg cosχ cos γ

ṗe = vg sinχ cos γ

ḣ = vg sin γ

v̇g =
Fthrust − Fdrag

m
− g sin γ

χ̇ =
Flift sinφ cos (χ− ψ)

mvg cos γ

γ̇ =
Flift
mvg

cosφ− g

vg
cos γ

(2.4)

where vg is the aircraft’s velocity relative to ground and Fthrust, Fdrag, Flift denote thrust, drag
and lift forces, respectively, in Fb, as shown in Fig. 2.7. The mass of the UAV is represented by
m, while g is the standard acceleration due to gravity [20].

The model described by equations (2.4) assumes the aircraft is controlled via thrust Fthrust,
lift force Flift and bank angle φ. These variables were choses as typical “inputs that a human
pilot commonly controls: engine thrust, lift from the lifting surfaces, and bank angle” [20]. Using
an approach similar to kinematic guidance models, the control variables are given by

φ̇ = bφ (φc − φ)

Ḟlift = bFlift

(
F clift − Flift

)
Ḟthrust = bFthrust (F cthrust − Fthrust)

(2.5)

where bφ, bFlift , bFthrust are the autopilot’s constants. The c superscript again denotes the con-
trolled variables. The dynamic guidance model given by equations (2.4) and (2.5) can be used
similarly to the kinematic guidance models in section 2.3. As it considers Bernoulli’s law, the

2.5. Dynamic vs kinematic 13

performance of the UAV depends on air density, which changes dramatically in the whole range
of operational altitudes available to the HALE UAV.

Nevertheless, the dynamic guidance model also its has drawbacks. Although it considers
axial wind conditions (i.e., headwind and tailwind), it lacks the influence of lateral forces due
to crosswind. Moreover, a detailed model should also consider atmospheric disturbances such as
wind gusts, which may be modeled using Dryden wind gust model as noted in MIL-F-8785C [21].

2.5 Dynamic vs kinematic

Dynamic guidance models apply force balance relations to point-mass models, while kinematic
models utilize only kinematic relationships, without considering aerodynamics and forces di-
rectly [20].

Choosing between dynamic model and kinematic model depends heavily on the actual use
case. If the computation time and resources are not an issue, the most precise, although the
most complex, full non-linear dynamic model may be preferred. Therefore, the dynamic model
is optimal for pre-flight path planning in a ground station. However, if a path fragment has to
be validated in real-time using onboard processing unit, the simpler kinematic guidance model
becomes optimal.

Nevertheless, for HALE-class UAV the flight altitude becomes a major concern. While feasible
for other classes of aircrafts, kinematic models become gradually less usable with increasing
altitude. Flying higher requires to consider, e.g., lower air density and thus changes to the lifting
force, in accordance to Bernoulli’s law. Wind influence also becomes a major factor and the
inertial parameters of the UAV cannot be neglected anymore.

Therefore the optimal solution for HALE UAV’s onboard computer may be the dynamic
guidance model, which models the basic aerodynamics, while not completely sacrificing compu-
tation performance.

2.6 Dubins paths

The paths were introduced in 1957 by Dubins in [22]. The term Dubins path refers to a minimum-
distance path between two vehicle poses (or configurations [23]) in a given configuration space [23,
24]. The vehicle is assumed to move at constant forward velocity from the initial pose to the
final pose and is subject to kinematic constraints [24]. Each pose defines the position of the
vehicle and its orientation.

Dubins paths are defined for both two- and three-dimensional spaces [11, 24–26]. In the thesis
only three-dimensional Dubins paths will be considered. Therefore, for simplicity, any further
use of the Dubins path D – without specifying its dimensions – will refer to a Dubins airplane
path D3D.

2.6.1 Dubins car paths

Dubins himself in [22] shows that an optimal path4 of a vehicle constrained to turning and
driving forward is always an ordered set of three segments. It is either {CSC} or {CCC}, where
C is a turn with constant radius of ρ and S is a straight line. Assuming two possible turn
directions the entire set of admissible paths expands to

D2D = {LSL,RSR,RSL,LSR,RLR,LRL} (2.6)

4 That is, the shortest path – or geodesic [22, 23] – in a windless 2D environment [24].

2.6. Dubins paths 14

where: L is a left (counterclockwise) turn, R is a right (clockwise) turn and S is a straight
line [23, 27, 28]. Further expanding the set by allowing reverse movement5 leads ultimately to
the set of 48 admissible paths [23].

In Dubins’s original approach the optimal path is chosen by evaluating the entire set. Thus,
as pointed out by Shkel and Lumelsky, this might be an issue for time-critical applications such
as real-time path planning6 [23].

Due to its resemblance to car-like movement the vehicle following a Dubins path is often re-
ferred to as a Dubins car [24, 30]. The model is widely used in algorithms for waypoint following,
especially in nonholonomic UGVs [27]. For example Balluchi et al. simulate a unicycle [31]. Yong
and Barth verify their real-time dynamic path planner by guiding their nonholonomic robot on
Dubins paths [30]. Cowlagi and Tsiotras implicitly use Dubins paths to test their original 2D
path planning algorithm [32]. Hanson et al. use the car model to move a virtual vehicle perform-
ing sequential target observation with ranged sensors [27]. Nevertheless, Dubins car model also
has more abstract applications such as joining railways or planning pipe networks [23].

2.6.2 Dubins airplane paths

The model gained popularity in aerial applications as well [24]. Anderson and Milutinović use
flat Dubins path for their UAV to track an unpredictably-moving (i.e., modeled with brownian
motion) object [10]. Somewhat similar work by Rahmani et al. shows its usage for multi-UAV
convoying of the group of UGVs [11]. However, as their UAVs flew on constant altitude the car
model was sufficient.

Many applications, however, require incorporating altitude changes into the path planner.
To rule out the planar restriction some modifications has been made. Chitsaz and LaValle added
a climb-rate constraint to the turn-rate constraint, thus providing a Dubins airplane [25]. Hota
and Ghose elaborate on their work by deriving an analytical solution and comparing it with
purely numerical results [26].

Nonetheless, in [24] McLain et al. point Chitsaz and LaValle did not consider practical
issues, which leads to implementation problems on a real UAV. As argued by McLain et al.
“when the altitude component of the path falls within a specific range, there are an infinite
number of paths that satisfy the minimum-distance objective” [24]. The authors expanded the
basic concept by utilizing standard kinematic equations and including airspeed, flight-path angle
and bank angle [24].

Moreover, they split the airplane paths into three altitude-based categories. Low-altitude
paths differ only by the addition of flight-path angle γ. High-altitude paths which are not
satisfied by Dubins car model require helix-based lifting or gliding maneuvers. Medium-altitude
paths7 are solved by performing an intermediate arc after the initial helix (for climbing) or before
the terminal helix (for gliding) [24].

Finally, analogous to (2.6), the complete set of 28 possible movements for forward-moving
UAV can be expressed by

D3D = {LSL,RSR,RSL,LSR,RLR,LRL,HLLSL,HLLSR,

HRRSL,HRRSR,HRRLR,HLLRL,LSLHL, LSRHR,

RSLHL, RSRHR, RLRHR, LRLHL, LRSL,LRSR,LRLR,

RLSR,RLRL,RLSL,LSRL,RSRL,LSLR,RSLR}

(2.7)

5 This effectively makes it a Reeds-Shepp model, as described in [29].
6 Instead of considering the whole set, the authors provided the decision table for finding the shortest path

without explicitly calculating all of the involved paths [23].
7 That is, the paths too steep for satisfying flight-path angle constraints and too short for helix-based maneuvers

– i.e., even a single-turn helix would overshot [24].

2.7. Summary 15

where: HL is a left (counterclockwise) helix and HR is a right (clockwise) helix. Note (2.7)
contains either 3-segment or 4-segment paths.

2.6.3 Alternative approaches

A similar model to Dubins car was proposed by Reeds and Shepp in [29]. The Reeds-Shepp model
adds the possibility to ”switch gears” of the car, i.e., reverse the direction of its movement. As
the model has no practical use for fixed-wing aircrafts it is not used in the thesis.

It is worth noting that Dubins problem neglects wind velocity entirely. For modeling those
Zermelo approach may be preferred [28]. The problem described by Zermelo in [33] deals with
a boat navigating in a body of water in the presence of wind and/or water currents. The goal is
to derive the best possible control to reach the destination while minimizing time. Additionally,
alternative approaches to Dubins or Reeds-Shepp paths may be employed. For example, κ-
trajectory is a computationally efficient path smoothing method, which can provide a feasible
path for an airplane to follow in real-time [8, 34].

Nevertheless, the thesis already addresses the wind problem in three ways. First, any small
differences in wind speed and direction are assumed to be compensated by the controller of
the UAV. Second, the Local Path Planner (LPP) runs repeatedly, thus automatically correcting
eventual position errors caused by wind gusts to strong to be compensated by the controller.
Following an exact path is not required as long as the waypoints provided by the Global Path
Planner (GPP) are reached and the path is collision-free. Third, wind is already considered
during waypoint optimization carried out by GPP. Thus, the set of waypoints given to LPP is
already quasi-optimal with respect to the wind. However, further improving the APP algorithm
by using Zermelo approach instead of Dubins will be addressed in the further research.

2.7 Summary

The chapter started with a short introduction to the basics of modeling a 3D path of an aircraft
by introducing coordination frames and wind triangle. Next sections briefly described kinematic
and dynamic guidance models of a generic fixed-wing UAV. This was followed by an introduction
to Dubins paths and vehicle models in both planar and three-dimensional spaces. Beside basic
concept, the terms of Dubins car and airplane were introduced and supplemented with examples.
Finally, some considerations of other modeling approaches were given.

3. Environment modeling

This chapter describes the concept of an environment map. First, the general idea of the map
is given. Then, every map layer is discussed in detail. The feasible and dynamic model of the
environment is crucial for adaptability of APP.

3.1 Environment map

Apart from the UAV-specific parameters, the state space used by planning algorithms must
include a well-defined scene as well. This includes any possible obstacles, such as terrain, ar-
eas restricted by law or dangerous weather conditions that should be avoided by the UAV.
Moreover, to plan an energy-efficient path, data related to air currents in the flight area is nec-
essary. Both issues will be addressed by building environment models (maps) using available
topographical and meteorological data, as well as airspace segmentation data specified by air
navigation services agencies, i.e., the Polish Air Navigation Services Agency (PANSA) in Poland.

The complete environment map M consists of 4 distinct layers:

� terrain map Mt – models the elevation of terrain and is used for collision avoidance;

� airspace map Ma – contains 3D regions of interest (ROIs) with values assigned;

� wind map Mw – which stores wind velocity forecast as a dynamic vector field;

� measurement maps Mm – optional and mission-specific map layers, that models, e.g.,
estimated pollutant distribution.

A concept of an automated map building methodology is presented in Fig. 3.1. The measurement
maps vary the most between the missions, so they are built manually by a human expert. Hence
they are not shown in the figure.

Building an environment map requires to specify its boundary coordinates, i.e., latitude,
longitude and altitude. The map is a cuboid, which stores regularly sampled data. Thus, it
requires two boundary values to be specified for each dimensions. Being dynamic, the wind map
requires time as the fourth dimension as well.

The terrain map Mt is build from elevation data acquired, e.g., from a web server or by
interpreting SRTM data [35]. First, horizontal coordinates (i.e., latitude and longitude) formulate
a 2D grid. Then, elevation data is acquired for each point on the grid. Finally, the map model
computes the elevation interpolant, which provides continuous elevation values for any pair of
horizontal coordinates.

The airspace map Ma is build in parallel. Ma consists of a set of three-dimensional shapes
representing airspace classes and possible obstacles. The map is built based mostly on the official
airspace data provided by the local aviation authorities. Areas are filtered based on mission
parameters and the class of UAV. The chosen areas are then converted to 3D shapes and each
one gets a value assigned to it.

The wind mapMw is built by acquiring wind velocity data computed by a weather model. It
is done by querying the time series for the set of specified geographical coordinates from a weather
server. Alternatively, an offline pre-computed weather data may be used. To be computationally
efficient, the wind map requires uniformly sampled gridded data, similarly to the terrain map.
This leads to an issue, as the third dimension, altitude, might be available only as above ground

3.1. Environment map 17

Fig. 3.1: Building environment maps

level (AGL). To be compatible withMt, the wind map altitudes have to be defined as absolute,
that is, above mean sea level (AMSL).

To convert a wind measurement time series, the map builder also queries the elevation of the
ground for a given coordinates, where the measurements are taken. Now, the builder acquires
wind data for different altitude levels. Wind data is then extrapolated and extended into ground.
While physically irrational, it is used to assure the map is uniformly gridded, so continuous wind
measurements are possible. Uniformly placed data points are then used to approximate wind
measurements continuously at any given point of the space-time by employing 4D interpolation1.
The process is repeated for all the measurement points.

The maps are then integrated into a complete environment mapM required by the planner
described latter in the thesis. At this point, it is also possible to manually define additional
obstacles to be included in the final obstacle map or define additional layers of the map, for
example, a measurement layer related to pollutant distribution.

Alternatively, 3D space can be divided into a mesh, thus forming a three-dimensional network
diagram, which connects the start and goal poses. Such mesh-based environment representation
was used, e.g., by Duan et al. [8].

1 The conversion and generation of artificial data is done to fulfill the continuity requirements of the gridded
interpolation, which is computationally faster than interpolation of scattered data, see https://www.mathworks.
com/help/matlab/ref/griddata.html.

https://www.mathworks.com/help/matlab/ref/griddata.html
https://www.mathworks.com/help/matlab/ref/griddata.html

3.2. Terrain map 18

3.2 Terrain map

To plan collision-free path, the knowledge of nearby obstacles is necessary. A terrain map Mt

stores elevation data, thus defining terrain-based features treated as obstacles, e.g., mountains.
For the majority of time Mt is not required due to the mostly high-altitude flights of the

UAV. Nevertheless, it becomes important for the crucial maneuvers such as gaining height after
takeoff, preparing to land or conducting low-altitude measurements, such as smog profiling [14],
especially in mountainous areas.

3.2.1 Voxel-based terrain map

A terrain map can be modeled as a voxel map. To reduce memory usage, it can be implemented
using efficient data structures, e.g., binary trees or octrees. In this research, an OctoMap model
presented by Hornung et al. in [36] was used (Fig. 3.2).

Fig. 3.2: Octree concept [37]

An octree is a hierarchical tree-like branching structure, which subdivides volume into voxels.
The structure is recursive in that sense, each voxel is subdivided into another eight voxels until
the map achieves desired resolution or voxel size. Thus, a large space without obstacles or large
obstacle can fit into a single voxel, saving memory.

Contrary to the original probabilistic approach described in [36], only binary occupancy
is considered in the thesis, as discussed above. Therefore, the map divides the scene into 2
binary states: free or occupied. The considered map is static and completely known a priori, so
probabilistic approach serves no purpose and storing binary values instead of numerical leads to
performance improvements.

Voxel-based terrain map can be based on elevation data as well, which is converted to an
occupancy map. It is assumed the volume above the terrain is obstacle-free, while below ground
is always occupied. The voxel-based binary terrain map is given by

MV
t = {mV

tijk} : mV
tijk ∈ {0, 1},

i = 1, 2, ..., Nx,

j = 1, 2, ..., Ny,

k = 1, 2, ..., Nz

(3.1)

where Nx, Ny and Nz are the number of cells along the map’s x, y and z axes, respectively. A
binary value mV

tijk indicates that the cell at i-th, j-th and k-th index of respective axes x, y and
z is either free (if 0) or occupied (if 1).

Limitations

Voxel-based terrain map MV
t was used in the preliminary study, but later was superseded by

a so-called 2.5D model for performance reasons. The 2.5D model is described in the next section.
A detailed explanation is given in the comparative test described in Chapter 5.

3.2. Terrain map 19

3.2.2 Discrete terrain map

The discrete 2.5D terrain map is built by acquiring a finite set of gridded elevation data, for
example from a web server. The measurement points are uniformly placed inside a bounding box
defined by latitude and longitude boundaries to form a grid. The map is sampled using a constant
step, which is equal in each direction. Sampling density can be adjusted to provide more or less
reliable geometry, which influences the map’s fidelity and computation time. Formally, a discrete
terrain map can be expressed as a matrix MD

t of elevation data points mD
tij , such that

MD
t = {ztij} : ztij ∈ 〈zmin, zmax〉 ,

i = 1, 2, ..., Nx,

j = 1, 2, ..., Ny,
(3.2)

where Nx and Ny are the number of cells along the map’s x and y axes, respectively. Each
value ztij holds an elevation of terrain above mean sea level (AMSL), limited by minimal terrain
elevation zmin and maximal terrain elevation zmax.

Limitations

As 2.5D implies, the third dimension, altitude, is simplified. A 2.5D model is a two-dimensional
static elevation map, which assumes altitude is modeled by a single threshold value. Values equal
or below the threshold are considered colliding with ground. Consequently, this map cannot
model tunnel-like features, i.e., the possibility to fly below ground. That features, however,
are not considered as valid to fly in the thesis, thus this representation is preferred for better
performance over the voxel-based map.

3.2.3 Continuous terrain map

Terrain’s fidelity can be improved by implementing a continuous terrain map MC
t . The con-

tinuous map interpolates data from the nearby queried data points to provide elevation for
continuous coordinates. MC

t is formally defined as

MC
t = f

(
x, y,MD

t

)
(3.3)

where f (·) is a generic interpolation function along horizontal dimensions x and y representing
longitude and latitude, respectively. The function f (·) interpolates elevation value based on the
points inside a discrete map MD

t closest to the points specified by x and y. Exact form of f (·)
depends on the used interpolation method.

By implementing interpolation methods of different complexity, the balance of smoothness vs
computation performance of the final terrain model can be adjusted. In the simplest form, MC

t

uses nearest neighbors interpolation to provide discretized elevation. If not specified otherwise,
the terrain maps in the thesis use bilinear interpolation, which provides C0-continuity and
requires relatively low computation effort.

Fig. 3.3 illustrates an example2 of C0-continuous terrain maps for two different sampling
densities. The top figures (a and b) represent the coordinates of sampling points, i.e., the refer-
ence points with data queried from external source. Horizontal coordinates are given in meters
relative to the origin of the map, where axes x and y are aligned with east and north, respec-
tively. Crosses mark the local origin of each map, i.e., the point (0, 0). The bottom figures (c
and d) present resulting bilinearly interpolated terrain maps. Note smoothing out of the peaks
shown in red boxes caused by reduced sampling density.

2 The chosen area is Mt. Everest and its surrounding. Local origin (0, 0) is set to the peak of Mt. Everest. This
area was chosen as an example for its prominent terrain features.

3.2. Terrain map 20

Fig. 3.3: Sample terrain maps

Limitations

The limitations of a discrete terrain map MD
t applies also to its continuous counterpart.

3.2.4 Collision checking

To check for possible collisions with terrain, the free (·) operator is defined. It checks whether
the point at given x, y and z coordinates is placed above the ground elevation at this point
(classified as free), or not (classified as colliding with terrain). Assume w denotes a waypoint

w =
[
wx wy wz

]
(3.4)

where wx, wy and wz are its coordinates along axes x, y and z, respectively. Now, in the most
general form of the free (·) operator is given by

free (w,Mt) (3.5)

whereMt denotes any kind of a terrain map as defined above. Depending on the flavor of terrain
map, the exact implementation of free (·) differs slightly.

Voxel-based terrain map

The free (·) operator takes the simplest form in the case of the voxel-based terrain map MV
t .

In that case, it is defined as

free (w,MV
t) = 1−mV

tijk,

i = wx

j = wy

k = wz

(3.6)

where w is the queried waypoint, as in eq. (3.4). MV
t and mV

tijk are defined as in eq. (3.1), but i,
j and k indices are given by w. The operator returns either 1 if w is located inside a free voxel
or 0 if that voxel is occupied.

3.3. Wind map 21

Discrete terrain map

For a discrete terrain map MD
t , the collision check is given by

free (w,MD
t) =

{
1 if wz > ztij

0 otherwise
,

i = wx

j = wy
(3.7)

where w is the queried waypoint, as in eq. (3.4). MD
t and ztij are defined as in eq. (3.2), but i

and j indices are given by w.

Continuous terrain map

Collision checking for a continuous terrain map MC
t is defined similarly as for MD

t , but also
considers interpolation. The free (·) operator for MC

t takes the form

free (w,MC
t) =

{
1 if wz > MC

t (wx, wy,MD
t)

0 otherwise
(3.8)

where w is the queried waypoint, as in eq. (3.4). MC
t is defined as in eq. (3.3).

3.3 Wind map

Estimating wind conditions is crucial for energy-optimal flight, especially for HALE UAVs.
High-altitude flights mean significant changes in height, so wind data must be available at
different altitudes. Moreover, long endurance flights require a model valid for several hours after
takeoff. Hence, the model must be dynamic. For example, it can be a function of coordinates,
altitude and forecast time. This approach requires, however, calculating wind speed and direction
each iteration [38]. Weather models such as the National Centers for Environmental Prediction
Global Forecast System (GFS) or the European Centre for Medium-Range Weather Forecasts
(ECMWF) [39] tend to be complex and require significant computation effort to be computed.

To improve computation performance, the thesis proposes a different method. Instead of
computing wind estimates on-the-fly, the wind forecast map provides a simplified model – similar
to the one used for terrain maps and discussed in detail in [38].

3.3.1 Discrete wind map

Precomputed wind velocity data is acquired from external source, e.g., a web server, and stored
inside a wind mapMw. It contains the horizontal component of the wind velocity vector, which
is also sampled in time and altitude. The mapMw is dynamic in such way, that it contains wind
forecasts for a given period of time. Thus, wind map Mw is effectively a dynamic 3D vector
field defined in 4D space-time. A similar approach using a 2D wind forecast map was used by
Andrade [40]. The idea of discrete wind map is presented in Fig. 3.4.

An example of the wind map for Poland is shown in Fig. 3.5. Wind at sample points is
displayed as vectors. Wind blows from the tail of a vector to its head. Wind speed is reflected by
the length of a vector, as well as by its color3. Thin vertical lines indicate measurement points
located at the same horizontal coordinates (i.e., latitude and longitude), but at different altitude
levels. The cross marks the origin of the map, i.e., (0, 0, 0).

3Wind maps become difficult to understand if overlaid on top of terrain maps. Hence, information redundancy
was introduced. Color is useful to compare and group differently aligned vectors, while length difference helps in
quantitative comparison of wind velocity. Moreover, the colorbar allows reading the wind speed more precisely

3.3. Wind map 22

Fig. 3.4: Structure of data inside a discrete wind forecast map [38]

Fig. 3.5: Visualization of a sample wind forecast map for Poland [38]

The map can be imagined as four-dimensional space-time with three spatial dimensions x, y and
z, and one temporal dimension t. Formally, a discrete wind map MD

w is expressed by equation

MD
w = {~vijkτ} =

{(
‖~vijkτ‖ ,∠~vijkτ

)}
,

i = 1, 2, ..., Nx,

j = 1, 2, ..., Ny,

k = 1, 2, ..., Nz,

τ = 1, 2, ..., Nt

where Nx, Ny, Nz, Nt are the number of cells along the map’s x, y, z and τ axes, respectively.
Axis t denotes discretized time since the earliest forecast stored in MD

w . Vector ~vijkτ represents
the wind velocity vector at i-th sample along x axis, at j-th sample along y axis, at k-th sample
along z axis and at τ -th sample along t axis [38]. Alternatively, wind vectors can be replaced
with pairs of wind speed ‖~vijkτ‖ and wind direction ∠~vijkτ .

3.4. Airspace map 23

3.3.2 Continuous wind map

Wind maps can also be modeled as continuous, if necessary. A limited number of samples stored
in MD

w can be transformed into continuous 4D space-time using various interpolation method,
similarly to terrain maps. A general form of continuous wind map MC

w is described by

MC
w = fi(x, y, z, t,MD

w) (3.9)

where fi(·) is a generic interpolation function along all 4 dimensions and x, y, z and τ represent
the coordinates of the queried point. This function bases on the samples available at discrete
points stored internally as a discrete map MD

w of gridded wind velocity vectors. On demand,
MC

w performs the interpolation of gridded samples neighboring a given 4D point to provide
an approximated but continuous result. In its simplest form, MC

w uses linear interpolation to
provide C0-continuity in each dimension. However, more intricate interpolation methods can
also be employed to generate C1- or C2-continuous results at the cost of increased computation
effort [38]. The concept of continuous linearly interpolated wind map is tested in Chapter 5 and
also in [38].

3.3.3 Checking wind velocity

For convenience, the wind (·) operator is defined. It returns the wind velocity vector ~v at position
of the waypoint w given as its argument. Formally wind (·) is represented by

wind (w, t,Mw) = ~v (3.10)

where ~v is the wind velocity vector computed for the position of the waypoint w and time t by
the wind map Mw. Variable Mw denotes a generalized wind map, which can be either MD

w or
MC

w .

3.3.4 Limitations and possible improvements

It should be noted that by the time of writing the thesis the publicly available weather maps
do not include densely-sampled vertical wind data. Hence, advanced flying strategies, such as
soaring, i.e., flying in the masses of warm air [41], are not implemented yet.

While a wind map can also be implemented as an octree (see section 3.2.1), it is assumed
measurement points are sparse to reduce the amount of server queries. Hence, performance gain
and memory reduction would be negligible, as most values will differ.

To assure stability in simulation, the wind map model described in this research interpolates
values between the measurement points to achieve continuous output. Due to performance rea-
sons, the map uses linear interpolation, which grants C0-continuity. If computation time is not
crucial, other methods, such as cubic or spline interpolation, can be employed.

3.4 Airspace map

The airspace mapMa describes the structure of the scene’s airspace. The main reason ofMa is
to model airspace limitations enforced by law, which are in fact artificial obstacles in airspace.
An example segregation of the airspace over Łódź Lublinek airport (Poland) is presented in
Fig. 3.6. This airspace segregation map is the PANSA’s official AUP/UUP map for Poland [42].
Note that not all of the regions shown are considered impassable to UAVs.
The Regions of Interest (ROIs) on the airspace map are described by three-dimensional prisms.
A prism is defined by a set of pairs of latitude and longitude, which form a horizontal polygon.
The polygon is then extruded vertically between two altitude levels to form a prism. Each prism

3.4. Airspace map 24

Fig. 3.6: Segregated airspace over Łódź Lublinek airport (ICAO:EPLL), Poland [42]

can be then classified according to the local law, which imposes various constraints on the aerial
vehicles flying inside it.

In the thesis, the airspace map is used solely for modeling forbidden airspace regions, though.
ROIs inside the map are classified as obstacles. It means, crossing them is forbidden and invali-
dates the planned path (i.e., the path becomes unfeasible). This covers law-enforced no-fly zones
(NFZs) but also extends to ROIs with dangerous weather conditions, such as storm clouds.

3.4.1 Prism-based airspace segmentation

Let 42D be a polygon specified by a set of N horizontal coordinates, that is

42D =
{
(xi, yi)

}
, i = 3, 4, ..., N (3.11)

where N is the number of pairs (at least 3). Variables xi and yi denote horizontal coordinates
(e.g., longitude and latitude or their local Cartesian equivalents) of i-th vertex of the polygon.
To form a prism, The polygon 42D is extended between two altitude levels to form a prism

43D = {42D, zmin, zmax}, 43D ∈Ma (3.12)

where zmin and zmax denote the altitudes of the bottom and the top bases of the prism, re-
spectively. ∆2D denotes the two-dimensional polygon, which represents the shape of the bases.
An abstract example of an airspace map is shown in Fig. 3.7. ROIs are modeled by colored
semi-transparent prisms. Different colors are used solely for presentation purposes.

3.4.2 Collision checking

For convenience, the free (·) operator is defined also forMa, similarly as for terrain mapsMt.
The operator returns 1 if a waypoint w does not lie inside any of the prisms inMa, or formally

free (w,Ma) =

{
1 if ∀43D ∈Ma|w ∩43D = {∅}
0 otherwise

(3.13)

where w is the queried waypoint.

3.5. Measurement maps 25

Fig. 3.7: An example abstract airspace map

3.4.3 Limitations

Only static vertically-aligned prismatic shapes may be modeled by the airspace map defined as
above. As modeling exact shapes of obstacles is outside of scope of the thesis, this representation
is considered sufficient for simplified shapes, e.g., storm clouds or law-enforced NFZs. Neverthe-
less, if the idea of the airspace map is adapted for a UAV requiring more precise maneuvers, this
representation should be revised to include more complex shapes.

3.5 Measurement maps

Measurement maps Mm are the final but optional layers of the environment map. They are
used to model the measurement strategy. For example, a measurement mapMm may model the
estimated pollutant distribution to optimize the location and shape of the measurement path.
Then, this measurement layer can be updated during the mission, e.g., with actual measurement
data. This way it is possible for the path to adapt to the actual distribution of the pollutant
and further optimize the measurement path. Measurement maps are used solely by GPP.

Each Mm is defined similarly to a wind map Mw. A discrete static three-dimensional mea-
surement map MD

m is defined as

MD
m = {mmijk},

i = 1, 2, ..., Nx,

j = 1, 2, ..., Ny,

k = 1, 2, ..., Nz

where Nx, Ny, Nz are the number of cells along the map’s x, y, z. Vector mmijk denotes the
measurements (either actual or their estimates) acquired at i-th, j-th and k-th cell along x, y
and z axes, respectively. Analogous to wind maps, measurement maps can be transformed to
continuous by the means of interpolation. A continuous static 3D measurement map takes the
form

MC
m = fi(x, y, z,MD

m)

where fi(·) is a generic interpolation function along the 3 spatial dimensions. This function
bases on the samples available at discrete points stored internally as a discrete measurement
map MD

m defined as above. Alternatively, MC
m can be given as an explicit function fa(·), which

3.6. Summary 26

approximates the pollution intensity distributed in space, that is

MC
m = fa(x, y, z). (3.14)

Unless otherwise specified, eq. (3.14) is used as the default pollution model throughout the
thesis.

3.5.1 Checking measurement value

To check the measurement value (i.e, pollution intensity) at any given position the pollution (·)
operator is defined. The operator returns the value stored insideMm, which corresponds to the
value stored at the position of the waypoint w. The formal definition of the pollution (·)
operator is

pollution (w,Mm) = m (3.15)

where m is the quantitative measurement at the position of the waypoint w returned by the
measurement mapMm. Again, variableMm denotes a generalized measurement map, i.e., MD

m

or MC
m.

3.5.2 Limitations

The measurement maps MD
m and MC

m are static. It means, in their current form they cannot
represent, e.g., pollutant distribution changing over time. The maps, however, can be made
dynamic by adding another axis, similarly to the wind maps MD

w and MC
w .

In practice, at least for the first flight, the exact shape and location of the polluted volume
are not known. Therefore, an explicit model (3.14) is preferred to guide the UAV to the point
of the highest estimated pollutant concentration. For the next flights, the sample-based models
may be used to better reflect the exact shape of the polluted region based on the data collected
during the first flight.

3.6 Summary

This chapter described the context of an environment map. The chapter begun with a general
idea of the environment model, its components and building methodology. Next, each of the 4
layers of the map was described. The environment map as described in this chapter will be used
as the default model of the scene throughout the thesis.

4. Adaptive Path Planner

In this chapter the model-based adaptive path planning algorithm for a fixed-wing HALE UAV
is proposed. First, a general form of the algorithm is given. Then, its two major components for
global and local planning are discussed in detail. The chapter ends with the summary on the
major features and limitations of the algorithm.

4.1 Path planning

Path planning means building a path used to travel from the start position in space to the
goal position while avoiding obstacles and minimizing a positive cost metric (e.g., length of
traverse) [43]. The path is built with the minimal cost according to the criteria and bound by
the constraints [5]. Based on a review by Zhao et al. [5], UAV path planning in general can be
characterized by:

� Stealth – staying undetectable is important especially for military applications as it grants
safety; for civil application it means avoiding inhabited areas.

� Physical feasibility – concerns all classes of UAVs and refers to the physical limitations of
the aircraft, e.g., the maximum path distance (flight range) and the minimum length of
a single segment of the path (maneuverability).

� Performance of the mission – whether the path satisfies the mission-specific requirements,
for example, the airspeed limits of the measuring equipment, but also the compatibility
with a specific measurement procedure.

� Real-time implementation – refers to the efficiency of the planner, i.e., its capability to
quickly recompute the path, which is crucial for a dynamic environment.

Duan et al. in [8] consider three most important requirements of an ideal path planner:

� Optimality – whether the planner provides the globally optimal solution, or how close the
actual solution is to the global one.

� Completeness – to be complete, the algorithm has to find a solution if one exists or report
failure otherwise.

� Computational complexity – especially important for fast UAVs, such as combat UAVs,
which are the main focus of the authors of [8].

4.2 Adaptive planning vs non-adaptive planning

Non-adaptive planning refers to the problem in which the planner searches for feasible paths
using information about the whole environment. It is assumed the environment is static and
fully determined with some specific constraints applied. That is, the entire scenario, i.e., the
states of the UAV, as well as its environment are known a priori and predictable. This includes
planning the mission before the UAV actually takes off. Zhao et al. mention here several classes
of constraints, such as obstacle and threat constraints, velocity and acceleration constraints,
and minimum path and fuel consumption constraints [5]. In non-adaptive planning, finding an
optimal or quasi-optimal solution is more important than minimizing the computation effort.

4.3. General form of the algorithm 28

Conversely, adaptive planning occurs when the states of the UAV or its environment change
indefinitely over time. In this case, the planner reacts to random and unpredictable changes in
the state space, e.g., unexpected wind gusts causing position errors [5]. It is crucial here to pro-
vide a solution in very limited time, i.e., satisfy the computational complexity requirement [8].
Therefore, employing a purely deliberative planning strategy is not reasonable. Adaptive plan-
ning favors finding a feasible solution, that is ”good enough”, but not necessarily optimal, within
reasonable time. Authors of [5] classify the adaptive1 path planning as a dynamic multi-objective
optimization problem.

The classification above bases on the definitions of offline planning and online planning
from [5]. However, the terms non-adaptive and adaptive, respectively, are used instead. The
reason is the term offline limits the planner to be run only before the mission actually begins.
As it is desirable to recalculate the path on demand, the term non-adaptive seems more adequate.
Other parts of the definition still apply. In the context of the thesis, the terms adaptive and
online are interchangeable, but the first is preferred as it is the antonym of non-adaptive. In
the course of the thesis, adaptive planning means the ability to re-plan the path to counteract
events that were not been planned before the mission.

4.3 General form of the algorithm

The Adaptive Path Planner (APP) consists of two major components: Global Path Planner
(GPP) and Local Path Planner (LPP). GPP provides a close-to-optimal solution according to
various criteria defined in a mission scenario. The output of GPP is the set of sparsely placed
global waypoints, which approximate the path, and the initial path made of densely-placed
local waypoints. LPP is a lower-level planner, which re-plans the collision-free path between
the global waypoints provided by GPP. LPP outputs only local waypoints. The lowest-level
planner is the flight controller of the UAV, which grants some reactivity to dynamic obstacles.
It is not covered by APP, however. Alvear et al. implemented a similar approach for their
chemotaxis-driven multirotor guidance system. The guidance system was deployed on a higher-
level computer (Raspberry Pi), while the UAV controller ran on another board (Pixhawk) [44].
While sufficient for a multirotor, their chemotaxis-driven approach is not convenient for a more
constrained fixed-wing UAV. A typical APP-based mission planning and execution methodology
is shown in Fig. 4.1.
First, human personnel in the Ground Control Station (GCS) plans the mission according to the
current and forecast weather conditions and (optionally) estimated pollution concentration. At
this point the flight area and the measurement strategy are chosen. Also, decisions concerning
UAV payload are made.

Next, the environment map is build using the parameters supplied by human experts and data
queried from external sources, e.g., weather forecast servers or pre-computed weather models.
The map models at least static terrain height map, the airspace regions and forecast dynamic
wind conditions. It also includes measurement map if estimated pollution concentration was
specified. When the map is ready, it is supplied to APP.

Then, GPP plans the global path and initial local path by optimizing the placement of global
waypoints and mission parameters. GPP considers many optimization criteria including wind
velocity, preferred flight areas, estimated energy expenditure and measurement-specific require-
ments. The global waypoints supplied by GPP only approximate the final path, however. That
is, they only specify the positions, which must be reached by the UAV flying along an adaptive
local path. The path is then validated in simulation using Model-in-the-Loop (MIL) and/or
Software-in-the-Loop (SIL) methods. If successful, the path must be approved by a human.

1 They use the term online instead of adaptive, but in the context of the thesis it means the same [5].

4.3. General form of the algorithm 29

Fig. 4.1: Typical APP-based mission planning and execution methodology

The path is send to the UAV. Before the flight starts, the UAV initializes. If errors are
detected, they are logged and the platform shuts down, aborting the mission. Otherwise, the
mission begins and control is passed to a human pilot. The pilot takes off manually and ap-
proaches the first global waypoint. After that, control is passed to the autonomous system and
the aircraft flies along the initial path. If the next waypoint cannot be reached or the envi-
ronment map is updated without supplying a new local path, LPP launches to plan a fallback
path.

The local fallback path to the next global waypoint is computed offboard (i.e., in GCS) using
LPP and is sent to the UAV. If connection is lost, LPP runs directly onboard. Depending on
the scenario, onboard computations can be switched on by default. Now, the UAV controller
tries to follow the path indicated by the local waypoints. If an error occurs, the UAV plans
a path to a predefined emergency landing site to perform a Return-To-Home (RTH) maneuver.

4.4. Global Path Planner 30

If a critical error occurs during RTH, the UAV enters emergency mode, deploys a parachute and
tries to send a call for help with its current location. Then, the major systems of the UAV shut
down for safety. The exact behavior of the controller and a decisive module, which supports it, is
a complex problem on its own. Also, it is not directly related to APP. Hence, it is not discussed
in the thesis.

The steps as above are repeated until the UAV reaches the final global waypoint. In that
case, the human pilot takes control over the UAV and lands it manually, which completes the
mission.

Optionally, the global path can be also re-planned during the mission. After updating the
settings, APP re-initializes while the UAV is still airborne. If the new path is valid and approved,
it is sent to the UAV. LPP automatically adapts to it, if needed.

4.4 Global Path Planner

GPP is an optimization tool used to provide a quasi-optimal path according to a wide set of cri-
teria. They include collision avoidance, environmental conditions, energy expenditure, minimal
path length and mission-specific parameters, e.g., profiling parameters. The global waypoints
provided by GPP are the input to LPP.

4.4.1 Problem statement

The outcome of GPP strongly depends on the general mission scenario S, which can be described
by general mission parameters, such as the placement of the human-specified waypoints, airspeed
between the waypoints, parameters relating to measurement profiles etc. These factors influence
several criteria such as total energy consumption, flight endurance (longevity), flight distance
and the quality of measurement data. Therefore, they must be adjusted correctly.

The main purpose of the optimization process is to search for the optimal scenario S of the
mission and the optimal values of mission parameters p in order to obtain the best global path
PG. This issue is viewed as a multi-objective optimization problem and hence it is stated as

minimize C(S,p) = c1(S,p), c2(S,p), ..., cn(S,p), ..., cN (S,p)

subject to Ω(S,p)
(4.1)

where S and p represent decision variables as above, cn is the n-th criterion function of non-
conflicting objectives, n = 1, 2, ..., N . Ω denotes the set of the constraints and boundaries re-
sulting from general mission requirements, law regulations, expert’s knowledge etc. The general
mission scenario S can be determined using a part of decision variables corresponding to mission
parameters p to reduce the complexity of the problem in some cases.

Mission parameters

The mission parameters p are expressed in a general vector form

p =
[
w1 w2 · · · wn · · · wNG g

]
where wn is the n-th vector of waypoints, n = 1, 2, ..., NG, and g represents the vector of global
mission-specific settings. The number of waypoints optimized by GPP is expressed by NG. The
parameters in wn are defined per-waypoint, while g contains the parameters defined globally for
the whole mission. Each global waypoint w has the similar form as in eq. (3.4), but extended by
heading angle. It is given by

w =
[
wx wy wz wχ

]
(4.2)

4.4. Global Path Planner 31

where wx, wy, wz represent the requested position of the UAV relative to the inertial frame
F i. Variable wχ denotes its heading in F i. Thus, each waypoint w represents a position with 4
degrees of freedom. The vector g is highly dependent on the actual scenario S, but in general
case it has the form

g =
[
g1 g2 · · · gn · · · gNg

]
(4.3)

where gn is the n-th of a total of Ng global mission parameters.
Generally, multi-objective problems can have infinite number of local as well as global ex-

trema and therefore one should investigate a set of points, each of which satisfies the objectives.
Because of this, the predominant Pareto optimality concept [45] is adopted.

The Pareto-optimal solution can be considered the same as a non-dominated solution. It
exists if no solution exists that improves at least one objective function without worsening others.
In this research it is decided to apply the estimation of fundamental measures as objectives, which
are described in-detail in the section 4.4.2.

Reducing to single-objective cost function

Alternatively, the global criterion method can be applied to transform a multiple-objective cost
function (4.1) into a single-objective one [45]. Therefore, an indirect utility function can be
expressed in its simplest form of meta-criterion function as the weighted sum of objectives

C(S,p) = C(S,p) =
Nc∑
n=1

ωncn (4.4)

where ωn is the weight of the n-th criterion cn. Nc stands for the number of criteria. The optimal
solution is found if the criterion function C has a relative minimum at p∗, i.e.,

p∗ = argmin︸ ︷︷ ︸
p∈Ω

(
C(S,p)

)
.

Different optimization algorithms can be utilized for solving the problem stated in (4.1)
or (4.4). The objectives are stochastic and p contains both continuous and discrete decision
variables. Therefore, hard computing optimization methods, such as gradient-based approaches,
cannot be adapted in this study.

Moreover, pure stochastic optimization methods, for example Monte Carlo techniques, will
not be able to find an accurate solution while guaranteeing polynomial-time convergence. In-
stead, soft computing optimization methods may be used to find the global minimum of the
function. In the thesis, different heuristic algorithms are applied, such as I-GWO, PSO, GA and
ACOR. Most of these algorithms are described in appendix B.

General form of a measurement mission

GPP optimizes the placement of global waypoints as well as mission-specific parameters, e.g.,
parameters of the measurement path. The path, however, must be subject to the kinematic
constraints of the UAV. To reduce the number of optimized waypoints, GPP only optimizes the
waypoints, which act as control points. Then, these points are connected using Dubins airplane
paths to form smooth kinematically-feasible path. The algorithm computes all feasible Dubins
paths for a given pair of control waypoints and picks the shortest. Now, assume a mission scenario
as follows:

1. The UAV takes off and flies to the area with the highest pollution concentration.

4.4. Global Path Planner 32

2. The aircraft flies through the area following a parametric measurement path.

3. The UAV returns to the landing site and lands.

Note, the takeoff and landing are handled either manually by a human operator or by a dedicated
autonomous system, which is not a part of the planning algorithm described in the thesis.

The measurement path can be modeled by a parametric polygon, which represents the area,
where the measurements should be taken. The measurement polygon can be then converted to
a path by employing an area coverage algorithm configured to respect the kinematic constraints
of the aircraft, e.g, the maximum coverage algorithm by Torres et al. [46].

In the thesis it is assumed the exact shape of the polluted area is not known a priori. Hence,
to cover the area uniformly in all directions, the measurement polygon should be a circle. For
computation purposes, however, it is approximated by a regular polygon. Therefore, the vector
of optimized variables finally takes the form

p =
[
WS WG NS NG wM

]
(4.5)

where WS and WG are the vectors of global waypoints from start (takeoff end point) to the
beginning of the measurement path, and from the end of the measurement path to goal (the
landing start point), respectively. The start and goal point are the points, where the control is
passed to/from the path planner.

To keep the form of the optimization vector constant, the variables NS and NG are used
to optimize the exact number usable of waypoints in WS and WG. The minimal number is
0 (start or goal waypoint connected with a single Dubins path to the measurement path) and
the maximal number is a parameter of GPP. The variable wM represents the position of the
geometric center of the measurement polygon. The exact shape of the polygon is defined by
parameters not optimized by GPP.

Depending on the algorithm used GPP can plan the path in a such way it bases on a template
path set by a human expert prior to the optimization phase. In that case, a human expert defines
the initial values of the optimization vector p based on their knowledge. GPP tries then to further
optimize this paths by solving the optimization problem as above.

4.4.2 Defining the criteria

Below the criteria used by GPP are given. The criteria are defined in a such way, they provide
a numerical value inverse proportional to the optimality of the solution according to the specific
criterion. That is, the further from the optimal solution, greater the value of the criterion, and
thus the value of the cost function.

The criteria considered by GPP in the thesis are given in Tab. 4.1. It should be noted, that
only a subset of the criteria will be used during an individual mission, depending on the chosen
scenario. The list can be further expanded with other criteria, for example, considering aircraft
icing as mentioned by Andrade in [40].

Obstacle avoidance

Obstacle avoidance is modeled by penalizing the optimizer for placing the waypoints in a such
way, that the shortest Dubins path D computed for a pair of control waypoints crosses an
obstacle. GPP assumes the path is infeasible if it spans below the ground level specified by the
terrain mapMt or if it crosses an NFZ defined by the ROIs in the airspace mapMa. Therefore,
the criterion function has two distinct parts.

4.4. Global Path Planner 33

Tab. 4.1: Summary of the criteria used by GPP

Criterion Necessity Comments

1 Obstacle avoidance Required Penalizes the planner if the Dubins path goes
through an infeasible region

2 Minimal path length Optional Increases the cost proportional to the total
length of the Dubins paths between the con-
sequent control waypoints

3 Wind influence Optional Modifies the path using the heuristic rules,
which define the preferred behavior in the pres-
ence of wind

4 Energy expenditure Optional Increases the cost proportional to the energy
expended during the flight; estimated using
heuristic rules

5 Pollutant concentration Optional Places the geometric center of the measure-
ment area in the point of highest pollution

The first part checks if any Dubins waypoint wDn on the shortest Dubins airplane path D is
placed inside terrain. This check is done using the free (·) operator defined in eq. (3.5), that is

co1 =
ND∑
n=1

free (wDn ,Mt), wDn ∈ D (4.6)

where wDn is the n-th Dubins waypoint sampled along the shortest Dubins airplane path D.
ND is the total number of Dubins waypoints sampled on D. Sampling density is a parameter of
GPP. Mt denotes a generic terrain map, that is, any of MV

t , MD
t or MC

t .
The second part tests if the same Dubins waypoint wDn intersects with an NFZ ROI. Again,

the check is made using the free (·) operator. This time, however, the definition for the airspace
map Ma, i.e., from eq. (3.13), is used. The second part of the criterion function is given by

co2 =
ND∑
n=1

free (wDn ,Ma), wDn ∈ D (4.7)

whereMa is the airspace map. Finally, the complete obstacle avoidance criterion can be formally
described by

co = sfo(co1 + co2) = sfo

ND∑
n=1

(
free (wDn ,Mt) + free (wDn ,Ma)

)
(4.8)

where sfo is a scaling factor. Note, while both free (·) operators are logically the same, their
implementation differs depending on the kind of the supplied map.

For 2.5D representation (elevation-based maps MD
t or MC

t), terrain-based checks are made
using a simple inequality as in eqs. (3.7) and (3.8). Therefore, the first check can be implemented
as a constraint instead. Now, using a constrained optimization method and violating the con-
straint makes the path infeasible. In the case of constrained optimization, co is reduced to its
second part, which checks the airspace map only, that is

co = sfoco2 = sfo

ND∑
n=1

free (wDn ,Ma). (4.9)

4.4. Global Path Planner 34

Note, the cost in eq. (4.8) and (4.9) could be normalized by dividing by the total number
of waypoints. However, this could result in relatively low cost of long paths with just a few
colliding waypoints, unless sfo is set to a very high value. Therefore, the criterion function was
purposefully left not normalized to induce severe penalty for just a single collision, but also to
differentiate between paths with varying number of colliding waypoints.

Minimal path length

Minimizing the length of the path is maintained by the cost function cm, which sums the lengths
of the shortest Dubins paths D computed for each pair of the control waypoints. The result is
then scaled to maintain consistency with the other criterion functions. The function is given by

cm = sfm

ND∑
n=1

‖Dn‖ = sfm ‖D‖ , Dn ∈ D (4.10)

where ‖Dn‖ denotes the length of the n-th Dubins path segment of the whole Dubins airplane
path D. Variable sfm is the scaling factor and ND denotes the number of Dubins waypoints in
D.

Wind influence

To reduce the computation complexity, the effects of wind in this study are modeled using
simplified heuristic metrics. They are formed considering the heading of the UAV versus wind
direction and altitude changes. The metrics follow the simple rules listed below:

� Crosswind is always considered disadvantageous, that is, UAV should minimize flying
perpendicularly or near-perpendicularly to wind.

� Headwind is beneficial when rapidly changing altitude, i.e., if the next waypoint is located
significantly higher, but horizontally close.

� Tailwind is found disadvantageous when gaining or losing height, but otherwise it is con-
sidered beneficial as it increases the ground speed of the UAV.

Given the waypoints wDn and wDn+1 placed on a Dubins path D, let ∆v
n be the vertical difference

between the position of waypoints, that is

∆v
n = |zn − zn+1|, wDn =

[
xn yn zn χn

]
, wDn ∈ D

where zn is the absolute altitude of waypoint wDn in F i and N is the total number of waypoints
sampled with a constant step along D. Similarly, let ∆h

n denote the horizontal difference between
the waypoints

∆h
n =

√
(xn − xn+1)2 + (yn − yn+1)2, wDn =

[
xn yn zn χn

]
, wDn ∈ D

where xn and yn are the absolute distances of waypoint wDn in F i, i.e., respectively along the
x and y axes. N denotes the total number of waypoints sampled along D. Now, assume vwn is
the speed and χwn is the direction of wind2 in the vehicle frame Fv measured at wDn . Let the
variable ∆χ

n express a relative angle measured between wDnwDn+1 and χwn

∆χ
n = ∠

(
wDnwDn+1

)
− χwn

2 The wind direction uses the same convention as the UAV, i.e., 0◦ denote the wind blowing along the x axis,
that is, from −x to +x. The direction of 90◦ denote the wind blowing along the y axis, that is, from −y to +y
etc.

4.4. Global Path Planner 35

where ∆χ
n, ∠

(
wDnwDn+1

)
and χwn are given in F i. The wind-induced cost is modeled by normal

(Gaussian) distribution

N (x, µ, σ) =
1

σ
√

2π
e−
1
2(

x−µ
σ)

where µ and σ represent the parameters of the distribution, i.e., the mean and the standard
deviation, respectively. To increase readability, each of the characteristic wind components will
be defined separately. Crosswind is modeled as two Gaussian distributions centered at the sides
of the aircraft, that is, at ±π

2 . Thus, crosswind model is given by

cw1 =
ND−1∑
n

(
N
(

∆χ
n,
π

2
,
π

6

)
+N

(
∆χ
n,
π

2
,
π

6

))
where the standard deviation of π

6 was chosen empirically and ND denotes the number of way-
points sampled along D. Crosswind-related cost is static in terms of the UAV behavior. Headwind
is defined by N (·) centered at the nose of the aircraft, i.e., at the angle of 0. Headwind can be
expressed as

cw2 =
ND−1∑
n

(
N
(

∆χ
n, 0,

π

6

)(π
4
− atan2

(
∆v
n,∆

h
n

)))

where ∆v
n and ∆h

n are respectively the vertical and horizontal distance between wDn and wDn+1.
The last component, tailwind, is modeled as

cw3 =
ND−1∑
n

((
N
(

∆χ
n,−π,

π

6

)
+N

(
∆χ
n, π,

π

6

))(
atan2

(
∆v
n,∆

h
n

)
− π

4

))

Finally, the heuristic rules to model wind influence are given by

cw = sfw(cw1 + cw2 + cw3) (4.11)

where sfw is a scaling factor. a similar approach, i.e., summing several Gaussian distributions,
was employed by Socha and Dorigo in their ACOR algorithm. They used a weighted sum (called
Gaussian kernel), however [47].

The impact of this criterion depending on the current behavior of the UAV is shown in
Figs. 4.2, 4.3 and 4.4. Line plots on the left side show the unscaled cost as a function of ∆χ

n.
Polar plots on the right side show total wind-induced cost. Red areas penalize the optimizer
with positive cost, while green areas generate negative cost. If the aircraft must ascend/descend
steeply, headwind is highly beneficial, as in Fig. 4.2. As the steepness decreases, neither headwind
nor tailwind is preferred (Fig. 4.3). If the UAV should maintain height, tailwind is favored, as
in Fig. 4.4, to promote flying with higher horizontal speed.

Energy expenditure

Energy expenditure is modeled using a similar approach to the one used by Andrade [40]. Power
required by the propeller-driven aircraft is expressed through

Pr = Fdragva =

√
2(mg)3

ρS

C2
D

C3
L

(4.12)

wherem is mass of the aircraft, g is standard acceleration due to gravity, Fdrag denotes drag force,
CD and CL are its aerodynamic drag and lift coefficients, respectively. Air density is denoted by

4.4. Global Path Planner 36

Fig. 4.2: Wind components (left) and total cost (right) for steep ascend/descend

Fig. 4.3: Wind components (left) and total cost (right) for mild ascend/descend

ρ and S represents the aircraft’s effective wing surface [40, 48]. Alternatively, an interpolated
lookup function can be formed from experimental data if available. The experiments in the thesis
use the second approach. The energy expenditure criterion function is then given as

ce = sfe
(
Pctrltmax +

∫ tmax

0
f
(
va(t), z(t), θ(t),E

)
dt
)

(4.13)

where Pctrl is constant estimated power required by the controller and peripherals, f(·) is an
approximating function, va(t) denotes airspeed, z(t) is altitude AGL, θ(t) represents pitch angle,
tmax denotes flight maximum time and sfe is a scaling factor. E holds the reference energy data,
similarly as for a continuous wind map MC

w in eq. (3.9). Estimated flight time is denoted by t.

4.4. Global Path Planner 37

Fig. 4.4: Wind components (left) and total cost (right) for maintaining height

If wind influence is not considered and va is constant, tmax is equal to the total path length
divided by va.

Unless specified otherwise, the thesis uses simplified criterion function (4.13) by default.
An example propeller power estimation using simulation data is presented in Fig. 4.5. Power
requirement was calculated for a range of feasible angles of attack α. Simulation data was
acquired thanks to the courtesy of Kamil Zenowicz.

Fig. 4.5: Propeller power interpolated from simulation data

4.4.3 Pollutant concentration

The final criterion attracts the UAV to the region of the highest pollutant concentration and
optimizes the placement of the measurement path used for pollution sampling. However, the

4.5. Local Path Planner 38

exact shape of the polluted region is not known a priori and is revealed after taking measure-
ments with the UAV. Therefore, the shape of the measurement area is not optimized and must
be supplied externally, e.g., by a human expert. The problem reduces then to optimizing the
placement of the measurement polygon.

Assume the measurement polygon 4m is defined similarly as bases of ROIs in eq. (3.11) for
airspace maps, but has a third dimension z shared between all the vertices, that is

4m =
{
(xi, yi, z)

}
, i = 3, 4, ..., N (4.14)

where xi and yi are the horizontal coordinates of the i-th vertex of the polygon. Now, assume
wm denotes the geometric center (centroid) of 4m. The criterion generates cost proportional to
pollutant concentration measured at wm. Formally it is expressed by equation

cp = sfp pollution (wm,Mm) (4.15)

where sfp is a scaling factor3, Mm is a measurement map and pollution (·) is the operator
defined in section 3.5.1.

Note, that if the weight of this criterion is set to zero, finding polluted areas becomes im-
possible. The optimization problem reduces then to connecting the start and goal waypoints
without performing the measurements. Thus, generating the measurement path is effectively
skipped and the algorithm can be used to solve simple point-to-point flights.

4.5 Local Path Planner

LPP is an algorithm designed to quickly provide a feasible solution, even if it is not the globally
optimal one. While GPP is meant to be used offboard only, i.e., in the ground control station,
LPP is designed to be feasible also onboard. Thus, while GPP targets optimality, LPP focuses
on responsiveness, simplicity and minimal computation effort. LPP uses a mix of a fast 3D path
planning algorithm (e.g., RRT or RRT*) and Dubins airplane paths, which respect the kinematic
constraints of the fixed-wing UAV.

4.5.1 Problem statement

The main and only task of LPP is to provide a collision-free 3D Dubins path from the current
position of the fixed-wing UAV to the next waypoint supplied by GPP, while conforming to
the kinematic constraints of the aircraft. First, assume that all the obstacles in the scene are
elements of an obstacle map Mo, such that

Mo =Mt ∪Ma

whereMt is a terrain map andMa denotes the obstacles inside the airspace map. Now, let PL
be the desired local path planned by LPP. Hence, the problem can be expressed as

find PL(S) ∈ D|PL(S) ∩Mo(S) = {∅}
subject to Ωk(S)

where S denotes the current scenario and D represents the set of admissible paths of a Dubins
airplane as in eq. (2.7).Mo(S) denotes a scenario-dependent obstacle map and Ωk(S) is the set
of scenario-dependent kinematic constraints of the UAV.

3Depending on the implementation ofMm, the sign of sfp must be chosen accordingly to form a cost function.
If pollution (·) provides positive values, sfp must be also positive, for example.

4.5. Local Path Planner 39

As actual environment conditions during flight are unknown a priori, some reactivity of the
onboard controller is desired. APP assumes the controller can counteract, e.g., wind gusts that
are impossible to accurately predict using only APP.

In practice, PL is approximated by a vector WL of waypoints wL, which formulates a local
path, or formally

WL =
[
wL

1 wL
2 · · · wL

n · · · wL
N

]T
∈ WL

where wL
n represents the n-th local waypoint of a total N local waypoints defined similarly

to (4.2). Local waypoint wL
1 always represents the current state of the UAV at the time of

calculating the local path. Hence, the final form of the problem statement is given as

find WL =
[
wL

1 wL
2 · · · wL

n · · · wL
N

]T
∈ D| free

(
WL,Mo

)
= 1

subject to Ωk[n], n = 1, 2, ..., NL

(4.16)

where free (·) denotes the obstacle-checking functions defined in eq. (3.5) or eq. (3.13), depend-
ing on the kind of used map. Ωk[n] is the discretized set of UAV kinematic constraints, updated
after reaching wL

n . NL is the number of local waypoints wL.

4.5.2 Kinematic constraints

To be feasible, the local path must respect the kinematic constraints of the UAV. The constraints
are similar to those introduced in the kinematic guidance model of a fixed-wing (2.3). The set
of kinematic constraints Ωk is therefore given as

Ωk = {va, γmin, γmax, θmax} (4.17)

where va represents airspeed maintained between the waypoints. γmin denotes the minimum
value of flight-path angle (if descending), whereas γmax is its maximum value (if ascending) with
respect to Fv2. Finally, θmax refers to the maximum allowed roll angle with respect to Fb. The
admissible set D3D consists of the paths which respect Ωk.

It should be noted that in practice the parameters in eq. (4.17) are constraints imposed on
the path planner only, not the physical limitations of the actual aircraft4. Hence, Ωk should be
understood as the set of kinematic constraints required for maintaining operational state of the
UAV.

4.5.3 Finding obstacle-free admissible path

Obstacle avoidance is implemented similarly as in obstacle avoidance criterion function (4.4.2)
formulated for GPP. However, instead of checking for the overlapping between a waypoint and
obstacles directly, LPP first chooses a collision-free path D∗ from the set of admissible Dubins
airplane paths D (2.7). Thus, the obstacle-free path can be formally given as

D∗ ∈ D|D∗ ∩Mo = {∅}

where D∗ is the chosen admissible path and Mo is the obstacle map. Similarly to GPP, LPP
supplies a set of waypoints. However, these local waypoints are dense enough to reflect the
actual path subject to the kinematic constraints of the UAV. a path provided by LPP can be
then validated in simulation employing either a kinematic or a dynamic model of the UAV.
a general concept of LPP is presented in Fig.4.6.
4 For example, γmin in a real fixed-wing UAV can be as low as (−π2), denoting UAV diving straight into

ground. While theoretically possible, such dangerous situation should be avoided by the planner. Moreover,
physical counterparts are not constant and depend on multiple parameters, such as air density and the durability
of the airframe.

4.6. Simulation 40

Fig. 4.6: General concept of LPP

LPP is supplied with the obstacle map, the current pose of the UAV acquired from the
onboard controller and next waypoint from GPP. The planner uses then RRT or RRT* (see
section B.2.5 and B.2.6) to randomly generate the next local waypoint.

The path is then validated by connecting the resulting waypoint with the previous one (or
the current pose for the first iteration) with an admissible Dubins airplane path. If not valid,
the waypoint is rejected and a new one is drawn. The steps repeat until the global waypoint has
been reached.

Then, the path is smoothed by removing unnecessary transitional waypoints (see Algo-
rithm 6). It is done by sequentially generating Dubins paths from a given local waypoint to
the second-next one. If valid, the waypoint between is removed. Otherwise it is kept and be-
comes the new origin used to generate Dubins paths. Again, the process repeats until the global
waypoint has been reached.

Finally, Dubins paths connecting all the local waypoints are computed and connected to-
gether. After that, the path is interpolated to provide waypoints that are evenly placed along
the path to be used by the onboard controller.

To reduce energy expenditure due to frequent computations, LPP is meant to be run on
demand, e.g., if the current goal is reached or the UAV deviates too much of the previously
planned path. Nevertheless, depending on the control strategy employed, LPP can also be used
for proportional navigation on a similar manner to tactical missiles. In that case only the closest
local waypoint is used as an imaginary pseudo target and LPP recalculates repeatedly [49].

4.6 Simulation

Simulation is the final and also optional step used to validate the local path using the model-
based approach. While necessary during mission planning in GCS, it is costly in terms of com-
putational effort. Moreover, its results are difficult to interpret on an embedded platform with
limited inference capabilities and without support from human operator. Thus, validation phase
looses its importance for onboard computations. Therefore, by default simulations are run only
offboard (in GCS).

4.7. Summary 41

Two distinct use cases of model-based simulation are considered: (1) point-to point local
path and (2) complete local path. First one is to use LPP to plan a path from the current
position of the UAV to the next global waypoint, that has not been reached yet. As discussed
above, it allows the controller to compensate possible deviations from the initial path, e.g. due
to wind gusts. This is a common behavior during the mission.

The other approach uses either the initial local path generated by GPP or generates a com-
plete local path using LPP by sequentially supplying the last state of the current simulation
as the initial condition of the next simulation to be carried out. This way, the whole path can
be simulated and validated before the mission begins. The GPP-based approach is preferred for
optimality, while LPP-based is favored when minimal computation time is expected.

4.7 Summary

The chapter described the model-based Adaptive Path Planner (APP). Both Global Path Plan-
ner (GPP) and Local Path Planner (LPP) were introduced starting with a problem statement,
followed by the explanation of used terminology, methodology and algorithms.

The formulation of the optimization problem for single and multiple objective optimization
opened the part focused on GPP. After that, each criterion function considered in the thesis
was described. The next section described LPP and the methods used to implement thereof.
The section covered also the simplification of kinematic constraints and the implementation of
obstacle avoidance using the environment model.

The final section described the importance of model-based simulation to validate the path
before finally approving it. Two alternative methods of the model-based path validation were
covered.

5. Verification study

This chapter describes the verification tests performed to evaluate APP and its components:
GPP and LPP. Both algorithms were implemented in MATLAB R2022a and verified in Model-
in-the-Loop simulations, which employed the models of the UAV and its environment.

5.1 Specification of Twin Stratos

By the time of conducting the research the complete dynamic model of the target HALE UAV
was not available yet. Building the full non-linear dynamic model of the UAV as described in [20]
is also beyond the scope of the thesis. Therefore, the verification study will employ the simplified
kinematic and dynamic guidance models described in Chapter 2.

First, guidance models were configured according to the mechanical parameters of the UAV.
The concept of Twin Stratos (TS), the UAV designed during LEADER project [14], is shown in
Fig. 5.1.

Fig. 5.1: The concept of Twin Stratos HALE UAV; courtesy of Paulina Zenowicz

TS is a fixed-wing HALE aircraft designed and developed as a part of the LEADER project [14].
TS has two fuselages, each with its own independent electrically-powered propulsion system. The
fuselages contain the internal controller of the UAV, as well as basic measurement equipment
used during flight. The fuselages are connected by a single wing spanning over 3600 mm in total.
The wing stores lithium batteries, which are recharged during flight by solar panels placed on top
of the wing. The aircraft has an A-shaped tail hosting elevons. A detailed technical specification
of TS is summarized in Tab. 5.1.

5.2 Path quality metrics

To quantitatively describe the results of the experiments, a set of path quality metrics was
defined. The metrics are divided into general metrics and the metrics specifically defined for
GPP and for LPP.

5.2. Path quality metrics 43

Tab. 5.1: Technical specification of Twin Stratos; courtesy of Paulina Zenowicz

Parameter Value # Parameter Value

1 Wing span [m] 3.6 12 Xc.g. [m] 0.478

2 Wing area [m2] 0.896 13 Y c.g. [m] 0

3 Mean aerodynamic chord [m] 0.238 14 Zc.g. [m] 0.237

4 Wing sweep [◦] 0 15 Ix [kgm2] 0.0062

5 Wing dihedral [◦] 0 16 Iy [kgm2] 0.0199

6 Wing profile HQ/W2,5/12 17 Iz [kgm2] 0.0242

7 Wing profile HQ/W2,5/11 18 h (flight) [m] 5000

8 Wing profile HQ/W3/10 19 ρ [kgm3] 0.738

9 Fuselage lenght [m] 1.86 20 α [◦] 0

10 Max. take-off weight [kg] 11.69 21 β [◦] 3

11 Empty weight [kg] 9.19 22 Min speed [ms] 19

5.2.1 General metrics

This section lists the general metrics usable for paths generated by GPP or LPP. The metrics
specific to each planner are given in the further corresponding sections.

Path length

Lenght of a path directly relates to the energy expenditure and total mission time. In the
thesis, path length will be measured as the sum of Euclidean distances in meters between the
consequent waypoints w of a waypoint vector W. The metric used to evaluate the paths is
expressed similarly to the minimal length criterion (4.10), that is

LEN =
Nw−1∑
n=1

‖wnwn+1‖, wn,wn+1 ∈W (5.1)

where Nw denotes the number of waypoints in W. Note that LEN can be applied to the global
path, the local path or the simulation path as well. The source of data will be explicitly specified
each time LEN is used.

Path smoothness

The quality of a path is also described by its smoothness. Smoothness relates directly to energy
and time consumption [50]. Thus, a smooth trajectory allows translates into energy and time
savings. Moreover, it is beneficial to the mechanical structure of the vehicle [51]. While path
smoothness is not crucial for UAVs with many degrees of freedom, such as multicopters, it
becomes a key factor for more constrained airplanes. Smoothness is especially valuable for HALE
UAVs due to their strict energy budget. Guillén Ruiz et al. define smoothness of a discrete path
by the equation

SMOO =
Nw−1∑
n=1

min
(
α(Sgn, Sgn+1), β(Sgn, Sgn+1)

)

5.2. Path quality metrics 44

where α(Sgn,n+1) and β(Sgn, Sgn+1) denote the angles between the n-th path segment Sgn
and its direct successor Sgn+1. Nw is the number of considered waypoints. The thesis addresses
specifically the three-dimensional path planning problem, so the smoothness metric has been
modified accordingly. In the 3D form, smoothness is finally defined as

SMOO = 1− 1
π(N − 2)

Nw−2∑
n=1

∣∣∠min(wnwn+1,wn+1wn+2)
∣∣

wn,wn+1,wn+2 ∈W

(5.2)

where wn denotes n-th waypoint of the waypoint vector W, Nw is the number of waypoints in
W, and ∠min(wnwn+1,wn+1wn+2) is the smallest angle between the path segments wnwn+1

and wn+1wn+2, ∠min(·) ∈ 〈−π, π〉. As in the case of LEN , SMOO can be applied to any path
described by an one-dimensional array of waypoints. However, for densely-sampled waypoints
the path must be down-sampled prior to computing its SMOO .

Fig. 5.2 shows different paths in an abstract 2D Cartesian coordinates system. The SMOO
metric (5.2) returns the maximal value of 1 for a straight line (top) and the minimal value of
0 for a path, where the angles between every pair of consequent segments equal π (bottom).
For example, a path with constant angle of π

2 between the consequent segments has smoothness
of 0.5 (middle). The paths presented in Fig. 5.2 have equal length and the same number of
waypoints.

Fig. 5.2: Smoothness for different paths; the bottom path has 9 overlapping segments

Number of waypoints along the path

The metric NPTS is the number of waypoints sampled along the path. Assuming constant
sampling resolution, this metric is influenced by path length and complexity. NPTS is given by

NPTS = card (W) (5.3)

where card (·) denotes the cardinality operator and W represents the waypoints, which form
the path.

Flight time

Time of flight (FT) is the total time in seconds required to reach the goal waypoint, which
marks the end of the mission1. Depending on the context, FT may refer to the time of flight
1 In the thesis it is the point, where the human operator takes control over the UAV to land it manually.

5.2. Path quality metrics 45

estimated by the planner or the time of simulated flight.

Computation time

Computation time (CT) denotes the total time in seconds required to complete a computation
task on a computer of given performance. For example, CT may refer to the time required to
plan the path or, alternatively, time to complete the simulation. Note that CT of a simulation
should not be confused with FT . CT measures time required to compute the simulation, while
FT refers to virtual time inside the simulated environment.

Number of colliding waypoints

This metric counts the number of collisions between the waypoints generated by GPP or LPP
and the obstacles. It counts the events, when the planned or simulated path intersects an object
considered as obstacle, similarly to the GPP’s obstacle avoidance criterion (4.8). It is formally
defined as

NCOL =
N∑
n=1

(
free (wn,Mt) + free (wn,Ma)

)
, wn ∈W (5.4)

where wn indicates the n-th waypoint of the total of N waypoints in the vector Wn of waypoints
generated by LPP, GPP or computed during flight simulation. Operator free (·) is defined as
in eqs. (3.5) and (3.13), depending on whether the terrain map Mt or the airspace map Ma

is checked. An example interpretation of NCOL is illustrated in Fig. 5.3. Filled circles indicate
waypoints inside obstacles.

Fig. 5.3: An example of NCOL usage

5.2.2 GPP-specific metrics

A specialized set of metrics is defined to describe the output of GPP. These metrics specifically
address the problem of global path optimization.

Number of cost function evaluations

GPP employs optimization algorithms with different computation complexity. To compare them,
the CFE is defined as the total number of the cost function calls during a single optimization
session.

5.2. Path quality metrics 46

Path cost

Quality of generated paths can be evaluated by comparing their COST , which equals the nu-
merical cost returned by the cost function for the best solution computed by each algorithm.

Estimated energy expenditure

The last metric, EEE , returns the total estimated energy expanded by the UAV to travel the
entire path. As the more feasible model of energy expenditure of TS is not ready by the time of
writing the thesis, a simplified approach will be used. This approach uses the same equation as
in the energy expenditure criterion (4.13) with the scaling factor sfe set to 1, that is

EEE = t
(
Pctrl + f(va, z, θ,E)

)
. (5.5)

If simulation data2 is available, va can be replaced with vg, which includes wind influence. This
way the energy estimation is more accurate and the metric becomes

EEE = t
(
Pctrl + f(vg, z, θ,E)

)
. (5.6)

5.2.3 LPP-specific metrics

A specialized set of metrics is defined to describe the output of LPP. The metrics consider the
specific parameters of the underlying RRT algorithms.

Number of RRT vertices

LPP employs different RRT-based algorithms to provide an obstacle-free path. Two metrics
are defined to quantify the complexity of a generated random tree. NTREE is the number of
vertices of the tree. Hence, NTREE conveys information about the complexity of the whole
tree. NTREE is defined as

NTREE = card (V) (5.7)

where V represents the number of vertices of the tree, as in Algorithms 5 and 7. In BiRRT, two
trees grow separately from the start and goal waypoints until their branches connect. Hence, for
RRT V = Vs ∪ Vg, where Vs and Vg are the vertices of the trees originating from the start and
goal waypoint, respectively.

Number of RRT vertices in the chosen branch

NRRT metric equals the number of vertices of the chosen branch of the tree, which connects the
start and goal waypoints. These vertices act as control waypoints for Dubins paths, which provide
the final smoothed form of the path. Thus, NRRT positively correlates with the complexity of
the final path. Intuitively, the smaller NRRT means simpler path. The metrics is formally given
by

NRRT = card (W) (5.8)

where W indicates only the vertices forming the shortest path, as in Algorithms 5 and 7. The
minimal value of both NTREE and NRRT is 2 for a path consisting of a single tree edge.
Comparing NRRT with NTREE tells about the effectiveness of the search and the algorithm’s
convergence.
2Although wind data is available during the optimization, any changes in the path are not reflected until the

simulation phase. Therefore, EEE would still be inaccurate even though vg could be calculated.

5.3. General research plan 47

5.3 General research plan

Below a general plan of the verification study on APP is given. The study considers the veri-
fication of used models, validation of GPP and LPP independently and finally compound use
cases, which mix the functionality of both.

1. Verification of the models

(a) Terrain map
The terrain elevation map built according to the described methodology is compared
with the alternative approach, i.e., the voxel-based occupancy map.

(b) Wind map
The map of wind speed and velocity forecasts is validated by comparing it with data
from publicly available meteorological web services.

(c) Kinematic guidance model
Parameters of the fixed-wing kinematic guidance model from eq. (2.3) are tuned and
evaluated in simulation.

(d) Discussion

2. Global Path Planner

(a) Effects of the criteria
The actual effects of an individual criterion are evaluated on abstract use cases.

(b) Comparison of the chosen single-objective optimization methods
Different single-objective optimization methods, i.e., I-GWO, PSO, GA and ACOR,
are implemented in GPP and tested on a simple mission scenario.

(c) Discussion

3. Local Path Planning

(a) Comparison of chosen RRT-based algorithms
Diverse RRT-based algorithms are compared and the basic functionalities of LPP are
validated. Then, the optimal algorithm is chosen for the following experiments.

(b) Tuning the chosen algorithm
Chosen RRT-based algorithm is fine-tuned to provide the optimal results for LPP.

(c) Validation of dynamic replanning in simulation
LPP is used to dynamically generate obstacle-free paths during simulated flight.

(d) Discussion

4. Adaptive Path Planning for pollution sampling

(a) Smog profiling
GPP and LPP are verified in simulation of a smog profiling mission over the city of
Żywiec (Poland).

(b) Black carbon concentration
Simulated measuring of the concentration of black carbon over the Kongsvegen glacier
(Svalbard, Norway).

(c) Discussion

5. Summary of the experiments

5.4. Verification of the models 48

5.4 Verification of the models

This section targets the environment models defined in chapter 3, and also the kinematic guid-
ance model of the fixed-wing.

5.4.1 Terrain map

Section 3.2 describes two alternative implementations of terrain maps: 3D voxel-based and
2.5D elevation-based. In the preliminary research the first was used for its ability to model
complex 3D shapes while maintaining high computation performance. Nevertheless, as the the-
sis focuses on a HALE-class UAVs, a simpler approach was found.

The performance of a voxel-based full 3D terrain map was compared with simplified 2.5D elevation-
based representation in MATLAB 2022a. The elevation map was implemented as a custom class,
while the voxel map used a modified occupancyMap3D class supplied in MATLAB. The test in-
volved building analogous terrain maps using voxel-based terrain map and elevation-based con-
tinuous terrain map as illustrated in Fig. 5.4. Then, a random set of 1e6 waypoints was drawn,
and collision checks for the whole set were performed. The first experiment involved querying
the maps point-by-point using a for loop. The second one queried the maps for all the points at
once (as vectorized input). Fig. 5.5 compares the computation times for both experiments.

Fig. 5.4: Voxel-based occupancy map (left) and continuous elevation map (right)

Fig. 5.5: Performance of the terrain maps: elevation-based (continuous) vs voxel-based

5.4. Verification of the models 49

Using the simpler elevation-based model significantly reduced computation time. For point-
by-point queries the total computation over 5 times shorter for the elevation map. Matrix-based
queries resulted in smaller difference. Nonetheless, the queries to the voxel-based map still took
about 3 times longer than for the elevation map.

5.4.2 Wind map

The wind map was implemented as a custom class in MATLAB R2021b. The class contained
a four-dimensional lookup table and methods, which return interpolated and non-interpolated
wind vectors given position and time as arguments. In this study wind is stored as two-dimensional
vectors3 with their vertical components discarded. Values between gridded samples are interpo-
lated using 4D linear interpolation. The experiment is also described in [38].

The wind map was verified in a series of comparison tests. The measurements returned by
the wind map were compared with data acquired manually from websites, which provide wind
forecasts at different altitudes. Two weather models were considered: GFS (provided by Ven-
tusky.com) and ECMFW (provided by Windy.com) [39]. Data for the wind maps was provided
using mixed weather model by Meteomatics Weather API (https://www.meteomatics.com).
Tab. 5.2 summarizes the results of the experiment.

The measurements were taken at several different points described by latitude, longitude
and altitude above ground level (AGL), and time offset. Reference timestamp, where time offset
is zero, was 17-03-2022 12:00 (UTC+1). The measurements 1 to 5 overlapped the wind map’s
sampling points, while the rest employed linear interpolation. The measured variables were the
horizontal components of wind speed in m/s and its direction in degrees. The average relative
error for wind speed was 22.09% for GFS and 16.63% for ECMFW. The average relative error for
wind direction was 5.82% for GFS and 29.39% for ECMFW. Note that sometimes the reference
models also return different results, e.g., speeds in the 9th row.

Tab. 5.2: Comparison of wind speeds and directions for different data providers [38]

#
Latitude Longitude Altitude Time Wind map GFS ECMFW

[◦] [◦] [m] [h] v [ms] φ [◦] v [ms] φ [◦] v [ms] φ [◦]

1 50.2945 18.6714 2000 0 4.79 89.19 5 100 5 90

2 50.1022 18.5463 4200 +7 8.09 28.22 6 28 7 30

3 49.7716 19.2207 5500 +4 16.31 16.52 17 17 17 5

4 78.9235 11.9099 12000 +4 37.27 277.83 36 228 37 233

5 78.2232 15.6267 5500 +10 27.58 246.31 23 238 18 232

6 50.2945 18.6714 9000 +10 25.05 346.12 25 348 26 343

7 49.7228 19.2089 9000 +10 28.75 325.08 31 350 31 344

8 78.8147 12.8169 4200 +16 40.69 265.68 22 222 32 258

9 78.2669 15.6308 1500 +25 12.04 253.83 20 237 9 232

The wind map provided a compact and continuous model for predicting dynamic wind con-
ditions. Based on the difference of predictions returned by the reference models themselves, the
accuracy of the map itself is acceptable for flight planning and rough simulation. The error for

3 Precisely, as pairs of horizontal wind speed component and horizontal wind direction, where direction of 0◦

means northerly wind (blowing from north to south) and 90◦ is easterly wind (blowing from east to west)

5.4. Verification of the models 50

queried vs interpolated measurements is comparable. The efficiency of the map will be adressed
in further research.

5.4.3 Kinematic guidance model

To simulate the UAV, different models of the controller and the plant can be used. By the time
of writing the thesis, the full non-linear dynamic model of TS and its controller developed by
other teams involved in the LEADED project had not been finished yet. Also, as mentioned in
section1.4, providing such a model is beyond the scope of this thesis. Thus, to verify the perfor-
mance of APP a simplified kinematic guidance model was employed as described in section 2.3.

Modeling the aircraft

To model the plant, a modified form of the kinematic guidance model from eq. 2.3 was used.
The model was modified according to its MATLAB implementation described in [52]. Similarly
to the eq. (2.3), the controlled variables are airspeed vca, flight-path angle γc and roll angle φc.
These variables are controlled using proportional controllers. It also implements a PD controller
for roll angle φ. The modification imposes, however, some additional constraints depending on
height and course angle. The corresponding equations of motion are

ẋ = vg cosχ cos γ

ẏ = vg sinχ cos γ

ḣ = vg sin γ

χ̇ =
g cos (χ− ψ)

vg
tanφ

vg sin γc = min
(

max
(
bh (hc − h) ,−vg

)
, vg

)
γ̇ = bγ (γc − γ)

v̇a = bva (vac − va)
g cos (χ− ψ)

vg
tanφc = bχ (χc − χ)

φ̈ = bPφ (φc − φ)− bDφφ̇

(5.9)

where x, y and h are coordinates of the UAV in F i. Variables bPφ and bDφ denote the coefficients
of the proportional and derivative components of the roll PD controller. Conversion between va
and vg is done using the wing triangle, i.e., eq. (2.2).

Waypoint follower

LPP provides a set of waypoints that should be then followed by the actual aircraft. Due to
stochastic nature of the real flight conditions, this waypoint-following behavior is assumed to
be handled by the low-level controller. Therefore, it is outside of scope of APP presented in
the thesis. However, simulating such a behavior is required to validate paths provided by LPP
before flight. Hence, for simulation purposes the waypoint follower algorithm developed by Park
et al. [49] is employed as the controller of the virtual UAV.

The waypoint follower utilizes nonlinear guidance logic. If following a straight path, it ap-
proximates the behavior of a PD controller. However, if a curved path is to be followed, the logic
employs anticipatory control to assure tight path tracking. The controller computes commanded
lateral acceleration using inertial speed, thus adding reactivity to external disturbances, such as
wind [49]. The idea behind the waypoint follower is illustrated in Fig. 5.6.

5.4. Verification of the models 51

Fig. 5.6: Guidance logic of the waypoint follower [49]

First, the algorithm chooses a reference (way)point placed on the desired path at L1 distance
from the aircraft. Then, it commands the aircraft to smoothly turn towards the reference point
by applying lateral acceleration ascmd given by

ascmd = 2
v2

L1
sin η =

v2

R

where v is the current velocity of the aircraft and η is the angle between ~v and L1. The accel-
eration ascmd mimics centripetal acceleration of a point mass moving on a circle of radius R.
The direction of ascmd depends on the sign of η. That is, the aircraft tries to align ~v with L1.
According to the authors, this guidance law is appropriate to follow any circular path [49].

A thorough discussion of the algorithm, including its linear analysis and verification study is
found in [49]. Other approaches to the waypoint-following problem not covered here, specifically
straight-line and orbit following, are also discussed in [20].

Calibrating the model

Before using it to verify APP, the model was re-calibrated. The kinematic constraints of the
virtual fixed-wing UAV were modified to conform to the estimated constraints of the designed
TS. The final kinematic constraints of the guidance model are summarized in Tab. 5.3. Note,
that these are the “soft” limits proposed by the designers of TS to provide the optimal flight
performance of the UAV, not the maximal allowable mechanically-imposed “hard” limits.

Tab. 5.3: Kinematic constraints of TS used by the guidance model

Symbol Unit Value Description

1 γmin rad − π
90 Flight-path angle limit when ascending

2 γmax rad π
12 Flight-path angle limit when descending

3 θmax rad π
30 Roll angle limit (symmetrical)

4 va
m
s 22 Optimal airspeed due to energy expenditure

The performance of the modified kinematic guidance model was verified afterwards to assure
the controller is able to provide stable flight. The pre-configured values already implemented

5.4. Verification of the models 52

Tab. 5.4: Default values of the controller parameters

Symbol Value Description
1 bh 3.9 P-component of the height controller
2 bγ 39 P-component of the flight-path angle controller
3 bva 0 P-component of the airspeed controller, purposefully dis-

abled to always maintain the optimal airspeed
4 bχ 2 P-component of the heading angle controller
5 bPθ 40 P-component of the roll angle controller
6 bDθ 3.9 D-component of the roll angle controller

in MATLAB were used as the initial values of the controller parameters. These settings are
presented in Tab. 5.4. See also eq. (5.9).

The model was then verified using an artificially generated helical path (Fig. 5.7). The path
was defined by a set of 100 waypoints, which are indicated by circles. The first and last waypoints
are shown as tetrahedral markers (red and green, respectively) to show the heading angle of the
UAV. After that, a Dubins airplane path (red line) was generated connecting sequentially all
the waypoints from start to goal. The path was subject to kinematic constraints of the UAV (as
in Tab. 5.3) and was used as the reference afterwards. Length of the path was approximately
18837 m.

Finally, the kinematic guidance model calibrated as in Tabs. 5.3 and 5.4 was employed to
simulate the flight through the waypoints . The simulated path is represented by the blue line
in Fig. 5.7. Wind velocity was set to zero.

Fig. 5.7: Calibrated kinematic guidance model on a helical path

Fig. 5.8 illustrates position errors measured as the minimal 3D Euclidean distance between
the simulated path and each waypoint. The mean error (red line) is 3.37 m (approximately
0.017% of the path length) with standard deviation of 0.40 m.

The same metric was applied to the simulated path vs ideal path. This time, the mean
error is 4.88 m (0.026% of the path length). These errors are considered acceptable for pollution
sampling missions. Hence, the kinematic guidance model calibrated as above is found feasible
for APP validation.

5.5. Global Path Planner 53

Fig. 5.8: Minimal distance measured from the simulated path to each waypoint

5.4.4 Discussion

The experiments shown that replacing a 3D occupancy map with a 2.5D elevation-based map
significantly reduced computation time measured while querying the map. For the HALE UAV
considered in the thesis the simplifications introduced by the elevation-based terrain map are
acceptable. Moreover, reducing computation time is valuable, especially when the map will
deployed on the target embedded hardware.

The differences between the measurements for queried sample points of the wind map and
web servers (Tab. 5.2, rows 1 to 5) were comparable to the differences between the interpolated
measurements (Tab. 5.2, rows 6 to 9) and web servers. The computation efficiency of the map
requires, however, verification through dedicated research.

The kinematic guidance model implemented in MATLAB was found feasible for validating
APP. However, if greater accuracy is expected, the full non-linear dynamic model should be used
instead. As mentioned before, such a model is developed over the course of the LEADER project.
Therefore, APP will be tested on a higher-fidelity aircraft model before Hardware-in-the-Loop
(HIL) testing on the real TS begins. This model becomes indispensable for the validation of
missions performed at higher altitudes.

5.5 Global Path Planner

GPP was validated on a finite set of abstract simplified mission scenarios. First, the effects
of criteria were studied in-detail. Then, the weights of the criteria were optimized for a sim-
ple pollution sampling mission. Different optimization algorithms were then verified using this
simplified scenario.

5.5.1 Effects of the criteria

First series experiments focused on validating the effects of each criterion independently. All the
weights of the cost function except the one related to the tested criterion were zeroed. Then,
the planning algorithm was employed to produce the final path. The path was then compared
with a reference path without optimization.

The independent criteria tests shared the same configuration of GPP shown in Tab. 5.5.
Parameters not specified here used the default values as implemented in MATLAB. I-GWO
(see Algorithm 11) was used as the test algorithm for its relative simplicity, i.e., small number
of configuration parameters, which could strongly affect the results. The tests used MATLAB
I-GWO implementation by Mirjalili [53].

5.5. Global Path Planner 54

Tab. 5.5: Parameters of GPP during the criteria testing

Parameter Value Unit Description

1 Airspeed 22 m
s Constant UAV airspeed for defining Dubins paths

2 Flight-path an-
gle limits

〈
− π
90 ,

π
12

〉
rad Flight-path angle limit when ascending and descending,

respectively

3 Max roll angle π
30 rad Symmetrical roll angle limit

4 Safety margin 100 m Minimal distance to obstacles (terrain and airspace NFZ
ROIs)

5 Algorithm I-GWO - The algorithm used for the optimization of the mission
parameters

6 Search agents 50 - The number of potential solutions

7 Max iterations 30 - The maximal number of iterations

Obstacle avoidance

Obstacle avoidance perhaps is the most important of the criteria, as failing to avoid an obstacle
results not only in a failed mission, but also in a damaged, or even destroyed UAV. And this, in
turn, poses a serious security risk. Therefore, this criterion was tested first. Obstacle avoidance
functionality of GPP bases on two constraints:

� The path never goes below ground level defined by the terrain map Mt.

� The path never crosses any NFZ ROI defined by the airspace map Ma.

For safety reasons and to counter unpredictable events such as wind gusts, safety margin can
be added, as seen in Tab. 5.5. To put an emphasis on both of the constraints, an artificial
obstacle-dense map was created. The map used elevation map of Himalayas, around Mt. Everest.
Although this area is not meant to be a target for measurement missions of the real UAV, it was
chosen purposefully to provide a challenging environment with diverse elevation levels. Then,
the map was filled with artificial obstacles using the airspace map’s NFZs.

The map illustrating an example output of GPP while testing the obstacle avoidance criterion
is shown in Fig. 5.9. The map shows isometric (upper pair) and top-down views (lower pair) of
the generated path. The start and goal waypoints are depicted by red and green tetrahedrons,
respectively. Control (optimized) waypoints are shown in yellow. Red transparent prisms depict
NFZs. Regions with collisions are marked with green frames.

The figures on the left side depict the path generated with the obstacle avoidance criterion
zeroed, which resulted in several collisions with NFZs and terrain. Activating the criterion suc-
cessfully prevented both kind of collisions, providing a feasible path, as shown by the right pair.
Note, only the collision avoidance was verified in this experiment, so the path is not optimized
considering its length or complexity, for example.

5.5. Global Path Planner 55

Fig. 5.9: Planned path with the obstacle avoidance criterion off (left) and on (right)

Minimal path length

The second criterion minimizes the total length of the resulting Dubins path. Minimal length
contributes to reducing energy expenditure, mission duration and overall path complexity. This
criterion was verified using an empty map, which required no additional maneuvers to avoid
potential obstacles. The results are shown in Fig. 5.10. Again, figures on the left depict the
reference path and the ones on the right show the path with the positive weight of the criterion.
The upper figures show front view of the scene, while the bottom figures present top-down view.
The meaning of the graphics remains the same as above.

It can be observed the criterion contributes to reduction of path length, especially minimizing
changes in altitude. Seemingly unnecessary maneuvers shown in the right figures are used to gain
height between the start and goal waypoints. Connecting the waypoints with a simpler path is
not possible because of the kinematic constraints of the UAV4.

4 That is, the path would be too steep, thus violating the flight-path angle constraint. Hence, it is required to
gain height over a greater distance, which explains additional maneuvers performed by the aircraft.

5.5. Global Path Planner 56

Fig. 5.10: Planned path with the minimal length criterion off (left) and on (right)

Wind influence

When considering wind, GPP optimizes the path to maximize benefits the current wind condi-
tions has on the UAV, while reducing its negative implications. Fig. 5.11 shows the effects of
the wind criterion on the planned path. The upper figure shows a reference path with the wind
influence criterion turned off, while the lower one illustrates the wind-optimized path. Wind is
shown as three-dimensional vector field, where the length of the vectors as well as their color
indicate wind speed. Wind speed in meters per second can also be read on the colorbar.

Most of the time strong wind affects the UAV negatively by increasing the path cost (see
Fig. 4.3 to 4.2). Hence, GPP optimizes the path to stretch at lower altitudes, where the resultant
effect of wind is less severe.

5.5. Global Path Planner 57

Fig. 5.11: Planned path with the wind influence criterion off (top) and on (bottom)

Energy expenditure

From the practical point of view, the minimal energy expenditure criterion acts similarly to
the minimal path length criterion described above. The key difference is the energy criterion
highlights the impact of altitude. In other words, the length criterion penalizes the planner
evenly in each dimension. The energy criterion focuses on altitude changes and increases the
cost significantly if the UAV climbs up following a steep trajectory, but the cost of maintaining
or reducing height is relatively small. Moreover, this criterion detects if the path requires more
energy than the UAV can afford. In that case, the cost value is severely increased. The minimal
length criterion boasts significantly shorter computation time, though.

Fig. 5.12 presents an example paths with the criterion activated (right figures) and off (left
figures). The minimal energy expenditure criterion visibly reduces altitude changes. Nevertheless,
horizontal movement is less strict than in the case of the minimal length criterion.

5.5. Global Path Planner 58

Fig. 5.12: Planned path with the minimal energy criterion off (left) and on (right)

Pollutant level

The last criterion optimizes the placement of the area, that will be covered by the measurement
path. The geometric center of the measurement polygon should be placed at the point of highest
pollutant concentration.

Fig. 5.13 illustrates an example of non-opitimized (left figures) and optimized (right figures)
flight paths according to the pollutant level criterion. The center of the measurement region is
placed roughly in the most polluted region on the map. The left figures present the alternative
behavior of GPP, which does not generate a measurement path if this criterion is zeroed.

5.5.2 Comparison of the chosen single-objective optimization methods

The next series of experiment compares the performance of different flavors of single-objective
optimization algorithms used for global planning. The mission involves solving the optimization
problem (4.4) while flying in a relatively complex scene. Similarly as before, the map provides
additional challenge for GPP not present in regular measurement missions. Tab. 5.6 presents
the detailed overview of the mission.

Calibrating the optimization algorithms

Whenever possible, the algorithms used their default settings as provided by their corresponding
literature: [54, 55] for I-GWO, [47, 56] for ACOR, [57] for PSO and [58] for GA. Some settings
required modifications, which were done empirically by trial and error on a sample map until
the algorithm started to converge to the optimal solution. The algorithms were tested using
a balanced criteria weights, i.e., each of the 5 criteria has its weight set to 0.2. Some of the final

5.5. Global Path Planner 59

Fig. 5.13: Planned path with the pollutant level criterion off (left) and on (right)

settings of the algorithms are summarized in Tab. 5.7. The values that differ from their defaults
are written in bold.

Comparative analysis

After calibrating each algorithm, the comparative study on the performance of the algorithms
was conducted. They were evaluated on a series of 10 test cases, each repeated 5 times with
different random seed. The analysis covered thus a total of 200 test cases with 50 evaluations
of each algorithms. The cases shared the same terrain map, wind map and airspace map. The
start and goal waypoints, as well as the placement of pollution source were adjusted manually
and varied between the cases. These experiments employed the explicit pollution model (3.14).
Pollution-induced cost increased linearly from the point of maximum pollution intensity. All five
criteria as in Tab. 4.1 were active and weighed 0.2 each. The intensity of each criterion was
adjusted empirically via their scaling factors sf to provide intuitively-correct cost.

The results for the first run and the first test case are illustrated in Fig. 5.14 and described
quantitatively in Tab. 5.8. Fig. 5.14 shows four complete global paths as colored lines. The red
and green tetrahedral markers denote the start and goal waypoints, respectively. Wind is given
as a colored vector field. The NFZs are illustrated as transparent red prisms. The blue sphere
denotes the region with the highest pollution intensity. Measurement path (zigzag pattern) is
visibly shifted south from the point of highest pollutant concentration. It is caused by applying
a safety margin to the map boundaries and does not indicate improper behavior of the algorithm.

In this example all paths are feasible, i.e., no collisions occur. The measurement paths gen-
erated by the algorithms lie close to the maximally polluted region. Nevertheless, as noted in
Tab. 5.8, the scores of the algorithms differ significantly. The best path (according to COST)

5.5. Global Path Planner 60

Tab. 5.6: Detailed scenario of a sample measurement mission

Scenario ID AlgorithmsComparisonGPP

Description Horizontal zigzag pollution profiling

Goal GPP plans an optimized measurement path for a HALE UAV. The planner opti-
mizes the placement of the measurement path to cover the horizontal profile with
the highest concentration of the pollutant. The UAV flies from the preset start
waypoint to the measurement area using a path optimized according to the mini-
mal energy expenditure and wind conditions. After taking the measurements, the
UAV flies a similarly planned path to the goal waypoint, which indicates its landing
approach point.

Stages
1. The aircraft is airborne at the start waypoint, airspeed = 22 ms .
2. The UAV flies to the region of the maximum pollutant concentration.
3. The UAV performs the measurement following a zigzag-shaped path.
4. The aircraft flies towards the goal waypoint, where the mission ends.

Map Rectangle from (27.930000◦N, 86.790000◦E) to (28.050000◦N, 87.020000◦E), local
origin (0, 0, 0) at (27.930000◦N, 86.790000◦E, 0 m AMSL), wind forecast from t0 to
t0 + 12 h

Algorithms I-GWO, PSO, GA or ACOR

Mission
parameters

Kinematic constraints of the UAV as in Tab.5.5

Position of start and goal waypoints varies between the cases

Pollution
model

Explicit linear as in eq. 3.14, cost growth rate = 0.005 m−1 from center

Position of the center varies between the cases

was generated by ACOR. This observation is supported by LEN , NPTS and EEE metrics des-
ignating this path as the shortest and the most energy-efficient5. Interestingly, ACOR achieved
also the shortest CT , despite I-GWO and PSO having significantly less CFE . Compared to
the other algorithms, ACOR converged faster to a relatively short path. Hence, the following
computations of the cost function resulted in significant savings in CT , despite high CFE .

Tab. 5.9 displays basic statistical measures of the metrics computed for the first case and
all runs of the algorithms. Fig. 5.15 provides a quick visual reference of path variability in each
algorithm between consequent runs. Note that contrary to Fig. 5.14, colored lines indicate runs
of the same algorithm, not different algorithms.

Most observations from the first run (Tab. 5.14) holds true for other algorithms runs. Paths
generated by ACOR have unmatched quality (LEN , SMOO , NPTS and EEE). ACOR is inferior
to I-GWO and PSO only in CFE . Nevertheless, it still achieves the lowest CT for the reason
explained above. Moreover, the algorithm provides the most repeatable results with the lowest
standard deviation for many metrics (COST , LEN , NPTS and EEE).

I-GWO features the lowest LEN and CFE . Nevertheless, it provides paths with the highest
COST and requires the most CT to compute them. PSO and GA achieve comparable results
with the former being faster (lower CT and CFE), while the latter being more reliable (lower
standard deviations of most metrics).

The first test case is described in-detail as an example. To actually evaluate the general

5 Simulation phase is skipped in this experiment. Therefore, EEE is calculated with zero wind assumption,
as in the energy expenditure criterion (vg = va). To provide more accurate results, EEE must be calculated for
simulation data.

5.5. Global Path Planner 61

Tab. 5.7: Chosen settings of the algorithms

Parameter name Value Description

I-
G

W
O

Max iterations 100 Maximum number of iterations if not stalled

Search agents 100 Number of potential solutions (wolves)

Max stall iterations 15 Maximum number of consequent iterations without finding
a better solution

Function tolerance 1 The smallest change in cost that is not considered a stall

A
C

O
R

Max iterations 300 Maximum number of iterations if not stalled

Archive size 50 Number of the best solutions (ants) from the previous iter-
ation

Sample size 300 Number of solutions computed each iteration

Intensification factor 0.001 The likelihood of chosing the best solution to generate new
solutions during an update

Deviation distance ratio 0.85 How far the new solutions can deviate from their source

Max stall iterations 15 Maximum number of consequent iterations without finding
a better solution

Function tolerance 1 The smallest change in cost that is not considered a stall

P
S

O

Max iterations 150 Maximum number of iterations if not stalled

Swarm size 400 Number of particles in the swarm

Social adjustment weight 1.49 Weighting of the neighborhood’s best position when adjust-
ing velocity

Self adjustment weight 1.49 Weighting of each particle’s best position when adjusting
velocity

Max stall iterations 25 Maximum number of consequent iterations without finding
a better solution

Min neighbors fraction 0.5 Minimum adaptive neighborhood size

Function tolerance 1 The smallest change in cost that is not considered a stall

G
A

Max generations 3700 Maximum number of generations if not stalled

Population size 1500 Number of population members

Crossover fraction 0.8 How many non-elite children created at the next generation

Crossover ratio 1.2 How far the child is from the better parent in the heuristic
crossover function

Stall gen limit 20 Maximum number of consequent generations without find-
ing a better solution

Function tolerance 1 The smallest change in cost that is not considered a stall

5.5. Global Path Planner 62

Tab. 5.8: Detailed metrics for the 1st test case and 1st run

Algorithm CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

I-GWO 189.205 9300 7036.044 124789 0.754 1251 1.064 0

ACOR 109.428 25850 648.173 93424 0.817 938 0.600 0

PSO 124.214 16800 3822.815 237134 0.717 2373 4.258 0

GA 258.184 31500 2607.089 195170 0.726 1955 2.997 0

Tab. 5.9: Basic statistical measures for the 1st test case and all 5 runs)

I-GWO

Metric CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

Mean 252.596 12740 5351.806 132764 0.754 1331 1.171 0

StDev 65.089 4047 2025.959 10265 0.004 103 0.159 0

Min 189.205 9300 1654.473 123761 0.748 1240 1.000 0

Max 366.800 20100 7036.044 147152 0.761 1474 1.367 0

Median 255.373 11100 6266.195 124789 0.754 1251 1.064 0

ACOR

Metric CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

Mean 98.591 21350 645.898 93431 0.805 938 0.600 0

StDev 8.851 3823 2.413 14 0.022 0 0.000 0

Min 91.010 16850 641.955 93422 0.770 937 0.600 0

Max 109.428 25850 648.173 93458 0.831 938 0.600 0

Median 91.678 20150 646.829 93424 0.817 938 0.600 0

PSO

Metric CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

Mean 130.876 18560 2646.573 189100 0.742 1893 2.885 0

StDev 6.761 1651 1161.778 50969 0.031 509 1.347 0

Min 124.214 16800 669.976 97770 0.717 981 0.606 0

Max 141.255 21200 3822.815 237134 0.801 2373 4.258 0

Median 128.627 18800 2503.187 190055 0.728 1904 2.655 0

GA

Metric CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

Mean 227.780 32070 2228.843 175115 0.725 1754 2.491 0

StDev 35.827 1140 360.917 18078 0.005 181 0.494 0

Min 171.256 31500 1638.002 147969 0.721 1483 1.663 0

Max 258.184 34350 2607.089 195170 0.733 1955 2.997 0

Median 251.762 31500 2180.302 170733 0.726 1710 2.453 0

5.5. Global Path Planner 63

Fig. 5.14: Optimized paths generated by different algorithms in a single run (1st case)

performance of the algorithms, similar experiments were conducted for the rest of test cases.
The results are summarized in Tab. 5.10.

Interestingly, while comparing the medians of all the cases, ACOR still holds its leadership.
Nevertheless, the algorithm is also the least consistent (highest standard deviation) in terms of
CT , CFE , COST and SMOO . However, 75% of the paths still provide solid and dependable
results. Based on repeatability, GA is the winner with the lowest standard deviation in 4 of 8
metrics, most notably CFE and COST . Despite that, it has the second-worst CT , LEN and
EEE , surpassed only by I-GWO.

Choosing the most suitable algorithm, based on the metrics from Tab. 5.10, is a multi-criteria
optimization problem. To solve the problem, a point-based optimization method was employed.
The medians from Tab. 5.10 were evaluated by assigning weights to them according to their
importance for GPP. The least important metric has weight of 1, the second-least important
has 2 etc. NCOL hase been removed from the evaluation as no collisions occurred during the
experiment. EEE is highly positively correlated to NPTS and LEN (0.990 for both6). Hence,
NPTS and LEN were not considered in optimization.

COST correlates with many crucial mission parameters, so it is the most important metric.
Then, EEE and SMOO were chosen. The first one positively correlates to small changes in
altitude7, while the second one also reflects the complexity of horizontal maneuvers. They were
followed by computation performance metrics, specifically CT and CFE . The performance
metrics were placed at the end because GPP is the highest-level planner and does not have to
follow strict timing regime.

6 NPTS is computed by sampling the resultant Dubins path. As the sampling step is constant, correlation
of NPTS and LEN is 1, so both metrics convey the same information. They were left in comparison tables for
convenience – to show the actual length and also the complexity of the path.
7 The current implementation of energy expenditure does not consider energy expanded on horizontal maneu-

vers, see eq. 4.13.

5.5. Global Path Planner 64

Tab. 5.10: Basic statistical measures for the whole experiment, 50 samples per algorithm

I-GWO

Metric CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

Mean 239.818 11804 5332.872 178701 0.750 1791 2.517 0

StDev 95.159 5229 3404.326 67139 0.025 672 1.792 0

Min 84.167 3700 797.913 98243 0.705 986 0.607 0

Max 417.574 20100 13921.534 343875 0.800 3443 7.031 0

1st quartile 177.420 8900 3083.056 126182 0.728 1265 1.138 0

Median 232.707 11100 4695.423 159921 0.750 1604 1.771 0

3rd quartile 307.695 13900 7036.044 218643 0.762 2190 3.763 0

ACOR

Metric CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

Mean 171.881 33932 6271.053 120938 0.792 1213 1.121 0

StDev 139.482 23494 17800.854 52168 0.035 522 1.205 0

Min 47.071 11150 374.211 75409 0.717 757 0.286 0

Max 719.909 90050 111199.651 317829 0.861 3184 5.364 0

1st quartile 75.746 15950 546.130 90619 0.763 910 0.429 0

Median 118.626 24200 727.699 101784 0.792 1023 0.619 0

3rd quartile 220.260 45350 1530.986 129861 0.817 1301 1.313 0

PSO

Metric CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

Mean 136.278 21688 2481.475 119923 0.783 1203 1.073 0

StDev 35.723 4570 6914.403 40466 0.030 404 1.012 0

Min 59.430 10800 382.175 79731 0.714 801 0.273 0

Max 224.549 32000 36092.829 281648 0.849 2820 4.994 0

1st quartile 107.395 18800 546.170 95966 0.761 963 0.477 0

Median 138.544 21800 733.795 108130 0.788 1085 0.629 0

3rd quartile 157.436 24800 1220.731 123539 0.803 1239 1.313 0

GA

Metric CT [s] CFE COST LEN [m] SMOO NPTS EEE [kWh] NCOL

Mean 201.779 32669 2095.801 164967 0.748 1653 2.187 0

StDev 30.020 1989 864.810 43910 0.023 439 1.077 0

Min 145.928 31500 439.135 76622 0.719 770 0.363 0

Max 273.989 38625 4374.112 272821 0.828 2733 4.825 0

1st quartile 181.028 31500 1459.975 132111 0.727 1324 1.353 0

Median 199.026 31500 1991.016 164131 0.744 1645 2.201 0

3rd quartile 217.777 32925 2607.089 190135 0.766 1903 2.991 0

5.5. Global Path Planner 65

Fig. 5.15: Variability of the optimized paths in multiple runs (1st case)

It was decided that the variability of the results should be incorporated into the optimization.
However, as the results of GPP are validated in simulation and then approved by a human
operator, the optimization favored medians over standard deviations. The importance of metrics
was kept as above, but standard deviations were assigned their weights after medians.

After deciding on the order of importance of metrics, each algorithm was evaluated by
assigning a point-based grade to each of its metrics as below:

� 3 points for the first (best) mean result for a given metric8.

� 2 point for the second.

� 1 point for the third.

� 0 points for the last (worst) result.

Next, computing the weighted sum of the metrics weights and their grades provided the final
quantitative evaluation results of the comparison. For that, a simple weighted sum was employed,
i.e.

Gf =
N∑
n=1

ωnGn (5.10)

where Gf is the final grade in points, ωn is the weight of n-th metric and Gn is the grade of
the n-th metric in points. N denotes the total number of the criteria (metrics). The results are
presented in Tab. 5.11. According to the criteria defined above, the optimal algorithm for GPP

8 It means the highest (e.g. SMOO) or the lowest (e.g. LEN) mean value for each algorithm, depending on
the metric.

5.5. Global Path Planner 66

is ACOR and PSO is the second-best. Interestingly, GA boasts the highest grades in terms of
repeatability, so it would be the best algorithm if the evaluation phase is discarded.

Tab. 5.11: Point-based multi-criteria optimization table of GPP algorithms

Metric Weight
Grade Grade × Weight

I-GWO ACOR PSO GA I-GWO ACOR PSO GA

M
ed

ia
n

CT 7 0 3 2 1 0 21 14 7

CFE 6 3 1 2 0 18 6 12 0

COST 10 0 3 2 1 0 30 20 10

SMOO 8 1 3 2 0 8 24 16 0

EEE 9 1 3 2 0 9 27 18 0

S
tD

ev

CT 2 0 1 2 3 0 2 4 6

CFE 1 1 0 2 3 1 0 2 3

COST 5 2 0 1 3 10 0 5 15

SMOO 3 2 0 1 3 6 0 3 9

EEE 4 0 1 3 2 0 4 12 8

Weighted sum 52 114 106 58

Max points 165 165 165 165

Fitness of solution 31.52% 69.09% 64.24% 35.15%

5.5.3 Discussion

GPP was thoroughly tested first by verifying the effects of the optimization criteria, and then by
comparing the performance of several optimization algorithms. The criteria successfully modified
the generated path according to their definitions given in section 4.4.2.

Comparative analysis of the chosen optimization algorithms highlighted ACOR and PSO as
the potential winners. While ACOR beats the others in terms of path quality, PSO gets consis-
tently high grades for medians and standard deviations as well. Interestingly, if the optimization
is based on standard deviations (they are rated higher than medians), GA emerges as the leader.
GA is more robust and provides stable paths between consequent runs compared to the others.
Depending on the actual goal, any of these can be chosen as the optimal one.

However, GPP in the thesis is employed primarily to support the human operator, not to
entirely replace them. The results will be validated in simulation and must be manually approved
by the operator prior to sending the path to the UAV. Hence, rejecting a small fraction of sub-
optimal paths is not an issue, and it is worth the potential benefits in path quality. Therefore,
ACOR is the optimal solution for GPP acting as a mission planning tool and will be used for the
final APP tests described in the thesis. Nevertheless, if GPP is run without human supervision,
GA becomes the preferred choice due to its robustness. PSO, being an all-rounder, is also an
interesting choice for the future research. I-GWO was found inferior to the competition in most
of the aspects.

5.6. Local Path Planner 67

5.6 Local Path Planner

LPP was validated on a finite set of abstract simplified mission scenarios. The RRT algorithms
used by LPP are stochastic and depend heavily on the random number generator (RNG) and
its actual seed. Hence, the results are expected to have significant standard deviation between
the experiments. To reduce the influence of randomness, each experiment was repeated several
times using different initial conditions.

Randomizing test waypoints

The waypoints used for the elementary collision avoidance tests were randomized. The waypoint
coordinates along x, y and z (NED), as well as ψ angle (defined in Fv frame) were randomly
generated using uniform distribution. Uniform distribution was employed on per-axis basis. That
is, the coordinates are uniformly distributed along each axis separately, not uniformly distributed
in 3D space.

The ψ angle is required as the initial condition for LPP. Outside simulation, the current
yaw of the UAV would be used. Next, the waypoints were grouped in pairs and optimized. The
optimization problem was to keep approximately constant distance between the waypoints in
a pair, that is

minimize C(WS ,WG, d) =
N∑
n=1

∣∣∣d− ∥∥∥wS
nwG

n

∥∥∥ ∣∣∣, wS
n ∈WS , wG

n ∈WG

subject to Ω(WS ,WG)

where WS and WG each contain N start and goal waypoints, respectively. Distance d is the
expected constant distance between the waypoints in each pair, while Ω(·) represents the con-
straints, which restrict the waypoints to be placed above terrain.

5.6.1 Test setting

The performance of LPP was first verified by supplying an environment map consisting of terrain
and airspace data (Fig. 5.16). The continuous elevation model (3.3) with linear interpolation was
used as the terrain map model. The terrain map used the elevation data of Mt. Everest and its
surroundings. That setting was chosen for its diverse elevation levels over a relatively small area.
The airspace map was filled with abstract obstacles meant to reflect law-enforced no-fly zones
NFZs, or otherwise dangerous conditions (e.g., clouds). Note, it is only an abstract test case to
provide a challenge for the planner. The UAV considered in the thesis is not meant to fly over
such terrain.

For the experiment, 10 randomly distributed pairs of waypoints were generated, as seen in
Fig. 5.16). Each waypoint is illustrated as a tetrahedral marker, indicating the initial and the
final ψ orientation of the UAV. Red markers represent start waypoints, while green ones are goal
waypoints. Each pair of waypoints is connected with a colored line. The lines are used only for
presentation purposes and are ignored by LPP. The height of the waypoints was limited to stay
below the highest point of the map, i.e, the peak of Mt. Everest. This was done to encouraged
LPP to generate the paths around or over terrain obstacles. The distance criterion was set to
10 km.

The final parameters of the waypoint pairs are given in Tab. 5.12. The poses are defined
in local ENU frame, where x, y and z axes are aligned with East, North and Up (Height),
respectively. Yaw angle ψ is given in Fv. For brevity, positions are rounded to integers. Variable
df denotes the final distance between the waypoints in a pair (after optimization).

5.6. Local Path Planner 68

Fig. 5.16: Randomly placed and optimized waypoint pairs for LPP verification

5.6.2 Implementation of the LPP algorithm

LPP will be discussed step-by-step based on an example path computed for the first pair of
waypoints. Fig. 5.17 presents the initial configuration of the scene. The UAV is assumed to be
at the start waypoint, shown in red. The green waypoint indicates its current goal, i.e., the next
global waypoint.

In the first phase (Fig. 5.18), LPP samples the state space (here, using RRT), looking for
a feasible path to goal. The tree is shown in blue, where dots represent its vertices and lines are
the edges. The shortest path from start to goal is shown in red. The placement of vertices is
validated by connecting the subsequent vertices with a Dubins paths.

Paths generated by LPP tend to be suboptimal. To simplify them, the smoothing algorithm
by Beard and McLain was used (see Algorithm 6). The algorithm removes redundant vertices,
which are not required for collision-free flight, as in Fig. 5.19. It does not optimize the placement
of the vertices, though. The smoothed path is seen in green.

Now, a Dubins path through the remaining vertices is computed, as in Fig. 5.20. The Dubins
path shown in yellow respects the kinematic constraints of the modeled airplane, such as maximal
climbing angle and airspeed. For example, the steep edge of the tree is replaced with an ascending
helix. Note that even if an edge of the tree (green) crosses an obstacle, the resulting Dubins path
(yellow) may still be feasible. Finally, the path is discretized into local waypoints (Fig. 5.21).
Sampling step is a parameter of LPP.

5.6. Local Path Planner 69

Tab. 5.12: Detailed configuration of the randomly generated waypoint pairs

#
Start waypoint local poses Goal waypoint local poses

df [m]
x [m] y [m] z [m] ψ [rad] x [m] y [m] z [m] ψ [rad]

1 5379 -5615 -1153 -1.727 -3890 78 -1289 0.947 10878

2 6070 4173 -483 -2.190 9908 -3975 -2115 -3.038 9153

3 1078 -6906 -1427 -2.474 12227 -4429 -1991 -1.279 11436

4 -1488 550 -570 -0.780 4360 -7555 -790 -0.591 9997

5 -6337 -2552 -1810 -1.306 2900 1623 -847 1.763 10182

6 -5196 -8722 -1010 1.548 5073 -5536 -2539 0.750 10860

7 -4736 1646 -803 -2.540 -8409 -7574 -1082 2.742 9928

8 5643 -7552 -1196 0.535 -5520 -6222 -867 0.740 11247

9 -1699 -5186 -1671 0.507 6762 -347 -1529 -1.953 9748

10 -4895 367 -1033 2.590 5776 -5633 -2188 1.311 12297

Fig. 5.17: Initial state of the scene

5.6. Local Path Planner 70

Fig. 5.18: Random tree computed by LPP and the shortest path to goal

Fig. 5.19: The shortest path is simplified by removing redundant vertices

5.6. Local Path Planner 71

Fig. 5.20: Dubins path connects the start and goal via the smoothed RRT vertices

Fig. 5.21: Discretized Dubins path returned by LPP

5.6. Local Path Planner 72

5.6.3 Comparison of chosen RRT algorithms

The experiment employed three different RRT-based algorithms: RRT, RRT* and BiRRT.
The test was repeated 30 times for each algorithm and each pair of the waypoints described
in Tab. 5.12. Parameter settings used throughout the test are summarized in Tab 5.13. The
parameters not mentioned were set to their default values, as implemented in MATLAB.

The first series of experiments used RRT as the path planning algorithm with and without
the smoothing Algorithm 6. Fig. 5.22 illustrates a close-up comparison of the first 5 of 30 RRT
paths without (top) and with (bottom) the smoothing algorithm in the case of the first random
waypoint pair. The smoothing algorithm simplified the RRT path by removing redundant way-
points. In this case, it resulted in the same shape of the second and third local paths (see the
overlapping lines in Fig. 5.22). While the figure is not meant to clearly display the details of the
paths, it shows high variability in subsequent algorithm runs. Note, the algorithm parameters
have not changed between generating each path (except for random seed).

Fig. 5.22: Random RRT paths: raw (top) and smoothed (bottom)

Next, the same experiment was repeated for RRT* (Fig. 5.23) and BiRRT (Fig. 5.24). Again,
smoothing the paths resulted in less variability and more visually consistent results. Detailed
quantitative results summarized for the first waypoint pair and different planning algorithms
are given in Tab. 5.14, where the algorithms are compared using the basic statistical measures

5.6. Local Path Planner 73

Tab. 5.13: Parameters of LPP during the experiment

Parameter Value Unit Description

1 Airspeed 22 m
s Constant UAV airspeed for defining Dubins

paths

2 Ball radius 1000 m Constant, that determines the diameter of
an imaginary ball, which limits the range of
RRT* optimization

3 Distance to way-
point

500 m Constant step between the neighboring local
waypoints in the final path

4 Flight-path angle
limits

〈
− π

90 ,
π
12

〉
rad Flight-path angle limit when ascending and

descending, respectively

5 Goal bias 0.3 - The probability of choosing the actual goal
state during the process of randomly select-
ing states from the state space

6 Linear goal toler-
ance

10 m Max linear distance to goal to consider it as
reached

7 Max connection
distance

5000 m Maximal Euclidean distance between the
current RRT vertex and the next randomly
generated vertex

8 Max iterations 500 - Reaching this value restarts RRT with dif-
ferent random seed

9 Max number of
vertices

10000 - Limits the number of vertices of the random
tree

10 Max roll angle π
30 rad Symmetrical roll angle limit

11 Safety margin 100 m Minimal distance to obstacles (terrain and
airspace NFZs)

5.6. Local Path Planner 74

and metrics described above. Sample size for each case is 30.

Fig. 5.23: Random RRT* paths: raw (top) and smoothed (bottom)

BiRRT resulted in the smallest and the most repeatable CT before smoothing (Mean =
0.213, StDev = 0.224) and after (Mean = 0.276, StDev = 0.237). While genuine RRT resulted
in the shortest mean LEN of 25802 m after smoothing, the paths had the highest standard
deviation of 20538 m. Both RRT* and BiRRT provided somewhat longer, but more repeatable
results with BiRRT performing slightly better (mean LEN lower by 2866 m with standard
deviation lower by 3639 m).

Before smoothing, RRT had the lowest SMOO rating, while after applying the smoothing
algorithm SMOO for all three algorithms was comparable. Interestingly, smoothed RRT had
the highest SMOO , despite having initially the most complicated tree structure indicated by
significantly higher NTREE . After smoothing, the paths had comparable NRRT , which justifies
the similar SMOO values. All three algorithms resulted in collision-free paths (NCOL = 0).

To provide statistically relevant results, the experiment above was repeated for all 10 different
waypoint configuration for a total of 900 test cases. The results were summarized for each
algorithm. Then, basic statistical metrics were computed from all test cases for each algorithm
(sample size = 300). The results are shown in Tab. 5.15.

However, even if the distances between the waypoints in each pair are comparable, some

5.6. Local Path Planner 75

Tab. 5.14: Detailed metrics for the 1st waypoint pair, sample size is 30 for each algorithm

RRT

Metric
Path before smoothing Path after smoothing

Mean StDev Min Max Median Mean StDev Min Max Median

CT [s] 1.115 1.853 0.049 7.906 0.343 1.190 1.865 0.077 8.046 0.428

LEN [m] 44914 20837 11964 93533 42863 25802 20538 11717 78903 16097

SMOO 0.796 0.069 0.723 0.966 0.769 0.888 0.090 0.709 0.965 0.937

NTREE 57 67 4 277 32 57 67 4 277 32

NRRT 11 4 4 22 11 3 0 3 4 3

NPTS 93 44 24 195 89 53 43 24 164 33

NCOL 0 0 0 0 0 0 0 0 0 0

RRT*

Metric
Path before smoothing Path after smoothing

Mean StDev Min Max Median Mean StDev Min Max Median

CT [s] 0.624 1.333 0.063 7.092 0.199 0.685 1.345 0.087 7.168 0.243

LEN [m] 38128 24271 12219 114034 33368 32915 17823 11639 81622 31114

SMOO 0.898 0.039 0.830 0.971 0.889 0.844 0.076 0.733 0.969 0.826

NTREE 24 35 5 174 14 24 35 5 174 14

NRRT 9 5 4 25 8 4 1 3 7 4

NPTS 78 50 25 232 68 68 37 23 168 64

NCOL 0 0 0 0 0 0 0 0 0 0

BiRRT

Metric
Path before smoothing Path after smoothing

Mean StDev Min Max Median Mean StDev Min Max Median

CT [s] 0.213 0.224 0.051 1.334 0.189 0.276 0.237 0.083 1.427 0.239

LEN [m] 39783 17001 12151 78112 41391 30049 14184 11630 62654 30081

SMOO 0.872 0.033 0.796 0.94 0.878 0.841 0.068 0.720 0.964 0.829

NTREE 16 10 5 59 15 16 10 5 59 15

NRRT 9 3 4 17 10 4 1 3 6 4

NPTS 81 35 24 160 84 62 30 23 130 62

NCOL 0 0 0 0 0 0 0 0 0 0

5.6. Local Path Planner 76

Fig. 5.24: Random BiRRT paths: raw (top) and smoothed (bottom)

pairs are placed with an obstacle between them, while there is a clean line-of-sight between the
others. This fact impacts the initial path planning difficulty of each pair, making the results less
comparable between different pairs of waypoints. Nonetheless, the same case is true across all
the algorithms, which reduces the risk of biasing the results.

Similarly to Tab. 5.14, BiRRT resulted in the smallest CT (Mean = 0.271, StDev = 0.611),
followed by RRT*, and then RRT. This difference was mitigated by smoothing the paths but
still persists. Nevertheless, RRT* produced the shortest mean LEN with the second-lowest
standard deviation. Difference in length of the paths is also reflected by NPTS . RRT* produced
the smoothest paths (SMOO : Mean = 0.915, StDev = 0.043). The difference, however, was
more severe before applying the smoothing algorithm.

RRT produced the most complex random trees indicated by the highest NTREE . NTREE
for RRT* and BiRRT was comparable (Mean = 17 for both). The complexity of BiRRT trees
was more consistent, though (StDev = 19 for BiRRT vs StDev = 30 for RRT*). Also the results
for NRRT supported this observation. As in the previous experiment, the algorithms provided
valid paths with NCOL = 0 for all of them.

As in the case of GPP, the same point-based optimization method was used. The mean
results from Tab. 5.15 were evaluated by assigning weights to them according to their impor-
tance for LPP. As the smoothing algorithm significantly contributes to the path quality with

5.6. Local Path Planner 77

Tab. 5.15: Summary for all the test cases, sample size is 300 for each algorithm

RRT

Metric
Path before smoothing Path after smoothing

Mean StDev Min Max Median Mean StDev Min Max Median

CT [s] 0.677 1.166 0.029 7.906 0.292 0.741 1.182 0.047 8.046 0.354

LEN [m] 38758 29532 9868 143730 29257 24382 21123 9660 118244 12861

SMOO 0.835 0.082 0.706 0.992 0.815 0.901 0.089 0.705 0.994 0.947

NTREE 39 45 3 277 25 39 45 3 277 25

NRRT 11 5 4 29 11 3 1 2 6 3

NPTS 80 62 20 299 61 50 44 19 245 26

NCOL 0 0 0 0 0 0 0 0 0 0

RRT*

Metric
Path before smoothing Path after smoothing

Mean StDev Min Max Median Mean StDev Min Max Median

CT [s] 0.462 1.065 0.029 7.114 0.119 0.503 1.074 0.047 7.168 0.159

LEN [m] 25694 18070 10159 114034 18063 21760 14587 9763 81622 13195

SMOO 0.915 0.043 0.802 0.988 0.912 0.907 0.074 0.733 0.991 0.946

NTREE 17 30 3 198 8 17 30 3 198 8

NRRT 7 4 4 25 5 3 1 2 7 3

NPTS 52 37 20 232 37 44 30 20 168 27

NCOL 0 0 0 0 0 0 0 0 0 0

BiRRT

Metric
Path before smoothing Path after smoothing

Mean StDev Min Max Median Mean StDev Min Max Median

CT [s] 0.271 0.611 0.035 5.625 0.116 0.322 0.62 0.053 5.704 0.166

LEN [m] 34904 16850 11405 90532 29890 23387 14631 9708 73654 16730

SMOO 0.869 0.04 0.768 0.974 0.871 0.895 0.072 0.720 0.996 0.906

NTREE 17 19 4 162 12 17 19 4 162 12

NRRT 8 3 4 20 7 3 1 2 8 3

NPTS 71 34 23 186 61 48 30 20 152 34

NCOL 0 0 0 0 0 0 0 0 0 0

5.6. Local Path Planner 78

relatively small computation cost, only smoothed paths were considered in the evaluation (the
rightmost columns of Tab. 5.15). NCOL and NPTS have been removed from the evaluation as
no collisions occurred during the experiment and NPTS is highly positively correlated to LEN .
Mean correlation coefficient across all the algorithms (unsmoothed and smoothed) between the
two metrics was 0.815.

LEN was chosen as the most important metric, as it correlates with many crucial mission
parameters, such as energy expended by the UAV and time of the mission. Then, SMOO
determines the easiness of following the path, intensity of control maneuvers and thus also
energy expenditure. The UAV may fail to closely follow a path with very low SMOO . The
next metric is CT . It was chosen after LEN and SMOO because LPP acts as a middle-level
planner, so time regime is not as strict as for real-time capable low level controller. Nonetheless,
it is still required to keep CT as low as possible to grant reactivity of LPP. NRRT relates
to the quality of internal path returned by RRT-class algorithms. Its impact on the final path
quality is reduced by introducing Dubins paths. For example, a result with more RRT vertices
may provide simpler Dubins path, if height difference between the vertices is relatively small,
so helix-based ascending maneuvers are not necessary. NTREE comes at the end as it does not
influence the complexity of the final shortest path. For example, a large tree with high NTREE
can have many complex branches, but the shortest one may still consist just of a few vertices.

The metrics were given 2 (best), 1 or 0 (worst) points, similarly as for GPP. Then, weighted
sums as in eq. 5.10 were computed. Tab. 5.16 presents the evaluation results.

Tab. 5.16: Point-based multi-criteria optimization table

Metric Weight
Grade Grade × Weight

RRT RRT* BiRRT RRT RRT* BiRRT

CT 3 0 1 2 0 3 6

LEN 5 0 2 1 0 10 5

SMOO 4 1 2 0 4 8 0

NTREE 1 0 1 2 0 1 2

NRRT 2 0 2 1 0 4 2

Weighted sum 4 26 15

Max points 30 30 30

Fitness of solution 13.33% 86.67% 50.00%

RRT* turned out to be the optimal LPP algorithm with BiRRT being the alternative solu-
tion. Genuine RRT got the worst grades for all the metrics but SMOO , so it became the least
suitable algorithm for LPP. Hence, RRT* will be used in the further research.

5.6.4 Tuning the chosen algorithm

The RRT* algorithm was further calibrated to tune its capabilities to the requirements of LPP.
Two most important parameters were chosen: maximum connection distance (MCD) and goal
bias (GB). MCD is the maximum length of an edge of the random tree. In other words, it is
a maximal length of motion given as Euclidean distance allowed between two connected tree
vertices. GB is the probability of choosing the actual goal state during the process of randomly
selecting states from the state space [59]. That is, GB determines how many waypoints will be

5.6. Local Path Planner 79

drawn before the current sampling phase ends. Hence, lower GB provides more variability in
a tree, but increases computation time.

The experiment as above was repeated 30 times for each of 10 pairs of waypoints and for
15 different combinations of the parameter values. This resulted in a total of 4500 test cases.
The minimal value of MCD is limited by the maneuverability of the aircraft. To produce a valid
set of Dubins paths, MCD must allow at least 2 full turns with radius equal to the minimum
turning radius for the aircraft (470 m in this case). Hence, the minimum value of MCD rounded
up to full thousands is 3000 m.

The results were then evaluated by calculating the basic statistical measures of the path
metrics for each pair of the parameters. For the same reasons as described in section 5.6.3, the
mean values of five metrics were chosen for the evaluation of the results. The metrics included:
CT , LEN , SMOO , NTREE and NRRT .

The mean values of each metric for a parameter pair were sorted from worst to best. The
worst value got 1 point, the second-worst got 2 points etc. Hence, the best value for a given
metric got 15 points. Then, a similar point-based multi-criteria optimization approach as in
section 5.6.3 was employed using eq. 5.10. It resulted in a 15-cell Tab. 5.17. Each cell contains
a point grade for each combination of the chosen parameters. Therefore, the optimal pair of
parameter values, which scored 201 points, is MCD = 10000 m, and GB = 0.3.

Tab. 5.17: Evaluation of the results for 15 pairs of chosen RRT* parameters

MCD [m]

GB
0.05 0.1 0.3

3000 34 66 166

4000 41 92 143

5000 37 104 191

7000 84 92 187

10000 118 124 201

5.6.5 Validation of adaptive re-planning in simulation

The last part of the LPP verification study was to test the planner in dynamic scenarios described
below. To examine the adaptability of LPP, three different scenarios are considered:

1. Adaptive mid-flight local re-planning addresses the problem of finding a feasible
fallback path to an alternative waypoint (emergency landing, for example) if the initial
waypoint cannot be reached.

2. Sequential path planning simulates the scenario, when the fallback local path to the
same goal waypoint is periodically recalculated, for example, due to frequent gusts of
strong wind.

3. Emerging obstacle covers a scenario, when the environment map is updated with an
obstacle without updating global path. The path must be recalculated using onboard LPP.

Adaptive mid-flight local re-planning

In the first scenario, the position of the goal waypoint changes mid-flight, e.g., a simulation
of emergency landing request. The start waypoint is shown in Fig. 5.25 as a red polyhedron

5.6. Local Path Planner 80

indicating the initial pose of the aircraft. Two other polyhedrons denote the preliminary (blue)
and the final (green) goal of the UAV. Initially, LPP is not aware of the second goal, thus it
plans the path directly to the first goal. Then, after given time, the destination changes and the
planner has to adapt the path to guide the UAV to its new goal. The exact mission scenario is
presented in Tab. 5.18. All local coordinates are given in ENU frame in meters relative to the
origin of the map.

Tab. 5.18: Details of the scenario of the first dynamic LPP mission

Scenario ID AdaptiveLPP1

Description Goal changes during flight

Goal The UAV travels from the preset start waypoint to the preset goal waypoint.
Then, after a given amount of time, the mission goal changes. LPP must
adapt by planning a new path and reaching a new goal waypoint.

Stages
1. UAV is airborne at the start waypoint, airspeed = 22 m

s .
2. LPP plans a local path from the start waypoint to the goal waypoint.
3. Simulated UAV flies along the path for 5 minutes of simulation time.
4. The goal waypoint changes and LPP re-plans the local path.
5. Simulated UAV flies along the new path until it reaches the goal.

Map Rectangle from (49.160000◦N, 20.000000◦E) to (49.220000◦N, 20.120000◦E),
local origin (0, 0, 0) at (49.160000◦N, 20.000000◦E, 0 m AMSL), no wind

UAV model Fixed-wing kinematic guidance model calibrated as in section 5.4.3

Algorithms RRT* calibrated as in section 5.6.4

Mission
parameters

Kinematic constraints of the UAV as in Tab.5.13

Max connection distance = 10000 m

Airspeed = 22 m
s

Start waypoint = (12000, 2500, 2100, π)

Initial goal waypoint = (770, 3300, 1900, π)

Final goal waypoint = (8700, 5700, 1600, π4)

Criteria
of success

FT ¬ 1024 s

NCOL = 0

max(CT) ¬ 4.55 s

The mission is considered successful if all criteria of success are met. The criterion of maxi-
mum time of flight is computed as

FT ¬ sm ‖wswg‖
va

where ws and wg denote the positions of start and goal waypoints, and va is a constant airspeed
of 22 m

s , as in Tab. 5.13. Variable sm is a scenario-dependent safety multiplier empirically, here
set to 2. FT refers to the time of simulated flight as a whole – from start to the final goal.

5.6. Local Path Planner 81

The value of maximum CT is given as safety margin (100 m) divided by airspeed (22 m
s),

rounded to the second decimal point. Therefore, for values from Tab. 5.13 max(CT) ¬ 4.55 s.
Note, max(CT) means CT of the longest computation in a given test case.

The results for the scenario are shown in Fig. 5.25. Upper figure presents the initial path
planned (in yellow) and partially simulated (in red). Lower figure shows the second part of the
flight. Green square indicates the point where the re-planning takes place. The UAV follows then
the new planned path, smoothly transitioning from the previous one. The mission completed
with total FT = 674.155 s, NCOL = 0 and CT = {0.161 s, 0.067 s}, thus meeting the criteria
of success.

Fig. 5.25: Planned and simulated paths generated in AdaptiveLPP1 (1st case)

After running the experiment, it was found that the controller of the simulated aircraft reacts
to slowly and it is unable to closely follow the path. The issue was caused by low sampling density
of the resulting path returned by LPP. Decreasing “Distance to waypoint” parameter of LPP
(see Tab. 5.13) from 500 m to 100 m solved the problem. Note, this issue was not present in
the model calibration (section 5.4.3) because the helical path used for calibration was generated
manually, i.e., not using parametrized LPP.

As before, to provide statistically relevant results, the experiment was repeated 30 times with
different random seed. The results are summarized in Tab. 5.19. Note that FT , LEN , SMOO

5.6. Local Path Planner 82

and NCOL were computed using the concatenated simulated path. For the other metrics a plus
notation is used, where each term denotes a path fragment. For example, the CT [s] column in
the first row shows 0.13 + 0.06. It means that for the first fragment CT = 0.13 s and for the
second one CT = 0.06 s. This notation is extendable to an arbitrary number of path fragments.

Due to relatively small sampling step used in simulation, SMOO was calculated by taking
every 500th simulated waypoint. The other metrics show values for each of the planning steps.

None of the test cases resulted in collisions, i.e., NCOL > 0. In the 8th, 15th and 23rd
case, however, the path returned by LPP was highly non-optimal and lengthy, thus violating the
FT ¬ 1024 s constraint (Fig. 5.26). Also in the 27th case the max(CT) ¬ 5 s constraint was
violated with CT = 6.59 s. The paths in other cases met all the criteria. Hence, the success
rate of LPP in the experiment was 24/30 = 80.00%.

Tab. 5.19: Metrics computed for the results of AdaptiveLPP1

CT [s] FT [s] LEN [m] SMOO NTREE NRRT NPTS NCOL

1 0.13 + 0.06 674.155 14831 0.766 3 + 3 3 + 3 140 + 81 0

2 0.06 + 0.02 455.745 10026 0.803 3 + 1 4 + 2 246 + 35 0

3 0.12 + 0.02 445.514 9801 0.714 3 + 1 4 + 2 243 + 32 0
...

...
...

...
...

...
...

...
...

8 0.29 + 0.21 1999.882 43997 0.551 28 + 21 4 + 3 368 + 369 0
...

...
...

...
...

...
...

...
...

15 0.09 + 0.21 1147.327 25241 0.782 6 + 159 4 + 4 348 + 185 0
...

...
...

...
...

...
...

...
...

23 0.06 + 2.24 1118.016 24596 0.786 2 + 113 3 + 4 146 + 177 0
...

...
...

...
...

...
...

...
...

27 6.59 + 0.04 437.69 9629 0.784 218 + 6 4 + 2 689 + 31 0

28 2.99 + 0.02 432.615 9518 0.885 139 + 2 4 + 2 638 + 30 0

29 0.06 + 0.48 720.255 15846 0.832 4 + 38 3 + 3 150 + 91 0

30 0.08 + 0.05 960.416 21129 0.589 7 + 4 4 + 3 239 + 142 0

Suboptimality in some test cases, e.g., the 8th case, was caused by “Max connection distance”
set to relatively high value of 10000 m. Decreasing this parameter increases the initial path
complexity, but helps avoid local minima, i.e., collision-free, but unnecessary long paths. Thus,
it was decided to reduce the parameter in further experiments.

Sequential path planning

In the second dynamic test case, several updates of the local path occur. The scenario simulates
a flight, which is often disrupted, e.g., by wind gusts causing the UAV to deviate from its initial
path. Nevertheless, no change in position of the UAV due to wind is actually modeled in this
case.

At the beginning fo the mission, LPP plans an initial path to goal. Then, simulation begins.
After given time, simulation pauses and LPP is ordered to plan a new path from the current pose
of the UAV to the unchanged goal waypoint. Simulation resumes and the aircraft flies toward its
destination until next re-planning request occurs. Re-planning and simulation phases alternate

5.6. Local Path Planner 83

Fig. 5.26: Suboptimal path generated by LPP during AdaptiveLPP1 (8th case)

until the aircraft reaches its destination. The exact mission scenario is presented in Tab. 5.20.
The criteria of success were defined as before. However, due to high flight inconsistency due to
frequent path re-computations, sm was increased to 6, giving FT ¬ 5185 s.

The experiment was repeated for the same start and goal, but with different random seed for
a total of 30 test cases. The result of the first case is visualized step-by-step in Fig. 5.27. During
the flight a total of six re-planning events take place, resulting in 7 paths (including the initial
one). The current path planned for a phase is shown in yellow, while the thick red line depicts
the path flied by the UAV until the phase ends. Green squares denote the positions, where LPP
re-plans the path. Note each iteration the new path visibly deviates from the previous one, which
is caused by the randomness of RRT*.

The results of the other test cases are shown in Tab. 5.21. The metrics computed indepen-
dently for each phase (NTREE , NPTS , NRRT and NCOL) were summed for brevity. For
CT , maximum values for each test case were used instead. FT , LEN and SMOO are com-
puted for the full simulated path. For SMOO , the path was re-sampled with sampling step of
500, as before.

The mission succeeded in 20 of 30 test cases, giving the success rate of 66.67%. For cases 1,
5, 9, 10, 14, 19, 20, 21, 22 and 23 the FT ¬ 5185 s constraint has been violated. Additionally,

5.6. Local Path Planner 84

Tab. 5.20: Details of the scenario of the second dynamic LPP mission

Scenario ID AdaptiveLPP2

Description Cyclic re-planning attempts

Goal The UAV travels from the preset start waypoint to the preset goal waypoint.
At constant period of time the local path must be re-planned. LPP must
adapt by planning a new path and finally reaching the goal waypoint.

Stages
1. UAV is airborne at the start waypoint, airspeed = 22 m

s .
2. LPP plans a local path from the start waypoint to the goal waypoint.
3. Simulated UAV flies along the path for 15 minutes of simulation time.
4. LPP plans a new path, but the goal remains the same.
5. Steps 3 and 4 repeat until the UAV reaches the goal waypoint.

Map Rectangle from (27.930000◦N, 86.790000◦E) to (28.050000◦N, 87.020000◦E),
local origin (0, 0, 0) at (27.930000◦N, 86.790000◦E, 0 m AMSL), no wind

UAV model Fixed-wing kinematic guidance model calibrated as in section 5.4.3

Algorithms RRT* calibrated as in section 5.6.4

Mission
parameters

Kinematic constraints of the UAV as in Tab.5.13

Max connection distance = 5000 m

Airspeed = 22 m
s

Start waypoint = (3850, 4800, 5300, π4)

Goal waypoint = (22750, 6850, 5500,−3
4π)

Criteria
of success

FT ¬ 5185 s

NCOL = 0

max(CT) ¬ 4.55 s

the 9th and 10th test cases have CT higher than 4.55 s, that is, 8.417 s and 6.029 s, respectively.
Most importantly, in the 2nd case the “hard” constraint of NCOL > 0 has been violated by
the simulated UAV deviating from the planned path, as seen in Fig. 5.28. The paths generated
during this experiment consist of several sub-paths, which contributes to lower SMOO of the
final simulated paths.

Emerging obstacle

In the last dynamic test of LPP, the environment map is updated during the mission. The UAV
starts by flying along its initial path computed by LPP at the beginning of the mission. Then,
it is assumed a new obstacle is detected, which simulates a dangerous area, which must be
avoided, e.g., a storm cloud. LPP has to re-plan the path on-the-fly to reach its destination,
while avoiding collisions with the new obstacle. The obstacle is placed in such way, it obscures
the global waypoint. Scenario details are shown in Tab. 5.22. Safety margin sm was set to 3 to
account for the added obstacle, which results in FT ¬ 1535 s.

The experiment was repeated for the same start and goal, but with different random seed for

5.6. Local Path Planner 85

Fig. 5.27: Planned and simulated paths generated in AdaptiveLPP2 (1st case)

a total of 30 test cases. Fig. 5.29 shows the result for the first case. The upper figure illustrates the
initial path without the obstacle. The lower one depicts a new path generated after updating the
map with the obstacle shown as a transparent red prism. The current path planned for a phase
is shown in yellow, while the thick red line depicts the simulated path. Green square denotes
the position of the UAV, at which the update occurred.

Tab. 5.23 summarizes the results for all test cases. The metrics were computed as in the first
scenario. The mission succeeded in 25 of 30 test cases, giving the success rate of 83.33%. Cases
2, 4, 13, 24 and 25 exceeded the FT ¬ 1535 s constraint. Maximum FT = 2042.083 s for the
24th case, while case 14 presented the smallest FT = 535.885 s. No case resulted in collisions,

5.6. Local Path Planner 86

Tab. 5.21: Metrics computed for the results of AdaptiveLPP2

max(CT) [s] FT [s] LEN [m] SMOO NTREE NRRT NPTS NCOL

1 2.398 5475.691 120465 0.660 230 7 3383 0
...

...
...

...
...

...
...

...
...

5 2.136 5209.701 114613 0.704 252 6 3765 0
...

...
...

...
...

...
...

...
...

9 8.418 5494.419 120877 0.637 516 7 5035 0

10 6.029 5776.766 127089 0.674 535 7 4006 0
...

...
...

...
...

...
...

...
...

14 2.600 5611.571 123455 0.677 394 7 4444 0
...

...
...

...
...

...
...

...
...

19 2.399 5202.89 114464 0.621 315 6 4512 0

20 1.466 5591.851 123021 0.622 258 7 4431 0

21 3.303 5550.232 122105 0.627 396 7 5568 0

22 1.233 5215.345 114738 0.593 157 6 3001 0

23 0.852 6084.96 133869 0.627 265 7 4781 0
...

...
...

...
...

...
...

...
...

29 2.040 4556.773 100249 0.749 167 6 2800 0

30 4.362 5031.91 110702 0.670 334 6 4358 0

Fig. 5.28: Simulated path collides with terrain – 2nd test case of AdaptiveLPP2

i.e., NCOL > 0. For all test cases CT was lower than 4.55-second limit criterion. The worst
CT = 0.92 s was measured for the initial path of the 9th case.

5.6. Local Path Planner 87

Tab. 5.22: Details of the scenario of the third dynamic LPP mission

Scenario ID AdaptiveLPP3

Description A new obstacle appears

Goal The UAV travels from the preset start waypoint to the preset goal way-
point. Then, after a given amount of time, the environment map is updated
with a new obstacle, which obscures the goal waypoint. LPP must adapt by
planning a new path, avoiding the obstacle and reaching the goal.

Stages
1. UAV is airborne at the start waypoint, airspeed = 22 m

s .
2. LPP plans a local path from the start waypoint to the goal waypoint.
3. Simulated UAV flies along the path for 150 seconds of simulation time.
4. The environment map updates and a new obstacle is placed.
5. LPP re-plans the local path from the current position of the aircraft

to the goal waypoint, avoiding the obstacle.
6. Simulation resumes and the UAV flies along the new path to its goal.

Map Rectangle from (49.160000◦N, 20.000000◦E) to (49.220000◦N, 20.120000◦E),
local origin (0, 0, 0) at (49.160000◦N, 20.000000◦E, 0 m AMSL), no wind

UAV model Fixed-wing kinematic guidance model calibrated as in section 5.4.3

Algorithms RRT* calibrated as in section 5.6.4

Mission
parameters

Kinematic constraints of the UAV as in Tab.5.13

Max connection distance = 5000 m

Airspeed = 22 m
s

Start waypoint = (12000, 2500, 2100, π)

Final goal waypoint = (770, 3300, 1900, π4)

Criteria
of success

FT ¬ 1535 s

NCOL = 0

max(CT) ¬ 4.55 s

5.6. Local Path Planner 88

Fig. 5.29: Planned and simulated paths generated in AdaptiveLPP3 (1st case)

5.6.6 Discussion

Even though RRT* was found the optimal path planning algorithm for LPP, its major advantage
has not been addressed by this research. RRT* can continue execution to further optimize
the path after finding a valid path to goal. That way, it is possible to provide a sub-optimal
solution quickly or, alternatively, lengthen the computation time to potentially find an even
better solution. For example, setting a fixed computation time (or random tree complexity) can
reduce the variability of LEN and SMOO observed between random paths generated for the
same configuration of waypoints. It will also reduce the standard deviation of CT . This issue
will be addressed by further research.

Paths dynamically calculated by LPP significantly deviate from its initial form due to the
randomness of RRT*. However, it will be less severe in the final application when integrated
with GPP, which will place the neighboring global waypoints closer to each other. Moreover,
optimality of RRT* paths can be improved by allowing the algorithm to continue after a valid
path was found. This way, RRT* generates new vertices of the random tree, possibly optimizing
the path until a given condition, e.g., the number of RRT iterations, is met. This, however,
would increase CT . Nevertheless, it may be included as an alternative to the first valid path

5.7. Adaptive Path Planning for pollution sampling 89

Tab. 5.23: Metrics computed for the results of AdaptiveLPP3

CT [s] FT [s] LEN [m] SMOO NTREE NRRT NPTS NCOL

1 0.13 + 0.24 1528.079 33618 0.690 3 + 11 4 + 4 148 + 299 0

2 0.10 + 0.20 1591.295 35008 0.676 7 + 7 5 + 4 348 + 311 0

3 0.07 + 0.08 1041.828 22920 0.740 6 + 4 5 + 4 291 + 195 0

4 0.10 + 0.40 1610.016 19739 0.677 8 + 21 4 + 4 207 + 319 0
...

...
...

...
...

...
...

...
...

9 0.92 + 0.13 870.562 19152 0.791 61 + 5 4 + 4 245 + 157 0
...

...
...

...
...

...
...

...
...

13 0.20 + 0.13 1629.665 35853 0.701 11 + 7 4 + 4 307 + 323 0

14 0.14 + 0.08 535.885 11789 0.961 12 + 6 4 + 3 358 + 86 0
...

...
...

...
...

...
...

...
...

19 0.10 + 0.08 1020.618 22454 0.739 3 + 5 4 + 3 149 + 190 0
...

...
...

...
...

...
...

...
...

24 0.09 + 0.21 2042.083 44926 0.601 5 + 10 3 + 4 152 + 409 0

25 0.04 + 0.18 1577.559 34706 0.666 3 + 14 4 + 4 146 + 308 0
...

...
...

...
...

...
...

...
...

30 0.12 + 0.11 915.155 20133 0.804 8 + 7 5 + 4 215 + 167 0

approach used in this research.
None of the planned paths resulted in collision. A collision occurred, however, during simula-

tion (see Fig. 5.28). The UAV simulated using the kinematic guidance model deviated from the
planned path while performing relatively tight turn, which resulted in a collision with terrain.
To avoid such events in the future:

� Safety margin of LPP can be increased to provide wider tolerance and take into account
the position errors caused by the model.

� The current model should be calibrated using diverse test paths, which include tight turn-
ing maneuvers, such as sine-shaped path.

� Kinematic constraints of LPP should be tighter than the constraints of the model.

� A more feasible model may be used.

5.7 Adaptive Path Planning for pollution sampling

The last part of the verification study is devoted to APP working as a whole. Both GPP and
LPP are verified in two compound missions, which mimic the real use cases of APP as the path
planner for a meteorological UAV:

� Smog profiling over Żywiec addresses a low-emission measurement scenario over the
second most polluted city in Poland.

� Black carbon concentration over Kongsvegen describes a mission in Svalbard, which
scope is to measure the BC concentration over the Kongsvegen glacier.

The cases base on the rough measurement scenarios described in sections 1.1.1 and 1.1.2.

5.7. Adaptive Path Planning for pollution sampling 90

5.7.1 Modifications of criteria

While conducting preliminary research on APP, it was found that the heuristic wind influence
criterion (see section 4.4.2) has a little effect on the quality of the final path. Moreover, the energy
expenditure criterion (see section 16), which neglected wind influence entirely could benefit from
wind data. Hence, the criteria were mixed together.

The new energy expenditure criterion use precomputed energy data as in eq. 4.13. However,
it computes the estimated flight time using vg instead of va, where vg is computed from the wind
triangle (2.2) using wind velocity from a wind map.

It is still a heuristic approach, though. In this criterion wind has no influence on the direction
of ~vg, so its influence is modeled only by modifying the value of vg (to speed up or slow down
the UAV, thus modifying energy expenditure). To prevent infinite estimated energy when vg
reaches 0, the value of vg is clamped to a small positive value.

5.7.2 Smog profiling over Żywiec

The first compound use case addresses smog measurements performed by flying in zigzag pattern
over a city. According to the WHO air pollution database, in 2018 the city of Żywiec was rated
the 2nd most polluted city in Poland with the PM2.5 level of over 40µg/m3. At the same time,
Żywiec was the 4th most polluted city in the EU [60]. High air pollution, mountainous terrain
and close proximity to an airport make Żywiec an interesting use case to plan a low emission
(smog) profiling mission with APP.

The map, which depicts the mission is shown in Fig. 5.30 – the satellite image was acquired
from Google Earth (https://earth.google.com/web/). The mission starts and ends over the
nearby Żar Airport. The airport is located on the slope of Żar mountain (Little Beskids in
southern Poland), north of the city. The volume just above the city9 is considered an NFZ. The
UAV must fly to the point of the highest predicted pollution concentration and then fly along
a zigzag-shaped path over a predefined measurement polygon. While flying back, an unexpected
error occurs and communication with the GCS as well as the current path are lost. Now, the
UAV has to recompute the returning path to the airport locally. The detailed scenario of this
mission is presented in Tab. 5.24.

Fig. 5.30: Measurement mission over Żywiec

The success criteria were computed as in the test scenarios of LPP (see Tabs. 5.18, 5.20 and

9 That is, counting from the highest ground elevation measured at the area of the city. The infrastructure is
avoided by applying vertical safety margin.

https://earth.google.com/web/

5.7. Adaptive Path Planning for pollution sampling 91

5.22). However, to account for changes in altitude present in this case and slow climb rate of the
UAV, FT was estimated using equation

FT ¬ sm
va

N−1∑
n=1

(√
(wxn − wxn+1)2 + (wyn − wyn+1)2 +

1
sin(γn)

(wzn − wzn+1)
)

γn =

{
γmin if wzn − wzn+1

γmax otherwise

(5.11)

where γmin and γmax are the minimum and maximum inertial-referenced flight-path angle as in
Tab. 5.13. Variable sm is safety margin. The base value of sm is 2.0 to account for wind. It is
then increased by 0.5 for each measurement site during the flight. Hence, in this case sm = 2.5.

Simplified static case

To compare paths planned by APP with a reference path designed by a human expert, the
scenario from Tab. 5.24 was simplified by removing dynamic re-planning. Thus, the simplified
scenario uses only steps 1 to 4. Fig. 5.31 shows the reference human-designed path (top figure)
and the worst (longest in terms of FT) path planned by GPP (bottom figure). Thin yellow
line denotes the planned (theoretical) path, while the red thick line is the simulated path. Red
and green tetrahedrons depict start and goal, respectively. The blue sphere indicates the region
with the highest predicted pollutant concentration and the red prism depicts the volume above
Żywiec, that counts as an obstacle.

Fig. 5.31: The expert-provided path (top) and the best GPP-generated path (bottom)

The experiment was repeated 30 times with different seed of the random generator. The
results are summarized in Tab. 5.25. FT , LEN , SMOO , EEE and NCOL were computed

5.7. Adaptive Path Planning for pollution sampling 92

Tab. 5.24: Detailed scenario of the smog profiling mission over Żywiec

Scenario ID APPLowEmissionZywiec

Description Smog profiling over Żywiec

Goal UAV starts over Żar Airport (ICAO:EPZR). GPP optimizes the path from
start to the measurement site and back to goal. Then, the flight along the
path is simulated. After 1800 s of simulated flight time the UAV must plan
a new fallback path (an RTH maneuver) using onboard LPP. Then, the sim-
ulation resumes and the aircraft flies back to the Żar Airport uninterrupted.

Stages
1. The aircraft is airborne at the start waypoint, airspeed = 22 m

s .
2. The UAV flies to the region of the maximum pollutant concentration.
3. The UAV performs the measurement following a zigzag-shaped path.
4. The aircraft flies towards the goal waypoint.
5. 1800 s after the start, error occurs and communication is lost.
6. The path is re-computed locally and the UAV performs an RTH.
7. The aircraft continues along a new path towards the goal waypoint.

Map Rectangle from (49.650000◦N, 19.130000◦E) to (49.820000◦N, 19.280000◦E),
local origin (0, 0, 0) at (49.685000◦N, 19.190000◦E, 348 m AMSL†), wind
forecast from t0 to t0 + 12 h

UAV model Fixed-wing kinematic guidance model calibrated as in section 5.4.3

Algorithms ACOR (GPP), RRT* calibrated as in section 5.6.4 (LPP)

Mission
parameters

Kinematic constraints of the UAV as in Tab.5.5

Max connection distance = 3000 m

Start waypoint = (−400,−200, 518,−3
4π)

Goal waypoint = (100, 200, 544, π4)

Safety margin = 200 m (horizontal), 100 m (vertical)

Pollution
model

Explicit linear as in eq. 3.14, cost growth rate = 0.005 m−1 from the center

Center at (49.685000◦N, 19.190000◦E, 348 m AMSL)

Criteria
of success

Total FT ¬ 2964 s

NCOL = 0 (GPP and LPP)

max(CT) ¬ 4.55 s (only for LPP)

† Actually, the airport is located at 1291 ft (394.5 m) AMSL [61]. However, zero altitude was used to keep the
vertical scale relative to sea level.

from simulation data. CT , CFE and COST used the output of GPP. Due to low simulation
time step and high density of the waypoints, SMOO was calculated by taking every 500th
waypoint. The last row (Ref) shows metrics of the reference path. CT uses the plus notation
introduced in Tab.5.19. Here, the first term refers to the global path and the second to the local
one.

5.7. Adaptive Path Planning for pollution sampling 93

25 of 30 paths met the success criteria (83.33% of runs). For all paths NCOL > 0. Paths
4, 5, 10, 22 and 24 exceeded the FT limit with the highest FT = 3236.482 s for the 24th
path. It was caused by an unnecessary control waypoint, which resulted in a helical ascend (see
Fig. 5.31). CT limit is not considered as LPP was not used.

The 24th path is the longest (LEN = 71025 m) and least energy-efficient (EEE = 93.491 Wh).
Path 15 has the smallest FT of 2135.013 s and also the lowest LEN (46868 m) and EEE
(61.633 Wh). The 25th path is the smoothest one (SMOO = 0.887), while the 4th path is the
least smooth (SMOO = 0.801).

Compared to the reference path supplied by a human expert, 19 of 30 paths (63.33%) have
lower FT , LEN and EEE . Additionally, 28 paths provided smoother paths than the reference
(based on simulation data). Medians of the applicable metrics of GPP-generated paths (FT =
2233.620 s, LEN = 49005 m, EEE = 64.467 Wh and SMOO = 0.872) are better than the
corresponding metrics of the reference path. Paths with low number of waypoints, such as
human-provided paths, are harder for the simulated controller (as in section 5.4.3) to follow,
which resulted in oscillations noticeable especially in measurement path (see top right detail in
Fig. 5.31).

Tab. 5.25: Metrics computed for the simplified APPLowEmissionZywiec scenario

CT [s] FT [s] CFE COST LEN [m] SMOO EEE [Wh] NCOL

1 30.554 2151.837 15350 3020 47257 0.868 62.116 0
...

...
...

...
...

...
...

...
...

4 95.526 2993.788 35750 2742 65447 0.801 86.473 0

5 87.318 3021.026 40850 2844 66236 0.850 87.191 0
...

...
...

...
...

...
...

...
...

10 34.790 3024.412 17450 3071 66391 0.825 87.320 0
...

...
...

...
...

...
...

...
...

15 23.032 2135.013 12050 3232 46867 0.883 61.633 0
...

...
...

...
...

...
...

...
...

22 44.314 2982.508 22850 2847 65386 0.855 86.106 0

23 18.425 2135.032 10250 3233 46867 0.884 61.633 0

24 47.061 3236.482 22850 2862 71025 0.841 93.491 0

25 38.915 2202.007 19550 3023 48372 0.887 63.551 0
...

...
...

...
...

...
...

...
...

30 39.131 2272.361 20150 2805 49857 0.871 65.579 0

Ref N/A 2488.966 N/A N/A 54596 0.826 71.857 0

Complete case with local re-planning

Next, the experiment was repeated, this time including stages 5 to 7 from Tab. 5.24. As before,
30 independent runs were computed. Tab. 5.26 summarizes the results.

5.7. Adaptive Path Planning for pollution sampling 94

Paths 14 and 21 violate the FT success criterion with values of 3789.433 s and 2995.963 s,
respectively. These paths also are the longest and least energy-efficient. Interestingly, the shortest
and most energy-efficient is path 4, which actually has the highest COST = 3233. It was
caused by the energy criterion, which does not model wind influence exactly. Thus, EEE during
optimization differs from EEE computed for simulation data. This suggests, the energy criterion
could be further improved.

Path 28 is the smoothest one, with the 1st path being the opposite. As expected, SMOO
shows high negative correlation with EEE (-0.705). FT has the highest absolute correlation
to EEE (0.999). The shortest local CT = 0.061 s is noted for the 20th path and the longest
(1.030 s) for the 8th one. In the case of global paths, path 25 has the smallest CT = 17.181 s,
while for the 2nd path CT is the largest. Hence, no path exceeded the CT limit. Moreover, all
paths are collision-free. Finally, 28 of 30 paths met the criteria of success, giving success ratio
of 93.33% for the scenario.

Tab. 5.26: Metrics computed for the dynamic APPLowEmissionZywiec scenario

CT [s] FT [s] CFE COST LEN [m] SMOO EEE [Wh] NCOL

1 32.446 + 0.171 2284.034 13550 3183 49678 0.687 67.191 0

2 80.452 + 0.650 2623.316 34250 2703 57491 0.812 75.720 0

3 21.215 + 0.071 2137.449 11150 3232 46923 0.884 61.704 0

4 19.994 + 0.082 2137.448 10550 3233 46923 0.884 61.704 0
...

...
...

...
...

...
...

...
...

8 53.150 + 1.030 2873.110 25850 2805 62944 0.814 82.951 0
...

...
...

...
...

...
...

...
...

14 50.291 + 0.332 3789.433 24650 2703 82716 0.717 110.512 0
...

...
...

...
...

...
...

...
...

20 38.989 + 0.061 2316.751 17750 3021 50843 0.836 66.877 0

21 28.481 + 0.153 2995.963 13850 3043 65578 0.722 86.647 0
...

...
...

...
...

...
...

...
...

25 17.181 + 0.108 2137.571 9050 3232 46926 0.884 61.708 0
...

...
...

...
...

...
...

...
...

28 20.707 + 0.069 2137.687 11150 3233 46928 0.885 61.711 0

29 24.547 + 0.184 2296.753 12950 3029 50458 0.841 66.312 0

30 21.603 + 0.100 2137.597 12050 3232 46926 0.884 61.708 0

5.7.3 Black carbon concentration over Kongsvegen

The second compound use case considers measuring BC concentration over the Kongsvegen
glacier in Svalbard. Two variants of the mission were considered. In the first one, GPP is used
once to plan a single measurement mission without re-planning to compare the results with
a reference path provided by a human expert. The second one expands the former to a dynamic
measurement mission with GPP- and LPP-based re-planning attempts.

The mission is visualized on the map in Fig. 5.32 – the satellite image was provided by

5.7. Adaptive Path Planning for pollution sampling 95

https://www.bing.com/maps/. The flight starts and ends over the airport in Ny-Ålesund. The
UAV must fly to the point of highest predicted pollution concentration located above the glacier
and then fly along a zigzag-shaped path inside a predefined measurement polygon. However,
after taking the measurements, the personnel in GCS decides to reattempt the measurements in
a different place. The mission plan is updated, while the UAV is still airborne. After finishing
the second measurement, the UAV flies back to the airport, but the communication with GCS is
lost. The aircraft looses track of its previous path and locally plans a path back to the airport.
The UAV reaches the goal without further complications.

Fig. 5.32: Measurement mission over the Kongsvegen glacier

Details of the scenario are summarized in Tab. 5.27. The success criteria were computed
as in previous case. Estimated FT was computed using eq. (5.11). The simplified variant used
sm = 2.5. For the complete mission sm was increased to 3.0 because of the second measurement
site. Horizontal safety margin was increased to 500 m to account for stronger wind than in the
previous case.

Simplified static case

As in the previous case, before attempting the mission as in Tab. 5.27, a simplified static case
was defined to compare the results with a manually designed flight path. The mission was
reduced to steps 1, 2, 3 and 7. Hence, only the initial measurement plan was realized with no
additional complications. Fig. 5.33 shows the reference path provided by a human expert (top
figure) and the best-cost path planned by GPP (bottom figure). Thin yellow line denotes the
planned (theoretical) path, while the red thick line is the simulated path.

The human-provided path consists of just a few control waypoints. Exact way of reaching
them is left to the simulated onboard low-level controller (see section 5.4.3). Therefore, the
reference path is not checked for feasibility. Conversely, GPP-generated path provides densely-
sampled waypoints to closely match the shape of the optimized path and handle the avoidance
of static obstacles.

Detailed metrics are summarized in Tab. 5.28. All the paths met the success criteria. All
generated paths are longer than the reference one, however. Paths 7, 11, 26 and 27 resulted
in more than 10% increase in EEE , while the 25th path provides about 5% savings in EEE
compared to the reference path. CT ranges from 19.359 s for the 20th path to 70.899 s for path
5 with median of 28.119 s. FT follows the trend of EEE (correlation coefficient is 0.944) with
maximum FT = 20360.692 s for the 26th path.

https://www.bing.com/maps/

5.7. Adaptive Path Planning for pollution sampling 96

Tab. 5.27: Detailed scenario of the BC measurement mission over Kongsvegen

Scenario ID APPBlackCarbonKongsvegen

Description BC measurements over Kongsvegen

Goal UAV starts over Ny-Ålesund Airport, Hamnerabben (ICAO:ENAS). GPP
optimizes the placement of the path from start to the measurement site and
back to goal. Then, the flight along the path is simulated. After the first
measurements, pollution data is updated and GPP is run again. Then, the
UAV follows the new global. After the second measurement series, LPP must
plan a new fallback path using onboard LPP. The simulation resumes and
the aircraft reaches goal undisturbed.

Stages
1. The aircraft is airborne at the start waypoint, airspeed = 22 m

s .
2. The UAV flies to the region of the maximum BC concentration.
3. The UAV performs the measurement following a zigzag-shaped path.
4. The global path is updated and the aircraft resumes the mission.
5. The UAV performs the measurement and flies back to the airport.
6. Communication is lost – the UAV locally plans a new path to goal.
7. The aircraft continues uninterrupted to the goal waypoint.

Map Rectangle from (78.750000◦N, 11.800000◦E) to (78.940000◦N, 13.200000◦E),
local origin (0, 0, 0) at the Ny-Ålesund Airport (78.927778◦N, 11.874722◦E,
0 m AMSL), wind forecast from t0 to t0 + 12 h

UAV model Fixed-wing kinematic guidance model calibrated as in section 5.4.3

Algorithms ACOR (GPP), RRT* calibrated as in section 5.6.4 (LPP)

Mission
parameters

Kinematic constraints of the UAV as in Tab.5.5

Max connection distance = 5000 m

Start waypoint = (3850, 4800, 5300, π4)

Goal waypoint = (22750, 6850, 5500,−3
4π)

Safety margin = 500 m (horizontal), 100 m (vertical)

Pollution
model

Explicit linear as in eq. 3.14, cost growth rate = 0.005 m−1 from the center

Initial center at (78.834200◦N, 12.682600◦E, 5000 m AMSL)

Updated center at (78.834200◦N, 12.682600◦E, 5000 m AMSL)

Criteria
of success

Total FT ¬ 21125 s (simplified case), total FT ¬ 26348 s (full case)

NCOL = 0 (GPP and LPP)

max(CT) ¬ 4.55 s (only for LPP)

None of the generated paths resulted in NCOL > 0. Contrary to that, the simulated path
which bases on the reference path misses the global end point and crashes into ground (see top
left closeup in Fig. 5.33). In practice, however, the human operator would take control over the
UAV as soon as it was in range, so the crash would not happen. Moreover, the simulated aircraft

5.7. Adaptive Path Planning for pollution sampling 97

Fig. 5.33: The expert-provided path (top) and the best GPP-generated path (bottom)

was blown off the map while attempting helical ascend and descend close to the map border.
The paths generated by GPP provide comparable results to the reference human-based path.

In simulation, these paths tend to be somewhat longer (12.06% based on mean) and less energy-
efficient (6.45% based on mean). Nonetheless, GPP automatically generates a densely-sampled
waypoints, which provide more predictable and feasible paths.

Complete case with global and local re-planning

The experiment was extended to include dynamic re-planning of both global and local paths,
as specified in Tab. 5.27. As in the preceding simplified scenario, 30 independent runs were
computed using varying random seed. The results of the complete scenario are given in Tab. 5.26.

Paths 19, 25, 27, 29 violated the FT success criterion. Path 19 is the longest and least
energy-efficient (LEN = 443148 m, FT = 36065 s, EEE = 1042 Wh). All paths met the other
criteria, i.e., related to CT and NCOL . Hence, the success ratio of this experiment is 86.67%.
The shortest and most energy-efficient is path 23 with LEN = 304098 m, FT = 20729 s and
EEE = 601 Wh. It is also the smoothest path with SMOO = 0.836.

5.7.4 Discussion

APP was positively validated on two different use cases inspired by real measurement mission
scenarios. The algorithm achieved success ratio from 83.33% to 100%, depending on the use case.
The algorithm tends to provide close-to-optimal solution. Nevertheless, in some cases a sub-
optimal solution is returned. APP is meant to be used as a guidance tool for a human mission
planner, so a small fraction of sub-optimal solutions is a minor issue. However, the algorithm
must be improved if fully autonomous application is planned.

ACOR-based GPP provides results comparable to a path designed by a human expert. For
the first use case, most of the GPP-generated paths provided slightly shorter, smoother and

5.7. Adaptive Path Planning for pollution sampling 98

Tab. 5.28: Metrics computed for the simplified APPBlackCarbonKongsvegen scenario

CT [s] FT [s] CFE COST LEN [m] SMOO EEE [Wh] NCOL

1 66.197 17426.153 13850 525 265305 0.771 506.069 0
...

...
...

...
...

...
...

...
...

5 70.899 17424.458 17450 524 265283 0.770 506.020 0

6 24.703 17427.402 11750 524 265320 0.770 506.105 0

7 32.209 18842.038 14750 555 280815 0.782 550.911 0
...

...
...

...
...

...
...

...
...

11 46.187 18499.162 18350 534 282759 0.773 537.934 0
...

...
...

...
...

...
...

...
...

20 19.359 17425.978 10250 525 265304 0.770 506.062 0
...

...
...

...
...

...
...

...
...

25 42.071 15676.260 21050 529 246465 0.795 455.864 0

26 43.427 20360.692 19250 641 302490 0.794 598.328 0

27 58.823 19622.437 23450 588 294537 0.783 572.530 0
...

...
...

...
...

...
...

...
...

30 30.891 17428.969 12950 527 265341 0.770 506.150 0

Ref N/A 16512.259 N/A N/A 239218 0.803 481.414 6312

more energy-efficient paths. On the contrary, the second case showed results that are mostly
acceptable, but slightly inferior to the human-provided path. Nevertheless, APP was compared
to a very limited number of human-generated reference paths. To reliably evaluate APP’s per-
formance, the number of reference paths should be expanded to include more diverse mission
scenarios as well as a group of several human experts. This will be addressed by the further
research.

It can be observed APP performs better for shorter paths with little to no altitude changes
and small wind speed. When the wind speed becomes comparable to the UAV flight speed
and path length increases10, the APP returns solutions inferior to the human-provided path.
It is caused by differences in path shape during optimization and simulation. The reason is to
simplify the impact of wind on energy expenditure. This means that during optimization wind
modifies vg value, but does not change the direction of the UAV, so the shape of the path remains
intact. A possible solution of this issue is to use wind-enabled Dubins paths, such as in research
conducted by Mittal et al. [62].

Interestingly, the simulation model provide steeper ascend than helices generated by Dubins
airplane paths, despite both using the same kinematic constraints as in Tab.5.3. Fig. 5.34, which
is a closeup of Fig. 5.33, presents the issue.

The ascending helix11 generated by the simulated controller for the human-based path (left

10 That is, mostly due to significant altitude changes requiring helical ascend and descend maneuvers.
11 The word “helix” is used here informally to name a maneuver consisting of climbing while turning.

5.7. Adaptive Path Planning for pollution sampling 99

Tab. 5.29: Metrics computed for the dynamic APPBlackCarbonKongsvegen scenario

CT [s]
FT

CFE COST
LEN

SMOO
EEE

NCOL
[s] [m] [Wh]

1 32.9 + 19.2 + 0.2 22513 16850 + 10850 524 + 214 324064 0.798 653 0
...

...
...

...
...

...
...

...
...

19 22.3 + 29.1 + 0.1 36065 12350 + 14150 526 + 521 443148 0.836 1042 0
...

...
...

...
...

...
...

...
...

23 31.6 + 17.3 + 0.2 20729 16850 + 10250 566 + 209 304098 0.814 601 0

24 32.6 + 16.7 + 0.1 22576 16850 + 10250 782 + 215 324706 0.801 655 0

25 25.7 + 24.8 + 0.1 26401 13850 + 13250 527 + 397 367347 0.825 765 0

26 42.4 + 34.6 + 0.1 22693 23450 + 15950 525 + 308 324166 0.800 658 0

27 43.6 + 21.2 + 0.2 29201 23750 + 12350 523 + 311 387451 0.812 847 0

28 47.5 + 16.4 + 0.1 22514 25250 + 9650 525 + 214 324077 0.798 653 0

29 27.3 + 19.2 + 0.1 29370 13850 + 11150 726 + 233 376827 0.796 853 0

30 42.4 + 17.3 + 0.2 22512 22850 + 10250 521 + 214 324053 0.799 653 0

Fig. 5.34: Ascending for a human-provided (left) and GPP-generated (right) paths

figure) has visibly higher pitch versus the right one, which was generated by APP based on
Dubins airplane path (right figure). It is caused by the controller trying to follow the path as
strictly as possible. Therefore, to mitigate altitude errors, the controller lowers climbing rate if
the UAV gets blown away from its theoretical path. Human-provided path consists of just a few
waypoints, so this issue is not present.

The problem can be solved in two ways. First is to deform Dubins path according to estimated
wind velocity. Second is to explicitly ignore waypoints, which would be missed without decreasing
climb rate. Both approaches will be tested in the future research.

The fidelity of the current energy expenditure model is debatable. In the current model,
propeller power depends on altitude, airspeed and angle of attack, but the influence of other

5.8. Summary 100

maneuvers, such as turning is neglected. This is especially visible in the case of yawing induced
by the difference between the thrust of both propellers of TS. Introducing a more reliable model
could significantly change the output of GPP. For example, climbing on long zigzag-shaped paths
might be preferred to helices to limit turning maneuvers.

In its current implementation, LPP provides obstacle-free feasible paths. They are not opti-
mized for energy expenditure, however. Two alternative solutions to this problem are planned.

The first one would use the same approach as in GPP, but with simplified criteria. For
example, only collision avoidance and energy expenditure could be considered, as LPP will not
be used for measuring pollution and path length is highly positively correlated with energy
expenditure.

The second approach would be to employ the probabilistic completeness feature of RRT*. It
means to continue searching for better paths after the algorithm finds the first feasible solution.
While not addressing energy expenditure directly, this should provide significantly shorter paths.
Moreover, as in the case of GPP, a wind-enabled Dubins path implementation can be used, e.g.,
based on [62].

5.8 Summary

The chapter covered extensive tests of APP in simulation. First, the Twin Stratos (TS) fixed-
wind UAV was briefly described, followed by metrics used during the verification study. Then,
chosen components of the environment map were tested. 2.5D elevation-based terrain map was
compared with its 3D voxel-based implementation, proving the better performance of the former
and the wind map model was compared against wind data available through free web services.

Next, the final form of the kinematic model and the controller were described. They were
calibrated using TS specification and verified on a simple helical path in simulation.

Verification of GPP started from testing the effects of the criteria. Each criterion was tested
independently to show its effect on the resulting optimized global path. Then, the optimal single-
objective optimization algorithm was chosen through a comparative analysis of four different
nature-inspired algorithms: I-GWO, ACOR, PSO and GA. The comparison in a complex abstract
scene shown the superiority of ACOR, while also pointing up its major disadvantage – relatively
high variability of the results.

LPP was verified afterwards. Three RRT-based algorithms were compared on a similar ab-
stract map as before. The tests were carried out using several randomly generated configurations
of the scene to handle random nature of the algorithms. The tests highlighted RRT* as the op-
timal solution, which significantly outpaced BiRRT and RRT. RRT* was then calibrated and
validated on three real flight scenarios that required dynamic re-planning. The tests pointed
out inconsistency of the results as the major disadvantage of RRT algorithms. This could be
potentially counteracted by RRT*’s probabilistic completeness feature, but is yet to be tested
in the further research.

Finally, compound tests of APP were carried out on two real measurement mission scenarios:
smog profiling over Żywiec and BC measurements on Svalbard. Each case begun with the com-
parison of APP-generated paths versus a reference path supplied by a human expert. Then, the
complete mission scenario was simulated, which employed dynamic re-planning features of GPP
and LPP. The tests showed that the paths generated by APP achieve performance comparable
to the human-provided paths. Most of the paths generated by APP fulfilled the success criteria
defined for each use case and none provided an path, that resulted in collisions.

GPP was found to be a solid alternative to a human expert, though not ready yet for com-
pletely autonomous flights, i.e., without human supervision. LPP fulfilled its task of providing
obstacle-free fallback paths in case of communication errors with GCS. LPP-generated paths
are not optimized for minimal energy expenditure, tough.

6. Summary

The thesis addresses the problem of adaptive path planning for pollution sampling with a UAV
flying in a limited environment. The research was inspired by the LEADER project, which
targets air pollution measurements using an autonomous HALE aircraft. The UAV is used to
autonomously fly through potentially polluted ares and to measure the pollutant intensity and
distribution.

The HALE aircraft developed for the project has very limited energy resources, however.
Thus, it is crucial to plan and optimize its flight path for minimal energy expenditure. The
HALE airplane is subject to much more restrictive kinematic constraints than, e.g., a multirotor.
Hence, to avoid finding solutions which would later turn out to be sub-optimal, the planner
must take into account these limitations already at the optimization stage. Moreover, the scene
configuration may change during the flight – be it due to worsening weather, the activation of
a new NFZ or difference between estimated and measured pollution distribution. Therefore, the
planner must be adaptive.

The goal of this doctoral dissertation was to develop an adaptive path planning algorithm
that would solve these issues. The research started from a state-of-the-art analysis, which tar-
geted the specific requirements of the LEADER project. It led to the conception of two-stage
adaptive path planner, that is based on the models of the UAV and its environment. This idea
ultimately led to formulating the formal basis of the model-based Adaptive Path Planner (APP)
consisting of Global Path Planner (GPP) and Local Path Planner (LPP). The planner was then
optimized, calibrated and validated on the series of MIL simulations. The verification study
highlighted its most prominent advantages, such as eponymous adaptability, and also marked
some of its flaws, such as high variability of the results, especially in the case of LPP.

The thesis addressed many concerns of the LEADER project in the field of mechanical
engineering. According to the author’s opinion, the most important contributions of this doctoral
dissertation include:

� The formal description of a novel model-based Adaptive Path Planner (chapter 4), which
provides adaptive collision-free paths optimized for minimum energy expenditure and sub-
ject to kinematic constraints of the HALE UAV.

� Formulation of the single-objective multi-criteria optimization problem considering ob-
stacle avoidance, minimizing energy expenditure, measurement strategy and kinematic
constraints of the UAV.

� Comparative analysis of four global single-objective optimization algorithms (I-GWO,
ACOR, PSO and GA) used by GPP for finding the optimal global path.

� Comparative analysis of three stochastic RRT-based planning algorithms (RRT, RRT*
and BiRRT) employed by LPP to rapidly compute a fallback local path.

� The formal description of a novel environment model (map). The map models several im-
portant aspects of the scene: terrain, current and forecast wind velocity, airspace structure
and measurement strategy.

� Extensive MIL tests of APP and its components on several use cases inspired by real
pollution measurement missions planned over the course of the LEADER project.

6.1. Conclusions 102

6.1 Conclusions

The research carried out during the thesis has led to the following conclusions:

� As the result of the thesis a model-based adaptive planning algorithm was developed. After
formulating the formal basis of APP, the algorithm was positively verified on a limited
number of test cases. The algorithm provides a feasible path for an autonomous HALE
UAV flying in a limited environment.

� Implementing APP as two separate algorithms enables fine-tuning each of them to fulfill
their specific tasks. GPP is meant for global mission planning and optimizing the result-
ing path for minimal energy expenditure. LPP must provide a feasible path in limited
time. This path is used as a fallback and does not have to be optimal in terms of energy
expenditure.

� GPP generates paths which are collision-free and optimized to minimize energy expended
by the UAV. The quality of the paths is comparable with paths provided by a human
expert. GPP gives better results for shorter path, especially if wind speed is low. For longer
path with significant wind speed and large changes in altitude, the results are acceptable,
but inferior to a path generated by a human.

� Dubins airplane paths provide optimal paths as long as wind influence can be neglected.
If wind speed approaches airspeed resulting in significant deformations of the flight path,
wind-enabled model must be used. Difference between the final path and the theoretical
path expected by the controller is the major cause of sub-optimality of APP-provided
paths under windy conditions.

� ACOR was found the most suitable global path planning algorithm of the four nature-
inspired global optimization algorithms considered in the thesis. The others included I-
GWO, PSO and GA. However, the major drawback of ACOR is the high variability of path
quality. For example, GA provides slightly inferior, but more consistent results. Hence, GA
may become the optimal solution if APP is meant to be used for fully autonomous path
planning.

� The criterion used to estimate energy takes into account the effect of wind speed on
flight time (indirectly), but not the shape of the path. As a result, the criterion becomes
unreliable if wind speed approaches airspeed.

� The energy expenditure and minimal path length criteria provide similar results, so using
them simultaneously is redundant. Nonetheless, each criterion has different features. The
more accurate energy-based criterion is preferred if computation time is not an issue.
Otherwise, the length-based criterion should be used.

� By zeroing the pollution intensity criterion, APP can be employed to plan energy-optimized
point-to-point paths. This way, the algorithm remains usable outside its primary applica-
tion.

� LPP dynamically recalculates local paths, providing new kinematically-feasible and ob-
stacle free paths. While feasible, this path is rarely optimal in terms of minimal energy
expenditure, flight time or path length.

� Due to stochastic nature of RRT-based algorithms, the output of LPP differs significantly
even for the same initial conditions (excluding random seed). Therefore, frequent recalcu-
lations of the local path lead to the final flight path being sub-optimal. a possible solution
is to exploit the probability completeness of RRT* by allowing the algorithm to search for
better connections after finding a feasible solution.

6.2. Future remarks 103

� RRT* was found the most suitable local path planning algorithm of the three RRT-based
algorithms considered in the thesis. The others included RRT and BiRRT. This could be
improved by allowing RRT* to continue the optimization after a feasible path is found.

� Kinematic guidance model used for MIL tests is useful to roughly estimate the flight of the
UAV at lower altitudes. However, as altitude increases, it must be replaced with a dynamic
model which takes into account lowering air density and its effects on lift force.

� A truly model-based adaptive path optimization, i.e., using the UAV model to calculate the
cost function, has not been achieved yet. Simulating the path provided by every candidate
solution significantly increases the optimization time, so the planner is no longer usable for
dynamic events. In its current implementation, the model of the UAV (either kinematic
or dynamic) can be used only to validate the path planned using, e.g., Dubins paths
or heuristic rules. Nevertheless, the environment model plays a significant role during
optimization.

� Elevation-based 2.5D terrain representation was found the optimal terrain model for APP.
The elevation-based model provides higher computation performance compared to the
voxel-based one. For outdoor applications that do not model ceiling or complex shapes the
former model is preferred.

6.2 Future remarks

The non-exhaustive list of remarks to be considered in the future research is as follows:

� APP may be further expanded to solve the Zermelo problem (i.e., including wind) instead
of Dubins. For that purpose a wind-enabled model will be employed. For example, the 2D
model by Mittal et al. [62] can be used as a base and then expanded to 3D.

� Expanding wind maps with vertical air currents will allow utilizing the soaring tech-
nique [41], i.e., staying inside the masses of warm air, thus further improving flight ef-
ficiency.

� Discrete wind maps, as well as measurement maps, can be modeled as octrees, similarly to
voxel-based terrain maps. Thus, the size of the maps can be reduced – especially for maps
with high sampling resolution. Moreover, the concept of voxel-based terrain map can be
expanded by reintroducing probabilities as described in [36] instead of binary values to
represent cell occupancy.

� The SMOO metric is less informative for densely-sampled paths. For example, a straight
line path with a single 180◦ turn in the middle would still have SMOO ≈ 1, if sampling
density is large enough. Hence, the definition of SMOO should be reworked to provide
a more robust metric.

� The concept of model-based path validation will be expanded to the dynamic guidance
model (2.4 and 2.5), and then to the full non-linear dynamic model of TS.

� The research lacks multi-objective optimization approach. Future research will compare
the effects of the single-objective optimization methods from the thesis with their multi-
objective counterparts, e.g., multi-objective GA.

� The thesis used only MIL verification. Further research will be extended to SIL verification,
and eventually PIL and HIL validation when TS is completed.

� An alternative non-stochastic version of LPP will be developed. It will use the concept of
3D visibility graphs found in [63–65].

Bibliography

[1] E. Dhulkefl, A. Durdu, and H. Terzioğlu, “DIJKSTRA ALGORITHM USING UAV PATH
PLANNING,” Konya Mühendislik Bilimleri Dergisi, vol. 8, pp. 92–105, 2020. https:
//doi.org/10.36306/konjes.822225 [25.12.2021].

[2] L. Yang, J. Qi, J. Xiao, and X. Yong, “A literature review of UAV 3D path planning,” in
Proceeding of the 11th World Congress on Intelligent Control and Automation, pp. 2376–
2381, 2014. https://doi.org/10.1109/WCICA.2014.7053093 [27.12.2021].

[3] Y. V. Pehlivanoglu, O. Baysal, and A. Hacioglu, “Path planning for autonomous UAV
via vibrational genetic algorithm,” Aircraft Engineering and Aerospace Technology, 2007.
https://doi.org/10.1108/00022660710758222 [28.12.2021].

[4] C. Cifaldi, L. N. Mascarello, and F. Quagliotti, Regulations: The European Way, pp. 1–29.
Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-
32193-6_159-1 [27.11.2021].

[5] Y. Zhao, Z. Zheng, and Y. Liu, “Survey on computational-intelligence-based UAV path
planning,” Knowledge-Based Systems, vol. 158, pp. 54–64, 2018. https://doi.org/10.
1016/j.knosys.2018.05.033 [26.12.2021].

[6] F. Schøler, A. la Cour-Harbo, and M. Bisgaard, “Generating Configuration Spaces and
Visibility Graphs from a Geometric Workspace for UAV Path Planning,” in Proceedings of
the AIAA Guidance, Navigation, and Control Conference, Portland, OR, USA, pp. 8–11,
Citeseer, 2011.

[7] M. Garcia, A. Viguria, and A. Ollero, “Dynamic Graph-Search Algorithm for Global Path
Planning in Presence of Hazardous Weather,” Journal of Intelligent & Robotic Systems,
vol. 69, no. 1, pp. 285–295, 2013.

[8] H. Duan, Y. Yu, X. Zhang, and S. Shao, “Three-dimension path planning for UCAV us-
ing hybrid meta-heuristic ACO-DE algorithm,” Simulation Modelling Practice and The-
ory, vol. 18, no. 8, pp. 1104–1115, 2010. https://doi.org/10.1016/j.simpat.2009.10.
006 [16.04.2022].

[9] X. Ling and Y. Hao, “Effective 3-D Path Planning for UAV in Presence of Threat Netting,”
in 2015 Fifth International Conference on Communication Systems and Network Technolo-
gies, pp. 1298–1302, 2015. https://doi.org/10.1109/CSNT.2015.217 [16.04.2022].

[10] R. P. Anderson and D. Milutinović, “A Stochastic Approach to Dubins Vehicle Tracking
Problems,” IEEE Transactions on Automatic Control, vol. 59, no. 10, pp. 2801–2806, 2014.
https://doi.org/10.1109/TAC.2014.2314224 [26.11.2021].

[11] A. Rahmani, X. C. Ding, and M. Egerstedt, “Optimal Motion Primitives for Multi-UAV
Convoy Protection,” in 2010 IEEE International Conference on Robotics and Automation,
pp. 4469–4474, 2010. https://doi.org/10.1109/ROBOT.2010.5509221 [27.11.2021].

https://doi.org/10.36306/konjes.822225
https://doi.org/10.36306/konjes.822225
https://doi.org/10.1109/WCICA.2014.7053093
https://doi.org/10.1108/00022660710758222
https://doi.org/10.1007/978-3-319-32193-6_159-1
https://doi.org/10.1007/978-3-319-32193-6_159-1
https://doi.org/10.1016/j.knosys.2018.05.033
https://doi.org/10.1016/j.knosys.2018.05.033
https://doi.org/10.1016/j.simpat.2009.10.006
https://doi.org/10.1016/j.simpat.2009.10.006
https://doi.org/10.1109/CSNT.2015.217
https://doi.org/10.1109/TAC.2014.2314224
https://doi.org/10.1109/ROBOT.2010.5509221

BIBLIOGRAPHY 105

[12] J. Meng, S. Kay, A. Li, and V. M. Pawar, “UAV Path Planning System Based on 3D
Informed RRT* for Dynamic Obstacle Avoidance,” in 2018 IEEE International Conference
on Robotics and Biomimetics (ROBIO), pp. 1653–1658, IEEE, 2018. https://discovery.
ucl.ac.uk/id/eprint/10121867/3/Pawar_ROBIO_paper_2018.pdf [24.12.2021].

[13] C. R. Páez, “Simulations of High-Altitude Long-Endurance platforms in Global System
Identification,” German Aerospace Center (DLR), Robotics and Mechatronics Center,
Tech. Rep, vol. 6, 2017.

[14] “Optimal Design of a UAV Based Atmospheric Pollution Profiling System,” tech. rep.,
Norwegian Research Centre (NORCE), 2020.

[15] EU Action on Black Carbon in the Arctic, 2019, “Review of Observation Capacities and
Data Availability for Black Carbon in the Arctic Region: EU Action on Black Carbon in
the Arctic – Technical Report 1,” vol. 4, p. 35, December 2019. https://www.amap.no/
documents/download/6033/inline [28.11.2021].

[16] S. Gilardoni, A. Lupi, M. Mazzola, D. M. Cappelletti, B. Moroni, L. Ferrero,
P. Markuszewski, A. Rozwadowska, R. Krejci, P. Zieger, et al., “Atmospheric black carbon
in svalbard (abc svalbard),” SESS report, pp. 200–201, 2019.

[17] “Black carbon and ozone as Arctic climate forcers,” Arctic Monitoring and Assessment
Programme (AMAP), vol. 7, p. 116, 2015. https://www.amap.no/documents/download/
2506/inline [28.11.2021].

[18] D. Vallot, R. Pettersson, A. Luckman, D. Benn, T. Zwinger, W. Pelt, J. Kohler, M. Schäfer,
B. Claremar, and N. Hulton, “Basal dynamics of Kronebreen, a fast-flowing tidewater
glacier in Svalbard: non-local spatio-temporal response to water input,” Journal of Glaciol-
ogy, vol. 63, pp. 1–13, 11 2017. http://dx.doi.org/10.1017/jog.2017.69 [30.12.2021].

[19] M. Fengler, “Meteomatics Weather API Connector,” 2022. https://www.
mathworks.com/matlabcentral/fileexchange/63992-meteomatics-weather-api-
connector [27.06.2022].

[20] R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and Practice. Prince-
ton University Press, 2012. https://doi.org/10.1515/9781400840601 [09.11.2021].

[21] “Military specification (MIL)-F-8785C. Flying Qualities of Piloted Airplane,” 5 November
1980.

[22] L. E. Dubins, “On curves of minimal length with a constraint on average curva-
ture, and with prescribed initial and terminal positions and tangents,” American Jour-
nal of Mathematics, vol. 79, no. 3, pp. 497–516, 1957. https://doi.org/10.2307/
2372560 [26.11.2021].

[23] A. M. Shkel and V. Lumelsky, “Classification of the Dubins set,” Robotics and Autonomous
Systems, vol. 34, no. 4, pp. 179–202, 2001. https://doi.org/10.1016/S0921-8890(00)
00127-5 [26.11.2021].

[24] T. McLain, R. W. Beard, and M. Owen, “Implementing Dubins Airplane Paths on Fixed-
wing UAVs,” 2014.

[25] H. Chitsaz and S. M. LaValle, “Time-optimal Paths for a Dubins airplane,” in 2007 46th
IEEE Conference on Decision and Control, pp. 2379–2384, 2007. https://doi.org/10.
1109/CDC.2007.4434966 [27.11.2021].

https://discovery.ucl.ac.uk/id/eprint/10121867/3/Pawar_ROBIO_paper_2018.pdf
https://discovery.ucl.ac.uk/id/eprint/10121867/3/Pawar_ROBIO_paper_2018.pdf
https://www.amap.no/documents/download/6033/inline
https://www.amap.no/documents/download/6033/inline
https://www.amap.no/documents/download/2506/inline
https://www.amap.no/documents/download/2506/inline
http://dx.doi.org/10.1017/jog.2017.69
https://www.mathworks.com/matlabcentral/fileexchange/63992-meteomatics-weather-api-connector
https://www.mathworks.com/matlabcentral/fileexchange/63992-meteomatics-weather-api-connector
https://www.mathworks.com/matlabcentral/fileexchange/63992-meteomatics-weather-api-connector
https://doi.org/10.1515/9781400840601
https://doi.org/10.2307/2372560
https://doi.org/10.2307/2372560
https://doi.org/10.1016/S0921-8890(00)00127-5
https://doi.org/10.1016/S0921-8890(00)00127-5
https://doi.org/10.1109/CDC.2007.4434966
https://doi.org/10.1109/CDC.2007.4434966

BIBLIOGRAPHY 106

[26] S. Hota and D. Ghose, “Optimal Geometrical Path in 3D with Curvature Constraint,” in
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 113–118,
2010. https://doi.org/10.1109/IROS.2010.5653663 [27.11.2021].

[27] C. Hanson, J. Richardson, and A. Girard, “Path Planning of a Dubins Vehicle for Se-
quential Target Observation with Ranged Sensors,” in Proceedings of the 2011 Amer-
ican Control Conference, pp. 1698–1703, 2011. https://doi.org/10.1109/ACC.2011.
5990964 [26.11.2021].

[28] Y. Bestaoui Sebbane, Motion Planning, pp. 59–170. Cham: Springer International Pub-
lishing, 2014. https://doi.org/10.1007/978-3-319-03707-3_2" [04.12.2021].

[29] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both forwards and
backwards,” Pacific journal of mathematics, vol. 145, no. 2, pp. 367–393, 1990.

[30] C. Yong and E. J. Barth, “Real-time dynamic path planning for dubins’ nonholonomic
robot,” in Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2418–
2423, 2006. https://doi.org/10.1109/CDC.2006.377829 [26.11.2021].

[31] A. Balluchi, A. Bicchi, A. Balestrino, and G. Casalino, “Path Tracking Control for
Dubin’s Cars,” in Proceedings of IEEE International Conference on Robotics and Au-
tomation, vol. 4, pp. 3123–3128 vol.4, 1996. https://doi.org/10.1109/ROBOT.1996.
509187 [26.11.2021].

[32] R. V. Cowlagi and P. Tsiotras, “Shortest Distance Problems in Graphs Using History-
Dependent Transition Costs with Application to Kinodynamic Path Planning,” in 2009
American Control Conference, pp. 414–419, 2009. https://doi.org/10.1109/ACC.2009.
5160149 [26.11.2021].

[33] E. Zermelo, “Über das Navigationsproblem bei ruhender oder veränderlicher Wind-
verteilung,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Ange-
wandte Mathematik und Mechanik, vol. 11, no. 2, pp. 114–124, 1931. https://doi.org/
10.1002/zamm.19310110205 [18.12.2021].

[34] G. Yang and V. Kapila, “Optimal path planning for unmanned air vehicles with kine-
matic and tactical constraints,” in Proceedings of the 41st IEEE Conference on Decision
and Control, 2002., vol. 2, pp. 1301–1306, 2002. https://doi.org/10.1109/CDC.2002.
1184695 [15.04.2022].

[35] M. Rexer and C. Hirt, “Comparison of free high resolution digital elevation data sets
(ASTER GDEM2, SRTM v2.1/v4.1) and validation against accurate heights from the Aus-
tralian National Gravity Database,” Australian Journal of Earth Sciences, vol. 61, no. 2,
pp. 213–226, 2014. https://doi.org/10.1080/08120099.2014.884983 [21.02.2022].

[36] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap:
an efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots,
vol. 34, no. 3, pp. 189–206, 2013.

[37] MathWorks, Inc., “Documentation of occupancyMap3D in MATLAB Help Center.”
https://www.mathworks.com/help/nav/ref/occupancymap3d.html [23.01.2022].

[38] M. Kosior, “Wind forecast map for adaptive path planning with an unmanned aerial
vehicle,” in Proceedings of Metody Komputerowe – 2022, (Gliwice, Poland), p. TBD, 6
2022. (Accepted for publication).

https://doi.org/10.1109/IROS.2010.5653663
https://doi.org/10.1109/ACC.2011.5990964
https://doi.org/10.1109/ACC.2011.5990964
 https://doi.org/10.1007/978-3-319-03707-3_2"
https://doi.org/10.1109/CDC.2006.377829
https://doi.org/10.1109/ROBOT.1996.509187
https://doi.org/10.1109/ROBOT.1996.509187
https://doi.org/10.1109/ACC.2009.5160149
https://doi.org/10.1109/ACC.2009.5160149
https://doi.org/10.1002/zamm.19310110205
https://doi.org/10.1002/zamm.19310110205
https://doi.org/10.1109/CDC.2002.1184695
https://doi.org/10.1109/CDC.2002.1184695
https://doi.org/10.1080/08120099.2014.884983
https://www.mathworks.com/help/nav/ref/occupancymap3d.html

BIBLIOGRAPHY 107

[39] B. W. Kerns and S. S. Chen, “ECMWF and GFS model forecast verification during
DYNAMO: Multiscale variability in MJO initiation over the equatorial Indian Ocean,”
Journal of Geophysical Research: Atmospheres, vol. 119, no. 7, pp. 3736–3755, 2014.
https://doi.org/10.1002/2013JD020833 [24.04.2022].

[40] F. A. d. A. Andrade, “Real-time and offline path planning of Unmanned Aerial
Vehicles for maritime and coastal applications.” http://hdl.handle.net/11250/
2640229 [28.12.2021].

[41] S. Tabor, I. Guilliard, and A. Kolobov, “ArduSoar: an Open-Source Thermalling Con-
troller for Resource-Constrained Autopilots,” 2018. https://arxiv.org/abs/1802.
08215 [23.12.2021].

[42] Polish Air Navigation Services Agency (PANSA), “Official AUP/UUP map for Poland.”
https://airspace.pansa.pl [27.04.2022].

[43] A. Stentz, “Optimal and Efficient Path Planning for Partially-Known Environments,”
in Intelligent Unmanned Ground Vehicles: Autonomous Navigation Research at Carnegie
Mellon (M. H. Hebert, C. Thorpe, and A. Stentz, eds.), pp. 203–220, Boston, MA: Springer
US, 1997. https://doi.org/10.1007/978-1-4615-6325-9_11 [27.12.2021].

[44] O. Alvear, N. R. Zema, E. Natalizio, and C. T. Calafate, “Using UAV-Based Systems to
Monitor Air Pollution in Areas with Poor Accessibility,” Journal of Advanced Transporta-
tion, 08 2017. https://doi.org/10.1155/2017/8204353 [14.05.2022].

[45] M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization. Mit Press, 2019.

[46] M. Torres, D. A. Pelta, J. L. Verdegay, and J. C. Torres, “Coverage path planning
with unmanned aerial vehicles for 3D terrain reconstruction,” Expert Systems with Ap-
plications, vol. 55, pp. 441–451, 2016. https://doi.org/10.1016/j.eswa.2016.02.
007 [31.05.2022].

[47] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” European
Journal of Operational Research, vol. 185, no. 3, pp. 1155–1173, 2008. https://doi.org/
10.1016/j.ejor.2006.06.046 [03.06.2022].

[48] J. D. Anderson, Aircraft performance and design, vol. 1. WCB/McGraw-Hill Boston, 1999.

[49] S. Park, J. Deyst, and J. How, “A New Nonlinear Guidance Logic for Trajectory Tracking,”
in AIAA Guidance, Navigation, and Control Conference and Exhibit, p. 4900, 2004.

[50] S. Guillén Ruiz, L. V. Calderita, A. Hidalgo-Paniagua, and J. P. Bandera Rubio, “Measur-
ing Smoothness as a Factor for Efficient and Socially Accepted Robot Motion,” Sensors,
vol. 20, no. 23, 2020. https://doi.org/10.3390/s20236822 [10.05.2022].

[51] N. D. M. Ceballos, J. A. Valencia, and N. L. Ospina, “Quantitative Performance Metrics
for Mobile Robots Navigation,” in Mobile Robots Navigation (A. Barrera, ed.), ch. 24,
Rijeka: IntechOpen, 2010.

[52] MathWorks, Inc., “Documentation of fixedwing in MATLAB Help Center.” https://
www.mathworks.com/help/uav/ref/fixedwing.html [31.01.2022].

[53] S. Mirjalili, “Improved Grey Wolf Optimizer (I-GWO),” 2022. https://www.mathworks.
com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-
gwo [01.06.2022].

https://doi.org/10.1002/2013JD020833
http://hdl.handle.net/11250/2640229
http://hdl.handle.net/11250/2640229
https://arxiv.org/abs/1802.08215
https://arxiv.org/abs/1802.08215
https://airspace.pansa.pl
https://doi.org/10.1007/978-1-4615-6325-9_11
https://doi.org/10.1155/2017/8204353
https://doi.org/10.1016/j.eswa.2016.02.007
https://doi.org/10.1016/j.eswa.2016.02.007
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.3390/s20236822
https://www.mathworks.com/help/uav/ref/fixedwing.html
https://www.mathworks.com/help/uav/ref/fixedwing.html
https://www.mathworks.com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-gwo
https://www.mathworks.com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-gwo
https://www.mathworks.com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-gwo

BIBLIOGRAPHY 108

[54] S. Mirjalili, “Improved Grey Wolf Optimizer (GWO).” https://www.mathworks.
com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-
gwo [10.11.2021].

[55] M. H. Nadimi-Shahraki, S. Taghian, and S. Mirjalili, “An improved grey wolf optimizer
for solving engineering problems,” Expert Systems with Applications, vol. 166, p. 113917,
2021. https://doi.org/10.1016/j.eswa.2020.113917 [10.11.2021].

[56] M. K. Heris, “ACO for Continuous Domains in MATLAB,” 2015. https://yarpiz.com/
67/ypea104-acor [03.06.2022].

[57] MathWorks, Inc., “Documentation of the Particle Swarm Optimization in MATLAB Help
Center.” https://www.mathworks.com/help/gads/particleswarm.html [17.06.2022].

[58] MathWorks, Inc., “Documentation of the Genetic Algorithm in MATLAB
Help Center.” https://www.mathworks.com/help/gads/genetic-algorithm-
options.html [12.06.2022].

[59] MathWorks, Inc., “Documentation of plannerRRTStar in MATLAB Help Cen-
ter.” https://www.mathworks.com/help/nav/ref/plannerrrtstar.html?
searchHighlight=rrtstar&s_tid=srchtitle_rrtstar_1 [21.05.2022].

[60] L. Myllyvirta and E. Howard, “Five things we learned from the world’s biggest air pollution
database,” 2018. https://unearthed.greenpeace.org/2018/05/02/air-pollution-
cities-worst-global-data-world-health-organisation/ [17.06.2022].

[61] DlaPilota.pl web page, “Żar,” 2022. https://lotniska.dlapilota.pl/zar [23.06.2022].

[62] K. Mittal, J. Song, S. Gupta, and T. A. Wettergren, “Rapid path planning for Dubins vehi-
cles under environmental currents,” Robotics and Autonomous Systems, vol. 134, p. 103646,
2020. https://doi.org/10.1016/j.robot.2020.103646 [26.06.2022].

[63] S. Huang and R. S. H. Teo, “Computationally Efficient Visibility Graph-Based Generation
of 3D Shortest Collision-Free Path Among Polyhedral Obstacles for Unmanned Aerial
Vehicles,” in 2019 International Conference on Unmanned Aircraft Systems (ICUAS),
pp. 1218–1223, IEEE, 2019.

[64] Y. You, C. Cai, and Y. Wu, “3D Visibility Graph Based Motion Planning and Control,”
in Proceedings of the 2019 5th International Conference on Robotics and Artificial Intelli-
gence, ICRAI ’19, (New York, NY, USA), p. 48–53, Association for Computing Machinery,
2019. https://doi.org/10.1145/3373724.3373735 [26.06.2022].

[65] M. N. Bygi and M. Ghodsi, “3D Visibility Graph,” Computational Science and its Appli-
cations, Kuala Lampur, 2007.

[66] H.-M. Huang, “Autonomy Levels for Unmanned Systems Framework. Volume I: Terminol-
ogy. Version 2.0,” NIST Special Publication: Gaithersburg, MD, USA, 2008. https://www.
nist.gov/system/files/documents/el/isd/ks/NISTSP_1011-I-2-0.pdf [27.11.2021].

[67] International Civil Aviation Organization, “Cir 328, Unmanned Aircraft Systems
(UAS),” 2011. https://www.icao.int/meetings/uas/documents/circular%20328_en.
pdf [27.11.2021].

https://www.mathworks.com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-gwo
https://www.mathworks.com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-gwo
https://www.mathworks.com/matlabcentral/fileexchange/81253-improved-grey-wolf-optimizer-i-gwo
https://doi.org/10.1016/j.eswa.2020.113917
https://yarpiz.com/67/ypea104-acor
https://yarpiz.com/67/ypea104-acor
https://www.mathworks.com/help/gads/particleswarm.html
https://www.mathworks.com/help/gads/genetic-algorithm-options.html
https://www.mathworks.com/help/gads/genetic-algorithm-options.html
https://www.mathworks.com/help/nav/ref/plannerrrtstar.html?searchHighlight=rrtstar&s_tid=srchtitle_rrtstar_1
https://www.mathworks.com/help/nav/ref/plannerrrtstar.html?searchHighlight=rrtstar&s_tid=srchtitle_rrtstar_1
https://unearthed.greenpeace.org/2018/05/02/air-pollution-cities-worst-global-data-world-health-organisation/
https://unearthed.greenpeace.org/2018/05/02/air-pollution-cities-worst-global-data-world-health-organisation/
https://lotniska.dlapilota.pl/zar
https://doi.org/10.1016/j.robot.2020.103646
https://doi.org/10.1145/3373724.3373735
https://www.nist.gov/system/files/documents/el/isd/ks/NISTSP_1011-I-2-0.pdf
https://www.nist.gov/system/files/documents/el/isd/ks/NISTSP_1011-I-2-0.pdf
https://www.icao.int/meetings/uas/documents/circular%20328_en.pdf
https://www.icao.int/meetings/uas/documents/circular%20328_en.pdf

BIBLIOGRAPHY 109

[68] European Aviation Safety Agency, “Technical Opinion. Introduction of a regulatory
framework for the operation of unmanned aircraft,” 2015. https://www.easa.europa.
eu/sites/default/files/dfu/Introduction%20of%20a%20regulatory%20framework%
20for%20the%20operation%20of%20unmanned%20aircraft.pdf [27.11.2021].

[69] “Online Oxford dictionary.” https://www.oxfordlearnersdictionaries.
com [08.11.2021].

[70] N. Melzer, Human rights implications of the usage of drones and unmanned robots in war-
fare. European Parliament, 2013. http://dx.doi.org/10.2861/213 [27.11.2021].

[71] B. T. Clough, “Metrics, Schmetrics! How the Heck Do You Determine a UAV’s Autonomy
Anyway?,” tech. rep., Air Force Research Lab Wright-Patterson AFB OH, 2002.

[72] H.-M. Huang, “Autonomy Levels for Unmanned Systems (ALFUS).” Presentation down-
loaded from https://www.nist.gov/document/alfus-bgpdf [27.11.2021].

[73] M. Protti and R. Barzan, “UAV Autonomy. Which level is desirable? Which level is ac-
ceptable? Alenia Aeronautica Viewpoint,” in Platform Innovations and System Integration
for Unmanned Air, Land and Sea Vehicles (AVT-SCI Joint Symposium), pp. 12–1–12–12,
2007.

[74] A. Lampe and R. Chatila, “Performance Measure for the Evaluation of Mobile Robot Au-
tonomy,” in Proceedings 2006 IEEE International Conference on Robotics and Automation,
2006. ICRA 2006., pp. 4057–4062, IEEE, 2006.

[75] T. B. Sheridan, Telerobotics, Automation, and Human Supervisory Control. MIT press,
1992.

[76] B. Hasslacher and M. W. Tilden, “Living Machines,” Robotics and autonomous systems,
vol. 15, no. 1-2, pp. 143–169, 1995.

[77] R. W. Proud, J. J. Hart, and R. B. Mrozinski, “Methods for Determining the Level of Au-
tonomy to Design into a Human Spaceflight Vehicle: A Function Specific Approach,” tech.
rep., National Aeronautics and Space Administration Johnson Space Center, 2003.

[78] R. Williams, “Autonomous Systems Overview,” BAE Systems, 2008. http:
//www.aircraftbuilders.com/files/2716/File/BAE_%20Systems_Text_Version.
pdf [01.08.2020].

[79] SAE On-Road Automated Vehicle Standards Committee et al., “Taxonomy and definitions
for terms related to on-road motor vehicle automated driving systems,” SAE Standard J.,
vol. 3016, pp. 1–16, 2021.

[80] F. Glover and K. Sörensen, “Metaheuristics,” Scholarpedia, vol. 10, no. 4, p. 6532, 2015.
http://dx.doi.org/10.4249/scholarpedia.6532 (rev. #149834) [13.12.2021].

[81] X.-S. Yang, “Metaheuristic Optimization,” Scholarpedia, vol. 6, no. 8, p. 11472, 2011.
http://dx.doi.org/10.4249/scholarpedia.11472 (rev. #91488) [13.12.2021].

[82] S. Karaman and E. Frazzoli, “Incremental Sampling-based Algorithms for Optimal Motion
Planning,” Robotics Science and Systems VI, vol. 104, no. 2, 2010. https://arxiv.org/
pdf/1005.0416.pdf [26.11.2021].

[83] R. C. Arkin, Behavior-Based Robotics. Cambridge, Mass.: MIT Press, 1998.

https://www.easa.europa.eu/sites/default/files/dfu/Introduction%20of%20a%20regulatory%20framework%20for%20the%20operation%20of%20unmanned%20aircraft.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Introduction%20of%20a%20regulatory%20framework%20for%20the%20operation%20of%20unmanned%20aircraft.pdf
https://www.easa.europa.eu/sites/default/files/dfu/Introduction%20of%20a%20regulatory%20framework%20for%20the%20operation%20of%20unmanned%20aircraft.pdf
https://www.oxfordlearnersdictionaries.com
https://www.oxfordlearnersdictionaries.com
http://dx.doi.org/10.2861/213
https://www.nist.gov/document/alfus-bgpdf
http://www.aircraftbuilders.com/files/2716/File/BAE_%20Systems_Text_Version.pdf
http://www.aircraftbuilders.com/files/2716/File/BAE_%20Systems_Text_Version.pdf
http://www.aircraftbuilders.com/files/2716/File/BAE_%20Systems_Text_Version.pdf
http://dx.doi.org/10.4249/scholarpedia.6532
http://dx.doi.org/10.4249/scholarpedia.11472
https://arxiv.org/pdf/1005.0416.pdf
https://arxiv.org/pdf/1005.0416.pdf

BIBLIOGRAPHY 110

[84] M. J. Matarić, The Robotics Primer. Cambridge, Mass.: MIT Press, 2007.

[85] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots. MIT press,
2004.

[86] W. G. Walter, “An Imitation of Life,” Scientific american, vol. 182, no. 5, pp. 42–45, 1950.
http://people.csail.mit.edu/brooks/idocs/walter50imitation.pdf.

[87] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Cambridge, Mass.: MIT
Press, 1986.

[88] R. A. Brooks, “New approaches to robotics,” Science, vol. 253, pp. 1227–1232, 1991.

[89] S. Gopikrishnan, B. Shravan, H. Gole, P. Barve, and L. Ravikumar, “Path Planning Al-
gorithms: A comparative study,” Space Transportation Systems, 2011.

[90] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathe-
matik, vol. 1, pp. 269–271, 1959. https://doi.org/10.1007%2FBF01386390 [04.11.2021].

[91] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
Cambridge, Mass.: MIT Press, 3 ed.

[92] J. T. Economou, G. Kladis, A. Tsourdos, and B. A. White, “UAV Optimum Energy
Assignment using Dijkstra’s Algorithm,” in 2007 European Control Conference (ECC),
pp. 287–292, 2007. https://doi.org/10.23919/ECC.2007.7068353 [26.12.2021].

[93] E. J. Dhulkefl and A. Durdu, “Path Planning Algorithms for Unmanned Aerial Vehicles,”
International Journal of Trend in Scientific Research and Development, vol. Volume-3,
pp. 359–362, 06 2019. https://doi.org/10.31142/ijtsrd23696 [25.12.2021].

[94] A. Candra, M. A. Budiman, and K. Hartanto, “Dijkstra’s and A-Star in Finding the
Shortest Path: a Tutorial,” in 2020 International Conference on Data Science, Artificial
Intelligence, and Business Analytics (DATABIA), pp. 28–32, 2020. https://doi.org/
10.1109/DATABIA50434.2020.9190342 [27.12.2021].

[95] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination
of Minimum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968. https://doi.org/10.1109/TSSC.1968.300136 [09.11.2021].

[96] P. E. Hart, N. J. Nilsson, and B. Raphael, “Correction to ”A Formal Basis for the Heuristic
Determination of Minimum Cost Paths”,” ACM SIGART Bulletin, no. 37, pp. 28–29, 1972.

[97] N. J. Nilsson, The Quest for Artificial Intelligence. Cambridge University Press, 2009.

[98] G. Zhang and L.-T. Hsu, “A New Path Planning Algorithm Using a GNSS Localization
Error Map for UAVs in an Urban Area,” Journal of Intelligent & Robotic Systems, vol. 94,
no. 1, pp. 219–235, 2019. https://doi.org/10.1007/s10846-018-0894-5 [27.12.2021].

[99] A. Stentz, “The Focussed D* Algorithm for Real-Time Replanning,” in IJCAI, vol. 95,
pp. 1652–1659, 1995.

[100] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. Kavraki, and S. Thrun,
Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT press, 2005.

[101] H. Choset, “Robotic Motion Planning: A* and D* Search.” http://www.cs.cmu.edu/
~motionplanning/lecture/AppH-astar-dstar_howie.pdf [04.04.2022].

http://people.csail.mit.edu/brooks/idocs/walter50imitation.pdf
https://doi.org/10.1007%2FBF01386390
https://doi.org/10.23919/ECC.2007.7068353
https://doi.org/10.31142/ijtsrd23696
https://doi.org/10.1109/DATABIA50434.2020.9190342
https://doi.org/10.1109/DATABIA50434.2020.9190342
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1007/s10846-018-0894-5
http://www.cs.cmu.edu/~motionplanning/lecture/AppH-astar-dstar_howie.pdf
http://www.cs.cmu.edu/~motionplanning/lecture/AppH-astar-dstar_howie.pdf

BIBLIOGRAPHY 111

[102] D. Ferguson and A. Stentz, “Field D*: An Interpolation-Based Path Planner and Replan-
ner,” in Robotics Research (S. Thrun, R. Brooks, and H. Durrant-Whyte, eds.), (Berlin,
Heidelberg), pp. 239–253, Springer Berlin Heidelberg, 2007. https://doi.org/10.1007/
978-3-540-48113-3_22 [27.12.2021].

[103] J. Carsten, D. Ferguson, and A. Stentz, “3D Field D: Improved Path Planning and Re-
planning in Three Dimensions,” in 2006 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pp. 3381–3386, 2006. https://doi.org/10.1109/IROS.2006.
282516 [27.12.2021].

[104] S. Koenig and M. Likhachev, “D* lite,” AAAI/iaai, vol. 15, 2002. https://www.aaai.
org/Papers/AAAI/2002/AAAI02-072.pdf [27.12.2021].

[105] T. Lozano-Pérez and M. A. Wesley, “An Algorithm for Planning Collision-Free Paths
Among Polyhedral Obstacles,” Communications of the ACM, vol. 22, no. 10, pp. 560–570,
1979. https://doi.org/10.1145/359156.359164 [17.04.2022].

[106] N. J. Nilsson, “A mobile automaton: An application of artificial intelligence techniques,”
in Int. Joint Conf. Artif. Intell., pp. 509–520, 1969.

[107] M. B. Ignat’yev, F. M. Kulakov, and A. M. Pokrovskĭı, Robot-manipulator control algo-
rithms. Arlington , Virginia: Joint Publications Research Service, 1973.

[108] B. C. Shah and S. K. Gupta, “Speeding Up A* Search on Visibility Graphs Defined Over
Quadtrees to Enable Long Distance Path Planning for Unmanned Surface Vehicles,” in
ICAPS, pp. 527–535, AAAI Press, 2016.

[109] E. Masehian and M. R. Amin-Naseri, “A Voronoi Diagram-Visibility Graph–Potential
Field Compound Algorithm for Robot Path Planning,” Journal of Robotic Systems, vol. 21,
no. 6, pp. 275–300, 2004. https://doi.org/10.1002/rob.20014 [19.04.2022].

[110] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,”
1998.

[111] J. J. Kuffner and S. M. LaValle, “RRT-Connect : An Efficient Approach to Single-Query
Path Planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),
vol. 2, pp. 995–1001, IEEE, 2000.

[112] M. V. Ramana, S. A. Varma, and M. Kothari, “Motion Planning for a Fixed-Wing UAV
in Urban Environments,” 4th IFAC Conference on Advances in Control and Optimization
of Dynamical Systems ACODS 2016, vol. 49, no. 1, pp. 419–424, 2016. https://doi.org/
10.1016/j.ifacol.2016.03.090 [19.12.2021].

[113] S. Karaman and E. Frazzoli, “Sampling-based motion planning with deterministic µ-
calculus specifications,” in Proceedings of the 48h IEEE Conference on Decision and Con-
trol (CDC) held jointly with 2009 28th Chinese Control Conference, pp. 2222–2229, 2009.
https://doi.org/10.1109/CDC.2009.5400278 [29.12.2021].

[114] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Informed sampling for asymptotically
optimal path planning,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 966–984, 2018.

[115] X.-S. Yang, Nature-Inspired Optimization Algorithms. Oxford: Elsevier, 2014. https:
//doi.org/10.1016/C2013-0-01368-0 [28.12.2021].

https://doi.org/10.1007/978-3-540-48113-3_22
https://doi.org/10.1007/978-3-540-48113-3_22
https://doi.org/10.1109/IROS.2006.282516
https://doi.org/10.1109/IROS.2006.282516
https://www.aaai.org/Papers/AAAI/2002/AAAI02-072.pdf
https://www.aaai.org/Papers/AAAI/2002/AAAI02-072.pdf
https://doi.org/10.1145/359156.359164
https://doi.org/10.1002/rob.20014
https://doi.org/10.1016/j.ifacol.2016.03.090
https://doi.org/10.1016/j.ifacol.2016.03.090
https://doi.org/10.1109/CDC.2009.5400278
https://doi.org/10.1016/C2013-0-01368-0
https://doi.org/10.1016/C2013-0-01368-0

BIBLIOGRAPHY 112

[116] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. The MIT Press, 04 1992.
https://doi.org/10.7551/mitpress/1090.001.0001 [28.12.2021].

[117] Z. Wang, C. Qin, B. Wan, and W. W. Song, “A Comparative Study of Common Nature-
Inspired Algorithms for Continuous Function Optimization,” Entropy, vol. 23, no. 7, 2021.
https://doi.org/10.3390/e23070874 [28.12.2021].

[118] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 -
International Conference on Neural Networks, vol. 4, pp. 1942–1948, IEEE, 1995. https:
//doi.org/10.1109/ICNN.1995.488968 [28.12.2021].

[119] A. Colorni, M. Dorigo, V. Maniezzo, et al., “Distributed Optimization by Ant Colonies,”
in Proceedings of the first European conference on artificial life, vol. 142, (Paris, France),
pp. 134–142, 1991.

[120] D. N. Kumar and M. J. Reddy, “Ant Colony Optimization for Multi-Purpose Reservoir
Operation,” Water Resources Management, vol. 20, pp. 879–898, 10 2006. https://doi.
org/10.1007/s11269-005-9012-0 [16.04.2022].

[121] M. Dorigo and L. Gambardella, “Ant Colony System: A Cooperative Learning Approach
to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 53–66, 1997. https://doi.org/10.1109/4235.585892 [16.04.2022].

[122] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by a Colony
of Cooperating Agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 26, no. 1, pp. 29–41, 1996. https://doi.org/10.1109/3477.
484436 [16.04.2022].

[123] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering
Software, vol. 69, pp. 46–61, 2014. https://doi.org/10.1016/j.advengsoft.2013.12.
007 [10.11.2021].

[124] H. Faris, I. Aljarah, M. A. Al-Betar, and S. Mirjalili, “Grey wolf optimizer: a review
of recent variants and applications,” Neural computing and applications, vol. 30, no. 2,
pp. 413–435, 2018.

[125] F. Kiani, A. Seyyedabbasi, R. Aliyev, M. A. Shah, and M. U. Gulle, “3D Path Planning
Method for Multi-UAVs Inspired by Grey Wolf Algorithms,” Journal of Internet Tech-
nology, vol. 22, no. 4, pp. 743–755, 2021. https://jit.ndhu.edu.tw/article/view/
2539 [19.04.2022].

[126] S. Vanneste, B. Bellekens, and M. Weyn, “3DVFH+: Real-Time Three-Dimensional Ob-
stacle Avoidance Using an Octomap,” in MORSE 2014 Model-Driven Robot Software En-
gineering: proceedings of the 1st International Workshop on Model-Driven Robot Software
Engineering co-located with International Conference on Software Technologies: Applica-
tions and Foundations (STAF 2014), York, UK, July 21, 2014/Assmann, Uwe [edit.],
no. 1319, pp. 91–102, 2014.

[127] T. Hebecker, R. Buchholz, and F. Ortmeier, “Model-Based Local Path Planning for
UAVs,” Journal of Intelligent & Robotic Systems, vol. 78, no. 1, pp. 127–142, 2015.
https://rdcu.be/cLGv7 [19.04.2022].

https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.3390/e23070874
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/s11269-005-9012-0
https://doi.org/10.1007/s11269-005-9012-0
https://doi.org/10.1109/4235.585892
https://doi.org/10.1109/3477.484436
https://doi.org/10.1109/3477.484436
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://jit.ndhu.edu.tw/article/view/2539
https://jit.ndhu.edu.tw/article/view/2539
https://rdcu.be/cLGv7

[128] A. Alihodzic, E. Tuba, R. Capor-Hrosik, E. Dolicanin, and M. Tuba, “Unmanned Aerial
Vehicle Path Planning Problem by Adjusted Elephant Herding Optimization,” in 2017
25th Telecommunication Forum (TELFOR), pp. 1–4, 2017. https://doi.org/10.1109/
TELFOR.2017.8249468 [19.04.2022].

[129] X. Yue and W. Zhang, “UAV Path Planning Based on K-Means Algorithm and Simulated
Annealing Algorithm,” in 2018 37th Chinese Control Conference (CCC), pp. 2290–2295,
2018. https://doi.org/10.23919/ChiCC.2018.8483993 [19.04.2022].

[130] S. Bortoff, “Path Planning for UAVs,” in Proceedings of the 2000 American Control Con-
ference. ACC (IEEE Cat. No.00CH36334), vol. 1, pp. 364–368, 2000.

https://doi.org/10.1109/TELFOR.2017.8249468
https://doi.org/10.1109/TELFOR.2017.8249468
https://doi.org/10.23919/ChiCC.2018.8483993

Abstract

From military reconnaissance, through conducting measurements in remote locations to package
delivery – the growing popularity of Unmanned Aerial Vehicles (UAVs) encourages employing
them for various missions. For example, UAVs measure air pollution. A novel approach is to
build a High-Altitude Long Endurance UAV able to stay airborne for prolonged amounts of
time and use it to measure air pollution over a broad range of altitudes – from hundreds of
meters above ground level up to lower stratosphere.

The goal of this doctoral dissertation was to design and verify the model-based adaptive path
planning algorithm for pollution sampling with a HALE UAV flying autonomously in a limited
environment. Under the course of the thesis Adaptive Path Planner (APP) was developed and
positively verified in Model-in-the-Loop (MIL) simulation.

The author proposed and formulated the theoretical foundation of a two-stage model-based
APP algorithm consisting of Global Path Planner (GPP) and Local Path Planner (LPP). The
output of GPP and LPP can be verified with MIL before deploying it to the UAV. Further-
more, the author presented the concept of an environment map. It consists of a terrain map,
a wind map, an airspace map and a measure map. Each of them describes the most prominent
components of the scene important for providing the optimal path.

GPP is a global optimization algorithm, which provides an obstacle-free feasible path op-
timized for minimum energy expenditure while subject to kinematic constraints of the UAV.
GPP is meant to be mainly a mission planner that is run on a PC-class workstation in a Ground
Control Station (GCS). The algorithm can adaptively recalculate the path.

LPP is a local planning algorithm employed for rapidly computing obstacle-free path in
GCS, as well as locally using the UAV onboard computer. LPP is used as a fallback when the
communication with GCS is down. Hence, minimal computation time is favored over minimizing
energy expenditure. a local path is used, for example, to perform a Return-To-Home (RTH)
maneuver or to guide the UAV to an emergency landing spot.

Extensive tests of APP were carried out to compare different flavors of global single-objective
optimization algorithms employed by GPP (I-GWO, ACOR, PSO and GA) and planning algo-
rithms used by LPP (RRT, RRT* and BiRRT). The results were analyzed and the optimal
algorithms chosen. Then, their crucial parameters were further calibrated.

Finally, GPP and LPP were integrated and the whole APP was verified in MIL simulation on
selected use cases inspired by real pollution sampling missions in Poland and in the Arctic. The
comparative analysis of generated paths against reference paths supplied by a human expert
showed that APP performance successfully allows it to replace the human. Further research
positively verified the adaptive re-planning capability of APP.

Streszczenie

Od wojskowego zwiadu, poprzez badania w trudnodostępnych miejscach, aż po usługi kurier-
skie – rosnąca popularność bezzałogowych statków powietrznych (BSP) zachęca do stosowa-
nia ich podczas różnorodnych misji. BSP wykorzystywane są np. do pomiaru zanieczyszczenia
powietrza. Jedno z nowych zastosowań polega na zbudowaniu BSP o dużej długotrwałości
lotu (HALE), a następnie wykorzystaniu go do prowadzenia pomiarów w szerokim przedziale
wysokości – od kilkuset metrów nad powierzchnią ziemi aż po dolną stratosferę.

Celem niniejsej rozprawy doktorskiej były zaprojektowanie i weryfikacja opartego na mod-
elu, adaptacyjnego algorytmu planowania ścieżki do próbkowania zanieczyszczeń za pomocą BSP
klasy HALE latającego autonomicznie w środowisku z ograniczeniami. W ramach pracy zapro-
jektowano adaptacyjny planer (APP), który następnie pozytywnie zweryfikowano za pomocą
metody Model-in-the-Loop (MIL) w symulacjach wykorzystujących model BSP.

Owocem pracy autora jest opis formalny dwuetapowego algorytmu APP, który tworzą planer
globalny (GPP) oraz planer lokalny (LPP). Ścieżki wygenerowane przez GPP i LPP mogą być
zweryfikowane w symulacji typu MIL przed przesłaniem ich do BSP. W ramach pracy autor
przedstawił także koncepcję mapy środowiska wykorzystywanej w optymalizacji i składającej się
z map terenu, wiatru, przestrzeniu powietrznej oraz mapy pomiarowej.

GPP jest algorytmem optymalizacji globalnej, który poszukuje wolnej od przeszkód ścieżki,
optymalnej pod kątem minimalnego zużycia energii i podlegającej ograniczeniom kinematy-
cznym BSP. GPP to algorytm planujący misję, uruchamiany w stacji kontroli naziemnej (SKN).
Algorytm ma też możliwość adaptacyjnego przeplanowywania ścieżki.

LPP to algorytm lokalnego planowania wykorzystywany do szybkiego generowania wolnych
od przeszkód ścieżek zarówno w SKN, jak również za pomocą komputera pokładowego BSP. LPP
wykorzystywany jest w sytuacjach awaryjnych, gdy zerwana zostaje komunikacja z SKN, dlatego
minimalizacja zużycia energii poświęcona jest na rzecz minimalnego czasu obliczeń. Ścieżka
lokalna wykorzystywana jest np. podczas powrotu do punktu startu (RTH) oraz doprowadzenia
BSP do punktu lądowania awaryjnego.

Przeprowadzono badania porównawcze algorytmów jednokryterialnej optymalizacji global-
nej, z których korzysta GPP (I-GWO, ACOR, PSO i GA) oraz algorytmów planujących wyko-
rzystywanycyh przez LPP (RRT, RRT* i BiRRT). Następnie dostrojono kluczowe parametry
wybranych algorythmów. Algorytm APP został zweryfikowany metodą MIL przez symulację
wybranych przypadków użycia inspirowanych misjami badawczymi prowadzonymi w Polsce
i w Arktyce. Analiza porównawcza ścieżek wygenerowanych przez algorytm względem zapro-
jektowanych przez eksperta potwierdziła możliwości APP. Dalsze badania udowodniły zdolność
algorytmu APP do adaptacyjnego przeplanowywania ścieżki przelotu BSP.

Used hardware and software
The majority of the research was carried out on a personal computer with Ubuntu 20.04 LTS.
The algorithms were developed and verified using MATLAB R2022a (9.12.0.1884302) 64-
bit (glnxa64) licensed under the Academic License (master license: 31464320, the author’s PC:
40876907) (https://www.mathworks.com/products/matlab.html). Other MATLAB Tool-
boxes included:

� UAV Toolbox, version 1.3,

� Navigation Toolbox, version 2.2;

� Mapping Toolbox, version 5.3.

Preliminary studies not described here also used:

� Blender 2.93.5 licensed under GNU General Public License, https://www.blender.
org,

� BlenderGIS 2.2.6 licensed under GPL-3.0, https://github.com/domlysz/
BlenderGIS,

� CloudCompare 2.11.1 (Anoia) licensed under GNU General Public License,

� FlightGear 2020.3.11 licensed under GNU General Public License, https://www.
flightgear.org,

The computations as well as writing the thesis were carried out on the author’s PC. As for
computation performance, the PC had Intel Core i7-9750H, NVIDIA GeForce RTX 2060 and
32 GB (DDR4, 2666MHz). Additional software used while writing the thesis included:

� LibreOffice 6.0.7.3 licensed under Mozilla Public License, v. 2.0, https://www.
libreoffice.org,

� TEXstudio 2.12.22 licensed under GNU General Public License v. 2.0, http://
texstudio.sourceforge.net.

� Visual Paradigm Online https://online.visual-paradigm.com.

https://www.mathworks.com/products/matlab.html
https://www.blender.org
https://www.blender.org
https://github.com/domlysz/BlenderGIS
https://github.com/domlysz/BlenderGIS
https://www.flightgear.org
https://www.flightgear.org
https://www.libreoffice.org
https://www.libreoffice.org
http://texstudio.sourceforge.net
http://texstudio.sourceforge.net
https://online.visual-paradigm.com

Appendices

A. Elementary terms and definitions

Unmanned System and Unmanned Vehicle

Unmanned System (UMS) is “a powered physical system, with no human operator aboard the
principal components, which acts in the physical world to accomplish assigned tasks. It may
be mobile or stationary.” (...) “Examples include unmanned ground vehicles (UGV), unmanned
aerial vehicles/systems (UAV/UAS), unmanned maritime vehicles (UMV)–unmanned underwa-
ter vehicles (UUV) or unmanned water surface borne vehicles (USV)–unattended munitions
(UM), and unattended ground sensors (UGS). Missiles, rockets, and their submunitions, and
artillery are not considered the principal components of UMSs” [66]. Unmanned Vehicles of any
kind (UxVs) belong to a subset of UMS.

Unmanned Aerial Vehicle and Unmanned Aircraft

According to Helnarska et al. the terms used to reference UAVs have evolved significantly since
their first appearance during the Second World War, when the UAVs were simply called “pilotless
aircrafts”. After the War, between the 40s and 50s, a somewhat colloquial term “drone” –
referring to the engine noise – was adopted. Then, in the 1960s the terms “remotely piloted
vehicles” and “remotely piloted aircraft” become popular.

Nowadays, two terms have gained the most attention: Unmanned Aerial Vehicle (UAV) and
Unmanned Aircraft (UA). The first term is used by US National Institute of Standards and Tech-
nology (US NIST) [66], while the second was officially introduced by International Civil Aviation
Organization (ICAO) in 2011 [67]. In the thesis these terms will be used interchangeably.

Remotely Piloted Aircraft (System)

ICAO also introduced the terms Remotely Piloted Aircraft (RPA) and Remotely Piloted Aircraft
System (RPAS) [67]. As European Union Aviation Safety Agency (EASA) has pointed out,
RPAS it is a subset of Unmanned Aircraft System (UAS), i.e. UAS includes both autonomous
and remotely piloted aircrafts [68]. Similarly, an RPA is a subclass of UAV. Therefore, the terms
above should not be confused.

Autonomy vs automation

The term autonomy (gr. autonomos – having its own laws [69]) in the field of robotics means the
robot acts according to the current state of itself and its sensors without any direct interaction
from a human or another robot. It also means acting according to its own ruleset [66, 70] or even
having “free will” [71]. On the contrary, the term automation simply refers to self-regulation
during the execution of a given program. In the words of Huang, automation is “human-less
operation”, whereas autonomy is “human-like performance” [72].

Some considerations should be taken regarding the autonomy in the terms of UAVs. ICAO
defines an autonomous aircraft as “an unmanned aircraft that does not allow pilot intervention
in the management of the flight” [67]. This implies the autonomous UAV cannot have any kind
of fallback remote control. However, the autonomy of a vehicle or a system usually is expressed
by the autonomy level from a multi-leveled scale [71, 73, 74]. Choosing a particular scale depends

119

mostly on the context. In the thesis the broader meaning of autonomy will be used to include
a mainly autonomous UAV with a remote control fallback mode.

The level of autonomy depends on the complexity of the mission [71, 73] and environment [74].
It can be understood also as a degree of feasibility of the mission without human intervention [74].
Hence, patrolling a known area requires a lower autonomy level than managing a military oper-
ation of a group of robots in hostile territory. This topic is discussed in-detail e.g. by Protti and
Barzan in [73].
Examples of autonomy metrics:

� 10-level categorical1 linear scale of automation by Sheridan [75]

� MAP survival space – a biologically-inspired three-dimensional scale of Mobility, Aqcuisi-
tion and Protection [76],

� 10-level Autonomous Control Level (ACL) dedicated to UAVs – consisting of four inde-
pendent dimensions: Observe, Orient, Decide, Act (OODA) [71],

� 8-level scale by Proud et al. – also uses OODA concept [77],

� 6-level categorical scale by the US Navy Office of Naval Research [78],

� Autonomy Levels for Unmanned Systems (ALFUS) by US NIST – three-dimensional scale
of Human Independence (HI), Mission Complexity (MC) and Environmental Complexity
(EC) [66, 72, 74].

� Scale by the Society of Automotive Engineers2 (SAE) – 6-degree scale where at level 0
the vehicle is operated entirely by human and at level 5 is operated only by the artificial
intelligence [79].

High-Altitude Long Endurance UAVs

A High-Altitude Long Endurance (HALE) UAVs, or alternatively High-Altitude Pseduo Satel-
lites (HAPSs), are “fixed-wing solar electrical platforms prone of perpetually flying in strato-
sphere” [13].

Dynamic path planning

Dynamic path planning means the ability of the UMS to re-plan either the entire path or its
specific part in response to dynamic events, that occur during the mission. Examples include
changing weather conditions or the emergence of new obstacles. Dynamic re-planning can be
initiated explicitly by a human operator or implicitly by an autonomous decisive module.

Pollution sampling

Pollution sampling is understood as taking measurements in sampled locations of 1D, 2D or 3D
space to provide the map of the pollutant distribution. Nonetheless, the algorithms described in
the thesis are not restricted to measuring pollutants and can be used to sample other parameters
distributed in space as well.

Metaheuristic

A metaheuristic a high-level framework used to develop heuristic optimization algorithms. It
provides general strategies or guidelines independent of the optimization problem. However,

1 Consequent levels are just for ordering – they do not have any numerical meaning in Sheridan’s scale.
2As the name suggests, the SAE scale is dedicated to autonomous and quasi-autonomous ground vehicles.

Nevertheless, it is mentioned here for the sake of completeness.

120

a problem-specific implementation of a heuristic optimization algorithm developed using that
framework is also called a metaheuristic [80]. An optimization that uses metaheuristic algorithms
is called metaheuristic optimization [81].

Algorithm completeness

An algorithm is considered complete if it returns a solution if one exists and otherwise returns
failure. Resolution completeness relaxes this requirement – a resolution complete algorithm guar-
antees completeness only with a properly set resolution parameter. Probabilistic completeness
in turn guarantees “that the probability that the planner fails to return a solution, if one exists,
decays to zero as the number of samples approaches infinity” [82].

B. Chosen path planning algorithms

The chapter contains a short overview of different control strategies and algorithms which are
usable for global optimization, as well as local path planning. The most well-known algorithms
are presented first and then followed by more recent state-of-the-art algorithms. The emphasis
is put on the stochastic algorithms used in the thesis. The provided list of algorithms is not
exhaustive.

B.1 Path planning strategies

According to [20] path planning algorithms employ two opposite strategies: deliberative and
reactive. This distinction is similar to the one used in control systems and described e.g., in [83,
84]. Thus, by following this analogy, a hybrid strategy which uses both strategies can also be
distinguished.

B.1.1 Deliberative strategy

The beginnings of the deliberative control strategy date back to the 70s [83, 85]. Siegwart et
al. in [85] distinguish 4 stages of the control: (1) perception, (2) localization, (3) cognition
and (4) motion control. Deliberative approach executes them sequentially in this exact order.
Hence, the control loop is Sense-Plan-Act (SPA) [84].

The deliberative control uses the global knowledge of the system gathered before the mission
starts. Effective planning requires then feasible maps with the proper terrain model and careful
static obstacle placement. The deliberative algorithms always are sequential and centralized.
Even though they are precise, they are relatively slow to compute due to the amount of processed
data. Moreover, the deliberative control systems require complex models of the plant. Besides
that, they need the model of the scene to be well-defined and have difficulties handling dynamic
and unexpected events [84]. Therefore deliberative algorithms are used mostly for global planning
before the mission starts [20].

B.1.2 Reactive strategy

In the mid-80s an opposite approach emerged. Although the reactive strategy has been used
already e.g., by Walter in [86], the idea became especially popular after Braitenberg published
his book in 1986. His work was dedicated to emotion modeling using simple mobile robots [87].

The reactive strategy makes no use of the global knowledge. Instead it uses data gathered by
the sensors located on the plant during the mission [20]. Reactive control systems lack planning
and complex models. According to Brooks, a reactive system works by the means of situatedness
and embodiment [88]. A trait of that kind of systems is their lack of memory and connecting the
outputs of the sensors straight with the inputs of the actuators [86, 87]. Therefore, the control
loop reduces to Sense-Act (SA) [84]. Being reactive in the context of path planning means using
local knowledge of the obstacle field to plan the trajectory [28].

Having no memory means a reactive system lacks a knowledge representation as well. In-
ability to store the previous states of the system also effects in inability to learn and to further
self-optimize the implemented control algorithm. Moreover, reaction-based systems tends to os-
cillate due to the frequent state switching and the lack of software-based signal damping between

B.2. Path planning algorithms 122

the sensor and the actuator [84]. Nevertheless, they feature short response time and high effi-
ciency in a relatively simple but dynamic and uncertain environment [28]. Usually they are not
used for global planning [20].

Many reactive control systems use relatively simple biologically-inspired algorithms. Exam-
ples include modeling primitive emotions as in Braitenberg’s vehicles [87] or simple chemically-
induced reactions, such as chemotaxis1 used by Alvear et al. [44].

B.2 Path planning algorithms

Some algorithms are designed specifically to address the problem of finding an optimal path.
Generally, they can be divided int deterministic and stochastic ones. Deterministic (or exact)
algorithms are complete, i.e., they always provide the optimal solution if it exists or fails oth-
erwise. They provide the best possible solution in the global sense according to the chosen
criteria [89]. However, while exact, they are also computation-heavy, relatively slow and com-
plex. Time complexity of node-based deterministic algorithms is falls between O

(
m log(n)

)
and

O(n2) [2].
Contrary to the exact methods, the stochastic algorithms, i.e., heuristic or metaheuristic

methods, provide optimal or near optimal (i.e., ”good enough”) solution in reasonable time [55].
Some of them may be considered probabilstically complete, i.e., the probability of failure as
the number of iterations approaches infinity [82]. The thesis uses three-dimensional representa-
tion of the scene. Therefore, for computation efficiency, only stochastic planning algorithms are
considered. Exact algorithms are given for reference.

B.2.1 Dijkstra’s algorithm

The algorithm was designed in 1956 by a dutch mathematician and computer scientist, Edsger
Wybe Dijkstra [90]. Dijkstra’s algorithm finds the shortest path between the two nodes of
a weighted directed graph with non-negative weights of the edges [90–92]. It is a greedy searching
algorithm, which means it chooses the best-rated partial solution in any given moment, however
Dijkstra’s implementation always returns the shortest path available globally [91, 93]. Even
though Yang et al. classify Dijkstra’s algorithm as a real-time capable [2], with the complexity
of O(n2) [94], it is inferior compared to other node-based algorithms, e.g., A* or D*.

Dijkstra’s algorithm is shown in Algorithm 1. The algorithm requires a non-negative directed
graph G(E, V), where E and V are the sets of edges and vertices, respectively. w denotes the
weights and s stands for the source node with the initial shortest path length of 0. An initially
empty set P holds vertices, whose final shortest-path weights from the source s have already
been determined. The vertices of G are stored in a min-priority queue Q, sorted by their shortest
paths d.

In each iteration, the algorithm extracts the shortest path estimate u. It is appended to P,
while simultaneously removed from Q. Then, all edges of the vertices, that are children of u are
relaxed. Relaxation involves ”rewiring” the node v via u if the resulting path is shorter than the
current path from s to v. v’s predecessor π is changed to u in the process. The steps after the
initialization are repeated until Q is emptied.

Algorithm 1 Dijkstra’s algorithm, adapted from [91, 94]

1: procedure P = Dijkstra(G,w, s)
2: for all vertex v ∈ G.V do
3: Initialize shortest path v.d←∞
1 Chemotaxis is the orderly movement towards (“Run”) or away from (“Tumble”) a chemical stimulus found

in primitive microorganisms, such as bacteria [44].

B.2. Path planning algorithms 123

4: Initialize predecessor v.π ← ∅
5: Initialize shortest path for source d[s]← 0
6: Initialize path P ← ∅
7: Initialize priority query Q← G.V
8: while Q 6= ∅ do
9: u← ExtractMin(Q)

10: P ← P ∪ {u}
11: for all v ∈ GetChildren(G, u) do . Relax
12: if v.d > u.d+ w(u, v) then
13: v.d← u.d+ w(u, v)
14: v.π ← u
15: end if
16: return P

Dijkstra’s algorithm is one of the most popular algorithms [94] and a subject of multiple ex-
tensions. For example, the extension by Cowlagi and Tsiotras allows two-node transitions while
subject to kinodynamic constraints [32]. Dijkstra’s algorithm was successfully used in numerous
applications, including UAV path planning [1, 93]. For example, Dhulkefl et al. navigated their
UAV in simulation and real-world conditions using Dijkstra’s algorithm [1] and Economou et al.
used it for energy-efficient flight path planning [92].

B.2.2 A* algorithm

A* is a best-first algorithm. Although faster than Dijkstra’s, it does not guarantee finding the
globally optimal solution [94]. The complexity of A* is O(mn), 0 ¬ m ¬ n [94]. According to
a review by Yang et al., A* is valid for online computations [2].

Hart et al. described this algorithm in 1968 in [95] and corrected its formal basis in 1972 [96].
The A* algorithm (Algorithm 2) was designed especially for the Shakey project. The eponymous
robot used the algorithm for planning the path of its movement [95, 97].

Initially created for 2D-space, A* works by dividing the area into a grid. Each cell (graph
node) is then encoded as free or occupied by an obstacle. The algorithm then finds out an
adjacent cell the robot should move into – until it reaches its destination or entire area has been
explored and no solution found [89].

While Dijkstra’s algorithm searches uniformly the whole state space, A* use directed search
by minimizing a so-called F -score function defined as

F = G+H

where G is the movement cost from the initial position to the current one and H is a heuristic
function. By computing H, e.g., euclidean or Manhattan distance from the current position to
goal, the algorithm guesses the preferred direction of expansion. Hence, contrary to Dijkstra’s
algorithm, it does not have to process all the nodes in the graph [89].

A* is presented in Algorithm 2. Starting from the cell containing the initial position, the
algorithm moves outwards. It works by specifying the start node s and the goal node g, as well
as the heuristic function H used to estimate distance. First, Q and C are initialized as empty
open and close sets, respectively. The current node c is set to s.

Next steps are repeated until g is reached. Open set Q is filled with c’s neighbors. Then,
for each neighbor v the F -score is computed. Now, a neighbor with the lowest F -score becomes
the current node c. It is also appended to the close set C. If g is reached, C is returned as the
resulting path.

B.2. Path planning algorithms 124

Algorithm 2 A* algorithm, based on [94, 98]

1: procedure C = AStar(s, g,H)
2: Initialize open set Q← ∅
3: Initialize closed set C ← ∅
4: Initialize current node c← s
5: while c 6= g do
6: Update open set Q← GetNeighbors(c)
7: for all vertex v ∈ Q do
8: Compute F -score F (v) = G(v) +H(v)

9: Update current node c← GetMinDist(Q)
10: Update closed set C ← C ∪ c
11: return C

Dhulkefl et al. compared the performance of A* versus Dijkstra’s algorithm in their path planning
tests. They found that both provide paths of the same lengths. A*, however, offered significant
savings in computation time due to the narrowing of the state space [93].

B.2.3 D* algorithm

D* is an informed incremental search algorithm invented by Anthony Stentz in 1994 [43]. Its
name is a tribute to A*, while D refers to its dynamic nature. It works similarly to A*, however
it changes the heuristic function H dynamically. Stentz published in 1995 an extended version
called Focussed D* [99]. The extension was designed specially for real-time path planning and
to fully complete D* as a dynamic equivalent of A*.

A simplified interpretation of D* by Choset et al. is shown in Algorithm 3. The state space
of D* consists of states representing the positions of the robot in space connected by weighted
arcs. The robot starts at a given state and moves to goal via weighted arcs, which incur traversal
cost [43]. The algorithm requires a list L of the states available to the robot and uses the following
notation:

� X represents a state.

� O is the priority queue.

� L is the list of all states.

� G is the goal state.

� S is the start state.

� t(X) is value of state with regards to the priority queue:
t(X) = NEW , if X has never been in O.
t(X) = OPEN , if X is currently in O.
t(X) = CLOSED, if X was in O but currently is not [100].

Detailed description of D* can be found in [100] or, in its original form, in [43].

Algorithm 3 D* algorithm [101]

1: procedure P = DStar(L)
2: for all X ∈ L do
3: t(X)← NEW

4: h(G)← 0
5: Insert

(
O,G, h(g)

)

B.2. Path planning algorithms 125

6: Xc ← S
7: P ← InitPlan(O,L,Xc, G)
8: if P = NULL then
9: return NULL

10: end if
11: while Xc 6= G do
12: PrepareRepair(O,L,Xc)
13: P ← RepairReplan(O,L,Xc, G)
14: if P = NULL then
15: return NULL
16: end if
17: Xc ← the second element of P {Move to the next state in P}.
18: return Xc

D* is considered more complex than A*, but can be used in dynamic events [89, 100, 101]. The
algorithm can be utilized for real-time path planning [2].

As stated by its author, D* is a general algorithm that can be applied to any dynamic path
optimization problems [43]. The algorithm has multiple extensions, e.g., Field D* [102], 3D Field
D* [103] or D* Lite [104].

Field D* extends the basic algorithm by allowing the node to transition to the adjacent cells
not only via other nodes, but through edges. It lifts off the heading restrictions2 and allows for
smoother movement [102, 103].

3D Field D* extends it further to 3D-space. The authors highlight the features of the algo-
rithm, e.g., axis-dependent weighting is especially usable for UAVs, for which climbing cost is
much higher [103].

D* Lite is an independent algorithm by Koenig and Likhachev. While it mimics the behavior
of Focused D*, it is algorithmically different and easier to understand and analyze [104].

B.2.4 Visibility Graphs

Lozano-Pérez and Wesley [105] attribute this method to the research of Nilsson [106] and Ig-
nat’yev et al. [107], independently. While not a path planning algorithm in strict sense, Visibility
Graph (VG) provides a convenient graph-based representation of the obstacles in the scene. This
representation may be used then to look for the optimal path with graph search algorithms, for
example Dijkstra’s or A* [6]. As for computation complexity, Yang et al. classify VG-based
algorithms as real-time capable with time complexity3 of O(n log n) ¬ T ¬ O(n2) [2].

In two-dimensional space VG is a graph, where the nodes are the vertices of the scene, and
arcs connect two vertices A and B. A and B must be mutually visible, that is, the segment AB
must not intersect an obstacle. The set of initial vertices consists of the start and goal points
and their corresponding arcs. Only arcs which are tangent to a pair of polygons are necessary.
The basic concept of VG is shown on an example 2D graph in Fig. B.1. By adding bitangents or
portions of curved objects, this method can be extended to non-polygonal scenes, e.g., Tangent
Visibility Graph (TVG) [65].

VG-based path planner is covered by Shah and Gupta in [108], for example. The researchers
used quadtrees and 2D VGs to speed up the search for an optimal path for an unmanned surface
vehicle using A* algorithm [108].

VGs have been used in different applications apart from path planning, such as sensor net-
works, pattern recognition and rendering [65]. As stated by Schøler et al., VGs has been used ex-

2 For 2D space it means being constrained to 0,π2 ,π4 , etc. [102].
3Depends on the exact algorithm used to build the VG, see [65].

B.2. Path planning algorithms 126

Fig. B.1: An example of a 2D visibility graph [65]

tensively for path planning even though finding an optimal solution this way in three-dimensional
space is considered NP-complete [6, 65]. Intuitively, by introducing the third dimension the short-
est path around a polyhedral obstacle in general not only traverses the vertices of the polyhedron,
but also points on the edges of the polyhedron [6, 105]. A more detailed explanation is given by
Bygi and Ghodsi in [65].

Researchers, however, tackled the problem using different approaches. For example, Bygi
and Ghodsi proposed an interesting concept to expand VG into ”true” 3D by introducing a new
structure called pseudo-graph. A pseudo-graph is a three-dimensional counterpart with a similar
structure to a graph, but with arcs connecting three vertices instead of two. The authors used
an algorithm to build a pseudo-graph with complexity of O(n3 log n), but also noted it could be
optimized to O(n2 log n+ k), where k is the number of visibility edges of pseudo-graph [65].

Another algorithm, VPP invented by Masehian and Amin-Naseri fuses visibility graphs with
Voronoi diagram and potential fields. The authors focuses on its planar implementation, which
is verified in simulation. Nonetheless, they also discuss its possible usage in three-dimensional
space [109].

As for UAV-specific approaches, Huang and Teo searched for a collision-free 3D path of a UAV
by applying 2D VG over a finite set of planes. The algorithm was verified in simulation [63].
The pseudo-code of their three-dimensional expansion of VG is shown in Algorithm 4.

Algorithm 4 3D VG algorithm using multiple planar VGs, based on [63]

1: procedure P = VG
2: Initialize
3: Calculate azimuth and elevation angles
4: Calculate rotation matrix
5: while Full angle of 3D not reached do
6: Plane with a rotating angle
7: Find intersections with obstacles
8: Find the shortest path using 2D VG
9: Increase angle

10: Find the shortest path P
11: return P

Another approach by Schøler et al. used a method for generating a VG inside a rectangular
cuboid with convex holes. The method finds a near-optimal flight path for their small-scale
helicopter in an environment with multiple obstacles [6].

B.2. Path planning algorithms 127

B.2.5 Rapidly-exploring Random Tree algorithm

The concept of Rapidly-exploring Random Trees (RRTs) was introduced by LaValle in 1998.
RRTs were used to solve holonomic, nonholonomic and kinodynamic path planning problems [110].
A tree (Fig. B.2) is a special case of a directed graph, where every node has exactly one parent
(except the root) [20]. The nodes represent physical states, while edges are feasible paths con-
necting them. Travel cost from the node j to i is represented as cij [20]. The generation of the
tree is described, e.g., in [110, 111].

An RRT is a probabilistic-complete sampling algorithm that boasts a set of features dis-
cussed, e.g., by LaValle and Kuffner. They include path consistency, simplicity (thus low compu-
tation effort) and a bias towards exploring yet unexplored regions [110, 111]. Beard and McLain
also point its feasibility to be extended to vehicles with non-linear dynamics and use it for 3D
path planning. Moreover, it can be applied to continuous domain planners as well. Nevertheless,
even though it is real-time capable with time complexity of O(n log n) ¬ T ¬ O(n2) [2], the
returned solution is rarely close-to-optimal [82, 89]. According to Karaman and Frazzoli, RRT
is one of the most widely-used approaches to the motion planning problem [82]. For example
Ramana et al. used RRT to plan and then successfully simulate the path of a fixed wing UAV
flying in urban environment [112].

RRT algorithm explores the search space uniformly, but randomly. RRT’s workflow is shown
in Algorithm 5. Assume wstart and wgoal are vectors representing the start and goal waypoints
placed on an obstacle mapM. RRT first assumes wstart as the root of the tree. Then, it randomly
selects a waypoint wrand somewhere on the map. A waypoint wnearest is selected from the tree
nodes as the nearest to wrand (wstart for the first iteration). A new waypoint wnew is then placed
along wrandwnearest at a fixed distance D (a parameter of RRT) and wrand is discarded. Here,
the bar operator denotes the line segment from wrand to wnearest. If wnearestwnew is feasible
(collision-free), wnew is added as a new node to the tree and connected to wnearest. Otherwise,
it is rejected and a new wrand is drawn. The steps are repeated until wnew can be connected
directly to wgoal. Then, the final path segment from wgoal to the current wnew is added to the
tree. The shortest path from wstart to wgoal is ,is returned as the final waypoint path W. The
base algorithm is discussed in-detail in [20, 110, 111].

Algorithm 5 RRT algorithm, rewritten based on [20, 82]

1: procedure W = PlanRRT(M,wstart,wgoal, D)
2: Initialize RRT graph T = (V,E) as V = {wstart}, E = {∅}
3: while wgoal /∈ V do
4: wrand ← GenerateRandomWaypoint(M)
5: wnearest ← FindNearestWaypoint(wrand, V)
6: wnew ← PlanPath(wnearest,wrand, D)
7: if PathFeasible(M,wnearest,wnew) then
8: V ← V ∪ {wnew}

Fig. B.2: A Rapidly-exploring Random Tree [20]

B.2. Path planning algorithms 128

9: E ← E ∪ {(wnearest,wnew)}
10: end if
11: if PathFeasible(M,wnew,wgoal) then
12: V ← V ∪ {wgoal}
13: E ← E ∪ {(wnearest,wgoal)}
14: end if
15: W ← FindShortestPath(T)
16: return W

Beard and McLain further explain 3D extension of RRT for UAVs, as well as suggest a smoothing
method in [20]. The waypoint path W returned by Algorithm 5 can be further simplified and
the total amount of waypoints possibly reduced by applying Algorithm 6. The algorithm first
initializes the smoothed pathWsmooth with the first waypoint wstart and sets its local start point
wbegin to wstart. Then, it iterates over the nodes in the input waypoint path W until the path
between wbegin and wnew is obstructed. The algorithm inserts the previous (feasible) wprev into
Wsmooth. Then, it moves to the next step, i.e., switches wbegin to the next waypoint in Wsmooth

(identical to wprev from the previous step). The algorithm keeps running until the final node
in W is reached (j = N). The final node wgoal is then appended to Wsmooth. The waypoint
path Wsmooth returned by the algorithm consists of the minimal number of nodes required for
collision-free transition from wstart to wgoal.

Algorithm 6 RRT smoothing algorithm, adapted from [20]

1: procedure Wsmooth = SmoothRRTPath(T ,W)
2: Initialize smoothed path Wsmooth ← {wstart}
3: Initialize pointer to current node in Wsmooth : i← 1
4: Initialize pointer to next node in W : j ← 2
5: while j < N do
6: wbegin ← GetNode(Wsmooth, i)
7: wnew ← GetNode(W, j + 1)
8: if not PathFeasible(T ,wbegin,wnew) then
9: Get last feasible node: wprev ← GetNode(W, j)

10: Add deconflicted node to smoothed path: Wsmooth ←Wsmooth ∪ {wprev}
11: i← i+ 1
12: end if
13: j ← j + 1
14: Add last node from W :Wsmooth ←Wsmooth ∪ {wgoal}
15: return Wsmooth

B.2.6 RRT* algorithm

Despite the popularity of RRT, Karaman and Frazzoli proved in 2010 that “under mild technical
conditions, the cost of the best path in the RRT converges almost surely to a non-optimal
value” [82]. Hence, they suggested their own Rapidly-exploring Random Graph (RRG) [113]
and its tree-based implementation called RRT* [82]. As for UAV applications, RRT* was used
by Meng et al. to develop a path planning system for flying in cluttered environment. The authors
compared RRT* with its variant called 3D Informed RRT*, proving the better performance of
the second [12].

Contrary to RRT, RRT* guarantees asymptotic optimality, that is, almost sure convergence
to an optimum solution [82]. So the algorithm returns a solution that is not just feasible, but
also quasi-optimal. As the original RRT algorithm, RRT* has the same time complexity and is
real-time capable as well [2]. RRT* is presented in Algorithm 7.

B.2. Path planning algorithms 129

RRT* begins similarly to RRT (see: Algorithm 5). After initializing the tree T and the
waypoints wrand, wnearest and wnew, the algorithm checks whether the path from wnearest to
wnew is feasible, i.e, obstacle-free (Line 7). Then, it initializes a minimal-cost waypoint wmin

as wnearest and retrieves a set of waypoints Wnear located not further away than Dnear (a
parameter of RRT*) from wnew. If a path between the near waypoint wnear is feasible and costs
less than the current cheapest path from wstart to wmin, the current wmin is replaced with
wnear.

Between lines 19 to 25, the algorithm scans Wnear for possible optimizations of path costs.
It checks if the complete path from wstart to each wnear ∈Wnear via its parent wparent is more
expensive than the path from wstart to wnear via wnew. If true, wparent of wnear is replaced with
wnew, thus ”rewiring” the final edge to wnear. After that, RRT* proceeds similarly to RRT.

Algorithm 7 RRT* algorithm, rewritten based on [20, 82].

1: procedure W = PlanRRTStar(M,wstart,wgoal, kmax, Dnew, Dnear)
2: Initialize RRT graph T = (V,E) as V = {wstart}, E = {∅}
3: for k = 1 to kmax do
4: wrand ← GenerateRandomWaypoint(M)
5: wnearest ← FindNearestWaypoint(wrand, V)
6: wnew ← PlanPath(wnearest,wrand, Dnew)
7: if PathFeasible(M,wnearest,wnew) then
8: V ← V ∪ {wnew}
9: wmin ← wnearest

10: Wnear ← FindNearWaypoints(wnew, V,Dnear)
11: for all wnear ∈Wnear do
12: if PathFeasible(M,wnear,wnew) then
13: cnew ← Cost(wstart,wnear) + |wnearwnew|
14: if Cost(wstart,wnew) > cnew then
15: wmin ← wnear

16: end if
17: end if
18: E ← E ∪ {(wmin,wnew)}
19: for all wnear ∈Wnear\{wmin} do . ”Rewire” the nodes
20: cnew ← Cost(wstart,wnew) + |wnearwnew|
21: if PathFeasible(M,wnear,wnew) and Cost(wstart,wnear) > cnew then
22: wparent ← Parent(wnear)
23: E ← E\{(wparent,wnear)}
24: E ← E ∪ {(wnew,wnear)}
25: end if
26: end if
27: if PathFeasible(M,wnew,wgoal) then
28: V ← V ∪ {wgoal}
29: E ← E ∪ {(wnearest,wgoal)}
30: end if
31: W ← FindShortestPath(T)
32: return W

Contrary to its predecessor, RRT* algorithm continues to optimize the tree even after the
goal has been reached. Interestingly, the path returned by RRT* can be further optimized by
smoothing using the same Algorithm 6 as for the original RRT.

RRT* was further improved by reducing the search space. A work by Gammell et al. revealed
the inefficiencies of RRT* when used as a single-query path planner. The authors introduced

B.3. General optimization algorithms 130

pruning the tree of the vertices not contributing to a better solution, as well as reducing the
rewiring to a specified neighborhood region. They implemented the idea in their Informed RRT*
algorithm [114]. While the original work [114] used hyperspheroids as the rewiring neighborhood,
Meng et al. simplified it using an oblique cylinder for their 3D implementation of Informed RRT*,
and thus improving the overall performance [12].

B.3 General optimization algorithms

The algorithms mentioned in this section can be considered general in that sense they are
suitable for different optimization tasks. Many of the algorithms use relatively simple nature-
inspired heuristics instead of exact solutions. While the exact algorithms provide the global
optimum, they require high computational effort4, especially for large solution space [5, 55].
More difficulties arise if dealing with real-world problems characterized by dynamic or noisy
objective functions and non-linear constraints. Moreover, exact algorithms are prone to falling
into local minima/maxima while optimizing non-convex search landspace [55].

Contrary to the exact methods, these stochastic algorithms, i.e., heuristic or metaheuristic
methods, provide optimal or near optimal (i.e., ”good enough”) solution in reasonable time [55].
Nadimi-Shahraki et al. divide the metaheuristic algorithms based on their origins into algorithms
inspired by nature and non-nature-inspired [55] as in Fig. B.3.

The first group includes Tabu Search (TS), Iterated Local Search (ILS) and Adaptive Di-
mensional Search (ADS), among others. Most of the algorithms, however, are nature-inspired.
They can be further divided into three groups. Evolutionary Algorithms base on the Darwin’s
theory of evolution and include: Genetic Algorithms (GA), Genetic Programming (GP), Evolu-
tion Strategy (ES), Differential Evolution (DE) etc. Swarm Intelligence Algorithms are inspired
by the collective behavior of animal swarms. Many optimization algorithms fall into this cate-
gory, for example: Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Grey Wolf
Optimizer (GWO), Krill Herd (KH) and Whale Optimization Algorithm (WOA). Finally, there
are algorithms based on the laws of physics, such as Gravitational Search Algorithm (GSA),
Charged System Search (CSS) or Henry Gas Solubility Optimization (HGSO) [55]. As for op-
timization algorithms, the thesis focuses on the chosen nature-inspired evolutionary and swarm
intelligence algorithms.

B.3.1 Genetic Algorithm

Genetic Algorithm (GA) is a stochastic optimization method, which mimics Charles Darwin’s
theory of natural selection [3, 115]. GA was developed by John Holland et al. in 1960s and
1970s [115, 116]. GA falls into the group of Evolutionary Algorithms (EAs), which are a population-
based solvers for trial-and-error problems with a meta-heuristic or stochastic optimization ap-
proach [5].

A virtual population of chromosomes (i.e., solutions) acts like their biological counterparts
evolving over generations and adapting to the environment. For that the equivalents of selection,
recombination, crossover and mutation processes are employed. GAs methodology makes use
of biologically-inspired terms, e.g., an objective function value, a design candidate and design
variables are called fitness, individual and genes, respectively [3]. A generic form of a GA is
presented in Algorithm 8.

At the beginning the initial population P is initialized with M individuals xi(t), where
i = 1, 2, ...,M and t is the number of the current iteration (or generation). Each xi(t) is a vector of
length equal to the dimensions of the state space. The optimization starts with the computation

4 Their execution time increases exponentially proportional to the number of variables [55].

B.3. General optimization algorithms 131

Fig. B.3: An example classification of optimization algorithms, adapted from [55]

of the fitness function f(·) for each individual xi(t) in the population P. The globally best
individual pg(t) is chosen according to f(·). If desired precision δ is achieved, GA returns pg(t).
Otherwise operators of selection so, crossover co and mutation mo are applied. Parameters ϑs,
ϑc and ϑm are the probabilities of selection, crossover and mutation, respectively. GA continues
to next generations until N -th iteration or until δ is achieved.

Algorithm 8 Genetic Algorithm, adapted from [115, 117]

1: procedure pg(t) = GA(M,N, δ, ϑs, ϑc, ϑm)
2: Initialize population P with random individuals xi(t), i = 1, 2, ...,M
3: Initialize iteration counter t← 1
4: Initialize global best solution pg(t)← {∅}
5: repeat
6: for all xi(t) ∈ P do
7: Compute fitness f

(
xi(t)

)
8: Update pg(t)← Best

(
P, f(·)

)
9: if Precision

(
pg(t)

)
¬ δ then

10: break
11: end if
12: Perform selection so according to ϑs
13: Perform crossover co according to ϑc
14: Perform mutation mo according to ϑm
15: t← t+ 1
16: until t ¬ N
17: return pg(t)

As noted by Pehlivanoglu et al., one of the key features of GAs is that instead of searching from
a single point in the state space, they move from multiple points. The method is also mathe-
matically simple, not requiring to calculate derivatives or gradients of the objective function.
Moreover, GA-based optimization can be implemented as parallel processes, partially mitigating
one of their major disadvantages – lack of computation efficiency due to repeated evaluation of

B.3. General optimization algorithms 132

the objective function [3]. Despite its advantages, it is restricted to offline-only computations
with time complexity of T O(n2) [2].

Yang in [115] places GAs among the most popular evolutionary algorithms in terms of the
diversity of their applications. Moreover, GAs are often used as a base for many modern algo-
rithms [115], including UAV-specific. For example, Pehlivanoglu et al. used improved Vibrational
Genetic Algorithm (VGA) to guide their UAV over artificially generated terrain in simulation [3].

B.3.2 Particle Swarm Optimization algorithm

In 1995 James Kennedy and Russell Eberhart described an algorithm, which simulated the
movement of a bird flock. They called it Particle Swarm Optimization (PSO) [118]. PSO is
a meta-heuristic optimization method where the particles, or solutions, are updated every it-
eration based on the best global and local solutions [40]. As GA, PSO is also classified as an
EA.

PSO works by computing the movement of the swarm of M individuals. The movement of
the swarm is represented by the positions xi,d and velocities vi,d of the i-th individual in the
d-th dimension, i = 1, 2, ...,M . To simplify the notation, the values xi,d and vi,d for different
dimensions can be stored in vectorized form as xi and vi, respectively. Then, the equations used
to compute the movement can be expressed formally as

vi(t+ 1) = vi + c1 ∗ rand 1 ∗
(
pi(t)− xi(t)

)
+ c2 ∗ rand 2 ∗

(
pg(t)− vi(t)

)
xi(t+ 1) = xi(t) + vi(t+ 1)

(B.1)

where pg(t) is the globally best solution, pi(t) is the locally best solution of the i-th individual,
c1 and c2 represent learning factors, rand 1 and rand 2 are random uniform distributions in
range 〈0, 1〉, and t is the current iteration. Distribution of xi should be uniform to evenly cover
the state space [115]. While vi can have theoretically any value, it is usually bound to a range
〈0, vmax〉 [115]. PSO’s pseudo code is shown in Algorithm 9.

PSO begins with the initialization of the swarm S of M individuals with the randomized
values of xi,d ∈ xi and vi,d ∈ vi. The number of the current iteration is stored as t. Then, the
fitness function f(·) is computed for each individual. Next, global pg and local pi best solutions
are chosen. If the precision requirement is met, PSO returns the optimized result. Otherwise t
is incremented and the optimization continues up to N iterations.

Algorithm 9 PSO algorithm, adapted from [115, 117]

1: procedure pg(t),pi(t) = PSO(M,N, δ, c1, c2)
2: Initialize swarm S of M individuals with random xi,d ∈ xi and vi,d ∈ vi
3: Initialize iteration counter t← 1
4: Initialize global best solution pg(t)← {∅}
5: Initialize M local best solutions pi(t)← {∅}
6: repeat
7: for all xi(t) ∈ S do
8: Compute fitness f

(
xi(t)

)
9: Update pg(t)← BestGlobal

(
S, f(·)

)
10: Update pi(t)← BestLocal

(
xi, f(·)

)
11: if Precision

(
pg(t)

)
¬ δ then

12: break
13: end if
14: Update xi and vi according to (B.1)
15: t← t+ 1

B.3. General optimization algorithms 133

16: until t ¬ N
17: return pg(t), pi(t)

The algorithm could be improved by introducing the inertia factor to vi to improve convergence,
so the last equation (B.1) becomes

vi(t+ 1) = θ(t) ∗ vi + c1 ∗ rand 1 ∗
(
pi(t)− xi(t)

)
+ c2 ∗ rand 2 ∗

(
pg(t)− xi(t)

)
where θ(t) is the inertia function. In the simplest case θ(t) is constant, e.g., in range 〈0.5, 0.9〉 [115].

As highlighted by the authors themselves, a major advantage of PSO is simplicity. Its simple
concept employs only primitive mathematical operators and can be implemented in a few lines
of code. Thus, it is memory-efficient. Even tough Kennedy and Eberhart consider it fast [118],
Yang et al. classify it as real-time incapable with time complexity of T O(n2) [2]. Despite
the simplicity of basic PSO, even simpler implementations of the algorithm exist. For example,
Yang in 2008 developed Accelerated PSO (APSO). APSO discards the local best solutions pi
and returns global pg only [115].

PSO has been used for almost every area in optimization, computational intelligence, and
design applications [115]. A UAV-related example is Andrade’s work considering offline path
planning of an autonomous UAV [40].

B.3.3 Ant Colony Optimization algorithm

Ant Colony Optimization (ACO) bases on the results of collective research on real ant systems
by Colorni et al. from 1991 [119]. The algorithm mimics the natural optimization behavior
used by ant foragers to solve the traveling salesman problem (i.e., finding the shortest path
between their nest and a food source) [8, 120]. Even though a single ant has a minimal cognitive
capabilities, the colony is highly structured, behaves logically and can solve different optimization
problems [119, 121].

The ant foragers find the path to food by exploiting pheromone information and without
visual cues. A forager deposits pheromone track as it walks, which tends to attracts other
foragers. The pheromone evaporates over time, however. The shorter the path, the more often
an ant traverses it, thereby strengthening the pheromone track and attracting even more ants [8,
119]. Algorithm 10 presents a variant of ACO called Ant Colony System (ACS) by Dorigo and
Gambardella [121]. The key principle is the same, however.

Algorithm 10 ACS algorithm [120] (a simplification of the original ACS available in [121])

1: procedure ACS
2: Initialize
3: while stopping condition not satisfied do
4: Position each ant in a starting node
5: repeat
6: for all ant do
7: Choose next node by applying the state transition rule
8: Apply step by step pheromone update
9: until every ant has built a solution

10: Update best solution
11: Apply offline pheromone update
12: return shortest path

ACO is an example of distributed optimization. The agents (ants), however, are not aware
of their cooperative behavior. They unintentionally work together through low-level interactions

B.3. General optimization algorithms 134

instead [119]. From technical point of view, ACO bases on an autocatalytic process supported
by ”greedy force”. The two processes working together tend to converge to the globally optimal
solution, unlike each of them running independently [119].

The original ACO was initially developed to be a metaheuristic for combinatorial optimiza-
tion. Nevertheless, it can be successfully adapted to solve continuous problems without significant
modification to its initial concept. For example, Socha and Dorigo developed ACOR algorithm for
continuous domains by utilizing a probability density function instead of a discrete probability
distribution found in ACO [47].

The advantages of ACO include simplicity [119], versatility [8, 122], robustness [8, 122] and
population-based approach [122]. Nevertheless, Ling and Hao state searching too long and easily
trapping into local optimum as its disadvantages [9]. Yang et al. classify the basic ACO algo-
rithm as offline-only with time complexity of T O(n2) [2]. While originally used to solve the
traveling salesman probem, the algorithm can also tackle different optimization problems. Ex-
amples include the job-shop scheduling problem, the vehicle routing problem and the quadratic
assignment problem [8].

As for UAV-related use case, Duan et al. used a hybrid meta-heuristic ACO-DE algorithm
to solve the three-dimension path planning problem in combat field environment [8]. They opti-
mized the pheromone trail of the improved ACO model by applying Differential Evolution (DE)
algorithm during the process of ant pheromone updating. The researchers used a 3D mesh-
based model of the scene and assigned a threat value to each node of the mesh. Then, they used
ACO-DE to minimize the path cost. ACO-DE accelerated the global convergence speed while
preserving the strong robustness of the basic ACO in simulation [8].

Ling and Hao report improvement of the basic ACO in their UAV-related research. The
researchers added threat cost factor of the current node into state transition probability. Thus,
the improved algorithm drives the ant colonies towards the nodes having the smaller integrated
cost. They proved the feasibility of their improved ACO in offline and online simulations [9].

B.3.4 Improved Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) was originally proposed by Mirjalili et al. in 2014 [123]. The
authors proven it is highly competitive compared to other heuristics such as particle swarm opti-
mization (PSO), gravitational search algorithm (GSA) and differential evolution (DE). Moreover,
they successfully used GWO for sample mechanical engineering problems as well as to design an
optical buffer [123]. Since then, it has been successfully applied for solving different optimization
problems – from engineering to medical [55, 124].

GWO is a nature-inspired single-objective5 metaheuristic swarm intelligence algorithm, which
mimics the leadership and hunting behavior of a pack of grey wolves (Canis lupus) [123, 124].
Exactly as in nature, the pack is divided into four classes of wolves (i.e., solutions).

The alpha wolf (α) is the dominant specimen characterized by the best fitness value. Being
the leader, it has the most influence on the behavior of the pack. Beta (β) is a second-tier wolf,
which assists the alpha in decision-making. Next in the hierarchy are subordinate wolves (δ).
Subordinates have to submit to alphas and betas, although they still dominate omegas (ω), the
lowest tier of the wolves [123].

The algorithm works by mimicking the three major phases of the wolf hunt, i.e., the optimiza-
tion of their positions versus the position of the prey. The phases are (1) encircling, (2) hunting
and (3) attacking the prey. In each phase the position6 of a wolf (a vector of optimized variables)
is mathematically modeled according to its tier in the pack and the positions of the higher-tier

5Although the authors argue it can be extended to be multi-objective [123].
6 For multiple optimization variables the position is defined in hyperspace.

B.4. Other algorithms 135

wolves. In GWO the optimization is guided by α, β and δ (in that order), while the ω wolves
follow these three [123].

GWO has evolved into many variants to overcome deficiencies found in the original algo-
rithm, i.e., avoiding local minima and accelerate convergence. One of the newest variants called
Improved GWO (I-GWO) was proposed in 2021 by Nadimi-Shahraki et al. in [55]. The au-
thors introduced the dimension learning-based hunting (DLH) search strategy, which mimics
individual wolf hunting behavior. The pseudo code of I-GWO is shown in Algorithm 11.

Algorithm 11 The I-GWO algorithm, adapted from [55]

1: procedure x = I-GWO(N,D, kmax)
2: Randomly distribute N wolves in the search space and calculate their fitness
3: for k = 2 to kmax do
4: Find xα,xβ,xδ
5: for i = 1 to N do
6: Compute 1st new position candidate xi−GWO(t+ 1)
7: Compute neighborhood radius Ri(t)
8: Construct neighborhood xi(t) with radius Ri
9: for d = 1 to D do . Construct 2nd new position candidate

10: xi−DLH,d(t+ 1) = xi,d(t) + rand× (xn,d(t)− xr,d(t))
11: xi(t+ 1)← SelectBest(xi−GWO(t+ 1),xi−DLH(t+ 1))
12: if SelectBest(xi(t+ 1),xi(t)) = xi(t+ 1) then
13: Update the population with xi(t+ 1)
14: end if
15: return global optimum x

Assume D-dimensional optimization problem. First, N wolves are distributed randomly in the
search space in a given range and their fitness values are calculated. Then, the first new position
candidate xi−GWO is computed, exactly as in GWO. Contrary to the original GWO, in DLH
each wolf learns from its neighbors as well. Hence, the second new position candidate is xi−DLH
calculated. Next, the best of the two is chosen as xi(t + 1). If it is better than xi(t), the
population is updated. The whole process is repeated up to kmax iterations. The algorithm
returns the globally optimal position x.

GWO was successfully used for UAVs, e.g., in comparative studies by Kiani et al. The authors
compared different flavors of GWO-based algorithms7 while planning an obstacle-free 3D flight
path in simulation.

B.4 Other algorithms

Many more algorithms exist, that are not described or even mentioned here. For example,
a paper by Garcia et al. presents an extension of a graph-based Lazy Theta* algorithm. It is
designed especially for dynamic global path planning in hazardous weather [7]. As the HALE
UAV considered in the thesis is meant to fly only in favorable weather conditions, this idea is
not discussed here.

Vanneste et al. invented 3DVFH+ algorithm, which uses a polar-based Octomap8. The algo-
rithm achieves real-time performance in three-dimensional obstacle avoidance [126]. Neverthe-
less, it is more suited towards confined and obstacle-dense spaces (i.e., indoors).

Hebecker et al. describes a concept of a reactive local path planner, which uses a wavefront
algorithm to avoid static obstacles. Interestingly, the algorithm uses LIDAR sensor data instead
7 Specifically, I-GWO (i.e., Incremental GWO, not Improved GWO) and Ex-GWO (Extended GWO) [125]
8Original Octomap is a probability-driven volumetric 3D environment model by Hornung et al. [36].

B.5. Summary 136

of an abstract map. The researchers proved the algorithm able to plan collision-free paths in
a static 3D space [127].

Many different optimization algorithms also feature UAVs. Alihodzic et al. verified Elephant
Herding Optimization (EHO) algorithm in simulation as a path planner for a UAV flying over
a battlefield. The researchers used EHO to minimize threat and fuel cost functions and concluded
that the performance of EHO is promising [128].

A paper by Yue and Zhang employs Simulated Annealing (SA) and K-means algorithms.
The authors used the algorithms to plan a flight path of their UAV to search for signs of
life in a disaster site after an earthquake. They decomposed the task in two stages, similarly
to the approach used in the thesis [129]. A two-step approach was used also by Bortoff, who
used Voronoi-based path planner. The planner first constructs a suboptimal rough-cut path
is generated through the radar sites basing on Voronoi polygons. Then, nonlinear ordinary
differential equations are simulated, using the graph solution as an initial condition [130].

B.5 Summary

This chapter covered a short state-of-the-art review of algorithms used for UAV-based path
planning. The algorithms were divided into specialized path-planning and obstacle-avoiding
algorithms, as well as more general ones suitable for diverse optimization tasks. However, the
list of algorithms mentioned in this chapter is not meant to be exhaustive. The algorithms were
chosen based on their diversity, as well as their availability in MATLAB.

	List of used acronyms and symbols
	Introduction
	Scientific background and motivation
	Missions in Poland
	Missions in the Arctic

	Aim
	Scientific problem
	Scope
	Acknowledgments

	UAV modeling
	Coordination frames
	Wind triangle
	Kinematic guidance model
	Dynamic guidance model
	Dynamic vs kinematic
	Dubins paths
	Dubins car paths
	Dubins airplane paths
	Alternative approaches

	Summary

	Environment modeling
	Environment map
	Terrain map
	Voxel-based terrain map
	Discrete terrain map
	Continuous terrain map
	Collision checking

	Wind map
	Discrete wind map
	Continuous wind map
	Checking wind velocity
	Limitations and possible improvements

	Airspace map
	Prism-based airspace segmentation
	Collision checking
	Limitations

	Measurement maps
	Checking measurement value
	Limitations

	Summary

	Adaptive Path Planner
	Path planning
	Adaptive planning vs non-adaptive planning
	General form of the algorithm
	Global Path Planner
	Problem statement
	Defining the criteria
	Pollutant concentration

	Local Path Planner
	Problem statement
	Kinematic constraints
	Finding obstacle-free admissible path

	Simulation
	Summary

	Verification study
	Specification of Twin Stratos
	Path quality metrics
	General metrics
	GPP-specific metrics
	LPP-specific metrics

	General research plan
	Verification of the models
	Terrain map
	Wind map
	Kinematic guidance model
	Discussion

	Global Path Planner
	Effects of the criteria
	Comparison of the chosen single-objective optimization methods
	Discussion

	Local Path Planner
	Test setting
	Implementation of the LPP algorithm
	Comparison of chosen RRT algorithms
	Tuning the chosen algorithm
	Validation of adaptive re-planning in simulation
	Discussion

	Adaptive Path Planning for pollution sampling
	Modifications of criteria
	Smog profiling over Zywiec
	Black carbon concentration over Kongsvegen
	Discussion

	Summary

	Summary
	Conclusions
	Future remarks

	Bibliography
	Abstract
	Streszczenie
	Used hardware and software
	Appendices
	Elementary terms and definitions
	Chosen path planning algorithms
	Path planning strategies
	Deliberative strategy
	Reactive strategy

	Path planning algorithms
	Dijkstra's algorithm
	A* algorithm
	D* algorithm
	Visibility Graphs
	Rapidly-exploring Random Tree algorithm
	RRT* algorithm

	General optimization algorithms
	Genetic Algorithm
	Particle Swarm Optimization algorithm
	Ant Colony Optimization algorithm
	Improved Grey Wolf Optimizer

	Other algorithms
	Summary

