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Abstract

Heat flow is one of the most fundamental and common phenomena in nature, which
makes it one of the most intensively used phenomena by a mankind. Nevertheless, due to
the significant dissipative nature of heat flow, many very promising applications of this
phenomenon remain in the realm of research and discussion. If the dissipative nature
of the heat flow could be overcome and the heat flow could be manipulated, thermal
cloaking or shielding could be performed, as well as inversion or concentration of the heat
flow. It would open up great opportunities in science, industry, military and many other
fields. For hundreds of years, manipulation of the heat flux was unattainable until the
appearance of thermal metamaterials, which, thanks to their structure, characterised by
a strong spatial variability of thermophysical parameters, made it possible to fulfil the
dream of controlling the heat flux. This is the driving force behind research like this.

The complex structure of metamaterials requires advanced methods for their analy-
sis. For many methods, it is not entirely clear if they are suitable for this. This thesis
decided to check whether the radial basis function-based Kansa method is suitable for
this purpose. As part of the research, heat conduction problems in a material with spa-
tially variable distributions of thermophysical parameters were investigated. The study
considered the coefficient and pseudospectral formulation of the non-symmetric Kansa’s
method for solving elliptic, parabolic and hyperbolic problems. For the time-dependent
problems, two approaches were used: the method of lines combined with the time integra-
tion schemes known from the structural dynamics and the spacetime approach in which
time is treated as a coordinate. An extensive study of the applicability of the Kansa
method has been conducted for various combinations of the above approaches for one-
and two-dimensional problems. The thesis proposes a group of algorithms for finding a
good value of the multiquadric radial basis function shape parameter, one of the most
important research problems within the radial basis function-based methods for solving
partial differential equations. The work also carried out the process of designing a thermal
metamaterial device for heat flux inversion and concentration as well as thermal shielding
and cloaking using gradient optimisation.

The thesis shows that the Kansa method is suitable for solving the considered class
of problems for most combinations of the aforementioned approaches. The spacetime
approach has worked only for some of the problems considered in the work. It is worth
noting that this approach, despite its enormous potential, does not receive wide attention
from the scientific community, which makes it an interesting topic for further research.
The proposed group of algorithms for finding a good shape parameter value turned out to
be very effective for the considered class of problems. Designing a thermal metamaterial
device was not successful in the case of inversion, the desired effect was not achieved,
however, it is an extremely demanding case from a numerical point of view, and it is
certainly a good direction for further research. On the other hand, designing was successful
in three other cases of the heat flux manipulation: shielding, cloaking and concentration.
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1. Introduction

Heat transfer Heat transfer is one of the most fundamental phenomena in nature. In
terms of importance in everyday life, it can be put on a par with the phenomenon of
motion, current flow or gravity [32]. The first substantial description of the heat flow
was proposed by Isaac Newton in 1701 [118]. In his work, he stated that the heat flux
q transferred out of the body is proportional to the heat transfer coefficient α and the
difference between the body temperature u and the ambient temperature u∞:

q = α (u− u∞) , (1.1)

Equation 1.1 is known today as Newton’s law of cooling and is until today the fundamental
law governing convective heat flow. Despite its great importance, Newton’s law did not
describe the most fundamental mechanism of heat flow, namely thermal conduction. It
took more than 120 years to explain this mechanism. This was done by Joseph Fourier
who in 1822 published a paper in which he stated that the heat flux q passing through
the locally isotropic medium is proportional to the thermal conductivity κ and the local
gradient of temperature u [55]:

q = −κ∇u. (1.2)

Equation 1.2 is known today as Fourier’s law. Combining the Fourier’s law with the law
of conservation of internal energy for heat conduction process without an internal heat
source or sink:

γρ
∂u

∂t
+∇ · q = 0, (1.3)

leads to the following parabolic heat equation:

γρ
∂u

∂t
= ∇ · (κ∇u) , (1.4)

where ρ is the density of the medium, γ is the specific heat capacity. Despite their age,
Fourier’s law and heat equation are still fundamental models governing heat flow and are
the starting points for introducing new heat transport theories. Fourier’s model indicates
a parabolic model of the temperature evolution. It implies that a sudden temperature
disturbance is felt simultaneously by the whole part of a medium; in other words, the
propagation speed of thermal disturbance is infinite, which is non-physical. This issue
is irrelevant in most traditional engineering problems [4], however, it is extremely im-
portant in some specialized cases, such as, for example, bioheat transfer [111] or phase
transformations [153]. For this reason, researchers began to pay attention to this paradox
from the late 1940s [20, 115, 165]. Cattaneo, Morse, and Vernotte noted that a certain
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1. Introduction

amount of time is needed to accelerate thermal energy carriers for heat conduction under
the imposition of sudden temperature disturbances. Therefore, they stated that a time
delay called relaxation time τ should exist between the heat flux and the temperature
gradient:

q (t+ τ) = −κ∇u (t) . (1.5)

Through first-order approximation of Equation 1.5, the Cattaneo-Vernotte model is ob-
tained:

τ
∂q

∂t
+ q = −κ∇u, (1.6)

The combination of the Cattaneo-Vernotte model with the law of conservation of internal
energy given by Equation 1.3 leads to the Cattaneo-Vernotte equation:

γρ

(
τ
∂2u

∂t2
+
∂u

∂t

)
= ∇ · (κ∇u) . (1.7)

They proposed a modification of the Fourier model, which makes the heat flow model
hyperbolic. The presence of the second-order time derivative in Cattaneo-Vernotte equa-
tion makes it hyperbolic. This has a fundamental impact on both its solution and the
way of solving it. Although the Cattaneo-Vernotte model avoids the paradox of infinite
speed of thermal disturbance propagation, it is far from ideal and has certain limitations.
For example, the heat waves’ overlap predicted by the Cattaneo-Vernotte model could
lead to the local temperature lower than 0 K [10, 92, 77]. Additionally, some experi-
ments [1, 2, 140, 83, 117] indicate that the temperature profile strongly deviates from
the Cattaneo-Vernotte model in the case of significant thermal disturbance. Therefore,
researchers developed a series of unsteady non-Fourier heat conduction models beyond
the Cattaneo-Vernotte model. In analogy to the relaxation relation between strain and
stress in viscoelastic materials, Joseph and Preziosi proposed the Jefferey’s type model
for heat conduction [85]:

τ
∂q

∂t
+ q = −κ∇u− κ1

∂

∂t
(∇u) . (1.8)

The second term on the right-hand side of Equation 1.8 suggests that additional mode of
heat waves could exist and propagate with a different speed from the primary heat wave.
κ1 is defined as the thermal conductivity corresponding to the ”fast mode” of heat wave.
Özişik and Tzou [121, 160] stated that the interaction of microscopic particles causes
macroscopic response delay. If the disturbance is a temperature gradient, then the heat
flux evolution will be delayed. If the disturbance is a heat flux, then the temperature
response will be delayed. In this way the relaxation of both heat flux and temperature
gradient should be taken into account, which leads to the Dual Phase Lagging model
[112]:

q (t+ τ) = −κ∇u (t+ τ1) . (1.9)

The Dual Phase Lagging model is quite a general model and can be simplified to specific
models for specific values of τ and τ1. For example, if τ1 = 0 then the Dual Phase
Lagging is simplified to the Cattaneo-Vernotte model while if τ1 = 0 and τ = 0 then
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1. Introduction

the Dual Phase Lagging is simplified to the Fourier model. The above list of the most
important models of conductive heat transfer is far from complete, however, it presents
those that are currently the most widely used. At this point, the question arises: which
of these models will be the basic model used in the work? It was decided that it would
be the Cattaneo-Vernotte model. But why was this model chosen despite the awareness
of the limitations of this model? There are many reasons, but the two most important of
them are the fact that for the considered problems the Cattaneo-Vernotte model will not
meet the above mentioned limitations and because this model is the foundation for other
hyperbolic heat conduction models such as Dual Phase Lagging, and it does not differ
from them on the essentials - they are all hyperbolic. It is also worth emphasizing that
there are very few publications in which the Cattaneo-Vernotte equation would be solved
utilizing the method that is used in thesis - the Kansa method.

Kansa method The heat equation is 199 years old at the time of writing this thesis.
Despite this, its general analytical solution remains unknown. The situation in which
the equation describing one of the most fundamental laws of physics remains analytically
unsolved is quite peculiar. This is due to the fact that the heat equation is a partial dif-
ferential equation, most of which do not have closed analytical solutions. Such a situation
concerns not only the heat flow but also many other fundamental physical phenomena.
The gravity of the situation has naturally led to a significant development in techniques
for approximate solving of partial differential equations in the last hundred years. Cur-
rently, the four most important methods for solving partial differential equations are the
finite difference method [73], the finite element method [179], the finite volume method
[166], and the boundary element method [90]. Why these four methods? The answer
is quite prosaic, these methods have been known for many years and therefore are well
researched and widely implemented in scientific and commercial software. For example,
the finite difference method was invented by Leonhard Euler as early as 1768 [149]. The
common feature of the above-mentioned methods is a mesh - a set of points connected
with each other in a specific way. At these points, the system of algebraic equations
- which is a discretized form of the considered partial differential equation - is solved.
The mentioned common feature is also one of the biggest drawback of these methods.
This is because creating a high-quality mesh is a very difficult and time-consuming task
when the analysed geometry is complex [21]. The importance of this problem has led
to the development of a whole new group of methods specifically designed to deal with
this particular problem - meshless methods. As the name suggests, meshless methods
do not use a mesh but a cloud of unconnected points. Meshless methods make solving
partial differential equation-based problems with complex geometry so much easier that
they are viewed as next generation computational techniques [37]. One of the most pop-
ular meshless methods is the Kansa method. As already known from the abstract, this
method is used in the presented research. The Kansa method was introduced in 1990 by
Edward Kansa [88, 89]. The Kansa method is a method for approximate solving partial
differential equations problems which is based on the so-called radial basis functions. It
can achieve outstanding accuracy [29], is easy-to-use and easy-to-implement. Among the
many radial basis functions, the multiquadric one is especially popular [145], not without
reason, as this combination has many significant advantages. The Kansa method has
found application to a wide range of problems for which a brief selective overview is pre-
sented below. Dubal et al. [43] utilized the multiquadric approximation scheme to solve a
three-dimensional elliptic partial differential equation describing the time-evolution of in-
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teracting black holes and the production of gravitational waves. Moridis and Kansa [114]
combined the numerical inversion of Laplace Transforms to integrate partial differential
equations in time, with an exponentially-convergent grid-free multiquadrics spatial ap-
proximation scheme for the spatial terms. Sharan et al. [150] have used the multiquadric
approximation scheme to solve elliptic partial differential equations with Dirichlet and/or
Neumann boundary conditions. Despite the excellent results of researchers using the
Kansa method to solve partial differential equation-based problems, until 1998, there
was no evidence of the convergence of this method [172]. This fact changed with the
publication of Franke’s and Schaback’s work [56]. They gave a convergence proof and
error bound of collocation-based radial basis functions techniques for partial differential
equations with constant coefficients. Their analysis was based on the fact that the Kansa
approach can be considered as a special case of the general Hermite-Birkhoff interpolation
problem. Zerroukat et al. [173] used the multiquadrics scheme to solve the heat transfer
problem, later Zerroukat et al. [172] utilized the Kansa method to solve linear advection-
diffusion equations by using the thin-plate splines and gave the stability proof. Dong and
Cheung [42] used the multiquadric collocation method to solve elastic inclusion problems.
Chantasiriwan [23] utilized the Kansa method to solve the heat conduction problem with
stochastic initial and boundary conditions. Sarra [142] performed a numerical study of
the accuracy and stability of symmetric and asymmetric radial basis function collocation
methods for hyperbolic partial differential equations. Zheng and Li [177] utilized the
Kansa method to investigate acoustic wave propagations. Chen et al. [30] made the first
attempt to apply the Kansa method in the solution of the time-fractional diffusion equa-
tions, in which the multiquadrics and thin-plate spline serve as the radial basis function.
Simonenko et al. [152] utilized the Kansa method to solve elastostatic problems. Pang et
al. [123] applied the Kansa method to the space-fractional advection-dispersion equations.
Dehghan and Shirzad [40] proposed two numerical methods to solve the elliptic stochastic
partial differential equations in two and three dimensions obtained by Gaussian noises us-
ing radial basis functions collocation and pseudo-spectral collocation methods. Reutskiy
[137] utilized a meshless radial basis function method for 2D steady-state heat conduc-
tion problems in anisotropic and inhomogeneous media. Sarra and Cogar [144] examined
the evaluation algorithms for the radial basis function method. Fallah et al. [48] used
the Kansa approach for solving seepage problems. Haq and Hussain [68] used the Kansa
method to solve time-fractional higher-order partial differential equations with constant
and variable coefficients. Jankowska and Karageorghis [84] used the Kansa approach for
the numerical solution of second and fourth-order nonlinear boundary-value problems in
two dimensions. Liu and Chang [108] performed energy regularization of the multiquadric
radial basis function method. They used the Kansa method to solve the Cauchy problems
of diffusion-convection-reaction equations. Verma and Kumar [164] used the phase lag
bio-heat model, an extension of the Cattaneo-Vernotte model to solve the problem of heat
distribution in skin tissue with constant and sinusoidal heat flux at the skin surface. Ang
[9] utilized radial basis function method for the Cattaneo–Vernotte equation in anisotropic
media with spatially varying and temperature dependent properties. Lin et al. [107] used
a meshless radial basis function based method for modelling dual phase lag heat transfer
in irregular domains. As can be seen, the spectrum of applications of the Kansa method
is extremely wide. It is worth paying special attention to the last three cited publica-
tions, they share a common denominator. These publications consider hyperbolic heat
flow solved using the radial basis function-based meshless methods. These publications
are one of the few dealing with the subject, which shows that this area of science is so
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far poorly researched and many questions remain unanswered. On the other hand, the
extremely recent publication dates of these publications show that this topic is beginning
to gain momentum, therefore it seems that the beginning of the 1920s will be a period of
increased interest in this area of research. In conclusion, one can risk a statement that
the subject of this work fits perfectly into the current scientific trends.

Shape parameter The significant advantages of the Kansa method presented in the
previous paragraph, such as high accuracy, ease of implementation, the lack of a grid and
ease of use, give the impression that it is a method without disadvantages. However,
it is not so. It turns out that this method is associated with an unresolved problem, a
problem so significant that prevents its application to the challenging real-world prob-
lems [169]. Most of the most commonly used radial basis functions contain the so-called
shape parameter which has a fundamental impact on the interpolation matrix and, con-
sequently, on the entire numerical procedure. It turns out that currently there is no
algorithm that would allow for its optimal determination. For this reason, the problem
of choosing the proper value of shape parameter has been the subject of great scientific
debate. The first attempts to find a good shape parameter value were made even before
the Kansa method was invented because multiquadric radial basis functions were used for
interpolation of scattered data. Hardy [69] suggested the use of ε = 0.815∆x, where ∆x
is the distance between equispaced nodes. On the other hand, Franke [57] recommended
ε = 1.25

√
2∆x. Rippa [139] proposed a leave-one-out cross-validation algorithm to es-

timate the interpolation error and use it to compute a quasi-optimal value of the shape
parameter. Rippa’s algorithm was a breakthrough, it is now one of the most popular
algorithms for searching a good value of shape parameter. Wang and Liu [168] studied
the effect of shape parameters on the numerical accuracy of the radial point interpolation
meshless method. A range of suitable shape parameters is obtained from the analysis
of the condition number of the main system matrix, error of energy and irregularity of
node distribution. However, it is observed that the widely used shape parameters for
multiquadric and reciprocal multiquadric radial basis functions are not close to their op-
timums obtained in performed numerical experiments. Trahan and Wyatt [157] said that
a good radial basis function shape parameter represents the best possible compromise be-
tween the inherent ill-conditioning of the radial basis function coefficient matrix and the
smoothest possible interpolate. In the application presented in their paper, the famous
Rippa technique may be unsuitable for choosing the good shape parameter, especially
for time-dependent problems, where the quasi-optimal shape parameter value should be
determined at every time step. Larsson and Fornberg [100] explored theoretically and nu-
merically the behaviour of the interpolants in the limit of nearly flat radial basis functions.
The approaches that determine the optimal radial basis function shape parameter value
are explained through approximate expansions of the interpolation error. Fasshauer and
Zhang [52] introduced the approximate moving least squares algorithm. In this method,
leave-one-out cross-validation algorithm was applied to optimise the shape parameter and
good number of iterations. The approximate moving least squares algorithm was used
for radial basis function pseudo-spectral methods to solve the partial differential equa-
tion. Huang et al. [79] experimentally derived a formula for a good value of the shape
parameter ε = log (a/3b∆x), where a and b are constants that depend on the problem.
Further, Fornberg and Zuev [54] proposed the approach in which the shape parameter
varies spatially, improving accuracy and numerical conditioning. Ferreira et al. [53] used
the cross-validation technique to optimise the shape parameter for the radial basis func-
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tions in the mixed radial basis function-pseudospectral mode. Bayona et al. [11] also used
the radial basis function-finite difference method’s mixed mode. The local approximation
error of radial basis function-finite difference formulas serves as the tool for estimating the
optimal shape parameter that minimizes the solution error. Huang et al. [80] applied the
increasingly flat radial basis function. They determined the optimal shape parameter for
the elliptic partial differential equations solution using the root-mean-square error mea-
sure calculated using the exact solutions of presented examples. Boyd and Gildersleeve
[15] used numerical experiments to examine the condition numbers of the interpolation
matrix for many species of radial basis functions. Davydov and Oanh [36] formulated
a new multilevel algorithm that effectively finds a near-optimal shape parameter, which
helps to reduce the solution error significantly. Sarra [143] applied the extended precision
floating-point arithmetic to improve the accuracy of radial basis function-based methods
efficiently. Among other methods of determining the good value of the radial basis func-
tion shape parameter are the golden section algorithm [159], the method based on the
convergence analysis [59], the strategy with trigonometric, exponential and random vari-
able shape parameter [170], the local optimisation algorithm [141], the extended Rippa’s
algorithm [161], the global genetic algorithm optimisation method for the single [46] and
variable [3] shape parameter value approach, the application of the principle of a mini-
mum of the total potential energy [82], the sample solution approach [29] and the particle
swarm optimisation method [94]. As was shown above, the stability of the radial basis
function method is often related to the ill-conditioning of the main matrix [81]. However,
it is rare to find the method of determining the good value of the shape parameter using
the measure of ill-conditioning. One of the few articles on this topic is the paper of Haq
and Hussain [67] in which the time-fractional Black-Scholes equations were solved using
the Kansa method. They formulated an algorithm for determining the quasi-optimal
shape parameter value based on Zhang et al.’s paper [175]. This paper proposed a case-
independent shape parameter selection strategy. In the proposed strategy, for a finite
precision computation, the upper limit of the condition number is predetermined. There-
fore, the shape parameter can be chosen where the condition number oscillates in the
early stage. The authors solved equations modelled the transmission line model, the long
straight cable channel model, and the grounding metal box model. This idea seems to
be very interesting, which, combined with the fact that it is relatively poorly researched,
caused that as a part of the thesis an algorithm of this class for searching a good value of
the shape parameter was proposed.

Metamaterials The issues of the heat flow model and numerical methods have already
been discussed, so it is worth moving on to discussing the application of the Cattaneo-
Vernotte model in conjunction with the Kansa method. In recent years, the gaze of
materials science community has been intensely directed towards an extremely interest-
ing material group - metamaterials. Metamaterials are artificially engineered composite
materials that derive their properties from internal micro- and nanostructures, rather
than the chemical composition found in natural materials [93]. As a result, metamaterial
structures enable properties and capabilities, which are generally not possible to create
using conventional material discovery or chemical manufacturing technologies. The spec-
trum of potential applications of metamaterials is enormous, among them it is worth
mentioning: medical devices [122], screening of personnel for hidden objects [135], viruses
detection [14], vibration suppression [178], sound isolation [72], acoustic waveguiding [120],
seismic shielding [16], high-frequency battlefield communications [95], negative refractive
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index devices [151], high gain antennas [136], superlenses [50] and many others. The
presented applications of metamaterials are impressive, however, they seem insignificant
when compared with one application - the possibility of creating an invisibility cloak. This
possibility arose thanks to metamaterials. A cloaking device is a stealth technology that
can cause objects to be partially or wholly invisible from the point of view of a certain
physical field. Initially, the researcher’s attention was focused mainly on electromagnetic
[148, 125, 96, 109, 60, 97] and optical [101, 19, 6, 162, 58, 45, 8, 31, 174, 7, 25, 26] in-
visibility which were based on the theory of transformation optics [125, 101, 104, 102].
Promising results in these areas meant that the research on cloaking was soon extended for
such scientific fields as elastodynamic [17, 87] and acoustic [24, 176, 105, 180, 35] cloaking.
It didn’t take long for the idea of cloaking with metamaterials to be adapted to the heat
flow as well. In the case of thermal cloaking, it is necessary to consider the problem of
controlling the direction of the heat flow, which is not easy due to the Fourier law and
the strong dissipation of the heat flow process. Below is a brief overview of important
advances in thermal metamaterials cloaking development. Inspired by transformation
optics, heat flux manipulation based on a coordinate transformation was first studied by
Fan, et al. [49] and Chen et al. [27]. Li et al. [103] adopted the coordinate transformation
method for the steady heat conduction equation, based on which a bifunctional spherical
cloak working for both static electric field and heat flux was numerically demonstrated.
Guenneau et al. [62] proposed a systematic theoretical extension of transformation optics
to the field of thermal conduction and proposed a practical method to simplify the highly
inhomogeneous anisotropic and singular parameters for a transient cylindrical thermal in-
visibility cloak. Later, Schittny et al. [147] experimentally demonstrated that Guenneau
method. Narayana et al. [116] experimentally proposed to simplify the thermal invisibility
cloak with homogeneous anisotropic materials working in a steady-state. Han et al. [66]
theoretically verified the Narayana et al. findings. As inspired by the successful demon-
stration of a static magnetic cloak [60], an alternative way to realize a thermal cloak with
homogeneous isotropic structures that is similar to the previous scattering-cancellation
plasmonic cloaking approach for electromagnetic waves [5, 44] has been experimentally
demonstrated by Xu et al. [171] in three dimensions, and Han et al. [63] in two dimen-
sions, respectively. The development of thermal metamaterials and thermal cloaking has
also led to development of other thermal devices with interesting functionalities such as a
thermal concentrator [116, 78, 39, 65, 163], rotator [116, 39, 61] and thermal camouflage
[64, 70]. As can seen the development of thermal metamaterials and thermal cloaking
is extremely dynamic, in addition, it is worth adding that thermal cloaking is more per-
spective than optical cloaking. This is due to the fact that the bottlenecks of current
optical cloaking technology mainly arise from the phase preservation in transformation
optics, thermal cloaking has no such limitations as the concept of phase is inherently not
involved in heat diffusion. As can be easily guessed, thermal cloaking would find unimag-
inably wide applications, especially in the military industry [134] and in electronics it
would allow to create an isothermal region in multilayer printed circuit boards to protect
the heat sensitive device [38]. It is for these reasons that thermal metamaterials were
chosen as the materials through which the heat flow will be simulated in this thesis using
the Kansa method.

Aim of the work The aim of the work consists of several goals. The main aim of the
study is the application of the Kansa method for solving elliptic, parabolic and hyperbolic
problems of heat flow in a material with spatially variable thermophysical parameters. In
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addition to the main goal, it was also important to formulate algorithms for finding a
good value of the shape parameter which are effective from the computational point of
view. The last of the main goals was to apply the Kansa method to design the thermal
metamaterial device for manipulating heat flux using gradient optimisation.

Hypothesis The most important hypothesis put forward in the thesis is the following.
The Kansa method with developed formulations is suitable for solving the problems of
elliptical, parabolic and hyperbolic heat flow in thermal metamaterials with spatially
variable thermophysical parameters and the method is appropriate for the effective design
of a metamaterial device by gradient optimisation.

Structure of the work The thesis is divided into five chapters:

• Introduction This chapter is an introduction to the thesis in which the considered
problems are outlined, as well as a literature review and the objectives and hypothesis
of the work are presented.

• Governing equations and computational methods This chapter presents the gov-
erning equations and computational methods used in the work. Thesis shows the ap-
plication of collocation methods in conjunction with the Kansa method for solving the
initial-boundary value problem. An important element of this chapter is the discussion
on the algorithms for finding the good value of the shape parameter.

• Validation and verification of developed methods and algorithms This chap-
ter examines whether the created solver has been correctly implemented, whether the
Kansa method is suitable for solving the problems considered in the thesis, and whether
the proposed algorithms for finding a good shape parameter value are effective.

• Optimal design for heat flux manipulation In this chapter, the problem of de-
signing a metamaterial device is formulated in the form of an optimisation problem.
Several types of device were considered for different variants of the heat flux manipu-
lation: inversion, concentration, shielding, and cloaking.

• Conclusions This chapter collects all conclusions drawn on the basis of the research
and presents recommendations for future research.

• Appendix This chapter contains a short description of the implementation of the finite
difference method solver used in the work.

Author’s publications created in the course of research In the course of research
on the problems considered in the work, the author published several articles closely re-
lated to the thesis theme. In [132], the problems of two-dimensional hyperbolic heat flow
in a material with spatially variable thermophysical parameters in irregular domains and
time-dependent Neumann boundary conditions were analysed. [127] was the first author’s
work on analysis of the algorithms for finding good value of the shape parameter, this re-
search was continued in [130] and [133]. [128] considered the problems of one-dimensional
heat flow for exponential spatial distributions of thermophysical parameters. In [126],
heat flow was analysed in materials whose thermophysical parameter distributions were
modelled using the Heaviside function. In [129] and [131], one and two-dimensional cases
of hyperbolic heat flow in a material with spatially variable thermophysical parameters
were considered.
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2. Governing equations and compu-
tational methods

2.1 Statement of the initial-boundary value problem

of heat flow in inhomogeneous medium

The basic equation that is solved in the thesis is the Cattaneo-Vernotte Equation 1.7 for
an inhomogeneous medium:

γ (x) ρ (x)

(
τ
∂2u

∂t2
+
∂u

∂t

)
= ∇ · (κ (x)∇u) . (2.1)

The above equation is solved in the time domain t ∈ (0, T 〉 where T is the length of the
observation interval and the space domain x ∈ Ω̄ ⊂ Rd where d ≥ 1. Since the Cattaneo-
Vernotte model is hyperbolic, it is necessary to impose two initial conditions, one for the
initial temperature field:

u (x, t = 0) = u0 (x) , (2.2)

and one for the time derivative of the initial temperature field:

u̇ (x, t = 0) = u̇0 (x) . (2.3)

Three types of boundary conditions were used [22]:

• Dirichlet boundary condition

u (xb, t) = ub (xb, t) , (2.4)

where ub is the boundary temperature function and xb is the boundary point,

• Neumann boundary condition

−κ (xb)
∂u (xb, t)

∂n̄
= qb (xb, t) + τ

∂qb (xb, t)

∂t
, (2.5)

where ∂/∂n̄ is the derivative in the normal direction and qb is the boundary heat flux
in the normal direction,

• Robin boundary condition

−κ (xb)
∂u (xb, t)

∂n̄
= α (xb) (u∞ (xb)− u (xb, t))− α (xb) τ

∂u (xb, t)

∂t
. (2.6)

where u∞ is the ambient temperature and α is the heat transfer coefficient.
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Cattaneo-Vernotte Equation 2.1 together with the initial and the boundary conditions
creates the initial-boundary value problem which is considered in the work. Special cases
of the Cattaneo-Vernotte Equation 2.1 were also considered. When relaxation time τ = 0,
Equation 2.1 simplifies to the unsteady-state parabolic heat equation for an inhomoge-
neous medium:

γ (x) ρ (x)
∂u

∂t
= ∇ · (κ (x)∇u) , (2.7)

for which the initial condition given by Equation 2.3 does not apply. When u̇ = 0,
Equation 2.1 simplifies to the steady-state elliptic heat equation for an inhomogeneous
medium:

∇ · (κ (x)∇u) = 0. (2.8)

for which the initial conditions given by Equations 2.2 and 2.3 do not apply while the
boundary conditions given by Equations 2.4 - 2.6 become time independent. At the end
of this section, it is worth emphasizing once again that the heat flow problems solved in
the thesis, governed by a hyperbolic, parabolic or elliptical model, were considered for
materials with spatially variable thermophysical parameters: density ρ (x), specific heat
capacity γ (x) and thermal conductivity κ (x).

2.2 Collocation methods

There is no known general closed solution of the described initial-boundary value problem.
For this reason, numerical methods have to be employed to construct a solution approxi-
mately. In the thesis, it will be done using the collocation method, while in this section,
it will be shown how to do it. The starting point for considering the collocation method
is to rewrite the Cattaneo-Vernotte Equation 2.1 in the Cartesian coordinate system and
denote the temporal derivative by a dot and the spatial derivative by a comma:

γ (x) ρ (x) (τ ü+ u̇) =

κ,x (x)u,x + κ,y (x)u,y + κ,z (x)u,z + κ (x) (u,xx + u,yy + u,zz) . (2.9)

This form of the Cattaneo-Vernotte equation is very useful for further considerations,
because it is written in the Cartesian coordinate system that will be used at work.

2.2.1 Spatial collocation method for solving the initial-boun-
dary value problem

Let’s start by introducing the two-dimensional domain in which the problem will be
solved, it is shown in Figure 2.1. The presented formulation is also valid for n-dimensional
domains.

As shown in Figure 2.1, the domain Ω consists of the interior Ω̄ and the boundary Γ
which consists of boundaries ΓD, ΓN , ΓR on which the Dirichlet, Neumann, and Robin
boundary conditions are imposed, respectively. The above can be written as:

Ω = Ω̄ ∪ Γ, (2.10)
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0

x

y

Ω̄

x1

x2

x3

x4

x5

xn

ΓD

ΓN

ΓR

Figure 2.1: Two-dimensional domain Ω with distinguished interior Ω̄, boundary Γ and
collocation points x

Γ = ΓD ∪ ΓN ∪ ΓR, (2.11)

ΓD ∩ ΓN ∩ ΓR = ∅. (2.12)

Cattaneo-Vernotte Equation 2.9 must be satisfied at every moment in time and every
point in the interior Ω̄, while Equations 2.4 - 2.6 describing the Dirichlet, Neumann and
Robin boundary conditions must be satisfied at every moment in time and every point
belonging to the ΓD, ΓN , ΓR boundaries respectively. In the collocation method, it is
assumed that the introduced equations are satisfied only in a discrete set X ∈ Ω of n
collocation points [106, 91]:

X =




x1

x2
...
xn


 (2.13)
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where

xi =



xi
yi
zi


 . (2.14)

The total number of collocation points n consists of nI points belonging to the interior
and nD, nN , nR belonging to the boundaries on which the Dirichlet, Neumann and Robin
boundary conditions were imposed, respectively:

n = nI + nD + nN + nR. (2.15)

The proposed variant of the collocation method is called the mixed collocation [106, 91],
because the set X contains both the interior collocation points and boundary collocation
points. Therefore, Equation 2.9 is satisfied only at the collocation points in the interior
Ω̄ at any time moment, while the boundary conditions 2.4 - 2.6 are satisfied at any time
moment and only at the collocation points on the boundary ΓD, ΓN , ΓR, respectively.
Using the language of mathematics it can be stated that:

∀ (xi, t) ∈
(
Ω̄× (0, T 〉

)
: γρ (τ ü+ u̇) =

κ,xu,x + κ,yu,y + κ,zu,z + κ (u,xx + u,yy + u,zz) , (2.16)

∀ (xi, t) ∈ (ΓD × (0, T 〉) : u = ub, (2.17)

∀ (xi, t) ∈ (ΓN × (0, T 〉) : −κu,n̄ = (qb + τ q̇b) , (2.18)

∀ (xi, t) ∈ (ΓR × (0, T 〉) : −κu,n̄ = α (u∞ − u)−ατ u̇, (2.19)

where vectors and matrices related to Equation 2.16 are as follows:

u̇ =




u̇ (x1, t)
u̇ (x2, t)

...
u̇ (xnI

, t)


 , ü =




ü (x1, t)
ü (x2, t)

...
ü (xnI

, t)


 , (2.20)

u,x =




u,x (x1, t)
u,x (x2, t)

...
u,x (xnI

, t)


 , u,y =




u,y (x1, t)
u,y (x2, t)

...
u,y (xnI

, t)


 , u,z =




u,z (x1, t)
u,z (x2, t)

...
u,z (xnI

, t)


 , (2.21)

u,xx =




u,xx (x1, t)
u,xx (x2, t)

...
u,xx (xnI

, t)


 , u,yy =




u,yy (x1, t)
u,yy (x2, t)

...
u,yy (xnI

, t)


 , u,zz =




u,zz (x1, t)
u,zz (x2, t)

...
u,zz (xnI

, t)


 , (2.22)
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γ =




γ (x1) 0 · · · 0
0 γ (x2) · · · 0
...

...
. . .

...
0 0 · · · γ (xnI

)


 , (2.23)

ρ =




ρ (x1) 0 · · · 0
0 ρ (x2) · · · 0
...

...
. . .

...
0 0 · · · ρ (xnI

)


 , (2.24)

κ =




κ (x1) 0 · · · 0
0 κ (x2) · · · 0
...

...
. . .

...
0 0 · · · κ (xnI

)


 , (2.25)

κ,x =




κ,x (x1) 0 · · · 0
0 κ,x (x2) · · · 0
...

...
. . .

...
0 0 · · · κ,x (xnI

)


 , (2.26)

κ,y =




κ,y (x1) 0 · · · 0
0 κ,y (x2) · · · 0
...

...
. . .

...
0 0 · · · κ,y (xnI

)


 , (2.27)

κ,z =




κ,z (x1) 0 · · · 0
0 κ,z (x2) · · · 0
...

...
. . .

...
0 0 · · · κ,z (xnI

)


 , (2.28)

to Dirichlet boundary condition 2.17 as follows:

u =




u (x1, t)
u (x2, t)

...
u (xnD

, t)


 , (2.29)

ub =




ub (x1, t)
ub (x2, t)

...
ub (xnD

, t)


 , (2.30)
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to Neumann boundary condition 2.18 as follows:

u,n =




u,n (x1, t)
u,n (x2, t)

...
u,n (xnN

, t)


 , qb =




qb (x1, t)
qb (x2, t)

...
qb (xnN

, t)


 , q̇b =




q̇b (x1, t)
q̇b (x2, t)

...
q̇b (xnN

, t)


 , (2.31)

κ =




κ (x1) 0 · · · 0
0 κ (x2) · · · 0
...

...
. . .

...
0 0 · · · κ (xnN

)


 , (2.32)

and to Robin boundary condition 2.19 as follows:

u∞ =




u∞ (x1)
u∞ (x2)

...
u∞ (xnR

)


 , α =




α (x1) 0 · · · 0
0 α (x2) · · · 0
...

...
. . .

...
0 0 · · · α (xnR

)


 , (2.33)

κ =




κ (x1) 0 · · · 0
0 κ (x2) · · · 0
...

...
. . .

...
0 0 · · · κ (xnR

)


 . (2.34)

Time advancement will be presented only later, however, for the sake of consistency, it is
worth introducing the vectors of initial conditions:

u0 =




u0 (x1, 0)
u0 (x2, 0)

...
u0 (xnI

, 0)


 , u̇0 =




u̇0 (x1, 0)
u̇0 (x2, 0)

...
u̇0 (xnI

, 0)


 . (2.35)

The solution of the considered initial-boundary value problem boils down to solving the
system of differential-algebraic Equations 2.16 - 2.19. In order to solve such a system,
it is necessary to transform it into a system of algebraic equations by approximation of
terms containing spatial and temporal derivatives. In the case of the Neumann boundary
conditions, it is necessary to approximate the terms containing spatial derivatives while in
the case of the Robin boundary conditions, it is necessary to approximate the terms con-
taining spatial and temporal derivatives. In turn, in order to approximate Equation 2.16,
the method of lines will be used [146]. Method of lines consists in transforming a partial
differential equation into a set of ordinary differential equations. The result is a system of
time-dependent ordinary differential equations. In the considered initial-boundary value
problem, the partial differential equation Equation 2.16 undergoes transformation, as a
result of which the following ordinary differential equation is obtained:

Mü+Du̇+Ku = 0, (2.36)
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where M is the thermal mass matrix, D is the thermal damping matrix, and K is the
thermal stiffness matrix and 0 is a zero vector of the appropriate size. Naturally, the
above names of the matrices were created through the analogy to mechanical vibrations
[179]. Determining the thermal mass matrix M and thermal damping matrix D is simple
in the considered problem because it will only require the multiplication of a priori known
matrices containing thermophysical parameters, which will be presented later. However,
the calculation of the thermal stiffness matrixK is much more difficult because it requires
an approximation of the spatial derivatives terms in the right-hand side of Equation 2.16:

−Ku ≈ κ,xu,x + κ,yu,y + κ,zu,z + κ (u,xx + u,yy + u,zz) . (2.37)

This step will be done using the Kansa method however it will be discussed in detail later
in the work. In the special case when the relaxation time is equal to zero τ = 0, the
thermal mass matrix M is also equal to zero. Consequently, Equation 2.36 simplifies to:

Du̇+Ku = 0, (2.38)

In turn, when the problem is steady, the thermal mass matrix M and thermal damping
matrix D are equal to zero. Consequently, Equation 2.36 simplifies to:

Ku = 0. (2.39)

After approximating the spatial derivatives terms, it becomes possible to use the time
integration scheme which approximates Equation 2.36 or 2.38 in time to the form that
allows to determining the state variable vector in the next (k+ 1) time step based on the
values from the current (k) and previous (k − 1, k − 2 ... ) time steps:

Auk+1 = b (uk, u̇k, ük,uk−1, u̇k−1, ük−1 ...) , (2.40)

where A is the main matrix:

A =




A1,1 A1,2 · · · A1,nI

A2,1 A2,2 · · · A2,nI

...
...

. . .
...

AnI ,1 AnI ,2 · · · AnI ,nI


 , (2.41)

and b is right-hand side vector:

b =




b1

b2
...
bnI


 . (2.42)

The time integration scheme application is omitted when the problem is steady and Equa-
tion 2.39 is being considered. The next step is to impose the boundary conditions which is
done by extending the system of Equations 2.40 describing the interior points with equa-
tions describing the boundary points. After that, the following equation is then obtained:

Āuk+1 = b̄, (2.43)

15



2. Governing equations and computational methods

where Ā is the main matrix after imposing boundary conditions and b̄ is right-hand side
vector after imposing boundary conditions. Solving the system of Equation 2.43 gives the
solution at the next time step. As can be seen, the classical approach in the unsteady-state
case is a time-marching procedure. If the problem is steady and described by Equation
2.39 then there is no time-marching anymore and consequently Equation 2.43 is simplified
to the following form:

Āu = b̄. (2.44)

The presented approach to collocation will be called classical in the thesis.

2.2.2 Spacetime collocation method for solving the initial-boun-
dary value problem

The previous section presents the spatial collocation method in which only space is collo-
cated and consequently Equations 2.9 - 2.6 must be satisfied at any moment. However, it
is possible to develop this approach and collocate the time as well. If time is also taken
as a coordinate then the considered domain Ω becomes a part of the Galilean spacetime
ΩST:

Ω ⊂ ΩST = R3 × R≥0, (2.45)

and the collocation points have four coordinates:

χi =

[
xi

ti

]
=




xi
yi
zi
ti


 . (2.46)

This approach has a number of consequences, first of all, the coordinate system becomes
a four-dimensional spacetime coordinate system. Due to the obvious difficulties related to
drawing four-dimensional figures, a three-dimensional version will be presented in which
a two-dimensional space is considered in conjunction with the third dimension which is
time. Figure 2.2 shows the three-dimensional spacetime domain with collocation points
used in the work.

The most important observation about Figure 2.2 is that in the spacetime the initial-
boundary problem is treated as a boundary-value problem. As for the boundaries ΓD,
ΓN , ΓR become spacetime boundaries, and there is one new boundary Γ0 associated with
the initial conditions due to the fact that in the spacetime approach the initial conditions
become the Dirichlet boundary condition at χ (t = 0).Similar to the classical approach,
the domain Ω consists of the interior Ω̄ and the boundary Γ which consists of boundaries
ΓD, ΓN , ΓR, and Γ0. The above can be written as:

Ω = Ω̄ ∪ Γ, (2.47)

Γ = ΓD ∪ ΓN ∪ ΓR ∪ Γ0, (2.48)

ΓD ∩ ΓN ∩ ΓR ∩ Γ0 = ∅. (2.49)
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0

T

x

y

t

Ω̄

Γ0

ΓD

ΓN

ΓR

χ1

χ2

χ3

χ4

χn

Figure 2.2: Three-dimensional spacetime domain Ω with distinguished interior Ω̄, bound-
ary Γ and collocation points χ

The total number of collocation points n consists of nI points belonging to the interior
and nD, nN , nR belonging to the boundaries on which the Dirichlet, Neumann and Robin
boundary conditions were imposed, respectively and n0 belonging to the boundary on
which the initial conditions were imposed:

n = nI + nD + nN + nR + n0. (2.50)

In the case of the collocation approach, it is assumed that Equation 2.9 is satisfied only
at the collocation points in the interior Ω̄, the initial conditions are satisfied only at the
collocation points on the boundary Γ0, while the boundary conditions 2.4 - 2.6 are satisfied
only at the collocation points on the boundary ΓD, ΓN , ΓR, respectively:

∀χi ∈ Ω̄ : γρ (τ ü+ u̇) = κ,xu,x + κ,yu,y + κ,zu,z + κ (u,xx + u,yy + u,zz) , (2.51)

∀χi ∈ Γ0 : u = u0 ∧ u̇ = u̇0, (2.52)

∀χi ∈ ΓD : u = ub, (2.53)
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∀χi ∈ ΓN : −κu,n̄ = (qb + τ q̇b) , (2.54)

∀χi ∈ ΓR : −κu,n̄ = α (u∞ − u)−ατ u̇, (2.55)

where vectors and matrices have the same form as in the classical approach, given by
Equation 2.29 - 2.35 with the one difference that instead of the (xi, t) argument there is
(χi) argument, for example:

u =




u (χ1)
u (χ2)

...
u (χn)


 . (2.56)

In the spacetime approach, in contrast to the classical approach and the method of lines,
the partial differential Equation 2.16 is not approximated to the set of ordinary differential
equations, but directly to the system of linear equations:

Au = b, (2.57)

where A is the main matrix:

A =




A1,1 A1,2 · · · A1,nI

A2,1 A2,2 · · · A2,nI

...
...

. . .
...

AnI ,1 AnI ,2 · · · AnI ,nI


 , (2.58)

and b is right-hand side vector:

b =




b1

b2
...

bnI


 . (2.59)

The last step is to impose the initial and boundary conditions which is done by extend-
ing the system of Equations 2.57 with equations of boundary conditions for boundary
collocation points. After that, the following equation is then obtained:

Āu = b̄. (2.60)

Solving Equation 2.60 gives the solution at all points of the spacetime domain. The
spacetime approach appears to be structurally much simpler, but is much more compu-
tationally expensive because it operates on much larger matrices which is more expensive
than operating on smaller matrices in conjunction with time advancement.
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2.3 Approximation of unknown fields and their spa-

tial and temporal derivatives using the Kansa

method

The Kansa method is a numerical method for solving partial differential equations based
on the approximation of unknown fields using radial basis functions [51]. Radial basis
function is a real-valued function ϕ whose value at a given point xi or χi depends only
on the distance from the selected point xj or χj so-called center. Thus, every radial basis
function satisfies:

ϕ (xi, xj) = ϕ (||xi − xj||) , (2.61)

in case of the classical approach and

ϕ (χi, χj) = ϕ (||W (χi − χj)||) , (2.62)

in case of the spacetime approach. ||·|| is the second Euclidean norm and W is spacetime
scaling matrix:

W =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 β


 , (2.63)

where β is a spacetime scaling parameter, the measure of which is the distance per time,
i.e. velocity. Figure 2.3 shows distance between two points in a two-dimensional Cartesian
coordinate system and in a two-dimensional spacetime coordinate system in which one
dimension is spatial and one is temporal.

0 1

1
x

y

xi

xj

||x i
− x

j
||

0 1

β
x

t

χi

χj

||W
(χ

i
− χ

j
)||

Figure 2.3: The distance between two points in a two-dimensional Cartesian coordinate
system on the left and a two-dimensional spacetime coordinate system in which one di-
mension is spatial and one is temporal on the right
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There are many radial base functions such as Gaussian, Laguerre-Gaussian, Poisson
radial, Matérn, truncated power and many more, however, in this work it was decided to
use the general multiquadric radial basis function [51]. For the classical approach it is as
follows:

ϕ (xi,xj) =
(
||xi − xj||2 + ε2

)p
, (2.64)

while for spacetime as follows [28, 98]:

ϕ (xi,xj) =
(
||W (χi − χj)||+ ε2

)p
=
(
||xi − xj||2 + β2 (ti − tj)2 + ε2

)p
, (2.65)

where ε is a shape parameter and p is a multiquadric radial basis function exponent. In
this study, the most commonly used value of p = 0.5 was used [51], considerations on
other values can be found in [132]. The shape parameter ε is of fundamental importance
for the radial basis function approximation, therefore its value must be carefully selected.
Due to the consistency of the work, the algorithms for selecting its value will be presented
later in the thesis. In the Kansa method, it is assumed that the value of an unknown
variable u at a given point xi can be expressed as a linear combination of radial basis
functions using the set of centres [51]:

u (xi) =
n∑

j=1

ϕ (xi,xj) cj, (2.66)

where cj are coefficients in a linear combination. Writing Equation 2.66 for all collocation
points of the computational domain leads to a n × n system of linear equations, which
can be written in a matrix form:

u = φc, (2.67)

where c is the coefficients vector:

c =




c1

c2
...
cn


 . (2.68)

and φ is the radial basis functions matrix:

φ =




ϕ (||x1 − x1||) ϕ (||x1 − x2||) · · · ϕ (||x1 − xn||)
ϕ (||x2 − x1||) ϕ (||x2 − x2||) · · · ϕ (||x2 − xn||)

...
...

. . .
...

ϕ (||xn − x1||) ϕ (||xn − x2||) · · · ϕ (||xn − xn||)


 , (2.69)

in case of the classical approach and:

φ =




ϕ (||χ1 − χ1||) ϕ (||χ1 − χ2||) · · · ϕ (||χ1 − χn||)
ϕ (||χ2 − χ1||) ϕ (||χ2 − χ2||) · · · ϕ (||χ2 − χn||)

...
...

. . .
...

ϕ (||χn − χ1||) ϕ (||χn − χ2||) · · · ϕ (||χn − χn||)


 , (2.70)
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in case of the spacetime approach. In the presented approach the set of collocation points
coincide with the set of centres. It is worth emphasizing that there are approaches in
which the collocation points and the centres do not coincide [51]. Solving the initial-
boundary value problem described by Equation 2.9 using the classical or spacetime ap-
proach requires approximating terms containing derivatives. The foundation of solving
this problem is differentiating Equation 2.67 with respect to the appropriate spatial or
temporal coordinate:

u,v = φ,vc, (2.71)

where:

v = {x, y, z, xx, yy, zz}, (2.72)

φ,v =




ϕ,v (||x1 − x1||) ϕ,v (||x1 − x2||) · · · ϕ,v (||x1 − xn||)
ϕ,v (||x2 − x1||) ϕ,v (||x2 − x2||) · · · ϕ,v (||x2 − xn||)

...
...

. . .
...

ϕ,v (||xn − x1||) ϕ,v (||xn − x2||) · · · ϕ,v (||xn − xn||)


 , (2.73)

in case of the classical approach and:

v = {x, y, z, t, xx, yy, zz, tt}, (2.74)

φ,v =




ϕ,v (||χ1 − χ1||) ϕ,v (||χ1 − χ2||) · · · ϕ,v (||χ1 − χn||)
ϕ,v (||χ2 − χ1||) ϕ,v (||χ2 − χ2||) · · · ϕ,v (||χ2 − χn||)

...
...

. . .
...

ϕ,v (||χn − χ1||) ϕ,v (||χn − χ2||) · · · ϕ,v (||χn − χn||)


 , (2.75)

in case of the spacetime approach. Determination of the spatial derivatives terms using
Equation 2.71 in the classical approach and Equation 2.67 leads to the system of ordinary
differential equations, i.e. as in the method of lines. On the other hand, application of
Equation 2.67 and the determination of the spatial and temporal derivatives terms using
this equation in the spacetime approach leads to the system of algebraic equations. The
approach presented so far uses the linear combination coefficients c, which means that in
order to obtain an unknown field u it is necessary to use Equation 2.67. For this reason,
this approach is called the coefficient approach in work. It turns out that it is possible
to determine the spatial and temporal derivatives terms in a different way [51] - a way to
get an immediately unknown field u without having to perform the intermediate step of
using Equation 2.67. Assuming that [51]:

detφ 6= 0, (2.76)

one can transform Equation 2.67 to the following form:

c = φ−1u. (2.77)

which after substituting to Equation 2.71 gives:

u,v = φ,vφ
−1u. (2.78)
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To distinguish the coefficient approach from this approach, the following differential op-
erator is introduced:

D,v = φ,vφ
−1, (2.79)

which after substituting to Equation 2.78 gives:

u,v = D,vu. (2.80)

The approach presented above is called the pseudospectral approach. The advantage of
the coefficient approach is that the obtained linear combination coefficients allow for an
easy and accurate interpolation of the results beyond the collocation points. In turn,
an important advantage of the pseudospectral approach is that the temperature field is
obtained directly. An attentive reader has probably already noticed that the methodology
presented above allows using as many as four approaches of the Kansa method:

• Classical coefficient approach,

• Classical pseudospectral approach,

• Spacetime coefficient approach,

• Spacetime pseudospectral approach.

All four approaches represents the non-symmetric Kansa method and will be covered in
the thesis. These four approaches to the Kansa method are not the only approaches to
this method that are quite numerous [51]. The above considerations are complemented by
showing how to fill the matrix cells containing the derivatives of the radial basis functions
given by Equations 2.64 and 2.65. Radial basis functions were differentiated with respect
to the coordinates of the collocation points. The first- and second-order spatial derivatives
of the radial basis function given by Equation 2.64 in the three-dimensional Cartesian
coordinate system are as follows:

ϕ,x = 2p (xi − xj)
(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2

)p−1
, (2.81)

ϕ,y = 2p (yi − yj)
(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2

)p−1
, (2.82)

ϕ,z = 2p (zi − zj)
(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2

)p−1
, (2.83)

ϕ,xx = 2p
(
(2p− 1) (xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2

)
·

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2

)p−2
, (2.84)

ϕ,yy = 2p
(
(2p− 1) (yi − yj)2 + (zi − zj)2 + (xi − xj)2 + ε2

)
·

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2

)p−2
, (2.85)
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ϕ,zz = 2p
(
(2p− 1) (zi − zj)2 + (xi − xj)2 + (yi − yj)2 + ε2

)
·

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2

)p−2
. (2.86)

In the case of the spacetime coordinate system, the first and second spatial and temporal
derivatives of the radial basis function given by Equation 2.65 are as follows:

ϕ,x = 2p (xi − xj)
(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)p−1
, (2.87)

ϕ,y = 2p (yi − yj)
(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)p−1
, (2.88)

ϕ,z = 2p (zi − zj)
(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)p−1
, (2.89)

ϕ,t = 2pβ2 (ti − tj)
(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)p−1
, (2.90)

ϕ,xx = 2p
(
(2p− 1) (xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)
·

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)p−2
, (2.91)

ϕ,yy = 2p
(
(2p− 1) (yi − yj)2 + (zi − zj)2 + (xi − xj)2 + β2 (ti − tj)2 + ε2

)
·

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)p−2
, (2.92)

ϕ,zz = 2p
(
(2p− 1) (zi − zj)2 + (xi − xj)2 + (yi − yj)2 + β2 (ti − tj)2 + ε2

)
·

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)p−2
, (2.93)

ϕ,tt = 2p
(
(2p− 1) β2 (ti − tj)2 + (xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε2

)
·

(
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + β2 (ti − tj)2 + ε2

)p−2
. (2.94)

At this point, all the most important tools to approximate spatial derivatives (and addi-
tionally time derivatives for the spacetime approach) in Equation 2.16

γρ (τ ü+ u̇) = κ,xu,x + κ,yu,y + κ,zu,z + κ (u,xx + u,yy + u,zz) ,

are presented.

2.3.1 Classical approach

Coefficient approach In the classical coefficient approach, the terms containing spatial
derivatives φ,x, φ,xx, φ,y, φ,yy, φ,z, φ,zz are approximated using Equation 2.71 while the
terms containing temporal derivatives u̇, ü by differentiating Equation 2.67 over time:

u̇ = φċ, (2.95)
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ü = φc̈, (2.96)

which after substitution to Equation 2.16 leads to:

γρφ (τ c̈+ ċ) = (κ,xφ,x + κ,yφ,y + κ,zφ,z + κ (φ,xx + φ,yy + φ,zz)) c, (2.97)

which can be written in a manner characteristic for the mechanical vibrations presented
earlier in Equation 2.36:

Mcc̈+Dcċ+Kcc = 0, (2.98)

or when τ = 0 as:

Dcċ+Kcc = 0. (2.99)

The c index in the matrices indicates that the coefficient approach is used. These matrices
can be computed as follows:

Mc = τγρφ, (2.100)

Dc = γρφ, (2.101)

Kc = − (κ,xφ,x + κ,yφ,y + κ,zφ,z + κ (φ,xx + φ,yy + φ,zz)) . (2.102)

Pseudospectral approach In the classical pseudospectral approach, the terms con-
taining spatial derivatives φ,x, φ,xx, φ,y, φ,yy, φ,z, φ,zz are approximated using Equation
2.80 which after substitution to Equation 2.16 leads to:

γρ (τ ü+ u̇) = (κ,xD,x + κ,yD,y + κ,zD,z + κ (D,xx + D,yy + D,zz))u, (2.103)

which can be written in a manner characteristic for the mechanical vibrations presented
earlier in Equation 2.36:

Muü+Duu̇+Kuu = 0. (2.104)

or when τ = 0 as:

Duu̇+Kuu = 0. (2.105)

The u index in the matrices indicates that the pseudospectral approach is used. These
matrices can be computed as follows:

Mu = τγρ, (2.106)

Du = γρ, (2.107)

Ku = − (κ,xD,x + κ,yD,y + κ,zD,z + κ (D,xx + D,yy + D,zz)) . (2.108)
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Alternative way of calculating thermal stiffness matrix The approaches pre-
sented above require the knowledge of both thermophysical parameters and some of their
derivatives, precisely, spatial derivatives of the thermal conductivity in the x, y, z di-
rections. The values of these distributions are stored in the matrices γ, ρ, κ, κ,x, κ,y,
κ,z. Unfortunately, in some practical problems, the values of thermophysical parameters
may be given by discontinuous spatial functions or the distribution function is not known
explicitly. In this thesis such a problem will be encountered later in the work when the
optimisation process is considered. It may cause significant problems in determining the
thermal conductivity derivatives κ,x, κ,y, κ,z. Calculating them using the classical numer-
ical differentiation operation can be burdened with a huge numerical error. Consequently,
it is necessary to find an alternative way of solving this issue. The Kansa method allows
to circumvent this problem. Let’s start with rewriting Equation 2.16:

γρ (τ ü+ u̇) = κ,xu,x + κ,yu,y + κ,zu,z + κ (u,xx + u,yy + u,zz) ,

in a different form in which the product rule of differentiation did not apply:

γρ (τ ü+ u̇) = (κu,x),x + (κu,y),y + (κu,z),z . (2.109)

Using differential operators given by Equation 2.80 leads to:

γρ (τ ü+ u̇) = (κD,xu),x + (κD,yu),y + (κD,zu),z , (2.110)

and using it second time leads to:

γρ (τ ü+ u̇) = D,xκD,xu+ D,yκD,yu+ D,zκD,zu, (2.111)

which can be written as:

γρ (τ ü+ u̇) = (D,xκD,x + D,yκD,y + D,zκD,z)u, (2.112)

From the above equation it follows that the stiffness matrix for the pseudospectral for-
mulation is now as follows:

Ku = − (D,xκD,x + D,yκD,y + D,zκD,z) , (2.113)

while the substitution of Equation 2.67 to Equation 2.113 allows determining the stiffness
matrix for the coefficient formulation:

Kc = −
(
φ,xφ

−1κφ,x + φ,yφ
−1κφ,y + φ,zφ

−1κφ,z

)
. (2.114)

2.3.2 Spacetime approach

Coefficient approach In the spacetime coefficient approach, the terms containing spa-
tial and temporal derivatives φ,x, φ,xx, φ,y, φ,yy, φ,z, φ,zz, φ,t, φ,tt are approximated using
Equation 2.71 which after substitution to Equation 2.16 leads to:

γρ (τφ,tt + φ,t) c = (κ,xφ,x + κ,yφ,y + κ,zφ,z + κ (φ,xx + φ,yy + φ,zz)) c, (2.115)

which can be written in a manner presented earlier in Equation 2.57:

Acc = bc. (2.116)

The c index in the matrices indicates that the coefficient approach is used. These matrices
can be computed as follows:

Ac = γρ (τφ,tt + φ,t)− (κ,xφ,x + κ,yφ,y + κ,zφ,z + κ (φ,xx + φ,yy + φ,zz)) , (2.117)

bc = 0. (2.118)
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Pseudospectral approach In the spacetime pseudospectral approach, the terms con-
taining spatial and temporal derivatives φ,x, φ,xx, φ,y, φ,yy, φ,z, φ,zz, φ,t, φ,tt are approx-
imated using Equation 2.80 which after substitution to Equation 2.16 leads to:

γρ (τD,tt + D,t)u =

(κ,xD,x + κ,yD,y + κ,zD,z + κ (D,xx + D,yy + D,zz))u, (2.119)

which can be written in a manner presented earlier in Equation 2.57:

Auu = bu. (2.120)

The u index in the matrices indicates that the pseudospectral approach is used. These
matrices can be computed as follows:

Au = γρ (τD,tt + D,t)−
(κ,xD,x + κ,yD,y + κ,zD,z + κ (D,xx + D,yy + D,zz)) , (2.121)

bu = 0. (2.122)

The zero vector on the right-hand side of the above equation results from the fact that the
problem under consideration is, from a mathematical point of view, a sourceless boundary
value problem and since there is no source term in it, the right-hand side of the above
equation is equal to the zero vector.

Alternative way of calculating stiffness part of interpolation matrix As in
the classical approach, also in the spacetime approach, it is possible to formulate the
interpolation matrix without the knowledge of the thermophysical parameters derivatives.
The procedure is the same as in the case of the classical approach, after its application,
the interpolation matrix for the spacetime coefficient approach is as follows:

Ac = γρ (τφ,tt + φ,t)−
(
φ,xφ

−1κφ,x + φ,yφ
−1κφ,y + φ,zφ

−1κφ,z

)
, (2.123)

while for the spacetime pseudospectral approach as follows:

Au = γρ (τD,tt + D,t)− (D,xκD,x + D,yκD,y + D,zκD,z) . (2.124)

2.4 Initial and boundary conditions, time integration

schemes

So far, the collocation method for the approximate solution of Equation 2.1 has been
presented and the approximation of terms containing spatial (and temporal in the case
of spacetime) derivatives using the Kansa method has been introduced. Unfortunately,
these steps are not sufficient to solve the problem, however, this section will present most
of the remaining steps that still need to be performed to solve the problem. As already
mentioned, in the classical approach Equation 2.16:

γρ (τ ü+ u̇) = κ,xu,x + κ,yu,y + κ,zu,z + κ (u,xx + u,yy + u,zz)
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is approximated to the form of Equation 2.36:

Mü+Du̇+Ku = 0,

while in the spacetime approach to the form of Equation 2.57:

Au = b,

using the Kansa method. In the case of the classical approach, at this point, it is necessary
to apply the time integration scheme, impose initial and boundary conditions, and solve
the system of linear equations. However, in the case of the spacetime approach, it is
only necessary to impose initial and boundary conditions and solve the system of linear
equations because the problem is treated as a boundary problem.

2.4.1 Classical approach

2.4.1.1 Time integration schemes and initial conditions

Since the problem is hyperbolic, two initial conditions needs to be imposed:

u (xi, t = 0) = u0, (2.125)

u̇ (xi, t = 0) = u̇0. (2.126)

where xi ∈ Ω̄. The initial conditions in the pseudospectral approach are imposed accord-
ing to the two equations above, however for the coefficient approach it is necessary to
transform them using Equation 2.67:

c0 = φ−1u0, (2.127)

ċ0 = φ−1u̇0. (2.128)

Vectors c0 and ċ0 or u0 and u̇0 are applied through the time integration schemes. As
already mentioned, the goal of the time integration scheme is to approximate one of
Equations 2.98, 2.104, 2.99, 2.105:

Mcc̈+Dcċ+Kcc = 0,

Muü+Duu̇+Kuu = 0,

Dcċ+Kcc = 0,

Duu̇+Kuu = 0,

to one of the following:

Acck+1 = bc, (2.129)

Auuk+1 = bu, (2.130)

It allows to determine the field variable vector in the next (k+ 1) time step based on the
values from the current (k) and the previous (k − 1, k − 2 ... ) time steps. Two schemes
were used in the work: the implicit Euler method [18] and the Houbolt method [76]. In
this section, the vectors ü, u̇, u are used. However, all equations are also valid for vectors
c̈, ċ, c, so they can be used in both the coefficient and pseudospectral approach.
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Implicit Euler method for parabolic heat equation In the implicit Euler method
for the parabolic heat equation, Equation 2.38 is approximated in time by:

Du̇k +Kuk+1 = 0. (2.131)

Vector u̇k can be approximated using the finite differences:

u̇k =
uk+1 − uk

∆t
, (2.132)

which after substitution to Equation 2.131 leads to:

(
1

∆t
D +K

)
uk+1 =

(
1

∆t
D

)
uk (2.133)

Equation 2.133 is the implicit Euler scheme for the parabolic heat equation. Naturally, in
this scheme, no starting procedure is needed, the initial conditions are imposed through
the vector u0 by simply putting k = 0:

(
1

∆t
D +K

)
u1 =

(
1

∆t
D

)
u0. (2.134)

Implicit Euler method for hyperbolic Cattaneo-Vernotte equation In the im-
plicit Euler method for the hyperbolic Cattaneo-Vernotte model, Equation 2.36 is approx-
imated in time by:

Mük +Du̇k +Kuk+1 = 0. (2.135)

Vectors u̇k, ük can be approximated using the finite differences:

u̇k =
uk+1 − uk−1

2∆t
, (2.136)

ük =
uk+1 − 2uk + uk−1

(∆t)2 , (2.137)

which after substitution to Equation 2.135 leads to:

M

(
uk+1 − 2uk + uk−1

(∆t)2

)
+D

(
uk+1 − uk−1

2∆t

)
+Kuk+1 = 0, (2.138)

and after rearrangement to:

(
1

(∆t)2M +
1

2∆t
D +K

)
uk+1 =

(
2

(∆t)2M

)
uk+

(
− 1

(∆t)2M +
1

2∆t
D

)
uk−1. (2.139)
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Equation 2.139 is the implicit Euler scheme for the hyperbolic Cattaneo-Vernotte equa-
tion. Obviously, it can only be used for the second and subsequent time advancements.
It cannot be used in the first time advancement because vector uk−1 is outside the time
domain. Accordingly, a starting procedure is required. Let’s solve Equation 2.136 for
uk−1:

uk−1 = uk+1 − 2∆tu̇k (2.140)

substitute it to Equation 2.139:

(
1

(∆t)2M +
1

2∆t
D +K

)
uk+1 =

(
2

(∆t)2M

)
uk+

(
− 1

(∆t)2M +
1

2∆t
D

)
(uk+1 − 2∆tu̇k) ,

(2.141)

rearrange:

(
2

(∆t)2M +K

)
uk+1 =

(
2

(∆t)2M

)
uk +

(
2

∆t
M −D

)
u̇k, (2.142)

and put k = 0:

(
2

(∆t)2M +K

)
u1 =

(
2

(∆t)2M

)
u0 +

(
2

∆t
M −D

)
u̇0, (2.143)

Equation 2.143 is the starting procedure of the implicit Euler method. It allows to impose
the initial conditions through the vectors u0, u̇0.

Houbolt method for hyperbolic Cattaneo-Vernotte equation Hyperbolic prob-
lems are characterized by solutions with a great variability over time, much greater than,
for example, in the case of parabolic problems. Therefore, lower-order methods such as
the Euler method can be insufficient. For this reason, it was also decided to use a method
tailored to hyperbolic problems - the Houbolt method [76]. In the Houbolt method,
Equation 2.36 is approximated by :

Mük+1 +Du̇k+1 +Kuk+1 = 0, (2.144)

while u̇k+1, ük+1 are approximated by:

u̇k+1 =
11uk+1 − 18uk + 9uk−1 − 2uk−2

6∆t
(2.145)

ük+1 =
2uk+1 − 5uk + 4uk−1 − uk−2

(∆t)2 (2.146)
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which after substitution to Equation 2.144 leads to:
(

2

(∆t)2M +
11

6∆t
D +K

)
uk+1 =

(
5

(∆t)2M +
3

∆t
D

)
uk+

(
− 4

(∆t)2M − 3

2∆t
D

)
uk−1+

(
1

(∆t)2M +
1

3∆t
D

)
uk−2 (2.147)

Equation 2.147 is the Houbolt scheme. Similar to the implicit Euler scheme, it can only be
used for the third and subsequent time advancements. It cannot be used in the first and
second time advancement because vectors uk−1 and uk−2 are outside the time domain.
Also in this scheme, a starting procedure is needed. Let’s approximate vectors u̇k, ük

using the finite differences [156]:

u̇k =
2uk+1 + 3uk − 6uk−1 + uk−2

6∆t
, (2.148)

ük =
uk+1 − 2uk + uk−1

(∆t)2 , (2.149)

solve it for uk−1, uk−2:

uk−1 = (∆t)2 ük + 2uk − uk+1, (2.150)

uk−2 = 6 (∆t)2 ük + 6∆tu̇k + 9uk − 8uk+1, (2.151)

substitute to Equation 2.147:
(

2

(∆t)2M +
11

6∆t
D +K

)
uk+1 = (2.152)

(
5

(∆t)2M +
3

∆t
D

)
uk+

(
− 4

(∆t)2M − 3

2∆t
D

)
(
(∆t)2 ük + 2uk − uk+1

)
+

(
1

(∆t)2M +
1

3∆t
D

)
(
6 (∆t)2 ük + 6∆tu̇k + 9uk − 8uk+1

)
, (2.153)

rearrange:
(

6

(∆t)2M +
3

∆t
D +K

)
uk+1 =

(
6

(∆t)2M +
3

∆t
D

)
uk+

(
6

∆t
M + 2D

)
u̇k+

(
2M +

1

2
∆tD

)
ük, (2.154)
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and put k = 0:

(
6

(∆t)2M +
3

∆t
D +K

)
u1 =

(
6

(∆t)2M +
3

∆t
D

)
u0+

(
6

∆t
M + 2D

)
u̇0+

(
2M +

1

2
∆tD

)
ü0. (2.155)

Equation 2.155 is the starting procedure of the Houbolt method. It allows to impose the
initial conditions through the vectors u0, u̇0, ü0. Naturally, the vector ü0 is not an initial
condition, however, it can be easily determined by solving Equation 2.144 for ük+1 and
putting k = −1:

ü0 = −M−1 (Du̇0 +Ku0) . (2.156)

After the time integration scheme is applied, it is possible to proceed to the imposition
of boundary conditions.

2.4.1.2 Boundary conditions

Once Equation 2.129 or 2.130:

Acck+1 = bc,

Auuk+1 = bu,

has been obtained, it is possible to proceed to the imposition of the boundary conditions.
It consists in replacing the equations corresponding to the boundary points in the system
of Equations 2.129 or 2.130 with the equations corresponding to the given boundary
conditions. This procedure is repeated at every time step after the time integration
scheme is used. The forms of the matrix equations describing the boundary conditions
depend on the type of boundary condition and the approach. In the case of the Dirichlet
boundary condition for the coefficient approach, it is as follows:

φc = ub, (2.157)

and for the pseudospectral approach as follows:

Iu = ub, (2.158)

where I is the identity matrix. In the case of the Neumann boundary condition for the
coefficient approach, it is as follows:

−κφ,n̄c = (qb + τ q̇b) , (2.159)

and for the pseudospectral approach as follows:

−κD,n̄u = (qb + τ q̇b) . (2.160)
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Obtaining the boundary condition equation for the Robin boundary condition is slightly
more complex than for the Dirichlet and Neumann boundary conditions. Let’s start by
writing Equation 2.19 for the coefficient approach:

−κφ,n̄c = α (u∞ − φc)−ατ u̇. (2.161)

Assuming the implicit scheme:

c = ck+1, (2.162)

and the forward approximation in time:

u̇ ≈ φck+1 − ck
∆t

, (2.163)

leads to:

−κφ,n̄ck+1 = α (u∞ − φck+1)−ατφck+1 − ck
∆t

, (2.164)

and after rearrangements to:

(
−κφ,n̄ +αφ

(
τ

∆t
+ 1

))
ck+1 = α

(
u∞ +

τ

∆t
φck

)
. (2.165)

Using the same procedure for the pseudospectral approach gives:

(
−κD,n̄ +α

(
τ

∆t
+ 1

))
ck+1 = α

(
u∞ +

τ

∆t
uk

)
. (2.166)

After imposing the boundary conditions, one of the following equations is obtained:

Ācck+1 = b̄c, (2.167)

Āuuk+1 = b̄u. (2.168)

2.4.2 Spacetime approach - initial and boundary conditions

As already mentioned in the introduction, the consequence of using the spacetime ap-
proach is that the initial conditions are treated as Dirichlet boundary conditions. There-
fore, it is reasonable to discuss and impose them together with the boundary conditions.
Once Equation 2.116 or 2.120 has been obtained:

Acc = bc.

Auu = bu.

it is possible to proceed to the imposition of the initial conditions and the boundary
conditions. The procedure is the same as for the classical approach, i.e. it consists of
replacing the equations corresponding to the initial or boundary points in the system of
Equations 2.116 or 2.120 with the equations corresponding to the given initial or boundary
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conditions. The forms of the matrix equations describing the initial and boundary condi-
tions are listed below. In the case of the Dirichlet boundary condition for the coefficient
approach, it is as follows:

φc = ub, (2.169)

and for pseudospectral approach as follows:

Iu = ub, (2.170)

In the case of the Neumann boundary condition for the coefficient approach, it is as
follows:

−κφ,n̄c = (qb + τ q̇b) , (2.171)

and for pseudospectral approach as follows:

−κD,n̄u = (qb + τ q̇b) . (2.172)

Obtaining the system of equations for the Robin boundary conditions is slightly more
complex than for the Dirichlet and Neumann boundary conditions. In order to obtain it,
let’s write Equation 2.19 for the coefficient approach:

−κφ,n̄c = α (u∞ − φc)−ατφ,tc, (2.173)

and rearrange it:

(−κφ,n̄ +α (φ+ φ,tτ)) c = αu∞. (2.174)

Using the same procedure for the pseudospectral approach gives: and rearrange it:

(−κD,n̄ +α (I + D,tτ))u = αu∞. (2.175)

Now let’s move on to the initial conditions which, as a reminder, are imposed in the same
way as the Dirichlet boundary conditions. In the following considerations, χ0 and χ−1

stands for:

χ0 =




x
y
z
0


 , χ−1 =




x
y
z
−∆t


 . (2.176)

The problem is hyperbolic, thus, two initial conditions needs to be imposed:

u (χ0) = u0, (2.177)

u̇ (χ0) = u̇0. (2.178)

Imposing the first condition of these two is easy, for the coefficient approach the equation
describing the condition is as follows:

φc = u0, (2.179)
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and for pseudospectral approach as follows:

Iu = u0, (2.180)

The imposition of the second initial condition described by Equation 2.178 is a bit more
difficult because the lack of a time integration scheme, makes it impossible to impose it
directly. Instead, it should be imposed through imposing the value of the temperature
field at ghost time −∆t:

u (χ−1) = u−1. (2.181)

The value of the vector u−1 can be determined by approximation of the value of the
derivative vector u̇0 using the first-order finite difference:

u̇0 =
u0 − u−1

∆t
, (2.182)

which after rearrangement leads to:

u−1 = u0 − u̇0∆t. (2.183)

Finally, the equations for the coefficient approach are as follows:

φc = u0 − u̇0∆t, (2.184)

and for pseudospectral approach as follows:

Iu = u0 − u̇0∆t. (2.185)

After imposing the initial and the boundary conditions, one of the following equations is
obtained:

Ācc = b̄c, (2.186)

Āuu = b̄u, (2.187)

thus it is possible to proceed to the solution of this system of linear equations.

2.5 Solving the system of linear equations

After obtaining one of systems of Equations 2.167, 2.168, 2.186, 2.187:

Ācck+1 = b̄c,

Āuuk+1 = b̄u,

Ācc = b̄c,

Āuu = b̄u,

it is necessary to solve it. Since the numeric computing environment MATLAB was used
in the research, the mldivide [113] algorithm was used to solve the systems of linear
equations. It is a very complex and very well tested algorithm, the source code and
structure of which are known. Solving the system of linear equations is the last step of
the procedure for solving the initial-boundary value problem considered in the work.
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2.6 An algorithm for searching the good value of the

shape parameter

As mentioned earlier, the shape parameter ε is of fundamental importance for the radial
basis function approximation, and consequently its value must be carefully selected. The
algorithms of its selection that were used in the work are presented below. A question
arises why this sub-section is presented now and not earlier in the paper, since the shape
parameter ε already appears earlier in Equation 2.64 and 2.65 and has an influence on
further equations. This is due to the fact that the algorithms that will be presented use
the equations that were presented in the previous sections and were not known at the
time of the first mention of the shape parameter ε.

2.6.1 Shape parameter

The shape parameter ε has already been mentioned in Equations 2.64 and 2.65, however,
has not received a decent explanation for this point. In order to explain the meaning of
the shape parameter ε, let’s take a closer look at Equation 2.64:

ϕ (xi,xj) =
(
||xi − xj||2 + ε2

)p
.

As can be seen, the shape parameter ε is a parameter occurring in the multiquadric radial
basis function and influencing its value and shape, this function is in turn an interpolating
function in the Kansa method, which means that the shape parameter ε is a parameter
that determines the nature of the interpolation matrix. However, a question arises: why
is this parameter called the ”shape parameter”? To explain this, let’s evaluate the values
of multiquadric function described by Equation 2.64 for points in the two-dimensional
domain xi ∈ 〈−1, 1〉 × 〈−1, 1〉 ⊂ R2 and the following center:

xj =

[
0
0

]
,

and for the exponent equal to p = 0.5. Figures 2.4 and 2.5 show the distribution of the
discussed multiquadric radial basis function for the shape parameter ε = 1 and ε = 0.01,
respectively.

Figures 2.4 and 2.5 clearly show that the shape parameter ε value has a dominant influ-
ence on the shape of the surface, which is a graphical representation of the multiquadric
radial basis function ϕ. As already mentioned, the shape parameter ε has a profound
influence on the interpolation matrix and consequently on the numerical stability and
the accuracy of the method. This means that the shape parameter ε is a parameter of
fundamental importance in the Kansa method. Therefore, a question arises: if the shape
parameter ε is so important, is there a known algorithm that allows to find its optimal
value? The answer is no. However, there are many algorithms - some of which have been
mentioned in the literature review - that allow to find a shape parameter ε value that
leads to results of satisfactory accuracy, such algorithms are called algorithms for finding
the ”good” value of shape parameter - εgood.
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Figure 2.4: Multiquadric radial basis function graph for the shape parameter ε = 1
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Figure 2.5: Multiquadric radial basis function graph for the shape parameter ε = 0.01
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2.6.2 Rippa’s algorithm

Currently one of the most popular and the most well-established algorithm for finding a
good value of the shape parameter is the Rippa’s algorithm [139]. For this reason, this
algorithm is taken as the reference algorithm in the thesis and is briefly discussed below.
The Rippa’s algorithm is an algorithm consisting of several steps. First, it is necessary
to select a range of searching for a good shape paramater value. In the next step, the
considered partial differential equation-based problem should be solved for the first shape
parameter value from this range using the Kansa method in order to obtain the coefficient
vector c. Next, it is necessary to determine the error estimation vector, the elements of
which can be determined using Rippa’s formula:

Ei =
ci

(φii)
−1, (2.188)

for i = 1, 2 ... n where n is length of vector c. Then one must find the infinity norm of
this vector:

E∞ = max |E| . (2.189)

The procedure should be repeated for all other values in the range in which a good shape
parameter value is sought. According to the Rippa’s algorithm, a good value of shape
parameter εgood is one for which E∞ reaches the minimum:

E∞ (εgood) = min (E∞) . (2.190)

Figure 2.6 shows an example of the log-log graph of the function E∞ (ε) with the indicated
good value of the shape parameter εgood.
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Figure 2.6: An example of the graph of the function E∞ (ε)

It is worth paying attention to an important issue at this point, namely, finding the
vector E requires solving the considered partial differential equation-based problem. This
means that a full numerical simulation of the analysed problem should be repeatedly
performed for different values of the shape parameter, which is numerically expensive.

37



2. Governing equations and computational methods

2.6.3 Condition number algorithm

In this work, an algorithm based on the analysis of the interpolation matrix condition
number will be examined. This algorithm will be referred to in the work as condition
algorithm. This algorithm gained the author’s special attention due to its enormous
potential and, at the same time, low popularity among researchers. To the best of the
author’s knowledge, there are only two articles where this algorithm was mentioned [175,
67]. The condition algorithm is based on the well-known fact that for the solution of the
partial differential equation-based problems with the Kansa method increasing the value
of the shape parameter increases the accuracy of the solution [99, 100, 79]. On the other
hand, increasing the value of the shape parameter too much makes the simulation unstable
and, consequently, its results lose their accuracy significantly. Why is this happening? To
explain it well, one should start with the introduction of two fundamental concepts - the
ill-conditioned matrix and the condition number of the matrix. The ill-conditioned matrix
is a matrix for which small changes in the values of the matrix elements cause significant
changes in the results of operations using this matrix, for example when solving a system
of linear equations. To understand what condition number is, it is necessary to first get
acquainted with the concept of a singular value of the matrix and the so-called singular
value decompsition. In this decomposition, matrix A is decomposed into the following
three matrices [155, 158, 75]:

A = UΣV T , (2.191)

where U and V are orthogonal matrices and Σ is a diagonal matrix whose elements
σi = Σii are singular values of the matrix A:

Σ =




σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σn


 , (2.192)

for i = 1, 2 ... n is the number of rows in the matrix A. Importantly, each complex matrix
can be so decomposed. An overview of the methods for the singular value decomposition
can be found in [155, 158, 75]. The condition number of a matrix is defined as the ratio
of the largest singular value of that matrix to its smallest singular value [12]:

cond (A) =
σmax

σmin

, (2.193)

and is a measure of how much ill-conditioned the matrix is, the higher it is, the more
ill-conditioned the matrix is. After introducing these concepts, one can return to the
question posed earlier: why excessive increase of the shape parameter causes instability
of the simulation? This is because increasing the shape parameter increases the condition
number of the interpolation matrix in the Kansa method and as a result makes it ill-
conditioned. Summarizing the above considerations, the value of the shape parameter
should be as high as possible, however, it cannot exceed a certain threshold value because
this will cause the interpolation matrix to be ill-conditioned. As a consequence, another
question arises: how to find this threshold value? The answer is not easy, however, one of
the first thoughts that may come to mind is: maybe just follow how the condition number
of the interpolation matrix changes as a function of the shape parameter and when the
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threshold value is exceeded, something will happen that can be easily observed and based
on this threshold value can be determined? The interpolation matrix may be, in classical
formulation, impractical in determination because it is a combination of the M , D, and
K matrices resulting from the application of the time integration scheme. Therefore, it is
proposed to use the matrix P instead of the interpolation matrix directly. In the classical
approach it can be determined as follows:

P =
M

∆t2
+
D

∆t
+K, (2.194)

and in the spacetime approach as follows :

P = A. (2.195)

Let’s define the L (ε) function as follows:

L (ε) = cond (P ) . (2.196)

Figure 2.7 shows an example of the log-log graph of the function L (ε).
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Figure 2.7: An example of the graph of the function L (ε)

It turns out that for the class of problems considered in the thesis, the graph of the
function L (ε) usually has the shape shown in Figure 2.7. It is clear that the presented
graph can be divided into two parts, a smooth monotonic part and an oscillating part.
It is proposed that a good value of the shape parameter is one for which there is a
transition from the smooth region to the oscillating region. Figure 2.8 shows the previously
shown example of the L (ε) function along with the marked value of the shape parameter
separating the smooth part from the oscillating part which, according to the proposed
algorithm, it is a good value of the shape parameter denoted by εgood.

The fundamental issue in this algorithm is how to detect the transition from the smooth
part to the oscillatory part. It was proposed to study changes in the monotonicity of the
function L (ε). If there are three monotonicity changes in a row - it is considered that
oscillations begin there and consequently it is the value of shape parameter for which the
smooth part is separated from the oscillatory part. Why three monotonicity changes?
This decision was made on the basis of hundreds of simulations that were performed
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Figure 2.8: An example of the graph of the function L (ε) with the marked value of shape
parameter separating the smooth region from the oscillating region

for different values. The value three turned out to be the most effective for the class
of problems under consideration. Algorithm 1 presents a pseudo-code describing the
proposed approach.

Another important question arises at this point. How to choose the range of searching
for the transition from smooth to oscillatory region? The following approach was used
in the work. First, an algorithm was used for a wide range of shape parameter, for
example 10−6 to 106 using several dozen logarithmically distributed values. This allows
for a rough estimate of the transition location. Then an algorithm was applied for the
region surrounding this value, this time using several hundred logarithmically distributed
points.
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Algorithm 1: The pseudocode describing the proposed condition algorithm. ε
is a vector of the shape parameter values

input : X, ε,γ,ρ,κ,κ,x,κ,y,κ,z,∆t, τ
output: εgood

1 for i = 1 : length(ε) do
2 [φ,φ,x,φ,xx,φ,y,φ,yy,φ,z,φ,zz,φ,t,φ,tt] ← RBF (X, ε (i))
3 if classical approach then
4 M = M (γ,ρ,φ, τ)
5 D = D (γ,ρ,φ)
6 K = K (φ,φ,x,φ,xx,φ,y,φ,yy,φ,z,φ,zz,κ,κ,x,κ,y,κ,z)

7 Li = cond

(
M

∆t2
+
D

∆t
+K

)

8 end
9 if spacetime approach then

10 A = A (γ,ρ, τ,φ,φ,x,φ,xx,φ,y,φ,yy,φ,z,φ,zz,φ,t,φ,tt,κ,κ,x,κ,y,κ,z)
11 Li = cond (A)

12 end
13 if i > 4 then
14 a = Li−3 − Li−4

15 b = Li−2 − Li−3

16 c = Li−1 − Li−2

17 d = Li − Li−1

18 if sign (a) = sign (c) and sign (b) = sign (d) and sign (b) 6= sign (c) then
19 εgood = εi−4

20 break

21 end

22 end

23 end

2.6.4 Oscillation algorithm

The foundation of the condition algorithm, the study of the transition from the smooth
region to the oscillatory region seems to be a concept that can be applied to a wider
group of functions, not only the L (ε) function. This is due to the fact that probably
many simulation parameters are strongly disturbed when the simulation loses its stability.
This opens up the field for further research in this area and the search for functions that
are alternative to the L (ε) function. Algorithms based on this idea, but not related to
the function L (ε), will be called oscillation algorithms in this work. It is proposed that
the function alternative to L (ε) can be the E∞ (ε) function from the Rippa’s algorithm.
An example of the use of such a modified Rippa’s algorithm is presented in Figure 2.9,
which shows the same distribution of the E∞ (ε) function as in Figure 2.6. However, the
good value of the shape parameter is the one that separates the smooth part from the
oscillatory part instead of the value for which the function E∞ (ε) reaches the minimum.

It is worth noting that there is no suggestion that the modified Rippa’s algorithm
is better than the original one, but it is only indicated that there is a relatively easy-
to-implement alternative that may be better for some classes of problems and worse for
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Figure 2.9: An example of the graph of the function E∞ (ε) with the marked value of
shape parameter separating the smooth region from the oscillating region

others. At the end of this section, it is worth noting that in this paper the problems
were considered, where for a given problem and a given cloud of collocation points a good
value of the shape parameter is sought. However, there is a different approach in which
the optimal distribution of collocation points is sought for a given problem, and only for
such a selected distribution, a good value of the shape parameter is determined [145].
However, this approach is not considered at work.

2.7 Flowcharts describing the algorithms for solving

initial-boundary value problem

This chapter covered all the steps necessary to solve the initial-boundary value problem
under consideration. However, it is worth presenting these algorithms graphically in
order to show all the essential steps in a clear and lucid way. Figures 2.10 and 2.11 show
the flowcharts describing the algorithms for solving considered initial-boundary value
problems using classical and spacetime approach, respectively.

The algorithms described in Figures 2.10 and 2.11 are simplified, however they show all
the elements of the actual procedures. For the elliptic problem in the classical approach,
after calculating the thermal stiffness matrixK, one goes directly (and once) to solving the
systems of linear equations. On the other hand, for the parabolic problem, computation
of thermal mass matrix M is omitted.
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Start

Input

Create collocation points cloud

Find good value of ε

Calculate material properties matrices γ, ρ, κ, κ,x, κ,y, κ,z

and radial basis function matrices φ, φ,x, φ,y, φ,z, φ,xx, φ,yy, φ,zz

Calculate M , D, K matrices

Initial conditions

Solution at k-th time step

Apply time integration scheme

Apply boundary conditions

Solve system of linear equations

Solution at k+1-th time step

Simulation
time

reached?

Stop
YesNo

Figure 2.10: Flowchart describing the classical Kansa method algorithm for solving the
considered initial-boundary value problem

43



2. Governing equations and computational methods

Start

Input
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Find good value of ε

Calculate material properties matrices γ, ρ, κ, κ,x, κ,y, κ,z

and radial basis function matrices φ, φ,x, φ,y, φ,z, φ,xx, φ,yy, φ,zz, φ,t, φ,tt

Calculate the main matrix

Apply initial and boundary conditions

Solve system of linear equations

Solution

Stop

Figure 2.11: Flowchart describing the spacetime Kansa method algorithm for solving the
considered initial-boundary value problem
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3. Validation and verification of the
developed methods and algorithms

Before the Kansa method will be used for practical, real-world problems, it was neces-
sary to perform the validation whether the Kansa method in the presented formulations is
suitable for the considered class of problems and the verification of the solver implementa-
tion. This was done by comparing the solution obtained using the Kansa method with the
reference solutions obtained using other methods. The implementation of the algorithm
for solving the considered initial-boundary value problem was made by the author using
MATLAB 2022a numeric computing environment. For many of the considered problems,
the reference solution was the solution obtained using the finite difference method solver,
the implementation of which was also made by the author in the same environment as the
Kansa method solver. The description of the finite difference method used in this work
can be found in appendix.

3.1 Error measures

Firstly, the error measures used to evaluate the quality of the obtained solutions will
be presented. The crucial thing is the way in which the solution under consideration
is compared with the reference solution. Therefore, it is necessary to introduce certain
error measures that will allow to examine in a quantitative manner the deviation of the
considered solution from the reference solution. Two measures were used - local and
global. The local measure is a measure that allows for the determination of an error at a
specific point x of the computational domain. It means that this error measure evaluated
for the entire computational domain is not a single number but a vector containing the
error measure values at every point of the domain. This measure is primarily useful for
graphical representation of error fields which are curves or surfaces depending on the
dimension of the problem. A relative error was adopted as a local measure [119]:

ξu (x) =

∣∣∣∣∣
un (x)− ur (x)

ur (x)

∣∣∣∣∣ , (3.1)

ξq (x) =

∣∣∣∣∣
qn (x)− qr (x)

qr (x)

∣∣∣∣∣ , (3.2)

where un (x) and qn (x) are the temperature and heat flux values of the numerical solution
at the point x, while ur (x) and qr (x) are the temperature and heat flux values of the
reference solutions at the point x. The second measure used is the global measure. The
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global measure is a measure that determines the error in the entire computational domain
expressed by a single value, mean relative error was adopted as a global measure:

ξ̄u =
1

n

n∑

i=1

ξu (xi) (3.3)

ξ̄q =
1

n

n∑

i=1

ξq (xi) (3.4)

In the case where this error measure is calculated for the steady-state solution or for the
given time step of the unsteady-state solution, ξ̄ symbol is used. If it is calculated for all
time steps of the unsteady-state solution, Ξ symbol is used. When calculating the error
measure Ξ, the solution for the first time step is not taken into account in order not to
artificially improve the error measure value.

3.2 Default numerical setup and general insights

Unless stated otherwise, the simulation parameters were as follows:

• the length of the domain L = 1 m,

• the initial temperature was u0 = 300 K,

• the temporal derivative of the initial temperature was u̇0 = 0,

• the exponent in the multiquadric function was equal to p = 0.5,

• the relaxation time for hyperbolic problems was equal to τ = 5 s,

• the spacetime scaling parameter was equal to β =

√
∆x

∆t
, where ∆x will be explained

for the specific problems,

• the condition algorithm was used for finding a good value of the shape parameter.

The boundary conditions, alongside their full names, were also abbreviated in the graphs:

• Dirichlet boundary condition is also called the first-type boundary condition, so its
designation is ’1’,

• Neumann boundary condition is also called the second-type boundary condition, so its
designation is ’2’,

• Robin boundary condition is also called the third-type boundary condition, so its des-
ignation is ’3’.
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Figure 3.1: The one-dimensional computational domain used in the work

3.3 One-dimensional problems

If the problem is one-dimensional, the Cattaneo-Vernotte Equation 2.9 simplifies to the
one-dimensional Cattaneo-Vernotte equation in the form of:

γ (x) ρ (x) (τ ü+ u̇) = κ,x (x)u,x + κ (x)u,xx. (3.5)

Problems described by Equation 3.5 were simulated in the computational domain of which
a simplified sketch is shown in Figure 3.1.

The distributions of thermophysical parameters in the above domain are given by the
following harmonic functions:

κ (x) =
κmax + κmin

2
+
κmax − κmin

2
cos

(
ωπ

x

L

)
, (3.6)

ρ (x) =
ρmax + ρmin

2
+
ρmax − ρmin

2
cos

(
ωπ

x

L

)
, (3.7)

γ (x) =
γmax + γmin

2
+
γmax − γmin

2
cos

(
ωπ

x

L

)
, (3.8)

where:

• κmin = 1 W ·m−1 ·K−1,

• κmax = 10 W ·m−1 ·K−1,

• ρmin = 1 kg ·m−3,

• ρmax = 10 kg ·m−3,

• γmin = 1 J · kg−1 ·K−1,

• γmax = 10 J · kg−1 ·K−1,

• ω = 2.

The values of the parameters related to the boundary conditions were as follows:

• when the Dirichlet boundary condition was used, the temperature on the left boundary
was equal to ub = 300 K, while on the right boundary to ub = 400 K,
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• when the Neumann boundary condition was used, the heat flux on the left boundary
was equal to qb = 100 W ·m−2, while on the right boundary to qb = −100 W ·m−2

• when the Robin boundary condition was used, the ambient temperature on the left
boundary was equal to u∞ = 300 K, while on the right boundary to u∞ = 400 K and
the heat transfer coefficient was equal to α = 10 W ·m−2 ·K−1.

In the one-dimensional problem, the Neumann boundary condition was not applied to the
left and right boundaries at the same time because it would violate the conservation of
energy principle.

3.3.1 Steady-state elliptic problem

If the problem is steady, the one-dimensional Cattaneo-Vernotte Equation 3.5 simplifies
to the one-dimensional steady-state elliptic heat equation:

κ,x (x)u,x + κ (x)u,xx = 0 ⇐⇒ (κ (x)u,x),x = 0, (3.9)

for which there is an analytical solution that will be used as a reference solution, it is as
follows:

u,x (x) =
D1

κ (x)
, (3.10)

u (x) = D1

∫
dx

κ (x)
+D2, (3.11)

where for the harmonic distribution of the thermal conductivity given by Equation 3.6:

I =

∫
dx

κ (x)
=

2L

ωπ
√
κmaxκmin


arctan


tan

(
ω
π

2

x

L

)√
κmin

κmax


+ kπ


 , (3.12)

where

k =





· · ·

−2 if ω
x

L
∈ 〈−5, −3)

−1 if ω
x

L
∈ 〈−3, −1)

0 if ω
x

L
∈ 〈−1, 1〉

1 if ω
x

L
∈ (1, 3〉

2 if ω
x

L
∈ (3, 5〉

· · ·

. (3.13)

The necessity to use Eequation 3.13 is due to the fact that the cyclometric function

arctan gives values only in the range

〈
−π

2
,
π

2

〉
, which would lead to erroneous results if
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ω
x

L
/∈ 〈−1, 1〉. Constants of integration D1, D2 can be calculated based on the bound-

ary conditions. For example, when imposing the Dirichlet boundary conditions on both
boundaries, the constants of integration are a solution of the following system of linear
equations:

[
I (−L/2) 1

1 I (L/2)

] [
D1

D2

]
=

[
ub (−L/2)
ub (L/2)

]
. (3.14)

3.3.1.1 Convergence study

First, the convergence study was conducted. As part of it, a series of simulations was
performed for the number of collocation points n in the range from 10 to 50. Such a
small number of collocation points is due to the fact that the multiquadric radial basis
function is a high-order interpolation function and such a small number of collocation
points should result in a high accuracy of the solution. For each simulation, the good
value of the shape parameter was individually selected. After each simulation, the value
of the error measure ξ̄u was calculated with respect to the analytical solution 3.11. The
simulations were carried out using both coefficient and pseudospectral approach for various
combinations of boundary conditions. Figures 3.2 - 3.6 show the values of error measure
ξ̄u versus the number of collocation points n calculated with respect to the analytical
solution for various boundary-value problems.
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10−1

100

n

ξ̄ u
[%

]

Coefficient approach
Pseudospectral approach

Figure 3.2: Error measure ξ̄u versus the number of collocation points n obtained during
one-dimensional convergence study for the Dirichlet-Dirichlet boundary conditions

The results presented in the Figures 3.2 - 3.6 are in line with expectations - the
multiquadric scheme is a high-order interpolation scheme, so the accuracy of the results
is satisfactory even with a small number of collocation points. Even about 20 collocation
points allowed to achieve an error measure ξ̄u value below 10−2 %. Therefore, it was
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Figure 3.3: Error measure ξ̄u versus the number of collocation points n obtained during
one-dimensional convergence study for the Robin-Robin boundary conditions
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Figure 3.4: Error measure ξ̄u versus the number of collocation points n obtained during
one-dimensional convergence study for the Dirichlet-Neumann boundary conditions
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Figure 3.5: Error measure ξ̄u versus the number of collocation points n obtained during
one-dimensional convergence study for the Robin-Dirichlet boundary conditions
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Figure 3.6: Error measure ξ̄u versus the number of collocation points n obtained during
one-dimensional convergence study for the Neumann-Robin boundary conditions

51



3. Validation and verification of the developed methods and algorithms

decided that the number of collocation points in the next one-dimensional simulations
will be equal to 21. An issue that must be noted is that the presented solutions are not
smooth but oscillating and at some points there are even peaks. This nature of the solution
results from the fact that for each simulation the shape parameter value was individually
selected with the use of the condition algorithm. However, it is worth noting that for the
simulation with the number of collocation points above 20, even for the shape parameter
value corresponding to the solution peak, the accuracy was very high, the error measure
ξ̄u values did not exceed 0.5%. When it comes to comparing the accuracy between the
coefficient and pseudospectral approaches, the results are very similar, but it seems that
for this problem class the pseudospectral approach gives slightly more accurate results.

3.3.1.2 One-dimensional elliptic problem no. 1

After performing the convergence study, it is possible to proceed to problem no. 1 in which
the accuracy of the method for this class of problems will be closely examined. A series
of simulations using different approaches and combinations of boundary conditions were
performed and the global error measures ξ̄u and ξ̄q were calculated with respect to the
analytical solution after each simulation. Figure 3.7 shows the values of error measures ξ̄u
and ξ̄q calculated for the Kansa method solution with respect to the analytical solution for
various approaches and combinations of the boundary conditions. Figures 3.8 - 3.12 show
the comparisons between solutions obtained using Kansa method and analytical solution
for various combinations of the boundary conditions.

Low values of error measures ξ̄u and good agreement of the Kansa method solutions
with the reference solutions show that the Kansa method is suitable for solving the con-
sidered class of problems and the solver is correctly implemented. The accuracy for the
coefficient and pseudospectral approaches are very similar. The values of error measures
ξ̄q are also low, however are even two orders of magnitude greater than the values of error
measure ξ̄u. This is due to the fact that the heat flux field is calculated using the obtained
temperature field after the simulation is completed using the differentiation operator:

q = −κφ,xc. (3.15)

or:

q = −κD,xu. (3.16)

This operation is burdened with a numerical error, which in this case is strongly amplified
because the interpolation matrices are characterized by very high condition number values,
which results from the method of selecting the shape parameter value. It should be
expected that in more complex problems that will be presented in the paper, this effect
may be even stronger. This problem can be minimized by the use of regularization [41],
which, however, will not be done in the work but seems to be a reasonable topic for
further research. Finally, it is worth noting that the heat flux fields are characterized by
a rapid change of values near the boundary, which is most likely due to the fact that a
different equation is solved on the border than in the interior. Additionally, the flux field
for the coefficient and pseudospectral approaches are almost symmetrical with respect to
each other in relation to the line drawn by the points of the analytical solution. The
explanation for this is unknown.
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Figure 3.7: Error measures ξ̄u and ξ̄q for the one-dimensional elliptic problem no. 1
obtained using various approaches and combinations of boundary conditions
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Figure 3.8: Comparison between the Kansa method solutions and the analytical solu-
tion for the one-dimensional elliptic problem no. 1 obtained using the Dirichlet-Dirichlet
boundary conditions

54



3. Validation and verification of the developed methods and algorithms

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

340

360

380

400

420

440

x/L

u
[K

]

Coefficient approach solution
Pseudospectal approach solution

Analytical solution

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−322

−320

−318

−316

−314

−312

−310

x/L

q x
[W
·m

−
2
]

Coefficient approach solution
Pseudospectal approach solution

Analytical solution

Figure 3.9: Comparison between the Kansa method solutions and the analytical solution
for the one-dimensional elliptic problem no. 1 obtained using the Robin-Robin boundary
conditions
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Figure 3.10: Comparison between the Kansa method solutions and the analytical solution
for the one-dimensional elliptic problem no. 1 obtained using the Dirichlet-Neumann
boundary conditions
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Figure 3.11: Comparison between the Kansa method solutions and the analytical solu-
tion for the one-dimensional elliptic problem no. 1 obtained using the Robin-Dirichlet
boundary conditions
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Figure 3.12: Comparison between the Kansa method solutions and the analytical solu-
tion for the one-dimensional elliptic problem no. 1 obtained using the Neumann-Robin
boundary conditions
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3.3.2 Unsteady-state parabolic problem

If the relaxation time τ = 0, the one-dimensional Cattaneo-Vernotte Equation 3.5 simpli-
fies to the one-dimensional parabolic heat equation:

γ (x) ρ (x) u̇ = κ,x (x)u,x + κ (x)u,xx. (3.17)

The reference solution for this problem was the finite difference method solution. In the
case of the problem governed by the parabolic heat equation, similar studies were carried
out as for the problem governed by the elliptic heat equation. A series of simulations
for different approaches and combinations of boundary conditions were performed and
the error measures values Ξu and Ξq were calculated with respect to the finite difference
method solution after each simulation. Time step size was equal to ∆t = 0.1 s while the
number of time advancements was equal to 50. The number of time advancements was
chosen arbitrarily in such a way that the simulation ended long before reaching the steady
state, so as not to artificially improve the value of the error measures. Figure 3.13 shows
the values of error measure Ξu and Ξq calculated for the Kansa method solution with
respect to the finite difference method solution for various approaches and combinations
of the boundary conditions. Figures 3.14 - 3.18 show the evolution of temperature and heat
flux at the point x = 0 for various combinations of boundary conditions and approaches
obtained using the Kansa method and finite difference method.

Low values of error measures Ξu and good agreement of the Kansa method solutions
with the reference solutions show that the Kansa method is suitable for solving the con-
sidered class of problems and the solver is correctly implemented. However, it is worth
noting that the classical approach is slightly more accurate than the spacetime approach,
while the accuracy of the pseudospectral approach is slightly better in conjunction with
the classical approach and slightly worse in conjunction with the spacetime approach. All
solutions are less accurate than their steady-state equivalents. The value of error measures
Ξq are much higher than Ξu, which is similar to the steady-state case and consequently
the same conclusions can be drawn.
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Figure 3.13: Error measures Ξu and Ξq for the one-dimensional parabolic problem ob-
tained using various approaches and combinations of boundary conditions
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Figure 3.14: The evolution of temperature and heat flux for the one-dimensional parabolic
problem at the point x = 0 obtained using the Dirichlet-Dirichlet boundary conditions
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Figure 3.15: The evolution of temperature and heat flux for the one-dimensional parabolic
problem at the point x = 0 obtained using the Robin-Robin boundary conditions
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Figure 3.16: The evolution of temperature and heat flux for the one-dimensional parabolic
problem at the point x = 0 obtained using the Dirichlet-Neumann boundary conditions
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Figure 3.17: The evolution of temperature and heat flux for the one-dimensional parabolic
problem at the point x = 0 obtained using the Robin-Dirichlet boundary conditions
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Figure 3.18: The evolution of temperature and heat flux for the one-dimensional parabolic
problem at the point x = 0 obtained using the Neumann-Robin boundary conditions
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3.3.3 Unsteady-state hyperbolic problem

Let’s move on to the most general problem in this section, namely the one-dimensional
hyperbolic problem which is described by Equation 3.5:

γ (x) ρ (x) (τ ü+ u̇) = κ,x (x)u,x + κ (x)u,xx.

The reference solution for this problem was the finite difference method solution. The
classical and spacetime approaches were examined separately.

3.3.3.1 Classical approach

In a first step, the classical approach was examined. A series of simulations for differ-
ent approaches and combinations of boundary conditions were performed and the error
measures values Ξu and Ξq were calculated with respect to the finite difference method
solution after each simulation. When calculating the error measures, the solutions ob-
tained using the same time inegration scheme were compared. Time step size was equal to
∆t = 0.5 s while the number of time advancements was equal to 100. The number of time
advancements was chosen arbitrarily in such a way that the simulation ended long before
reaching the steady state, so as not to artificially improve the value of the error measures.
Figure 3.19 shows the values of error measures Ξu and Ξq calculated for the Kansa method
solution with respect to the finite difference method solution for various combinations of
the boundary conditions, approaches, and time integration schemes. Figures 3.20 - 3.24
show the evolution of temperature and heat flux at the point x = 0 obtained using Kansa
method and finite difference method for Euler and Houbolt time integration scheme and
for various combinations of the boundary conditions.

Low values of error measures Ξu and good agreement of the Kansa method solutions
with the reference solutions show that the Kansa method is suitable for solving the con-
sidered class of problems and the solver is correctly implemented. The accuracy of the
coefficient and pseudo-spectral approaches is almost identical. The value of error measures
Ξq are much higher than Ξu which is similar to the steady-state case and consequently
the same conclusions can be drawn. Figures 3.20 - 3.24 show that the differences between
the solutions for different time integration schemes are evident, in the case of tempera-
ture they are insignificant, while in the case of heat flux they are very significant in some
cases. Differences in the evolution of heat fluxes are especially visible in the cases where
the Dirichlet boundary condition was used and are manifested in a strong but declining
oscillation of the heat flux. Evolutions show a characteristic feature of hyperbolic models
of heat flow, i.e. the delay of temperature and heat flux. It is worth noting an interesting
fact that the solutions obtained with the Houbolt scheme show lower damping than those
obtained with the Euler scheme. This is manifested by the fact that in the case of the
Houbolt scheme the amplitude of the temperature and heat flux oscillations are signifi-
cantly greater and the rate of convergence to the steady state is lower than in the case
of the Euler scheme. It is interesting because the cases described so far in the literature
showed the opposite conclusions, namely increased algorithmic damping instead of the de-
creased one [71, 33, 34]. Explaining this difference is not an easy task, however, it is worth
paying attention to one issue that may be an explanation. In the mentioned research, the
Houbolt time integration scheme was used in conjunction with finite element method for
which the main matrix is sparse, banded and symmetric. The main matrix in the Kansa
method does not have these features. It is hypothesized that when the main matrix does
not have these features, the numerical dissipation is reduced due to spurious eigenmodes.
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Figure 3.19: Error measures Ξu and Ξq for the one-dimensional hyperbolic problem ob-
tained using various approaches and combinations of boundary conditions and time inte-
gration schemes
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Figure 3.20: The evolution of temperature and heat flux for the one-dimensional hy-
perbolic problem at the point x = 0 obtained using the Dirichlet-Dirichlet boundary
conditions
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Figure 3.21: The evolution of temperature and heat flux for the one-dimensional hyper-
bolic problem at the point x = 0 obtained using the Robin-Robin boundary conditions
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Figure 3.22: The evolution of temperature and heat flux for the one-dimensional hy-
perbolic problem at the point x = 0 obtained using the Dirichlet-Neumann boundary
conditions

70



3. Validation and verification of the developed methods and algorithms

−5 0 5 10 15 20 25 30 35 40 45 50 55

300

310

320

330

340

350

360

370

t [s]

u
[K

]

Coefficient approach + Euler scheme
Pseudospectral approach + Euler scheme
Finite difference method + Euler scheme
Coefficient approach + Houbolt scheme

Pseudospectral approach + Houbolt scheme
Finite difference method + Houbolt scheme

−5 0 5 10 15 20 25 30 35 40 45 50 55
−300

−250

−200

−150

−100

−50

0

t [s]

q x
[W
·m

−
2
]

Coefficient approach + Euler scheme
Pseudospectral approach + Euler scheme
Finite difference method + Euler scheme
Coefficient approach + Houbolt scheme

Pseudospectral approach + Houbolt scheme
Finite difference method + Houbolt scheme

Figure 3.23: The evolution of temperature and heat flux for the one-dimensional hyper-
bolic problem at the point x = 0 obtained using the Robin-Dirichlet boundary conditions

71



3. Validation and verification of the developed methods and algorithms

−5 0 5 10 15 20 25 30 35 40 45 50 55

300

320

340

360

380

400

420

440

t [s]

u
[K

]

Coefficient approach + Euler scheme
Pseudospectral approach + Euler scheme
Finite difference method + Euler scheme
Coefficient approach + Houbolt scheme

Pseudospectral approach + Houbolt scheme
Finite difference method + Houbolt scheme

−5 0 5 10 15 20 25 30 35 40 45 50 55

−300

−250

−200

−150

−100

−50

0

t [s]

q x
[W
·m

−
2
]

Coefficient approach + Euler scheme
Pseudospectral approach + Euler scheme
Finite difference method + Euler scheme
Coefficient approach + Houbolt scheme

Pseudospectral approach + Houbolt scheme
Finite difference method + Houbolt scheme

Figure 3.24: The evolution of temperature and heat flux for the one-dimensional hyper-
bolic problem at the point x = 0 obtained using the Neumann-Robin boundary conditions
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However, this requires further analyses and is certainly an interesting direction for further
research.

3.3.3.2 Spacetime approach

In the second step, the spacetime approach was examined. In the course of simulations
performed as part of the research, many simulations of hyperbolic problems were per-
formed using the spacetime approach. However, the results of these studies turned out
to be unsatisfactory and the solutions were highly inaccurate. Therefore, in this subsec-
tion only an example of such inaccurate solution will be presented. It has been decided to
present the example with the most numerically favorable boundary conditions, i.e. Dirich-
let boundary conditions on both boundaries. It was decided not to use any algorithm for
finding a value of the shape parameter value, but to use the brute force method due to the
fact that the analytical solution of the considered problem is known. As part of it, a series
of simulations was performed for the shape parameter values in the range from 10−4 to 1.
For each simulation, the value of the error measure Ξu was calculated. Figure 3.25 shows
the values of the error measure Ξu versus the value of shape parameter ε obtained using
coefficient and pseudospectral approaches for the Dirichlet-Dirichlet boundary conditions.
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Figure 3.25: Error measure Ξu versus the value of shape parameter ε for the one-
dimensional hyperbolic problem obtained using the spacetime approach in conjunction
with the Dirichlet-Dirichlet boundary conditions

Figure 3.25 shows that in the studied range the smallest value of the error measure
Ξu occurs for the shape parameter value equal to 10−4. For values lower than 10−4 the
function is flat and the solutions for these values of the shape parameter do not differ from
that for 10−4. Therefore, the solution for this value was closely examined. Figure 3.26
shows the evolution of temperature at the point x = 0 obtained using spacetime Kansa
method in conjunction with coefficient and pseudospectral approaches as well as the finite
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difference method with Euler and Houbolt time integration schemes for Dirichlet-Dirichlet
boundary conditions.
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Figure 3.26: The evolution of temperature and heat flux for the one-dimensional hyper-
bolic problem at the point x = 0 obtained using the spacetime approach in conjunction
with the Dirichlet-Dirichlet boundary conditions

The results presented in Figure 3.26 show that the solution obtained using the Kansa
method is significantly different from the solution obtained using the finite difference
method. It means that the spacetime Kansa method with this numeric setup is not
suitable for solving the considered initial-boundary value problem. However, it is worth
pointing out the noteworthy elements in the numerical setup, the modifications of which
could make the method effective, namely the spacetime scaling parameter β, which has a
huge impact on the quality of the interpolation in the spacetime Kansa method. Finding
a formula to calculate its optimal or quasi-optimal value would probably overcome the
encountered difficulties. It is worth pointing to this area as important for further research.

3.4 Two-dimensional problems

If the problem is two-dimensional, the Cattaneo-Vernotte Equation 2.9 simplifies to the
two-dimensional Cattaneo-Vernotte equation in the form of:

γ (x) ρ (x) (τ ü+ u̇) = κ,x (x)u,x + κ,y (x)u,y + κ (x) (u,xx + u,yy) . (3.18)

In the case of the two-dimensional problems, two computational domains were used, one
for the problems governed by the elliptic and parabolic heat equations and one for the
problems governed by the hyperbolic Cattaneo-Vernotte equation. The computational
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Figure 3.27: The two-dimensional computational domain used for the problems governed
by elliptic and parabolic heat equations

domain used in the problems governed by the elliptic and parabolic heat equations is a
rectangular domain which a simplified sketch is shown in Figure 3.27.

The number of points in the horizontal direction is nx, while the number in the vertical
direction is ny, the consequence is:

∆x (nx − 1) = ∆y (ny − 1) = L. (3.19)

Two sets of distributions of thermophysical parameters were used for this domain. The
first set was the same as that for the one-dimensional case and is described by Equations
3.6, 3.7, and 3.8. In simulations where these parameters were used, the adiabatic boundary
conditions qb = 0 were imposed on the bottom and top boundary. Such a formulation
of the problem results in the fact that there is an analytical solution for it, which is the
same as for a one-dimensional problem and is described by Equation 3.12. For this reason,
problems with this setup are called 1.5-dimensional problems in the thesis. The boundary
conditions imposed on the left and right boundaries and the associated parameter values
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were the same as for the one-dimensional case. This set was used for some of the elliptic
steady-state problems. The second set of distributions is given by the following harmonic
functions:

κ (x, y) =
κmax + κmin

2
+
κmax − κmin

4

(
cos

(
ωπ

x

L

)
+ cos

(
ωπ

y

L

))
, (3.20)

ρ (x, y) =
ρmax + ρmin

2
+
ρmax − ρmin

4

(
cos

(
ωπ

x

L

)
+ cos

(
ωπ

y

L

))
, (3.21)

γ (x, y) =
γmax + γmin

2
+
γmax − γmin

4

(
cos

(
ωπ

x

L

)
+ cos

(
ωπ

y

L

))
, (3.22)

where:

• κmin = 1 W ·m−1 ·K−1,

• κmax = 10 W ·m−1 ·K−1,

• ρmin = 1 kg ·m−3,

• ρmax = 10 kg ·m−3,

• γmin = 1 J · kg−1 ·K−1,

• γmax = 10 J · kg−1 ·K−1,

• ω = 2.

This set was used for some of the elliptic steady-state problems and for the parabolic
unsteady-state problems. The computational domain used in the hyperbolic problems
is different from the one shown. For consistency, it will be presented later in the paper
where the hyperbolic problems will be analyzed.

3.4.1 Steady-state elliptic problem

If the problem is steady, the two-dimensional Cattaneo-Vernotte Equation 3.18 simplifies
to the two-dimensional steady-state elliptic heat equation:

κ,x (x)u,x + κ,y (x)u,y + κ (x) (u,xx + u,yy) = 0. (3.23)

Two problems governed by the above equation were considered.
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Figure 3.28: Error measure ξ̄u versus the number of collocation points obtained during
two-dimensional convergence study for the Dirichlet-Dirichlet boundary conditions
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Figure 3.29: Error measure ξ̄u versus the number of collocation points obtained during
two-dimensional convergence study for the Robin-Robin boundary conditions
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Figure 3.30: Error measure ξ̄u versus the number of collocation points obtained during
two-dimensional convergence study for the Dirichlet-Neumann boundary conditions
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Figure 3.31: Error measure ξ̄u versus the number of collocation points obtained during
two-dimensional convergence study for the Robin-Dirichlet boundary conditions
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Figure 3.32: Error measure ξ̄u versus the number of collocation points obtained during
two-dimensional convergence study for the Neumann-Robin boundary conditions

3.4.1.1 Convergence study

After defining the numerical setups, it is possible to proceed to the convergence study
in which the 1.5-dimensional setup was used. As part of it, a series of simulations was
performed for n = nx × ny collocation points where nx was in the range from 10 to
30. For each simulation, the good value of the shape parameter was individually selected.
After each simulation, the value of the error measure ξ̄u was calculated with respect to the
analytical solution. The simulations were carried out for the coefficient and pseudospectral
approach for various combinations of boundary conditions. Figures 3.28 - 3.32 show the
values of error measure ξ̄u versus the number of collocation points nx = ny calculated
with respect to the analytical solution for various approaches and combinations of the
boundary conditions.

The results presented in the Figures 3.28 - 3.32 leads to conclusions similar to those
for the one-dimensional cases. The advantages of the high-order multiquadric scheme are
once again being proven. Even for nx = ny = 10 satisfactory values of ξ̄u lower than 1%
are achieved. It was decided that the number of collocation points nx = ny = 25 would be
used for the next simulations because of the fact that for such a value the values of ξ̄u are
even lower than 10−2 %. When it comes to comparing the accuracy between the coefficient
and pseudospectral approaches, the results are very similar. As in the one-dimensional
case, it can be seen that the resulting distributions are oscillatory and have peaks.The
reasons for their occurrence are the same as in the one-dimensional case. The nature of
the solution results from the fact that for each simulation the shape parameter value was
individually selected with the use of the condition algorithm.
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3.4.1.2 Two-dimensional elliptic problem no. 1

After performing the convergence study, it is possible to more closely examine the accuracy
of the method for the 1.5-dimensional problem using the cloud selected in the convergence
study. A series of simulations for different approaches and combinations of boundary
conditions were performed and the error measures values ξ̄u and ξ̄q were calculated with
respect to the analytical solution after each simulation. Figure 3.33 shows the values of
the error measures ξ̄u and ξ̄q calculated for the Kansa method solution with respect to the
analytical solution for various approaches and combinations of the boundary conditions.
In order to perform a substantive qualitative comparison of the solutions, the intersections
of the temperature surfaces with the plane y = 0 was used. Figures 3.34 - 3.38 show the
comparison between the Kansa method solutions and the analytical solution for points
y = 0 and various combinations of the boundary conditions.

Low values of error measures ξ̄u and good agreement of the Kansa method solutions
with the reference solutions show that the Kansa method is suitable for solving the con-
sidered class of problems and the solver is correctly implemented. The value of error
measures ξ̄q are much higher than ξ̄u which is similar to the one-dimensional steady-state
case and consequently the same conclusions can be drawn. The temperature fields almost
do not differ from those for the one-dimensional case, however, the heat flux fields show
some visible, but insignificant differences. Finally, it is worth answering the question that
probably arises. Why are the two-dimensional temperature fields not shown? The an-
swer is simple, the temperature surfaces are so similar to each other that it is impossible
to distinguish them with the naked eye. Therefore, it was decided to show only a two-
dimensional temperature field for the case where the Dirichlet boundary conditions were
imposed on both boundaries. It is shown in Figure 3.39.
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Figure 3.33: Error measures ξ̄u and ξ̄q for the two-dimensional elliptic problem no. 1
obtained using various approaches and combinations of boundary conditions
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Figure 3.34: Comparison between the Kansa method solutions and the analytical solu-
tion for the two-dimensional elliptic problem no. 1 for points y = 0 obtained using the
Dirichlet-Dirichlet boundary conditions
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Figure 3.35: Comparison between the Kansa method solutions and the analytical solution
for the two-dimensional elliptic problem no. 1 for points y = 0 obtained using the Robin-
Robin boundary conditions
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Figure 3.36: Comparison between the Kansa method solutions and the analytical solu-
tion for the two-dimensional elliptic problem no. 1 for points y = 0 obtained using the
Dirichlet-Neumann boundary conditions
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Figure 3.37: Comparison between the Kansa method solutions and the analytical solution
for the two-dimensional elliptic problem no. 1 for points y = 0 obtained using the Robin-
Dirichlet boundary conditions
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Figure 3.38: Comparison between the Kansa method solutions and the analytical solu-
tion for the two-dimensional elliptic problem no. 1 for points y = 0 obtained using the
Neumann-Robin boundary conditions
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Figure 3.39: Analytical solution temperature field for the two-dimensional elliptic problem
no. 1 obtained using the Dirichlet-Dirichlet boundary conditions

3.4.1.3 Two-dimensional elliptic problem no. 2

The second problem was similar in its setup to the first one, however it differed in several
aspects:

• the number of collocation points was nx × ny = 21× 21,

• the distributions of thermophysical parameters were described by Equations 3.20, 3.21,
and 3.22,

• Robin boundary condition was imposed on the right boundary, for which the ambient
temperature was equal to u∞ = 300 K, while the heat transfer coefficient was equal to
α = 10 W ·m−2 ·K−1,

• Neumann boundary condition was imposed on the left, bottom and top boundaries
for which the heat fluxes were equal to qb = 100 W · m−2 , qb = −100 W · m−2 and
qb = 100 W ·m−2 , respectively.

Two reference solutions were used for this problem. The first of the reference solutions is
the solution obtained using the finite element method solver implemented in MATLAB
[113]. The second of the reference solutions is the finite difference method solution. A se-
ries of simulations for different approaches were performed and the error measures values
ξ̄u were calculated with respect to the reference solutions solution after each simulation.
The error measure ξ̄q has not been calculated because the complex pattern of the heat
flux causes it to locally reach values close to zero, which in consequence causes the error
measure value to reach huge values that are not reliable when it comes to the assessment
of the accuracy of the solution. Figure 3.40 shows the values of error measures ξ̄u calcu-
lated for the Kansa method solution with respect to the reference solutions for various
approaches.
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Figure 3.40: Error measure ξ̄u for elliptic problem no. 2 obtained using various approaches
of the Kansa method

Low values of error measures ξ̄u show that the Kansa method is suitable for solving
the considered class of problems and the solver is correctly implemented. It is worth
noting that the pseudospectral approach for this class of problems turned out to be more
accurate than the coefficient approach. This conclusion is of great importance because
problems of this class will be considered in the next chapter. For this reason they will be
analysed using the pseudospectral approach. It is worth presenting some Kansa method
solutions and compare it with the reference solution. However, similar to the first two-
dimensional problem, the temperature surfaces and heat flux vector fields obtained with
different methods and approaches indistinguishable to the naked eye and therefore it is
not possible to perform a substantive comparison of them in this way. Nevertheless, one
example of a solution will be presented to familiarize the reader with the shape of the
solution. Figure 3.41 shows the temperature field and the heat flux vector field obtained
using the coefficient Kansa method.

In order to perform a substantive qualitative comparison of the solutions, the inter-
sections of the temperature surfaces with the certain planes were used. Due to the fact
that the temperature field shown in Figure 3.41 is somewhat similar to the hyperbolic
paraboloid, points y = 0 and x = 0 were chosen. Figures 3.42 and 3.42 show the com-
parison between the temperature fields and the heat flux field obtained using the Kansa
method and using the reference solutions for points y = 0 and x = 0.

As can be seen in figures Figurs 3.42 and 3.43 the agreement of the temperature fields
is very good, while the agreement of the heat flux fields is slightly worse. The reasons for
this phenomenon and the ways to remedy it have already been described earlier in the
work in the section on one-dimensional elliptic problems.
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Figure 3.41: Temperature field and heat flux vector field obtained for elliptic problem no.
2 using the coefficient Kansa method
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Figure 3.42: Comparison between the temperature fields obtained using the Kansa method
solutions and using the reference solutions for points y = 0 and x = 0
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Figure 3.43: Comparison between the heat flux fields obtained using the Kansa method
solutions and using the reference solutions for points y = 0 and x = 0
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3.4.2 Unsteady-state parabolic problem

If the relaxation time τ = 0, the two-dimensional Cattaneo-Vernotte Equation 3.18 sim-
plifies to the two-dimensional parabolic heat equation:

γ (x) ρ (x) u̇ = κ,x (x)u,x + κ,y (x)u,y + κ (x) (u,xx + u,yy) . (3.24)

The reference solution for this problem was the finite difference method solution. In
this case, exactly the same numerical setup as in the elliptic problem no. 2 was used.
The only difference was in time advancement, which was not present in the steady-state
problem. Time step size was equal to ∆t = 0.6 s, while the number of time advancements
was equal to 15. A series of simulations for different approaches were performed and the
error measure values Ξu were calculated with respect to the reference solution after each
simulation. The error measure Ξq has not been calculated because the complex pattern
of the heat flux causes it to locally reach values close to zero, which in consequence
causes the error measure value to reach huge values that are not reliable when it comes
to the assessment of the accuracy of the solution. Figure 3.44 shows the evolution of the
temperature at the point x = 0, y = 0 obtained using the finite difference method and
the Kansa method for various approaches along with the values of the error measure Ξu

and the selected value of the shape parameter ε.
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Figure 3.44: The evolution of temperature the two-dimensional parabolic problem at the
point x = 0, y = 0

Low values of error measures Ξu and good agreement of the Kansa method solutions
with the reference solutions show that the Kansa method is suitable for solving the con-
sidered class of problems and the solver is correctly implemented. Additionally, it is worth
noting that the obtained shape parameter value turned out to be the same for both ap-
proaches - it is a coincidence. The results shown in Figure 3.44 show a good agreement
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between the solutions obtained using the Kansa method and the solution obtained us-
ing the finite difference method. However, it seems that the Kansa method solution is
slightly better due to the fact that the Kansa method solution is smoother in the first
three time advancements for which the the finite difference method solution exhibits slight
oscillations.

3.4.3 Unsteady-state hyperbolic problem

Let’s move on to the most general problem in this section, namely the two-dimensional
hyperbolic problem which is described by Equation 3.18:

γ (x) ρ (x) (τ ü+ u̇) = κ,x (x)u,x + κ,y (x)u,y + κ (x) (u,xx + u,yy) .

The computational domain used in the problems governed by the hyperbolic Cattaneo-
Vernotte equation is the well known in the literature amoeba-like domain [29, 138], the
boundary of which is described by the following equation written in the polar coordinate
system:

r (θ) = exp (sin θ) sin2 2θ + exp (cos θ) cos2 2θ, 0 ≤ θ ≤ 2π, (3.25)

and presented in Figure 3.45.

x

y

Figure 3.45: Shape of the boundary of the amoeba-like domain

The distributions of thermophysical parameters in the amoeba-like domain are given
by the following functions:

κ (x, y) = (2x+ y + 2)2, (3.26)

ρ (x, y) = 1, (3.27)

93



3. Validation and verification of the developed methods and algorithms

γ (x, y) = 1. (3.28)

The Dirichlet boundary condition was applied on the whole boundary in the following
form:

u (xb, yb, t) =
30y2

b − 30x2
b − 100xbyb − 150

2xb + yb + 2
exp

(
− t

5

)
, (3.29)

u̇ (xb, yb, t) = 0, (3.30)

where xb, yb are coordinates of boundary points. The initial conditions were as follows:

u (x, y, t = 0) =
30y2 − 30x2 − 100xy − 150

2x+ y + 2
. (3.31)

The reference solution for this problem was the so-called artificial analytical solution [119],
and for the interior of the domain is has the following form:

u (x, y, t) =
30y2 − 30x2 − 100xy − 150

2x+ y + 2
exp

(
− t

5

)
, (3.32)

qx (x, y, t) =
(
−300 + 120x+ 60x2 + 200y + 60xy + 160y2

)
exp

(
− t

5

)
, (3.33)

qy (x, y, t) =
(
−150 + 200x+ 170x2 − 120y − 120xy − 30y2

)
exp

(
− t

5

)
. (3.34)

The computational domain consisted of 386 collocation points, which consisted of 120
boundary points and 266 interior points. As for the distribution of the collocation points,
two approaches were used in the work. The boundary points were regularly distributed,
while the interior points were distributed in one of two ways: regular or irregular (random).
Figures 3.46 and 3.47 show the examples of amoeba-like domain with regular and irregular
distributions of collocation points in the domain interior.
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Figure 3.46: An example of the amoeba-like domain with the regular distribution of
internal collocation points
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Figure 3.47: An example of the amoeba-like domain with the irregular (random) distri-
bution of internal collocation points
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3.4.3.1 Regular distribution of collocation points in the interior

In the case of regular distribution of collocation points in the interior the time step size was
equal to ∆t = 0.75 s, while the number of time advancements was equal to 20. A series of
simulations for different approaches and time integrations schemes were performed and the
error measures values Ξu were calculated with respect to the reference solution after each
simulation. The error measure Ξq has not been calculated because the complex pattern
of the heat flux causes it to locally reach values close to zero, which in consequence causes
the error measure value to reach huge values that are not reliable when it comes to the
assessment of the accuracy of the solution. Figure 3.48 shows the values of error measure
Ξu calculated for the Kansa method solution with respect to the reference solution for
various approaches. Figures 3.49 and 3.50 show the evolution of temperature over time
at point x = 1, y = 0.5 obtained using the analytical solution and the Kansa method
for various approaches and time integration schemes. This point was chosen because it is
one of the farthest points from the boundaries. Due to the fact that Dirichlet boundary
conditions are imposed, near boundary, it is easy to achieve a low error. The above causes
that the evolution of the solution will be analyzed at the point for which there will be no
artificial improvement of the result by the influence of the proximity of the boundary.
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Figure 3.48: Error measure Ξu for the two-dimensional hyperbolic problem obtained using
various approaches and time integration schemes

Low values of error measures Ξu and good agreement of the Kansa method solutions
with the reference solutions show that the Kansa method is suitable for solving the con-
sidered class of problems and the solver is correctly implemented. As for the agreement
of the temperature evolution obtained using the Kansa method and using the analytical
method, it is very good, much better than the agreement in the case of the evolution of
the heat fluxes. The reasons for this phenomenon and the ways to remedy it have already
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Figure 3.49: The evolution of the temperature for the two-dimensional hyperbolic problem
at the point x = 1, y = 0.5 obtained using various approaches and time integration
schemes

been described earlier in the work in the section on one-dimensional elliptic problems.
The evolution of temperature and flux obtained with the different approaches and time
integration schemes did not differ significantly.

97



3. Validation and verification of the developed methods and algorithms

0 2 4 6 8 10 12 14 16

0

10

20

30

40

50

60

70

t [s]

q x
[W
·m

−
2
]

Coefficient appr. + Euler scheme
Coefficient appr. + Houbolt scheme

Pseudospectral appr. + Euler scheme
Pseudospectral appr. + Houbolt scheme

Analytical solution

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

120

140

t [s]

q y
[W
·m

−
2
]

Coefficient appr. + Euler scheme
Coefficient appr. + Houbolt scheme

Pseudospectral appr. + Euler scheme
Pseudospectral appr. + Houbolt scheme

Analytical solution

Figure 3.50: The evolution of the heat flux for the two-dimensional hyperbolic problem at
the point x = 1, y = 0.5 obtained using various approaches and time integration schemes

98



3. Validation and verification of the developed methods and algorithms

3.4.3.2 Irregular (random) distribution of collocation points in the interior

The simulations using irregular distribution of collocation points in the interior turned out
to be a little problematic. Due to the fact that the distributions of collocation points are
random, after performing a dozen or so simulations, the results were obtained, in which
the accuracy in some cases is comparable with the results for the regular distribution,
sometimes it is lower and sometimes the simulation turns out to be completely unstable.
In other words, the repeatability and reliability of this approach is limited. For this
reason, for the class of problem under consideration, it is not recommended to use irregular
distribution of collocation points.

Author’s publications More information on the problems discussed so far in thesis
can be found in the author’s publications that have been published in the course of the
research: [128, 129, 126, 131, 132].

3.5 Algorithms for finding good value of shape pa-

rameter and examples of application

After positive verification and validation of the formulated variants of the Kansa method
and the solver, it is possible to analyse the condition algorithm. For this purpose, two
series of steady-state problems simulations were performed using the coefficient Kansa
method - one for the one-dimensional case and one for the two-dimensional case. As part
of these simulations, the functions L (ε) and E∞ (ε) were examined. For the first one, the
place of transition to the oscillatory region was searched according to the condition algo-
rithm, and for the second - the minimum according to Rippa’s algorithm. These graphs of
the functions were collated with the graph of the error measure function ξ̄u (ε). As men-
tioned in the section on the condition algorithm, this algorithm does not have to be limited

to examining the oscillation of the L (ε) function. Therefore, the E∞ (ε),
∣∣∣∣Ā (ε) c− b̄

∣∣∣∣2

and ||c (ε)||2 functions were also examined. The numerical setup for the one-dimensional
simulations was the same as for the discussed earlier one-dimensional elliptic problem no.
1 with Robin-Dirichlet boundary conditions. The numerical setup for the two-dimensional
simulations was the same as for the discussed earlier two-dimensional elliptic problem no.
1 with Neumann-Robin boundary conditions. The research was carried out for 200 loga-
rithmically distributed values of shape parameter ranging from 10−1 to 101. Figures 3.51

- 3.54 show the graphs of functions L (ε), E∞ (ε),
∣∣∣∣Ā (ε) c− b̄

∣∣∣∣2, ||c (ε)||2 collated with
the graph of the error measure function ξ̄u (ε) for the one-dimensional case, respectively.

Figures 3.55 - 3.58 show the graphs of functions L (ε), E∞ (ε),
∣∣∣∣Ā (ε) c− b̄

∣∣∣∣2, ||c (ε)||2
collated with the graph of the error measure function ξ̄u (ε) for the two-dimensional case,
respectively.

Figures 3.51 - 3.58 lead to some interesting conclusions. First of all, it is noticeable
that not only the condition algorithm, but the whole proposed class of oscillation indi-
cators is effective. This is due to the fact that all the shape parameter values obtained
using oscillation algorithms lead to high accuracy results, in all considered cases the error
measure did not exceed 1%. Regarding reliability, there are some disadvantages with the

oscillation algorithm in conjunction with
∣∣∣∣Ā (ε) c− b̄

∣∣∣∣2 function. The point is that the
zone below the strong oscillation threshold, which is smooth for other functions, is slightly

oscillating for the
∣∣∣∣Ā (ε) c− b̄

∣∣∣∣2 function, which may lead to an erroneous finding of the
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Figure 3.51: Graphs of functions L (ε) and ξ̄u (ε) for the one-dimensional case
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Figure 3.52: Graphs of functions E∞ (ε) and ξ̄u (ε) for the one-dimensional case. The left
value corresponds to Rippa’s algorithm and the right value corresponds to the oscillation
algorithm
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Figure 3.53: Graphs of functions
∣∣∣∣Ā (ε) c− b̄

∣∣∣∣2 and ξ̄u (ε) for the one-dimensional case
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Figure 3.54: Graphs of functions ||c (ε)||2 and ξ̄u (ε) for the one-dimensional case

threshold value for the oscillation zone. This is also what happened in the one-dimensional
case. As for the accuracy of the results obtained with the oscillation algorithms, in all

cases, except for the one mentioned above relating to the function
∣∣∣∣Ā (ε) c− b̄

∣∣∣∣2, more
accurate results were obtained than using Rippa’s algorithm. Naturally, the algorithm
most strongly promoted in the work is the condition algorithm. On the other hand, it
happened that other functions from the group of oscillation algorithms gave better results.
So why is it this algorithm that deserves special attention? It should be remembered that
the condition algorithm, unlike other presented algorithms, does not require solving the
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Figure 3.55: Graphs of functions L (ε) and ξ̄u (ε) for the two-dimensional case
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Figure 3.56: Graphs of functions E∞ (ε) and ξ̄u (ε) for the two-dimensional case. The left
value corresponds to Rippa’s algorithm and the right value corresponds to the oscillation
algorithm
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Figure 3.57: Graphs of functions
∣∣∣∣Ā (ε) c− b̄

∣∣∣∣2 and ξ̄u (ε) for the two-dimensional case
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Figure 3.58: Graphs of functions ||c (ε)||2 and ξ̄u (ε) for the two-dimensional case

problem, which is a significant saving from the point of view of the numerical budget
and, consequently, a very strong advantage. Of course, one can argue that determining
the condition number is also numerically expensive. This is true, however, the more col-
location points, the weaker this argument is because for computational domains with a
large number of collocation points, the cost of solving the problem can be significantly
higher than the cost of determining the condition number. Algorithms from the group of
oscillation algorithms in the considered examples led to very precise results. One can risk
saying that they are extremely promising, however, there are many questions related to
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them, for which there is no answer. First of all, it is necessary to consider an alternative
method of detecting the oscillations so that they are not detected at the wrong threshold.
Potentially, application of Fourier analysis to detect the transition from the smooth region
to the oscillating region analysis is an interesting direction for further research. Another
important issue is the search for new functions that meet two conditions at the same time:
their determination will not be numerically expensive and will give reliable, accurate re-
sults. Finally, it is worth emphasizing the fact that was already indicated in the previous
chapter, namely that the work considers only the problems in which a good value of the
shape parameter is sought for a given problem and a given cloud of collocation points.

Author’s publications More information on the algorithms for searching for a good
value of the shape parameter can be found in the author’s publications that have been
published in the course of the research: [133, 130, 127].

Validation and verification conclusions The chapter on validation and verification
allows to draw a number of conclusions. The most important one is that the Kansa
method is suitable for solving the problems associated with elliptic, parabolic and hyper-
bolic heat flow equations in a material with spatially variable thermophysical parameters.
Additionally, the algorithms for finding a good value of the shape parameter proposed
in the thesis turned out to be effective. It can be objected that the cases considered in
this chapter were idealized and unrelated to the real systems in which the heat flow is
modelled. This is only half true because without the study of these idealized cases, it
would be impossible to analyze more complex, real-life cases. Now is the time for that.
In the next chapter the problems of design of a thermal metamaterial device for heat flux
manipulation will be discussed.
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4. Optimal design for the heat flux
manipulation device

4.1 Problem formulation

After confirming the suitability of the Kansa method for solving heat flow problems in ma-
terials with spatially variable thermophysical parameters and confirming the correctness
of the implementation, it is time to consider the practical problems. In the introduction
it was mentioned that the work will consider thermal metamaterials, materials enabling
the manipulation of the heat flux. Heat flow is a highly diffusive process, which makes
it extremely difficult to control the direction of heat flow. However, metamaterials allow
to do this. They are characterized by a special spatial variability of thermophysical pa-
rameters. The work considers the device, the idea of which was proposed by Narayana’s
[116], it is presented in Figure 4.1.
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Adiabatic wall
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Figure 4.1: Narayana’s device for heat flux manipulation
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As shown in Figure 4.1, Narayana’s device consists of an object surrounded by a device
built of thermal metamaterial surrounded by a mantle. The upper and lower edges are
insulated with an ideal adiabatic wall, while the left boundary has contact with the hot
reservoir and the right one with the cold sink. The temperature difference between the
left and right forces the heat to flow uniformly from left to right. The metamaterial insert
is designed to create the desired heat flow distribution in the object, which would be very
hard to obtain with the use of classic materials. The group of heat flows very hard to
achieve with the use of classic materials is very numerous, however, one can distinguish
four very important ones with a wide range of applications [116]:

• Cloaking, in which the heat flow in the object has the same intensity and direction as
the flow in the mantle,

• Shielding, in which the intensity of the heat flow in the object tends to zero,

• Inversion, in which the heat flow in the object has the same intensity but the opposite
direction to the flow in the mantle,

• Concentration, in which the heat flow in the object has the same direction but much
greater intensity than the flow in the mantle.

These four ways of heat flux manipulation have a particularly wide application, such as
photovoltaics, thermal camouflage, advanced insulation [116]. Figure 4.2 shows these four
cases of heat flow in Narayana’s device.

Performing a heat flow simulation for known distribution of thermophysical param-
eters in a metamaterial device is a direct problem. However, the problem is that these
distributions are not known and need to be found, which is at the heart of designing
thermal metamaterials. This type of problems is much more difficult to solve. The way
it will be treated in this study will be presented in this chapter. Narayana’s device is not
a device with strictly defined parameters, but only a general concept. Therefore, there
are many specific implementations of this device. In this study, it was decided to use
Fachinotti’s device [47] the scheme of which is presented in Figure 4.3.

As can be seen in Figure 4.3, Fachinotti’s device, just like Narayana’s, consists of an
object Ωobj, a device Ωdvc and a mantle Ωmnt for which:

Ω = Ωobj ∪ Ωdvc ∪ Ωmnt. (4.1)

Fachinotti’s device parameters are as follows:

• The mantle and the object are made of agar water with a thermal conductivity coeffi-
cient of κagar = 0.57 W ·m−1 ·K−1,

• The temperature of hot reservoir is uhot = 321.85 K,

• The temperature of cold sink is ucold = 283.15 K,

• The width of the device is Lx = 9 cm,

• The height of the device is Ly = 18 cm,

• The diameter of the object is dobj = 2 cm,

• The external diameter of the device is ddvc = 6.5 cm.
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Cloaking Shielding

Inversion Concentration

Figure 4.2: Four characteristic cases of heat flow in Narayana’s device

Based on the above parameters, it is possible to determine the temperature gradient in
the mantle in the absence of a heat flux manipulation device, which is equivalent to a
homogeneous mantle:

u0
,x =

ucold − uhot

Lx

= −430 K ·m−1, (4.2)

and the heat flux in the mantle in the absence of a heat flux manipulation device,

q0
x = −κagaru

0
,x = 245.1 W ·m−2, (4.3)

q0
y = 0 (4.4)
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Figure 4.3: Fachinotti’s device for heat flux manipulation
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4.2 Computational model

4.2.1 Collocation points cloud structure

Numerical calculations using the Kansa method were carried out in the computational
domain consisting of a cloud of collocation points, the structure of which together with a
sketch of the device is shown in Figure 4.4.

x

y

0

Figure 4.4: The structure of the collocation points cloud used in the optimisation process
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As can be seen, the cloud of collocation points shown in Figure 4.4 is regular except
that the corner points have been removed to avoid ambiguity in the boundary conditions.
The number of collocation points in the cloud n is equal to:

n = nxny − 4, (4.5)

where nx and ny are the numbers of collocation points in each row and column.The total
number of collocation points in the cloud has been denoted by n, the number of points
in mantle denoted by nmnt, the number of points in the metamaterial device denoted by
ndvc, and the number of points in the object denoted by nobj. The numbers of collocation
points satisfy:

n = nmnt + ndvc + nobj. (4.6)

4.2.2 Optimisation problem

After introduction of the Fachinotti’s device, it is possible to proceed to the definition
of the research problem and the method of its solution. The problem itself is simple to
define, one must find such distributions of a thermal conductivity in the metamaterial
device to obtain the designed heat flow described earlier. The definition by means of
words is very simple, however, is not sufficient to solve the problem and consequently
it is necessary to express it in the language of mathematics. The considered problem is
the problem of a two-dimensional steady heat flow in a material with spatially variable
distributions of thermophysical parameters, given by Equation 3.23:

κ,xu,x + κ,yu,y + κ (u,xx + u,yy) = 0.

Equation 3.23 contains derivatives of thermal conductivity which is very undesirable in
the approach that was used. Therefore, an equivalent form of Equation 3.23 was used:

(κu,x),x + (κu,y),y = 0. (4.7)

After applying the collocation Kansa method, the above equation can be written in a
matrix form. It is valid for all collocation points in the considered domain, as in Equation
2.39:

Ku = 0.

It was decided to use a pseudospectral approach which allows the stiffness matrix K to
be computed using the modified Equation 2.113 for the two-dimensional problem:

K = − (D,xψ (κ)D,x + D,yψ (κ)D,y) . (4.8)

As can be seen, the difference between Equation 2.113 and Equation 4.8 is the occurrence
of the matrix ψ (κ) instead of κ. Let’s discuss these differences more closely. First of
all, when considering the heat flux manipulation problem, κ denotes a vector containing
thermal conductivities at all collocation points:

κ =




κ (x1)
κ (x2)

...
κ (xn)


 , (4.9)
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The operator ψ (·) denotes creation of a diagonal matrix on the basis of the vector of
thermal conductivity values in collocation points κ. This operation is equivalent to the
following operation:

ψ (κ) =
(
κ1T

)
◦ I (4.10)

where:

1 =




1
1
...
1


 , (4.11)

and ◦ is Hadamard product [75]. The vector 1 and the matrix I in this case have a
dimension of n×1 and n×n, respectively. Substituting Equation 4.8 to 2.39 and imposing
boundary conditions creates an Equation of state 2.44 of the considered problem:

Āu = b̄.

The problem of manipulating the heat flux in the object region Ωobj is equivalent to
minimizing the following objective function f , which describes the mean squared error of
the deviation between the obtained heat flux vector and the heat flux vector assumed in
the design process:

f =

√(
qobj
x − q0

x

)T
W
(
qobj
x − q0

x

)
+
(
qobj
y − q0

y

)T
W
(
qobj
y − q0

y

)
, (4.12)

where qobj
x , qobj

y are vectors containing heat flux components in the x and y direction for the
collocation points belonging to the object region Ωobj, while q0

x, q0
y are vectors containing

desired heat flux components in the x and y direction for the collocation points belonging
to the object region Ωobj, the values of which were assumed in the design process. It was
assumed in the work that:

q0
x = ζq0

x1, (4.13)

q0
y = 0, (4.14)

where ζ is the heat flux manipulation parameter that takes a value depending on the
considered heat flow problem:

• ζ = −1 for inversion,

• ζ = 0 for shielding,

• ζ = 1 for cloaking,

• ζ > 1 for concentration,
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and W is the nobj × nobj diagonal weight matrix:

W =
1

nobj
I. (4.15)

The vector 1 and the matrix I in this case have a dimension of nobj × 1 and nobj × nobj,
respectively, which is different than dimension of the vector 1 in Equation 4.10. If the
design variable is the value of thermal conductivity in the device region Ωdvc, it can be
parametrized using the so-called artificial density % that ranges from 0 to 1 [47]:

∀xi ∈ Ωdvc : κi = κmin + (%i)
g (κmax − κmin) , (4.16)

where i = 1, ..., ndvc. Why was it decided to parametrize the thermal conductivity? With-
out the application of appropriate constraints, the values of thermal conductivity at the
collocation points could reach any values, even those that are non-physical and not rep-
resented by any existing material. To avoid this, a limitation is placed on the value of
the thermal conductivity so that at any point of the device it is not lower than a certain
minimum value κmin and not greater than a certain maximum value κmax. By choosing
g ≥ 3 [47], % is compelled to tend to either 0 or 1, i.e., the material at the device is forced
to be either that of conductivity κmin or that of conductivity κmax, respectively, instead
of a mixture of them. This is of great importance because the resulting distribution of
thermal conductivity in the device can be well approximated with a composition of only
two materials and thus the actual device can be created using only two materials. The
device will be fabricated using copper and polymethyl methacrylate, having conductivities
κmax = 403 W ·m−1 · K−1 and κmin = 0.22 W ·m−1 · K−1, respectively [47]. The parame-
terization described by Equation 4.16 is an example of an approach called Solid Isotropic
Material with Penalization used in the topological optimisation [13]. After defining the
objective function f , the following optimisation problem with equality constraints in the
form of Equation of state 2.44 can be posed:

%opt = arg min
%∈Rndvc

f (%)

s.t.

{
Ā (%)u (%) = b̄

∀i ∈ 1, ..., ndvc : 0 ≤ %i ≤ 1

(4.17)

Using the Lagrange method for the conditional extreme problem [74], the constrained
problem described by Equation 4.17 can be transformed to an unconstrained optimisation
problem in the following form:

%opt = min
%∈Rndvc

` (%)

s.t. ∀i ∈ 1, ..., ndvc : 0 ≤ %i ≤ 1,
(4.18)

where only box constrains are given. The Lagrangian ` (%) has the following form:

` (%) = f (%)− λT
(
Ā (%)u (%)− b̄

)
, (4.19)

where λ is the Lagrange multipliers vector. Due to the fact that ndvc � 1, which means
that the number of design variables is large, it was decided to solve the problem described
by Equation 4.18 using the gradient optimisation method. For this purpose, the gradient
of the objective function was analytically calculated using the adjoint state method [86].
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The derivative of Lagrangian 4.19 with respect to the component of design variables vector
is as follows:

∂`

∂%i
=

∂f

∂%i

∣∣∣∣∣
u=const

+
∂f

∂u

∂u

∂%i
− λT

(
∂Ā

∂%i
u+ Ā

∂u

∂%i

)
. (4.20)

In Equation 4.20, the rules of matrix calculus [110] were used, which gives the appropriate
sizes of matrix derivatives and vectors with respect to the vector components of design

variables. For example, matrix
∂f

∂u
is 1× n and

∂u

∂%i
is n× 1. Rearranging Equation 4.20

leads to:

∂`

∂%i
=

∂f

∂%i

∣∣∣∣∣
u=const

+

(
∂f

∂u
− λT Ā

)
∂u

∂%i
− λT

∂Ā

∂%i
u. (4.21)

Computing the derivatives of the temperature field vector with respect to the components

of the design variables vector
∂u

∂%i
is an extremely computationally expensive operation.

This problem can be solved by assuming that the following term is equal to 0:

∂f

∂u
− λT Ā = 0T . (4.22)

Solving Equation 4.22 for λ leads to:

λ = Ā−T
(
∂f

∂u

)T

. (4.23)

Finally, Equation 4.21 simplifies to:

∂`

∂%i
=

∂f

∂%i

∣∣∣∣∣
u=const

− λT
∂Ā

∂%i
u. (4.24)

The calculation of the Lagrangian derivative described by Equation 4.24 requires the

calculation of three derivatives:
∂f

∂%i

∣∣∣∣∣
u=const

,
∂f

∂u
, and

∂Ā

∂%i
. In order to provide a recipe for

their calculation, one should use the fact that in the Kansa method in the pseudospectral
formulation, the components of the heat flux vector for the collocation points in the object
can be calculated as:

qobj
x (%) = −Y ψ (κ (%))D,xu (%) (4.25)

qobj
y (%) = −Y ψ (κ (%))D,yu (%) (4.26)

where Y is nobj×n output matrix composed of the rows of the n×n identity matrix, which

corresponds to the collocation points in the object region Ωobj. Consequently,
∂f

∂%i

∣∣∣∣∣
u=const
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can be computed as follows:

∂f

∂%i

∣∣∣∣∣
u=const

=− 1

f

(
qobj
x (%)− q0

x

)T
WY ψ

(
∂κ (%)

∂%i

)
D,xu+

− 1

f

(
qobj
y (%)− q0

y

)T
WY ψ

(
∂κ (%)

∂%i

)
D,yu

, (4.27)

where:

∂κ (%)

∂%i
=

{
g (%i)

g−1 (κmax − κmin) if xi ∈ Ωdvc

0 otherwise
. (4.28)

∂f

∂u
can be computed as follows:

∂f

∂u
=− 1

f

(
qobj
x (%)− q0

x

)T
WY ψ (κ (%))D,x+

− 1

f

(
qobj
y (%)− q0

y

)T
WY ψ (κ (%))D,y

. (4.29)

while
∂Ā

∂%i
as follows:

∂Ā

∂%i
= D,xψ

(
∂κ (%)

∂%i

)
D,x + D,yψ

(
∂κ (%)

∂%i

)
D,y. (4.30)

When performing the operation of calculating
∂Ā

∂%i
, it must be remembered that the rows

of this matrix corresponding to the boundary points on which the boundary conditions are
imposed are zero-rows. To ensure a stable optimisation process and to avoid checkerboard
solutions, two different types of filtration have been used [124]:

• spatial filtration of the design variable, i.e. the artificial density vector %,

• spatial filtration of the objective function gradient with respect to the vector of design

variables
∂`

∂%
.

A linear filter was used as the artificial density filter, so that the filtering operation is
given by a linear transform of the form %̄ = %H where %̄ is the artificial density row
vector after filtration. The filter matrix H has the following form:

He,j =
max (0, r − δe,j)

ndvc∑
i=1

max (0, r − δe,i)
, e, j ∈ {1, 2 ... ndvc} (4.31)

where δe,i is the Euclidean distance between the collocation points in the device region
Ωdvc:

δe,i = ||xe − xi|| , (4.32)
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and r is the filter radius:

r = mrmin, (4.33)

where m is a real number and rmin is the minimum distance between collocation points
in the device region Ωdvc. The boundary problem is solved in an approximate manner
for the artificial density after the filtration process, hence the gradient of the objective
function with respect to the original variable is calculated as follows:

∂ ¯̀(%)

∂%
=
∂` (%̄)

∂%̄
H . (4.34)

Filtering the gradient vector described by Equation 4.34 is performed using a new filter:

∂ ˘̀(%)

∂%
=

(
%̄ ◦ ∂

¯̀(%)

∂%

)
HW̄ , (4.35)

where weight matrix W̄ has the following form:

W̄ = [ψ (max (s, %̄))]−1 . (4.36)

s = 0.001 is regularization constant [154]. The interior-point method was used in the
optimisation process [167].

4.3 Results and discussion

4.3.1 Convergence study

After presenting the fundamental concepts of heat flux manipulation devices and opti-
misation problems related to them, it is possible to go on to the simulations. Naturally,
the first step was a convergence study. The study was carried out for the cloaking test
case for which the heat flux manipulation parameter is ζ = 1. The parameters of the
collocation point clouds and the corresponding good value of the shape parameters εgood

are summarized in Table 4.1.

Number of collocation points n ndevice nobject nmantle εgood

388 68 4 316 0.023
574 96 12 466 0.021
796 136 16 644 0.0193
964 168 16 780 0.015
1148 192 24 932 0.0147

Table 4.1: Collocation point clouds parameters and shape parameter values used in the
convergence study

The results obtained using the above clouds may have insufficient spatial resolution
to perform visual qualitative analysis. Therefore, the obtained optimal artificial density,
temperature and heat flux fields were interpolated to higher resolutions. It should be
emphasized that the interpolated data was used only for visualization and not for further
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calculations. The grid on which the artificial density fields were interpolated is a cylindri-
cal grid consisting of 125×20 = 2500 points. The grid on which the temperature and heat
flux fields were interpolated is a Cartesian grid consisting of 35× 70 = 2450 points. The
starting density distribution in the iterative optimisation process is a uniform distribution
and the value at each collocation point in the device region Ωdvc is %i = 0.5. The value of
the spatial filter multiplier m is 2.

Objective function It seems that the most obvious measure to be investigated in the
convergence study is the objective function f and the number of he number of iterations
in the optimisation process. Figure 4.5 shows the optimal value of the objective function
f and the number of iterations in the optimisation process as a functions of the number
of collocation points.
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Figure 4.5: The optimal value of the objective function f and the number of iterations as
a function of the number of collocation points n

The results presented in Figure 4.5 should be interpreted with great caution. By
examining only the objective function and the number of iterations, it can be concluded
that the best results are obtained for the simulation with the lowest number of collocation
points for which the lowest value of the objective function and the smallest number of
iterations are obtained. However, such a situation seems to be incorrect. The reason for
this is probably that the low number of collocation points makes the problem numerically
easier because the number of design variables and points at which the objective function
is calculated is smaller as well as the strong gradients of the temperature field are not well
simulated. Consequently, getting a low value for the objective function and small number
of iterations is relatively easy. On the other hand, the consequence of this may be the
low quality of the solution in the computational domain as a whole and not just in the
object. In order to investigate this problem in more detail, it is necessary to examine the
artificial density, temperature and heat flux fields.
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Artificial density fields Artificial density fields were analysed first. Figures 4.8 - 4.10
show the optimal artificial density fields in the device for the clouds consisting of 388,
574, 796, 964, and 1148 collocation points, respectively.
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Figure 4.6: The optimal artificial density field for 388 collocation points

Figures 4.6 - 4.10 leads to the following conclusions. First of all, it is visible that all
distributions are very symmetrical about the horizontal axis. It is also clearly visible that
as the cloud density increases, symmetry appears along the vertical axis. This symmetry
appears for 964 collocation points, but for 1148 collocation points it is already very clear.
In the reference studies [47], the obtained artificial density distributions were symmet-
rical, therefore it is assumed that the symmetry is an extremely important parameter
indicating the quality of the solution. Therefore, it can be preliminary concluded that
cloud consisting of 1148 collocation points is appropriately dense to be used in further
simulations. However, to confirm this preliminary conclusion, it is necessary to study the
temperature and heat flux fields.

Temperature and heat flux fields Figures 4.11 - 4.15 show the optimal temperature
and heat flux fields in the entire device for the clouds consisting of 388, 574, 796, 964,
and 1148 collocation points, respectively.

It is clearly visible that only the clouds consisting of 964 and 1148 collocation points
gave relatively smooth and regular isotherms as well as an orderly, non-chaotic distribution
of the heat flux in the entire device. It is also worth noting that for the two coarsest clouds,
a clear deviation of the heat flux is visible in the vicinity of the boundary between the
object and the device. From the point of view of temperature field and heat flux analysis,
the two most promising clouds are those consting od 964 and 1148 collocation points.
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Figure 4.7: The optimal artificial density field for 574 collocation points
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Figure 4.8: The optimal artificial density field for 796 collocation points
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Figure 4.9: The optimal artificial density field for 964 collocation points
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Figure 4.10: The optimal artificial density field for 1148 collocation points
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Figure 4.11: The optimal temperature and heat flux fields for 388 collocation points
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Figure 4.12: The optimal temperature and heat flux fields for 574 collocation points
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Figure 4.13: The optimal temperature and heat flux fields for 796 collocation points
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Figure 4.14: The optimal temperature and heat flux fields for 964 collocation points
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Figure 4.15: The optimal temperature and heat flux fields for 1148 collocation points
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Conclusions By collecting together the conclusions drawn on the basis of all three
subanalysis, namely the value of the objective function, the optimal distribution of the
artificial density as well as temperature and heat flux fields, it was decided that the cloud
used in further simulations would be cloud consisting of 1148 collocation points.

4.3.2 Influence of spatial filter multiplier

A study almost as important as the convergence is that of the spatial filter multiplier m.
In the convergence study, the value of m = 2 was used, but it was an empirical choice, now
it will be examined whether it was right. As part of this study, a series of simulations using
the cloud consisting of 1148 collocation points were performed for different multiplier m
values. The initial density distribution in the iterative optimisation process is an uniform
distribution and the value at each collocation point in the device is %i = 0.5.

Objective function Figure 4.16 shows the optimal value of the objective function and
the number of iterations for the value of the spatial filter multiplier m equal to 1, 2, 3
and 4.
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Figure 4.16: The optimal value of the objective function f and the number of iterations
as a function of the spatial filter multiplier m

The results presented in Figure 4.16 should be interpreted, as in the convergence study,
with great caution. By examining only the objective function values, it can be concluded
that the best results are obtained using spatial filter multiplier m equal to 1. It is worth
noting that low spatial filter multiplier m values may result in a checkerboard solution.
Therefore, it is necessary to study artificial density fields. As for the number of iterations
for the multiplier value m > 1, the iteration number is similar and is equal to around 500,
while for the value m = 1 it is over 1000.

Artificial density fields Figures 4.17 - 4.20 show the optimal artificial density fields
in the device obtained for the value of the spatial filter multiplier m: 1,2, 3, and 4,
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respectively.
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Figure 4.17: The optimal artificial density field obtained for m = 1

In line with the concerns presented above, the distribution for m = 1 clearly shows
the checkerboard phenomenon. It confirms that the use of low value of spatial filter mul-
tiplier may be disadvantageous because a device with a thermal conductivity distribution
resulting from such a distribution of artificial density may be very impractical and ex-
pensive to produce. As for the distributions for m = 4, the results indicate an extremely
interesting problem. It is worth starting the discussion about it by pointing out that the
cloaking problem for Fachinotti’s device has a trivial solution. It is a solution in which
the thermal conductivity of the device is equal to the thermal conductivity of the object
and the mantle. As a consequence, the material becomes homogeneous and for this prob-
lem it is possible to determine the analytical solution using Equation 3.11. The value of
the artificial density corresponding to this situation can be obtained by substituting the
value of the agar’s thermal conductivity κagar to the Equation 4.16 and solving it for the
artificial density %:

% =
3

√
κagar − κmin

κmax − κmin

≈ 0.0954. (4.37)

The above value is very close to the values obtained for m = 4 which are in the range
0.1− 0.16. This leads to the conclusion that for the cloaking problem, too high value of
spatial filter multiplier leads to a trivial solution. On the other hand, the very fact that
there is a trivial solution to the cloaking problem is an inconvenience. Therefore, it is
suggested to modify Fachinotti’s device so that the thermal conductivity of the mantle and
the object would be different, which would eliminate the existence of a trivial solution.
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Figure 4.18: The optimal artificial density field obtained for m = 2
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Figure 4.19: The optimal artificial density field obtained for m = 3
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Figure 4.20: The optimal artificial density field obtained for m = 4

Such a modification will not be considered in the paper, however, it is an interesting
direction for further research. As for the results for the other two values of m, i.e. 2 and
3, the artificial density fields seem correct, however, for m = 2, the field shows clearly
better symmetry in the vertical and horizontal axis. The final assessment can be made
only after examining the temperature fields and the heat flux.

Temperature and heat flux fields Figures 4.21 - 4.24 show the optimal temperature
and heat flux fields in the device obtained for the value of the spatial filter multiplier m:
1, 2, 3, and 4, respectively.

The smoothest solution was obtained for m = 4, however, as it was shown earlier, it
is a trivial solution. The flux field for m = 1 is extremely varying in the device region,
which results from the checkerboard phenomenon, while for m = 3 it is characterized by a
significant gradient in the upper and lower region of the device. By using the elimination
process, it is concluded that the temperature and flux fields for m = 2 seem to be the
best from the point of view of the smoothness of the solution.

Conclusions By collecting together the conclusions drawn on the basis of all three
subanalysis: the optimal value of the objective function, the distribution of the optimal
artificial density as well as temperature and heat flux fields in the optimal case, it was
concluded that the most appropriate value of the spatial filter multiplier m is 2, for the
considered collocation points set.
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Figure 4.21: The optimal temperature and heat flux fields obtained for m = 1
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Figure 4.22: The optimal temperature and heat flux fields obtained for m = 2
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Figure 4.23: The optimal temperature and heat flux fields obtained for m = 3
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Figure 4.24: The optimal temperature and heat flux fields obtained for m = 4
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4.3.3 Influence of starting artificial density distribution

There is one more important issue that needs to be investigated - the starting distribution
of the artificial density in the iterative optimisation process. All previous simulations were
performed for an uniform, deterministic distribution in which the artificial density was
constant %i = 0.5. As part of this study, a series of 10 simulations were carried out in
which the initial distribution of artificial density was a random distribution in the range
of [0 , 1]. In the simulations, a cloud consisting of 1148 collocation points and the spatial
filter multiplier m = 2 were used. It turned out that the simulation results are very
similar to each other, so it was decided to present only one results for which the optimal
value of the objective function reached value f = 0.1057 W ·m−2. Figures 4.25 and 4.26
show the optimal artificial density field in the device as well as temperature and heat flux
fields in the entire device obtained for random starting distribution of artificial density in
the iterative optimisation process. The number of iterations was 582.

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

0
.5
5

0.55

0.5
5

0
.5

0
.5

0.5

0.5

0
.4
5

0
.4
5

0
.4
5

0.45

0.45

0.
4

0
.4

0
.4

0.4

0.4

0.
35

0
.3
5

0
.3
5

0.35

0.35

0.
3

0.
3

0
.3

0
.3

0.3

0
.3

0.
25

0.25

0
.2
5

0
.2
5

0
.2
5

0
.2
5

0.
25

0
.2

0
.2

0.
2 0

.2

0.2
0.2

0
.2

0.2

0.2

0
.2

0
.2

0.15

0.15

0
.1
5

0
.1
5

0.15

0
.1
5

0
.1
5

0
.1

0.10.1

0
.1

x [cm]

y
[c

m
]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
[−

]

Figure 4.25: The optimal artificial density field obtained for random starting distribution
of artificial density

As can be seen in Figures 4.25 and 4.26, the results obtained using random starting
distribution are very similar to the results obtained using the deterministic starting dis-
tribution, as seen, for example in Figures 4.18 and 4.22. In conclusion, for the considered
problems, the starting artificial density distribution does not seem to have a fundamental
impact on the optimisation process results when using the interior-point gradient algo-
rithm.
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Figure 4.26: The optimal temperature and heat flux fields obtained for random starting
distribution of artificial density
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4.3.4 Shielding

After a thorough examination of the cloaking case and carrying out several studies, it
is possible to proceed to the next case - shielding for which the heat flux manipulation
parameter is ζ = 0. The most important simulation parameters remained unchanged:
cloud consisting of 1148 collocation points was used, the spatial filter multiplier m was
equal to 2, while the starting density distribution in the iterative optimisation process was
uniform and %i = 0.5. As a result of the optimisation process, the objective function has
reached the value of f = 1.883 W ·m−2. Figures 4.27 and 4.28 show the optimal artificial
density field in the device as well as temperature and heat flux fields in the entire device
for shielding test case. The number of iterations was 616.
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Figure 4.27: The optimal artificial density field obtained for the shielding test case

As can be seen, the distribution of artificial density is clearly symmetrical in both the
vertical and horizontal axis, which is in line with the expectations [47]. On the other hand,
the visual analysis of the heat flux field shows that the flux values in the device are very
small. Quantitatively, the average value of the heat flux in the object was 1.7702 W ·m−2,
which is 0.7222 % of the heat flux in the mantle which is 245.1 W · m−2. Overall, the
shielding test case simulation gave very satisfying results.
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Figure 4.28: The optimal temperature and heat flux fields obtained for shielding test case
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4.3.5 Concentration

The next analysed test case is concentration for which the heat flux manipulation param-
eter is ζ = 3.125. The most important simulation parameters remained unchanged: cloud
consisting of 1148 collocation points was used, the spatial filter multiplier m was equal to
2, while the starting density distribution in the iterative optimisation process was uniform
and %i = 0.5. As a result of the optimisation process, the objective function has reached
the value of f = 234.27 W ·m−2. Analysing the optimal value of the objective function,
at first glance it seems that this value indicates a complete failure and a highly incorrect
solution. Before the final judgement is issued, it is worth taking a look at the optimal
artificial density, temperature and heat flux fields. Figures 4.29 and 4.30 show the optimal
artificial density field in the device as well as temperature and heat flux fields in the entire
device for the concentration test case with the heat flux manipulation parameter equal to
ζ = 3.125
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Figure 4.29: The optimal artificial density field obtained for the concentration test case
with the heat flux manipulation parameter equal to ζ = 3.125

What is striking is the fact that the distribution of the optimal artificial density is
very similar to that obtained by Fachinotti [47]. So why is the objective function so high?
The answer to this question lies in the heat flux field. As can be seen, the object shows a
significant amplification of the heat flux in relation to the heat flux in the mantle, which
is exactly what was supposed to be achieved. However, has an amplification of 3.125 been
achieved? The average value of the heat flux in the object was 543.37 W · m−2, which
is 2.217 time higher that the heat flux in the mantle which is 245.1 W · m−2. It means
that the assumed concentration was not achieved, however, a slightly lower concentration
was achieved. It is possible that a denser cloud of collocation points is necessary to
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Figure 4.30: The optimal temperature and heat flux fields obtained for the concentration
test case with the heat flux manipulation parameter equal to ζ = 3.125
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achieve desired amplification. However, since the concentration with a gain of 2.2 has
been achieved, it is worth trying to perform the optimisation process for the heat flux
manipulation parameter equal to ζ = 2. So it was done, other parameters remained
unchanged. This time, as a result of the optimisation process, the objective function has
reached the value of f = 0.5783 W ·m−2 Figures 4.31 and 4.32 show the optimal artificial
density field in the device as well as the optimal temperature and heat flux fields in the
entire device for the concentration test case with the heat flux manipulation parameter
equal to ζ = 2.
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Figure 4.31: The optimal artificial density field obtained for the concentration test case
with the heat flux manipulation parameter equal to ζ = 2

It can be seen that the optimal artificial density field is slightly different than that
obtained for the concentration device with the amplification 3.125, but the general char-
acter is very similar - there are areas of ”tunneling” the heat flux on the left and right
side of the device. When it comes to temperature and heat flux fields, there is a clear
amplification of the heat flux in the object. The heat flow is regular and symmetrical
without any sudden changes in the entire device. Overall, the concentration test case has
been a half success. The amplification of magnitude 2 was obtained, but not 3.125 as in
the reference case.
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Figure 4.32: The optimal temperature and heat flux fields obtained for the concentration
test case with the heat flux manipulation parameter equal to ζ = 2
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4.3.6 Inversion

The last of the considered cases is an inversion problem. It is analysed as the last for a
reason, it is suspected that it is the most demanding numerically. After all, the inversion of
the heat flux is an apparent contradiction to Fourier’s law (which of course is always locally
satisfied), it would be surprising if its realisation were easy. The suspicions turned out to
be correct. Dozens of simulations of this test case were carried out for various combinations
of collocation point clouds, spatial filter multiplier values, and starting distributions of the
artificial density. The finest cloud consisted of 2044 collocation points. The simulations
were even carried out for the value of the heat flux manipulation parameter ζ = −0.5,
which theoretically should be a much easier case. Unfortunately, each of the analysed
cases gave unsatisfactory results. Summing up, it is possible to draw a conclusion that the
considered numerical setup did not allow solving this test case. However, it is suspected
that it is possible to solve it using a cloud with a large number of collocation points,
which, however, would be computationally expensive. However, it was decided to show
some sample results of a failed simulation. The cloud consisting of 2044 collocation points
was used in this simulation. Out of 2044 points, 360 were device points and 32 were object
points. The spatial filter multiplier was equal to m = 1, the heat flux manipulation
parameter was equal to ζ = −1, the starting distribution of the artificial density in
the iterative optimisation process was random. Why was it decided to show the results
obtained using spatial filter multiplier equal to m = 1, and random starting distribution?
This is because the promising results obtained by Fachinotti [47] indicate that the field of
artificial density for the inversion case is very complex and irregular. The random starting
distribution of the artificial density and the low value of the spatial filter multiplier m are
intended to help achieve good results. On the other hand, as mentioned before, it’s worth
remembering that a low value for the spatial filter multiplier m parameter can lead to the
checkerboard solution. Figures 4.33 and 4.34 show the optimal artificial density field in
the device as well as the optimal temperature and heat flux fields in the entire device for
inversion test case.

Results presented in Figures 4.33 and 4.34 show the failure of the simulation. The
artificial density field shows a very strong checkerboard phenomenon, while the heat flux
field shows complete irregularity and chaos, especially in the device region. The only
success that can be seen in the results of this simulation is the fact that some of the heat
flux vectors in the object are turned to the left, i.e. there has been an inversion, but the
values of these inverted fluxes are very small.
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Figure 4.33: The optimal artificial density field obtained for the inversion test case
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Figure 4.34: The optimal temperature and heat flux fields obtained for the inversion test
case
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Conclusions The research carried out as part of the work has led to a number of very
interesting conclusions, the most important of which are as follows:

1. The Kansa method in its classical formulation is a method that has proven to be re-
markably good for solving a wide variety of heat flow problems with spatially variable
distributions of thermophysical properties: steady and unsteady, one-dimensional
and two-dimensional, elliptic, parabolic and hyperbolic for various combinations of
Dirichlet, Neumann, and Robin boundary conditions.

2. The problems of heat flow in a material with spatially variable thermophysical
parameters are much more difficult than the problems of heat flow in homogeneous
materials. Despite this, the Kansa method has proved to be appropriate for this
class of problems.

3. The Kansa method in the spacetime formulation has proved to be moderately ef-
fective. The only problem in which it turned out to be accurate was the one-
dimensional parabolic heat flow problem. It is suspected that these problems result
from inadequate selection of the spacetime scaling parameter β value. Unfortu-
nately, to the best of the authors’ knowledge, there is no work on the selection of its
value for the spacetime of the Kansa method. In the case of hyperbolic problems,
the quality of the solution could have been influenced by the method of imposing
of the initial condition related to the temperature derivative, which was imposed
thorough ghost collocation points.

4. The differences in accuracy between the coefficient and pseudospectral approaches
are negligible. The decision to choose between the two approaches is rather related
to practical issues. The pseudospectral approach is slightly easier to implement be-
cause it does not require an intermediate step of determining the linear combination
coefficients. Another issue is the fact that operating on the field of the searched vari-
able rather than on the linear combination coefficients facilitates certain operations,
for example calculating the derivative of the field of the searched variable. On the
other hand, the indisputable advantage of the coefficient approach is the fact that
by obtaining linear combination coefficients as a solution, it is possible to quickly,
easily and computationally cheaply find a solution between the collocation points.

5. Due to the fact that the multiquadric scheme is a high-order scheme, for the consid-
ered problems, the Kansa method allows to obtain a high-accuracy solution using
even relatively coarse clouds of collocation points.

6. As part of the work on this thesis, a very important advantage of the Kansa method
was confirmed - the ease of implementation for problems with complex geometry.
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The problem of heat flow for the amoeba-like domain considered in the paper can
be written in MATLAB using about 100 lines of code. Solving this problem using,
for example, an own code of the finite element method would probably be several
times more time-consuming due to the need to write an unstructured mesher.

7. The applied approach of using mass, damping and stiffness matrices known from
structural mechanics has a number of advantages: its implementation is very simple,
allows for very easy use of time integration schemes and greatly improves the read-
ability of the code. This approach was also used in the case of the finite difference
method, where it tremendously facilitates the imposition of boundary conditions.

8. In the considered cases, the results obtained when using the Houbolt time inte-
gration scheme showed lower algorithmic damping than in the case of the Euler
time integration scheme. It is interesting because the cases described so far in the
literature showed the opposite conclusions, namely increased algorithmic damping
instead of the decreased one [71, 33, 34]. Explaining this difference is not an easy
task, however, it is worth paying attention to one issue that may be an explanation.
In the mentioned research, the Houbolt time integration scheme was used in con-
junction with finite element method for which the main matrix is sparse, banded
and symmetric. The main matrix in the Kansa method does not have these features.
It is hypothesized that that when the main matrix does not have these features, the
numerical dissipation is reduced.

9. The values of error measures related to heat flux fields were significantly greater
than the values of error measures related to temperature fields. It seems that they
should be similar because the heat flux field is calculated from the temperature
field after the simulation is finished. However, this is probably what causes such a
significant difference because the heat flux field is computed from the temperature
field using the differentiation operator. This operation is burdened with a numerical
error, which in this case is strongly amplified because the interpolation matrices are
characterized by very high conditon number values. This problem can be probably
minimized using regularization.

10. For the problems considered in the paper, higher accuracy of calculations was
achieved when using regular collocation point distributions in the domain interiors
than when using clouds with random point distributions in the domain interiors.

11. The interpolation matrix created using the multiquadric radial basis function is full
and non-symmetric. This is a significant problem because it increases the com-
putational complexity of the Kansa method and makes it less competitive with,
for example, the finite element method. A potential solution could be to use the
symmetric Kansa method or the local formulation [51].

12. The algorithm for finding a good shape parameter value proposed by Zhang [175],
which is based on the condition number study of the interpolation matrix, is an
algorithm with great potential and, on the other hand, very little interest in the
scientific community [67]. In this paper, an extensive study of it has been made
and shows that it gives accurate results and can easily compete with such well-
established algorithms as Rippa’s algorithm. Additionally, it was proposed to extend
this algorithm to the whole group of algorithms examining the oscillation of certain
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simulation parameters. The work proposes several such alternative parameters and
shows that they also lead to satisfactory results.

13. The manipulation of the heat flux considered in the paper as the optimisation prob-
lem and the related search for the distribution of the artificial density led to good
results. The cloaking and shielding cases yielded very good results while the concen-
tration test case results achieved an amplification of 2.2 which is lower than 3.125
in the reference work. Optimisation for the inversion problem turned out to be a
failure, which probably resulted from an insufficient number of collocation points.
The distribution of collocation points itself also requires special attention in this
case.

14. The study on the influence of simulation parameters on the result of the optimisation
process for the cloaking test case showed that the effect of the number of collocation
points and the spatial filter multiplier is fundamental, while influence of the starting
distribution of the artificial density in the iterative optimisation process is moderate.

15. The interior-point gradient optimisation method has proven to be an effective way
to solve the optimisation problem. It is worth noting that in the considered case
the gradient of the objective function was determined analytically.

Further research recommendations During the research, many problems were en-
countered which, due to time constraints, were not thoroughly investigated. These prob-
lems open up interesting options for future research. The most important of them are:

1. Further research of the group of algorithms proposed in the work to search for a good
value of the shape parameter. In particular, finding new functions for the study of
oscillations, such that can be determined without performing the simulation process.
An interesting issue is also the development of methods to identify the transition
point from smooth to oscillatory region.

2. Research on the influence of the radial basis function parameters other than shape
parameter (exponent p for multiquadric radial basis function) on the accuracy of
the simulation and proposing an algorithm for selecting their values.

3. Investigation of the heat flow problems considered in the work with the use of radial
basis function other than multiquadric.

4. Research on the influence of the spacetime scaling parameter β on the accuracy of
the simulation and proposing an algorithm for selecting this value.

5. Regularization of heat flow problems solutions, so that the obtained heat flux fields
were more accurate than obtained in the work.

6. Research on the algorithmic dissipation of the Houbolt time integration scheme and
application of other time integration schemes for the hyperbolic heat flow problems.

7. Further research on the heat flux problems manipulation using the Kansa method,
and in particular further research on the heat flow inversion with special empha-
sis on: conducting simulations with denser clouds of collocation points, using the
collocation point clouds optimised for the considered problem, reducing the order
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of the model using the proper orthogonal decomposition or parameterization of the
artificial density surface.

8. Analysis of the spacetime approach as an ill-posed Cauchy problem.

9. Application of the Laplace transform method for evolution equations.

10. Optimal control of heat flow with reduced dynamic models.

11. Application of delay systems model for thermal wave phenomena.

It is worth emphasizing that the conclusions and recommendations presented above do
not fully cover the conclusions that can be drawn from the work and the recommendations
that can be formulated.
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Appendix

Finite difference method for the hyperbolic Cattaneo-Vernotte equation In
the work, the finite difference method solution was the reference solution for many simu-
lated problems. They were problems of various kinds, one- and two-dimensional, steady
and unsteady, elliptic, parabolic and hyperbolic. In order to compactly describe the
method of solving them using the finite differences, it was decided to describe only the
most general case, i.e. the two-dimensional hyperbolic case described by the Cattaneo-
Vernotte equation. From this general case it is easy to derive specific cases. If the problem
is two-dimensional, the Cattaneo-Vernotte Equation 2.9 simplifies to the two-dimensional
Cattaneo-Vernotte Equation 3.18:

γ (x) ρ (x) (τ ü+ u̇) = κ,x (x)u,x + κ,y (x)u,y + κ (x) (u,xx + u,yy) .

In the finite difference method, similarly to the Kansa method, the matrix approach
described by Equation 2.36 was used:

Mü+Du̇+Ku = 0,

and the Euler time integration scheme given by Equation 2.135:

Mük +Du̇k +Kuk+1 = 0.

As in the Kansa method, the M and D matrices are easy to compute using Equations
2.106 and 2.107::

M = τγρ, (5.1)

D = γρ. (5.2)

The computation of the thermal stiffness K is a bit more complex. Let’s start with the
presentation of the computational domain used in the calculations, it is the same regular
domain as in the two-dimensional simulations shown in Figure 3.27. The nodes of the
finite difference grid are numbered from left to right from bottom to top: i = 1, 2 ... n.
This means that the adjacent points are numbered as shown in Figure 5.1.

Discretization of the right side of Equation 3.18 gives:

κ,x (x)u,x + κ,y (x)u,y + κ (x) (u,xx + u,yy) ≈

κxi
uk+1
i+1 − uk+1

i−1

2∆x
+ κyi

uk+1
i+nx
− uk+1

i−nx

2∆y
+

κi,j

(
uk+1
i+1 − 2uk+1

i + uk+1
i−1

(∆x)2 +
uk+1
i+nx
− 2uk+1

i + uk+1
i−nx

(∆y)2

)
. (5.3)
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i− nx

i

i+ nx

i− 1 i+ 1

Figure 5.1: Numbering of adjacent points on the finite difference grid

From Equation 5.3 emerges a method of assigning a values to the elements of matrix K
which is pentadiagonal:

Ki,i−nx =
κ,y (xi)

2∆y
− κ (xi)

(∆y)2, (5.4)

Ki,i−1 =
κ,x (xi)

2∆x
− κ (xi)

(∆x)2, (5.5)

Ki,i = κ (xi)

(
2

(∆x)2 +
2

(∆y)2

)
, (5.6)

Ki,i+1 = −κ,x (xi)

2∆x
− κ (xi)

(∆x)2. (5.7)

Ki,i+nx = −κ,y (xi)

2∆y
− κ (xi)

(∆y)2. (5.8)

Naturally, the initial conditions and time advancement are realized by the above men-
tioned time integration scheme. After using a time integration scheme, Equation 2.135 is
transformed into Equation 2.40:

Auk+1 = b.

The imposition of boundary conditions, as in the case of the Kansa method, is a two stage
procedure. First, the rows in matrix A and the elements in vector b corresponding to
the boundary points are zeroed. Then, the previously zeroed rows and elements are filled
with values depending on the applied boundary conditions. The methods of filling the
matrix A and vector b for different boundary conditions are as follows:
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• Dirichlet boundary condition:

Ai,i = 1, (5.9)

bi = ub (xi) . (5.10)

• Neumann boundary condition at the left and right boundary:

Ai,i = ∓1, (5.11)

Ai,i±1 = ±1, (5.12)

bi = −∆x
qb (xi)

κ (xi)
. (5.13)

• Neumann boundary condition at the bottom and top boundary:

Ai,i = ∓1, (5.14)

Ai,i±nx = ±1, (5.15)

bi = −∆y
qb (xi)

κ (xi)
. (5.16)

• Robin boundary condition at the left and right boundary:

Ai,i = ±κ (xi)

∆x
+ α (xi)

(
1 +

τ

∆t

)
, (5.17)

Ai,i±1 = ∓κ (xi)

∆x
, (5.18)

bi = α (xi)

(
u∞ (xi) +

τ

∆t
uk (xi)

)
. (5.19)

• Robin boundary condition at the bottom and top boundary:

Ai,i = ±κ (xi)

∆y
+ α (xi)

(
1 +

τ

∆t

)
, (5.20)

Ai,i±nx = ∓κ (xi)

∆y
, (5.21)

bi = α (xi)

(
u∞ (xi) +

τ

∆t
uk (xi)

)
. (5.22)
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The plus or minus signs depend on whether the left, right, bottom or top boundary is
being considered. The upper sign is used for the left and bottom boundary, the lower
sign is used for the right and top boundary. After imposing the boundary conditions,
Equation 2.40 takes the form of Equation 2.43:

Āuk+1 = b̄.

The procedure of applying boundary conditions is repeated at every time step during time
integration.
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