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1 INTRODUCTION 

The brain is still the least understood organ in the human body. It is a biological 

network of around 86 billion neurons [1], these nerve cells are the source of 

electrical activity that is a biological foundation of learning, memory, behavior, 

perception, consciousness, and emotions. Revealing how countless electric 

impulses map into our mind and feelings is the ultimate goal of neuroscience. 

This electrical activity of the brain may be measured non-invasively using an 

electroencephalogram (EEG). The greatest advantage of EEG over other non-

invasive methods of measuring brain activity (like fMRI, MEG, or fNIRS) is its 

relatively low cost, portability, and great temporal resolution (the details are given 

in Section 2.1). However, the EEG signals from tens of electrodes placed on the 

scalp of the head are usually impossible to decode without advanced 

computational methods. The algorithms that can measure and understand 

human emotions are a key milestone on the road to artificial emotional 

intelligence, and thus, to artificial general intelligence (AGI) [2]. These algorithms 

are a part of the affective computing field which spans computer science, 

psychology, and cognitive neuroscience [3]. In recent years, significant progress 

was made in the field of narrow artificial intelligence (AI), but it does not translate 

to breakthroughs in affective computing. With the rise of deep learning that 

enabled prominent achievements like AlphaGo [4] or AlphaFold [5], it seems that 

we have the tools to recognize human emotions from the electrical brain activity, 

but despite many published works, this goal is still far from being reached. The 

main reasons are a lack of consensus in terms of psychological emotion models 

and their psychophysiological mechanisms (the detailed discussion on this matter 

is provided in Section 2.4) and a reproducibility crisis in neuroscience [6]. To 

address these issues, we need standardized emotion recognition datasets, 

unified research reporting methods [7], and universal hardware and software 

methods for measuring brain activity in real-world settings. The latter area is 

where my thesis contributes the most. I focus on the technical aspects of emotion 

recognition from EEG signals, especially, on improving the analysis of event-

related potential (ERP) components correlating with emotional face processing. 

My thesis is an interdisciplinary study spanning computer science, signal 
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processing, artificial intelligence, psychology, and cognitive neuroscience. The 

proposed methods can be applied not only in emotion recognition, but in a 

countless number of applications using ERP features, e.g., brain-computer 

interfaces, medical diagnosis, forensics, biometry, neurofeedback, and 

psychology research (see examples in Section 0). 

 

1.1 Purpose and goals 

During my neuroscience research conducted under the guidance and 

cooperation of my supervisor prof. Katarzyna Stąpor (having also psychological 

education) and with the international team of experts in biological face processing 

through EEG led by prof. Werner Sommer (from Humboldt University Berlin), I 

gained experience in the analysis of ERP correlates of emotional face processing, 

and I quickly noticed that neuroscience research is highly dependent on 

algorithms for brain signal processing. Without proper processing of EEG signals, 

it would be impossible to draw proper conclusions from EEG experiments. Thus, 

a primary goal (G1) of my work is to provide such an EEG processing pipeline for 

psychologists and neuroscientists working with emotional face processing. 

Despite its significant potential, brain monitoring is still not easily accessible, 

interpretable, or useable in many real-world and clinical environments. Solving 

this issue would allow researchers to collect large-scale datasets that can help to 

understand how emotions are made and the secret life of the brain (as stated by 

Lisa Feldman Barrett [8]). The effects of emotion can be observed in different 

electrophysiological signals like event-related brain potentials (ERPs), frontal 

EEG asymmetry, event-related synchronization, and steady-state visually evoked 

potentials [9], [10]. Although, the majority of papers on EEG emotion correlates 

find them in ERPs [9]. Thus, the dissertation put a special focus on ERPs, which 

are thoroughly introduced in Section 0. ERPs are especially difficult to measure 

(e.g., in comparison to brain waves) as they require special experimental and 

hardware designs, perfect timing synchronization between devices, and 

algorithms for extracting, filtering, and averaging. The higher the quality of ERP 

extraction the easier it is to observe and discover the effects of different stimuli 
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on neural responses, i.e., recognize different evoked emotions. The high quality 

of ERP extraction can be reflected in a high signal-to-noise ratio, a low latency 

jitter between epochs, a low variance of components’ amplitudes between 

epochs, and a small number of artifacts in ERP signals. The second goal (G2) of 

my work is to provide methods for increasing the quality of ERP extraction in all 

the mentioned aspects. 

ERPs are usually measured using expensive stationary research-grade devices 

in a highly controlled laboratory environment. It ensures a high quality of the 

recordings and reproducibility of the results between institutions. However, it 

prevents the research in natural environments which can lead to different 

conclusions than in the lab [11]. There is a growing interest in mobile EEG 

devices that can be used outside the laboratory as they will allow a paradigm shift 

in neuroscience experiments [12], including emotional face processing analysis 

[13]. Additionally, many research institutions cannot afford research-grade 

devices and they look for low-cost alternatives, especially in the case of large-

scale experimental studies with hundreds of participants and hours of recordings. 

Hence, the third goal (G3) of my thesis is to enable ERP research of emotional 

face processing using low-cost mobile EEG devices like Emotiv EPOC+. 

The ERP correlates of emotion can be evoked using a number of affective 

materials, like videos, texts, conversations, music, or images (as listed in section 

2.4.1). In my thesis, I focus especially on the images of faces that are known to 

have strong ERP correlates such as N170 or N250 components [14]. More 

importantly, the emotional expression of the observed face modulates different 

emotion-sensitive ERP components listed in Section 2.5, i.e., the early posterior 

negativity (EPN) component which is enhanced by angry and happy faces [15]–

[18]. This psychophysiological reaction reflects our important evolutionary 

adaptation to the complex social environment that requires the perception of 

faces and emotions [19]. This adaptation includes also the acquisition of face 

familiarity reflected in the N250 ERP component that is studied as a potential 

confounding factor of EPN [20]. The fourth goal (G4) of my thesis is to provide 
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methods for better analysis of EPN and N250 components in psychological 

research. 

Summarizing the goals: 

G1) to provide a proper EEG processing pipeline for psychologists and 

neuroscientists working with emotional face processing, 

G2) to provide methods for increasing the quality of ERP extraction, 

G3) to enable ERP research of emotional face processing using low-cost 

mobile EEG devices, 

G4) to provide methods for better analysis of EPN and N250 components in 

psychological research. 

 

1.2 Thesis formulation 

The general outline of the dissertation can be summarized in one sentence:  

Using proper EEG processing, it is possible to extract ERP correlates of 

emotional face processing in such a way that they can be effectively analyzed by 

neuroscientists and psychologists, even using a low-cost EEG device. 

More specifically, the thesis consists of two parts and is formulated as follows: 

(1) Proper hardware adaptation and robust weighted averaging enable 

psychologists to analyze neural processing of angry and happy facial 

expressions, as reflected in the early posterior negativity (EPN) component 

of event-related potentials (ERP), using a low-cost EEG device.  

(2) Proper preprocessing including ocular artifacts filtration allows for 

single-trial ERP analysis of face learning as reflected in the N250 

component which is a confounding factor in emotional face processing. 
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1.3 Original contribution 

The primary original contributions of this dissertation are listed below. Each 

contribution is concluded with the references to my relevant publications 

mentioned in Section 1.4: 

1) A hardware adaptation of a low-cost Emotiv EPOC+ device for precise 

ERP measurements (a stimuli marking circuit that decreases the time drift 

and jitter between epochs) [15] 

2) An ERP extraction pipeline for detecting markers of emotional face 

processing using Emotiv EPOC+ (including a new wavelet-based epochs 

filtration) [15] 

3)  A robust weighted averaging scheme that improves the signal-to-noise 

ratio of ERP waveforms for both simulated and low-cost EEG recordings 

[21] 

4)  A semi-automatic pipeline for removing ocular artifacts from ERP, based 

on independent components analysis (ICA) and EOG [22] 

5)  A replication and single-trial ERP analysis of face learning effects in N250 

ERP component [20], [22], [23] 

6)  A new mapping between continuous and discrete emotion models [24] 

7)  A design of the machine-learning-based emotion recognition EEG system 

for validation of affective picture datasets standardization [24] 

 

1.4 Relevant publications 

This dissertation is a summary and culmination of a series of articles published 

(or yet to be published) in ISI-indexed journals, book chapters, and conference 

proceedings to which I significantly contributed. Many parts of this dissertation 

are directly referring to or citing these publications. The list of most important 

publications is given below. It is ordered chronologically and numbered according 

to the first occurrence of the publication in the dissertation text. Each journal 

publication is annotated with its 2-year Impact Factor (IF), the number of points 

according to the Polish Ministry of Science and Higher Education (MNiSW). All 
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the publications are commented with the number of citations according to Google 

Scholar (state for the date 21.09.2022) and my main contributions (not including 

literature review and manuscript writing in which I was always involved). 

 

[15] K. Kotowski, K. Stapor, J. Leski, M. Kotas, “Validation of Emotiv EPOC+ 

for extracting ERP correlates of emotional face processing,” Biocybernetics 

and Biomedical Engineering, 2018, IF (2018: 2.159, 2021: 4.314), MNiSW 

(2018: 15, 2021: 100), 26 citations 

Main contributions: The hardware and software adaptation of the Emotiv EPOC+ 

EEG device for ERP extraction. Conducting experiments and data collection. 

EEG preprocessing and analysis. 

 

[21] K. Kotowski, K. Stapor, J. Leski, „Improved robust weighted averaging 

for event-related potentials in EEG”, Biocybernetics and Biomedical 

Engineering, 2019, IF (2019: 2.537, 2021: 4.314), MNiSW 100, 15 citations 

Main contributions: Proposing and implementing the improvements for the robust 

weighted ERP averaging method. Simulation studies and statistical analysis. 

Validation on the real-life dataset. 

 

[25] K. Kotowski, K. Stapor, J. Ochab, “Deep Learning Methods in 

Electroencephalography” in Machine Learning Paradigms: Advances in Deep 

Learning-based Technological Applications, Springer, 2020, 6 citations 

Main contributions: A review of the deep learning method in EEG analysis. The 

practical application of EEGNet [26] for classifying single-trial ERPs evoked by 

correct and incorrect responses in the Eriksen flanker task [27]. 

 

[28] K. Kotowski, P. Fabian, K. Stapor, “Machine learning approach to 

automatic recognition of emotions based on bioelectrical brain activity” in 
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Simulations in Medicine. Computer-aided diagnostics and therapy, De Gruyter, 

2020, 1 citation 

Main contributions: The review of machine learning techniques of automatic 

emotion recognition from EEG in the medical context. The summary of 

psychological models of emotion. 

 

[24] K. Kotowski, K. Stapor, “Machine Learning and EEG for Emotional State 

Estimation” in The Science of Emotional Intelligence, IntechOpen, 2021, 1 

citation 

Main contributions: The review of psychological models of emotion and datasets 

of affective images. The new mapping between continuous and discrete emotion 

models. The idea of a machine-learning-based emotion recognition EEG system 

for validation of affective picture datasets standardization.  

 

[20] W. Sommer, K. Stapor, G. Kończak, K. Kotowski, P. Fabian, J. Ochab, 

A. Bereś, G. Ślusarczyk, „The N250 event-related potential as an index of face 

familiarity: a replication study”, Royal Society Open Science, 2021, IF 2.963, 

MNiSW 100, 3 citations 

Main contributions: Designing and conducting experiments. EEG preprocessing 

and ERP extraction and analysis. Behavioral results analysis. Statistical analysis.  

 

[29] W. Sommer, K. Stapor, G. Kończak, K. Kotowski, P. Fabian, J. Ochab, 

A. Bereś, G. Ślusarczyk, „Changepoint Detection in Noisy Data Using a Novel 

Residuals Permutation-Based Method (RESPERM): Benchmarking and 

Application to Single Trial ERPs”, Brain Sciences. 2022; IF 3.394, MNiSW 100 

Main contributions: A case study about change-points in time series of single-trial 

N250 ERP amplitudes using the proposed RESPERM method 
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[22] K. Kotowski, J. Ochab, K. Stapor, W. Sommer, “The importance of ocular 

artifact removal in single-trial ERP analysis: the case of the N250 in face 

learning”, Biomedical Signal Processing and Control, 2022; IF 5.076, MNiSW 

140 

Main contributions: Designing a complete pipeline for end-to-end EEG 

preprocessing and single-trial ERP extraction. The implementation of the semi-

automatic ocular artifact filtration method. The single-trial ERP analysis. 

 

1.5 Structure of the dissertation 

In Section 2, I present the theoretical introduction to all subjects relevant to my 

thesis. It includes the comparison of different techniques of measuring brain 

activity with a special focus on EEG. It describes the functional brain areas with 

a special focus on the neural sources of emotions. It introduces the topic of event-

related potentials (ERPs) which are the main topic of the thesis. It elaborates on 

different psychological models of emotion that have been proposed in the 

literature and discusses the differences and mappings between these models. It 

lists several affective materials that can be used to induce emotions and datasets 

for emotion recognition from EEG. Finally, it summarizes the known EEG 

correlates of emotion. 

Section 3 is the main part of the dissertation. It presents a series of my original 

contributions that increase the quality and robustness of ERP measurements 

using different EEG systems. It includes the adaptation of a low-cost Emotiv 

EPOC+ EEG device for ERP measurements, the improved robust weighted ERP 

averaging scheme increasing the signal-to-noise ratio of ERPs, and the semi-

automatic ocular artifacts filtration using independent component analysis (ICA) 

that improves the single-trial ERP analysis. All the contributions are supported by 

the results from extensive simulation and\or experimental studies published in 

peer-review journals. 
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Section 4 concludes and discusses the findings. It summarizes the thesis and its 

contributions. It highlights the limitations and future research directions of the 

proposed methods and the whole domain. 
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2 THEORETICAL BASIS 

This section is a thorough introduction to all the topics relevant to my thesis, from 

the sources of brain activity to the detailed description of psychological emotion 

models and event-related potentials in EEG. 

 

2.1 Measuring brain activity 

The human brain is active all time, from the first months after conception [30] till 

the end of life. It is driven by the oxygen and glucose transported via blood 

vessels. They provide energy to around 86 billion brain cells [1], so they can 

communicate using electrical impulses. This neural network accounts for 20% of 

the energy budget of the resting human body [31]. Thus, we can measure brain 

activity by measuring the intensity of the blood flow, glucose metabolism, or small 

electrical and magnetic fields generated by neurons.  

Table 2-1 presents different techniques and devices for measuring brain activity, 

together with their characteristics in terms of invasiveness, spatial resolution (the 

precision of locating the signal source), temporal resolution (the sampling 

frequency of measurement), cost, portability, sensitivity to movement, and 

potential contraindications. It was compiled using my personal experience and 

information from multiple sources referenced in the content of Table 2-1.  

The most invasive techniques include electrocorticography (ECoG), multi-

electrodes arrays (MEA), and local field potential (LFP) measurements. They 

involve opening the skull of the patient in order to implant measurement 

electrodes. They are usually used in brain-computer interfaces for people 

affected by neurologic diseases [32]. In practice, they cannot be used in healthy 

people for safety and ethical reasons. However, there are some efforts to promote 

them as the future of brain-computer interfaces (Neuralink) [33]. This is because 

they are the only techniques that can reliably provide both great temporal and 

spatial resolution (at least locally). 
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The only techniques that allow simultaneous measurements of the whole brain 

volume with a high spatial resolution (< 10 mm) are functional magnetic 

resonance imaging (fMRI) and positron emission tomography (PET). They are 

very popular in the research on functional areas of the brain [34] presented in 

Section 2.2. However, the temporal resolution of these methods is limited by 

hemodynamic response time and is much too low to capture the dynamics of 

evoked brain responses. Both fMRI and PET machines are big and very 

expensive (millions of dollars [35]) and only a few institutions can afford them. 

Additionally, this type of measurement cannot be applied to several groups of 

patients (children, claustrophobic, with ferromagnetic implants). 

The only non-invasive methods characterized by a high temporal resolution are 

EEG, magnetoencephalography (MEG), and functional near-infrared 

spectroscopy (fNIRS). The EEG is one of the most commonly used methods, it 

is the main area of interest in my thesis and is extensively described in Section 

2.3. The MEG gives a similar amount of information to EEG but is extremely 

expensive and not portable [36]. The fNIRS is a relatively new method that is 

based on detectors of a specific region of the electromagnetic spectrum to 

measure the hemodynamic response (similarly to fMRI). It is much cheaper than 

fMRI but offers much worse spatial resolution and is limited to the regions near 

the cortical surface. The latest fNIRS systems like Kernel Flow [37] are as 

portable as EEG. However, besides lower sensitivity to the movement of the 

patient, they have no significant advantages over EEG. 

 



 

12 

Table 2-1. Characteristics of techniques for brain activity measurement. 

 EEG fMRI [38] PET MEG [36] fNIRS [39] ECoG [40] MEA/LFP 

Invasiveness  None None Low [41] None None High Very high 

Spatial resolution Low 

(> 20 mm) 

Very high  

(0.5 – 4 mm) 

High 

(< 10 mm) 

Low  

(> 20 mm) 

Medium  

(10 - 20 mm) 

High 

(< 10 mm) 

Very high 

(< 1 mm) 

Temporal 

resolution 

High 

(< 1 ms) 

Low 

(0.1 – 6 s) 

Very low 

(> 1 min) 

High 

(< 1 ms) 

Medium  

(>10 ms) 

High 

(< 1 ms) 

High 

(< 1 ms) 

Device cost Low [42] High  Very high Very high Medium Medium Medium 

Portability High Low Low Medium [43] High [37] Very high Very high 

Sensitivity to 

movement  

Medium High High High Low Low Low 

Contraindications None Few Few None None Many Many 

Measured activity 

type [44] 

Electrical 

potentials 

Blood flow Metabolic 

response 

Magnetic 

field 

Blood flow Electrical 

potentials 

Electrical 

potentials 
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2.2 Functional brain areas 

There are two leading theories about the functional regions of the brain: the 

theory of modularity and the theory of distributive processing. The first one claims 

that the brain is divided into modules specialized in different cognitive processes 

[45]. It assumes that there exists some cognitive architecture of the brain evolved 

in natural selection. There is strong empirical evidence for that theory in lesion 

case studies where the patients show specific cognitive disabilities when a 

specific part of the brain is damaged [46]. Also, the experimental studies using 

PET and fMRI prove the functional specialization of some brain areas like the 

fusiform face area (activated during face processing), the visual cortex 

(perception of color and vision motion), the motor cortex (activated during 

voluntary body movements), or the somatosensory cortex (processing sensory 

information). The recent studies list 180 separate brain modules bounded by 

sharp changes in cortical architecture, function, or connectivity [47]. The 

indicative locations of selected functional areas are presented in Figure 2-1 

together with the division into 4 main anatomical lobes of the brain. The frontal 

lobe is known to be involved in higher-level cognitive processes [48] and the 

occipital lobe aggregates many areas connected with vision. 

 

Figure 2-1. Main brain lobes and examples of functional areas of the brain 

(source: tinyurl.com/brainareas). 
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The second theory of distributive processing claims that only some basic parts of 

the brain may be modular (e.g., sensory or motor cortex), but the other parts are 

highly interconnected and cannot be considered separate modules [49]. This 

theory criticizes the assumptions of localization on which the modular theory is 

dependent. For example, studies are proving that auditory stimuli alone can 

generate activity in the visual cortex [50]. The distributed theory explains the limits 

of localizing some cognitive processes by their fuzzy and interconnected nature. 

 

2.2.1 Emotion-related brain areas 

It is not yet fully discovered which parts of the human brain “produce” emotions 

[51], [52]. The main problem lies in the lack of consensus about the theory of 

emotions (which is discussed in detail in Section 2.4). Just like there are two 

theories of functional brain regions, there are two theories about the brain basis 

of emotion: the locationist and constructionist approaches. The older locationist 

hypothesis suggests that discrete emotion categories correspond to specific 

functional brain regions [53]. The newer constructionist approach rejects this 

concept and offers an explanation that emotions are generated by some general 

brain networks not specific to any emotion categories [8]. However, there is an 

agreement that emotions in adulthood have a very complex nature and are 

dependent on many factors, subjective experience, and cognitive processes [54]. 

The main question remains if we are able to determine a universal emotion-brain 

correspondence. 

Several complementary methods, such as single-cell recordings, functional brain 

imaging, or neuropsychological investigations of focal brain damage have been 

used to identify brain structures that are involved in the perception and analysis 

of emotionally significant information [17]. In the literature, the brain area usually 

connected with emotion processing is called the limbic system. It consists of 

regions like the amygdala (activated especially during the processing of fearful 

facial expressions [55]) and hippocampus (emotion regulation, emotional 

memory, response to positive stimuli [56], [57]). The higher cognitive processes 

in the prefrontal cortex and cingulate cortex can regulate emotions through a 
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psychological reappraisal strategy [58]. Frequently, the lateralization of emotion 

processing is observed where the right hemisphere is much more active [59] or 

where the hemispheres are involved depending on the valence of the emotion – 

the left hemisphere for positively valenced and the right hemisphere for negatively 

valenced [60]. 
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2.3 EEG measurements 

As mentioned in Section 2, EEG is one of the most common ways of measuring 

bioelectrical brain activity. It is completely non-invasive and the cheapest method 

of all. Currently, only the EEG-based solutions are portable and cheap enough to 

enable brain reading in practical applications like brain-computer interfaces (BCI). 

The word electroencephalography originates from the ancient Greek word 

encephalo which stands for “within the head”. This method was introduced in 

1924 by German neurologist Hans Berger [61]. The EEG system consists of a 

cap with a set of electrodes (as presented in Figure 2-2), a signal amplifier, and 

a recorder (usually a PC). Their prices span from a few hundred dollars for low-

cost, wireless, personal devices like Emotiv EPOC+ used in my first studies [15] 

to tens of thousands of dollars for research-grade systems like BrainProducts 

actiChamp used in my recent studies [20]. The more expensive systems allow for 

recording the signal from hundreds of electrodes with higher digital, spatial, and 

temporal resolution and much lower noise (see the comparison in Table 2-2). 

They are able to capture the dynamics of sophisticated cognitive processes. 

 

 

Figure 2-2. On the left: the BrainProducts actiCAP EEG cap with 64 electrodes 

(source: [25]). On the right: the Emotiv EPOC+ wireless headset with 14 

electrodes (source: flic.kr/p/diA5hh). 
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Table 2-2. Basic technical characteristics of low-cost and research-grade EEG 

systems. 

 Emotiv EPOC+ (v1.0)1 BrainProducts actiChamp2 

Number of electrodes 14 up to 160 

Sampling rate 128 Hz up to 100 000 Hz 

Frequency bandwidth 0.2 – 45 Hz 0 – 7 500 Hz 

Digital resolution 14 bits 

Single converter 

24 bits 

One converter per channel 

Connectivity Wireless, 2.4 GHz band USB 2.0 

 

Measuring brain activity using a set of electrodes placed on the scalp is an 

example of the so-called “cocktail party problem” [62] - it is impossible to precisely 

locate the source of the signal. There are methods like low-resolution 

electromagnetic tomography (LORETA) [63] and its further modifications that can 

effectively resolve the EEG inverse problem (converting measurement into 

information about the physical location of the signal source). However, even for 

a large number of electrodes, they have limited precision and spatial resolution. 

A typical EEG signal sample from a single electrode is a real-valued time series 

of potentials measured at the specific electrode location on the scalp of the head. 

The locations of the electrodes on the scalp are usually standardized according 

to international systems called 10-5, 10-10 (Figure 2-3), and 10-20 [64]. These 

systems assign standardized names to the electrodes that are directly related to 

the position of the electrode. The positions are defined at relative distances (5%, 

10%, or 20%) between the cranial landmarks (from nasion to inion and from left 

to right preauricular point). The names consist of up to two letters and one 

number. The letters denote the brain lobe over which the electrode is placed (F 

 
1 https://emotiv.gitbook.io/epoc-user-manual/introduction-1/technical_specifications (13.01.22) 
2 http://sites.bu.edu/reinhartlab/files/2017/06/actiCHamp_OI.pdf (13.01.22) 

https://emotiv.gitbook.io/epoc-user-manual/introduction-1/technical_specifications
http://sites.bu.edu/reinhartlab/files/2017/06/actiCHamp_OI.pdf
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for frontal, T for temporal, P for parietal, and O for occipital) and the numbers 

denote a specific position on the lobe (odd/even numbers denote left/right 

hemisphere). Another alternative is the numbering of the electrodes according to 

the geodesic sensor net [65]. 

 

Figure 2-3. Modified combinatorial nomenclature for the 10-10 system of EEG 

electrode placement (source: [64]). 

A signal sample of resting-state brain activity from 14 Emotiv EPOC+ electrodes 

is visualized in Figure 2-4. EEG recordings, especially from low-cost devices, 

have a problem with the low signal-to-noise ratio (SNR). While the variability of 

the underlying “true” signal is from several to tens of microvolts (μV), the noise is 

usually at the level of a few μV and the artifacts may reach several hundreds of 

μV (e.g., eye blinks, muscle motions, electrode pops). The artifacts from eye 

blinks can be observed in Figure 2-4 as sharp peaks affecting all electrodes. The 

artifacts need to be rejected from analysis or filtered from the signal (i.e., using 

the method proposed in Section 3.3). 
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Figure 2-4. A recording of resting-state brain activity from Emotiv EPOC+. 

 

The manual analysis of the EEG time series is challenging even for experts in the 

domain. Computational methods are usually necessary to extract relevant 

information from the data. One of the most common methods is to reduce the 

dimensionality by computing the power spectral density (PSD) like the one 

presented in Figure 2-5. The spectrum of the signal represents specific frequency 

ranges called delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-35 Hz), 

and gamma (>35 Hz) brain waves [66]. The magnitude of neural oscillations in 

each band was shown to be the indicator of the specific states of mind, e.g., alpha 

waves are usually connected with engagement and alertness [67]. Brain waves 

analysis is usually applied in studies about emotion, stress, fatigue, 

concentration, sleep disorders, and depth of anesthesia. Brain waves are much 

easier to interpret than raw EEG signals and are used as an input to simple 

emotional state classifiers [9]. 
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Figure 2-5. An example of a power spectral density plot for all electrodes of a 

selected participant from the study [20]. 

 

Besides research purposes, EEG analysis has multiple practical applications 

listed in Table 2-3. Among them, clinical applications are the most notable and 

well-described ones (I devoted a separate publication to them [28]). The second 

broad area consists of brain-computer interfaces (BCIs) in different applications. 

Other applications span psychology, entertainment, and forensics. 

 

Table 2-3. Practical applications of EEG in different domains (an extended and 

updated version of Table 2 from [25]). 

Domain Practical applications 

Medicine Seizures’ detection and prediction. Monitoring the depth 
of coma, anesthesia, and alertness. Diagnosis of: 
epilepsy, Alzheimer’s disease, dementia, ischemic stroke, 
brain injury, brain death, schizophrenia, sleep and 
consciousness disorders, ADHD, and autism spectrum 
disorders. [28] 

Supportive BCI Text and mouse input. Silent speech decoding [68]. 
Interface for grasping and lifting using the robotic arm [69]. 
Controlling an electric wheelchair [70]. Person 
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identification, biometry [71]. Monitoring drivers’ and pilots’ 
fatigue and drowsiness [72]. 

Entertainment BCI Gaming input devices. Monitoring mental states. Sleep 
scoring  [73]. 

Psychology Emotion and mood recognition. Neurofeedback and 
therapies. [74]  

Forensics Lie detectors. Face familiarity [75] 

 

The public datasets of EEG recordings are a crucial factor to increase the 

reproducibility of the research, benchmarking new methods, and train machine 

learning models. Table 2-4 lists 15 examples of such datasets in different settings 

(excluding datasets for emotion recognition which are given separately in Table 

2-6). 

 

Table 2-4. Public datasets for EEG analysis ordered from the newest to the oldest 

(an extended and updated version of Table 1 from [25]). 

Dataset name  

(Year) [Ref] 

Dataset size Dataset purpose 

Sommer et al. (2021) [20] 16 participants, 864 trials 
each 

Face familiarity research  

TUH EEG Artifacts 
Corpus (2021, v2.0.0) [76] 

213 participants, 310 
recordings 

Automatic EEG artifacts 
detection 

TUH EEG Seizure Corpus 
(2020, v1.5.2) [76] 

692 patients, 6635 
recordings (1074 hours) 

Epileptic seizure detection 

Babayan et al. (2019) [77] 216 participants, 16 
minutes each 

Resting-state - eyes 
closed and eyes opened 
classification 
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Cao et al. (2018) [78] 27 participants, 62 90-
minutes recordings  

Driver’s fatigue level 

Nieuwland et al. (2018) 
[79] 

356 participants, 160 trials 
each, 9 different 
laboratories  

Prediction of the 
upcoming words 

Kaya et al. (2018) [80] 13 participants, 75 
recordings (60 hours) 

Motor imagery 
classification 

IMAGENET of The Brain 
(2018) [81] 

1 participant, 70’060 3-
second trials 

Perceived image 
classification, low-cost 
devices 

Cho et al. (2017) [82] 52 participants, 
36 minutes each 

Motor imagery 
classification 

MNIST of Brain Digits 
(2015) [83] 

1 participant, 1’207’293 2-
second trials 

Perceived image 
classification, low-cost 
devices 

MASS (2014) [84] 200 participants, whole 
night recording each 

Sleep stages analysis 

WAY-EEG-GAL (2014) 
[85] 

12 participants, 3936 trials 
each 

Decoding sensation, 
intention, and action 

CHB-MIT (2009) [86] 23 participants, 664 
recordings (844 hours) 

Epileptic seizure detection 

BCI2000 Motor 
Movement/Imagery (2004) 
[87] 

109 participants, 1500 
one- and two-minute 
recordings each 

Motor 
movements/imagery 
classification 

The CAP Sleep Database 
(2001) [88] 

108 participants, whole 
night recording each 

Sleep disorders scoring 
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2.3.1 Event-related potentials 

Event-related potentials (ERPs) are stereotypical brain responses evoked by 

specific types of events, stimuli, or actions. They can be effectively measured 

using a single EEG electrode or a group of electrodes. A single ERP trial (called 

an epoch) is just a time window of the EEG signal which starts at the time of the 

event and ends up to 2 seconds later (depending on the analyzed components). 

ERP epochs are usually corrected by subtracting the mean potential of a baseline 

(a small fragment of EEG signal right before the event), so the epoch starts from 

zero potential. In practice, a single epoch reflects thousands of simultaneously 

ongoing brain processes, so the evoked activity connected with a particular event 

may be indistinguishable from this noise. Sometimes the analysis of single 

epochs is possible [89], but usually it is necessary to collect multiple epochs for 

each type of event and average them to attenuate irrelevant activity and enhance 

the repeatable ERP waveform. When using a classic arithmetic mean, the signal-

to-noise ratio (SNR) of the ERP waveform increases as a function of the square 

root of the number of trials [90]. Thus, the number of trials is the most basic 

parameter in ERP experiments. It should be selected to provide the largest 

possible SNR without fatiguing the participant too much. It is worth adding that 

there are other averaging schemes, i.e., the improved robust averaging scheme 

proposed in this dissertation (Section 3.2). In ERP research, it is common to 

present the grand-average waveform which is the ERP averaged over all the 

participants. 

ERP waveforms are composed of many latent components of different latency 

and amplitudes (Figure 2-6). These components represent activations of specific 

brain regions in response to the event and its manipulation. However, a reliable 

method of inferring the components of interest from an ERP waveform does not 

exist. According to the Fourier analysis, any waveform can be decomposed into 

infinitely many sets of such components. Hence, the key to the proper 

interpretation of changes in ERP components is the proper experimental design. 

The ERP experiment should focus on manipulating a single component in a 

maximally controlled environment with a minimum number of confounding 

variables. 



 

24 

 

Figure 2-6 On the left: the example of an ERP waveform with marked peaks. On 

the right: components (C1, C2, C3) underlying this ERP waveform (example 

adapted from: [25]) 

 

Around 100 different ERP components described in more than 20’000 

publications were identified in EEG [91] since the first studies in the 1960s [92]. 

The number of articles is rapidly growing in recent years (Figure 2-7). The 

standard naming convention of ERP components is based on their polarity (P for 

positive, N for negative) and peak latency after the event (post-stimulus) in 

milliseconds, e.g., N170 denoting a component with negative (N) potential and 

170 ms peak latency. However, some components do not fit into this convention 

like EPN (early posterior negativity) or LPP (late positive potential). There is 

certainly a need for developing a clear ontology and consistent naming of the 

components [91]. 

 

Figure 2-7. The prevalence of ERP research. A) The number of articles on the 

topic of ERPs per year. B) The number of ERP articles related to different topics 

(source: [91]). 
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The ERPs are used to study the neural dynamics of a wide range of cognitive 

processes. The earliest components (latencies shorter than 100 ms post-

stimulus) are connected with basic sensory processing, e.g., the first responses 

of the visual, somatosensory, or auditory cortex [93]. During the first 100 ms, the 

brain collects the data needed for higher cognitive processes, so the early 

components are usually sensitive to the physical parameters of the stimulus. The 

more complex the event or experimental task the longer the latency. Later 

components relate to face processing (e.g., N170), object recognition (e.g., 

N250), body movement (e.g., movement-related cortical potential), semantic 

processing (e.g., N400), memory (e.g., contralateral delay activity), emotion 

(components thoroughly described in Section 0), and language (e.g., P600). The 

recent systematic meta-analysis of ERP components can be found under the link 

https://erpscanr.github.io/ERPscanr/ [91]. The descriptions of ERP components 

of particular interest in my dissertation are given in Section 2.5. 

  

https://erpscanr.github.io/ERPscanr/
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2.4 Psychological models of emotion 

The emotion recognition must be preceded by the definition of the model 

according to which the emotions are measured. Despite a lot of significant 

studies, there is no universal emotion theory in cognitive psychology [94]. The 

main reason is that human emotions are mental states that are usually hard to 

grasp. In the early psychological research, the only methods of measuring 

perceived emotional states were self-assessment forms or interviews with 

participants. The information they give is sometimes useful but very subjective 

and dependent on many confounding factors, e.g., the construction of the form, 

the experimenter effect, and the level of emotional intelligence of the participant 

[95]. Moreover, the same stimuli may induce different emotional states in two 

similar people while the same people may respond similarly to very different 

stimuli. Emotions are subjective and non-deterministic phenomena that may 

depend on age, time of the day, mood, experience, and fatigue of the person. 

The psychophysiological measurements opened new paths for understanding 

emotions. They were a foundation for creating several new hypothetical models 

of emotion. In general, they divide into discrete (or categorical) and dimensional 

(or continuous) models. Discrete emotion models define different numbers of 

independent emotion categories or classes. Continuous models present 

emotions as points in multi-dimensional space of valence, arousal, and 

sometimes some other affective measures. 

 

Discrete models 

For a long time, the theory of discrete emotions has been dominant in 

neuroscience research. This theory was initially suggested by Charles Darwin 

and was derived from the observations of universal facial expressions across 

different races and species [96]. The theory assumes that discrete emotions are 

evolutionarily encoded into our brains, and we are born with the ability to 

experience, display and recognize them. In his famous research about facial 

expressions across different cultures and isolated tribes, Paul Ekman described 

six universal basic emotions of anger, disgust, fear, happiness, sadness, and 
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surprise [53]. They are presented in Figure 2-8. The paper describing this discrete 

emotions model was cited, discussed, replicated, and revisited by hundreds of 

researchers but the existence of basic emotions is still being undermined by many 

researchers, like Lisa Barrett, promoting the theory of constructed emotion and 

dimensional models [8], [97]–[99]. 

 

 

Figure 2-8. Facial expressions of 6 basic Ekman’s emotions. Top row: anger, 

fear, disgust. Bottom row: surprise, happiness, sadness (source: [100]). 

 

Another discrete model was proposed by Plutchik with 8 core bipolar emotions: 

joy and sadness; anger and fear; surprise and anticipation; and trust and disgust 

[101]. But, unlike Ekman’s model, Plutchik’s “wheel of emotions” in Figure 2-9 

describes relationships between the pairs of emotions and their intensities using 

the circumplex model and additional emotional terms. Recently, another discrete 

model consisting of as many as 27 classes bridged by continuous gradients was 

proposed [102]. 
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Figure 2-9. Plutchik's wheel of emotions (source: Wikimedia Commons). 

 

Dimensional models 

The circumplex approach was utilized also in the most popular continuous model 

defined by Mehrabian and Russell using dimensions of pleasure, arousal, and 

dominance (PAD model) [103]. The first dimension is frequently called valence in 

the literature, it describes how pleasant (or unpleasant) is the stimuli for the 

participant. The arousal dimension defines the intensity of emotion. Dominance 

is described as a level of control over the situation [104]. Instead of dominance, 

some researchers suggest dimensions of control, utility [105], or 

approach/avoidance [106]. The model that includes only valence and arousal 

levels is presented in Figure 2-10 and is called a circumplex model of affect [107]. 

It is one of the most commonly used in literature to describe the emotions elicited 

by different stimuli. Currently, this model is facing some criticism, because many 

complex emotions are hard to define within only these two general dimensions. 

optimism love
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contempt awe
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annoyance anger rage

vigilance

anticipation

interest
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For example, only the dominance dimension enables allows distinguishing anger 

from anxiety, alertness from surprise, or relaxation from protection. The newest 

research findings on the global meaning structure of the emotion domain pointed 

out that more than two dimensions are needed to describe the nature of the 

human emotional experience sufficiently [108], [109]. 

 

Figure 2-10. The circumplex model of emotions with primary and secondary 

emotions marked (source: [110]). 

 

Mappings between models 

However, discrete and dimensional models are not contradictory. Instead, they 

can both give unique value that can assist in understanding the functions of 

emotions [111]. The discrete and continuous models are frequently mapped onto 

each other in order to assess different stimuli from both points of view. An 

example of such mapping is presented in Figure 2-10 where 6 basic Ekman’s 

emotions and 26 secondary discrete emotions are mapped onto the circumplex 

model of affect. These secondary emotions are discrete categories described 

using the continuous scales of arousal and valence. Another example is the 
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Russell and Mehrabian lexicon which localizes affective words in the PAD model 

[104]. 

I discussed the topic of mappings between emotion models in more detail in the 

publication [24]. There, I proposed a new mapping from the continuous 3-

dimensional valence-arousal-approach/avoidance model to 9 discrete emotions 

from the CAP-D dataset [112] based on the self-assessments provided by the 

large group of participants for the NAPS affective images set [106]. This mapping 

is presented in Figure 2-11. We can observe the discrete emotion of disgust in 

the corner with the lowest valence, lowest approach, and highest arousal. As the 

opposite emotion, we can consider love or peacefulness. 

 

Figure 2-11. My proposed mapping from the valence-arousal-

approach/avoidance model to 9 discrete emotions from the CAP-D dataset 

(source: [24]). 

 

2.4.1 Affective stimuli 

Different stimuli may be used to induce specific emotions. Typically, the 

normative sets of videos, images, faces, music, and/or odors are used. They are 



 

31 

annotated using emotional ratings collected from experts or large populations of 

participants using self-assessment forms. Formerly, the questionaries to assess 

the affective stimuli in dimensional emotion models were usually based on Self-

Assessment Manikins (SAMs) [113] or Likert scales with 5, 7, or 9 points (like in 

IAPS [114] or OASIS [115] datasets). The new trend is to use more fine-grained 

continuous scales like selecting a point on the 10 cm line [105] or Affective Slider 

[108]. The most common stimuli in the literature about emotion recognition are 

images and videos [9]. There are many standardized datasets of affective 

images. I collected and listed the most popular ones in Table 2-5. They contain 

hundreds of images with curated emotional labels, usually in dimensional models. 

 

Table 2-5. The affective picture sets ordered from the newest to the oldest (the 

extended and updated version of Table 2 from [24]). 

Set name 
(Year) 
[Ref] 

Number of 
pictures and 
participants 

Assessment 
method  

Emotion models used 

CAP-D 
(2018) 
[112]  

513 pictures, 
133 participants 
(73 women), 15 
clinical 
psychologists 

Describing 
the picture 
with 1 of 10 
emotional 
words 

10 discrete emotions, arousal, 
and intensity dimensions 

OASIS 
(2017) 
[115]  

900 pictures, 
822 participants 
(420 women) 

7-point Likert 
scale 

Dimensional model: valence, 
arousal 

SFIP 
(2017) 
[116]  

288 pictures, 
1671 
participants 

5-point Likert 
scale for fear, 
9-point Self-
Assessment 
Manikin for 
valence 

Valence and the intensity of 
fear 

NAPS 
(2014) 
[106]  

1356 pictures, 
204 participants 
(119 women) 

9-point sliding 
scale 

Dimensional model: valence, 
arousal, approach/avoidance 
 
6 basic emotions (only for a 
subset of 510 images) [117] 
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GAPED 
(2011) 
[118] 

730 pictures, 60 
participants (no 
gender given) 

100-points 
rating scale 

Dimensional model: valence, 
arousal, congruence with 
moral and legal norms 

IAPS 
(2005) 
[114] 

956 pictures, 
100 participants 
(50 women) 

5-point Self-
Assessment 
Manikin 
(SAM) 

Dimensional model: valence, 
arousal, dominance/control 

 

There are many public datasets of EEG recordings of people watching 

emotionally engaging video clips (usually fragments of movies or music videos). 

I summarized them in Table 2-6. They are collected with EEG devices of different 

quality, and they usually contain emotion labels in dimensional models. They 

contain from 15 to 58 participants One of the most frequently used datasets is 

DEAP [119], many researchers benchmark their emotion recognition results 

against it. However, the main problem with videos as stimuli in terms of this 

dissertation is that it is impossible to extract ERP from such EEG recordings. 

There are no clearly defined repeatable “events”, so the researchers are usually 

limited to frequency features or the raw EEG signal. 

 

Table 2-6. Public EEG datasets for emotion recognition ordered from the newest 

to the oldest (the extended and updated version of Table 2.1 from [28]). 

Database name 
(Year) [Ref] 

EEG recording 
details 

Stimuli used Emotion models used 

DEAR-
MULSEMEDIA 
(2021) [120] 

18 participants, 
MUSE EEG, 5 
channels, 256 Hz 

4 video clips, 
sensorial 
effects 

Valence and arousal 
levels  

SEED (2018) 
[121] 

15 participants, 
ESI NeuroScan 
System, 62 
channels, 1000 
Hz 

72 video clips Valence and arousal 
levels, 4 discrete 
emotion classes: 
happiness, sadness, 
neutral, fear 

DREAMER 
(2018) [122] 

23 participants, 
Emotiv EPOC 

18 video clips PAD model levels 
and 9 discrete 
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low-cost EEG, 16 
channels, 128 Hz 

emotion classes: 
amusement, 
excitement, 
happiness, calmness, 
anger, disgust, fear, 
sadness, and surprise 

ASCERTAIN 
(2016) [123] 

58 participants, 
NeuroSky 
MindWave, 1 
channel, 512 Hz 

36 video clips Valence, arousal, 
engagement, liking, 
and familiarity levels 

USTC-ERVS 
(2014) [124] 

28 participants, 
Neuroscan 
Synamps2, 32 
channels, 500 Hz 

92 video clips Valence and arousal 
levels 

DEAP (2012) 
[119] 

32 participants, 
BioSemi 
ActiveTwo, 32 
channels, 512 Hz 

40 video clips Valence and arousal 
levels divided into 4 
classes HAHV, 
LAHV, HALV, LALV 

MAHNOB-HCI 
(2012) [125] 

27 participants, 
BioSemi 
ActiveTwo, 32 
channels, 1024 
Hz 

20 video clips Valence and arousal 
levels, 9 discrete 
emotion classes: 
neutral, anxiety, 
amusement, 
sadness, joy, disgust, 
anger, surprise, and 
fear 

eNTERFACE06
_EMOBRAIN 
(2006) [126] 

16 participants, 
BioSemi 
ActiveTwo, 54 
channels, 1024 
Hz 

327 images 
from IAPS 

3 discrete emotion 
classes: calm, 
exciting positive and 
exciting negative 

 

2.4.2 EEG correlates of emotion 

The relation between EEG data and the emotional state may be considered in 

the context of two main approaches: the locationist and the constructionist 

paradigm. The locationist approach is closely related to the theory of basic 

emotions described in previous Section 2.4. It assumes that each emotion is 

generated by a unique neural pathway and has a unique footprint on brain signals 
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[127]. Similar to the theory of basic emotions, the locationist approach is currently 

being criticized by many researchers in the field [128]. They present the 

constructionist approach as the alternative where emotions are the result of the 

interaction between different functional networks of the brain. There is some 

recent evidence that using dimensional models derived from the constructionist 

approach (like PAD) reflects the brain activity by means of EEG data more 

coherently [129]. Also, the majority of recent papers in automatic emotion 

recognition use dimensional models [9]. 

Many studies have shown that the effect of emotion can be observed in event-

related brain potentials (ERPs), frontal EEG asymmetry, event-related 

synchronization, and steady-state visually evoked potentials [9], [10]. Although, 

the majority of papers on EEG emotion correlates (72 out of 130) find them in 

ERP [9]. The ERP components of latencies up to 300 ms have been shown to 

correlate more with the valence dimension, e.g., the enhanced N100 and N200 

amplitudes for unpleasant stimuli. These effects have been associated with 

attention orientation at the early stages of processing. The arousal dimension is 

reflected by later components like P300 and slow waves (550 to 850 ms post-

stimulus) with higher amplitudes for more arousing stimuli [130]. Also, it has been 

shown that unpleasant and highly arousing stimuli evoke greater ERP responses 

for females relative to males [131]. Basic emotional processing is frequently 

analyzed by employing ERP correlates of facial expression perception. Here, the 

EPN component is known to be emotion-sensitive [17]–[19] which was confirmed 

in Section 3.1 based on the results from my experiments [15]. 

In terms of brain waves, the power of alpha waves is connected with discrete 

emotions of happiness, sadness, and fear [132], but also can be treated as an 

effective index of the cortical arousal level [133]. The asymmetry of the EEG 

spectrum between frontal parts of different hemispheres of the brain is known as 

a steady correlate of valence [134]. Studies in the higher frequency gamma band 

showed a significant interaction between valence and hemisphere, suggesting 

that the left part of the brain is involved more in positive emotions than the right 

hemisphere [135]. More complex emotion correlates are defined in terms of 
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coherence between different areas of the brain, for example, the phase 

synchronization between frontal and right temporoparietal regions has been 

connected with higher valence and arousal [136], and the coherence between 

prefrontal and posterior beta oscillations has been shown to increase while 

watching highly arousing images [137]. 

 

2.5 ERP correlates of emotional face processing 

Faces and emotional facial expressions hold paramount nonverbal information in 

communication with other people. Developmental studies of infants have 

provided evidence that we are born with the ability to recognize faces [138]. This 

ability is our important evolutionary adaptation to the complex social environment 

[19]. Because of the social significance of facial emotions, information about 

emotional states derived from faces is processed very rapidly, as soon as 100 

ms after the face onset [139], to be available for immediate regulation of behavior. 

The time course of facial expression processing can be divided into three stages 

[139]: automatic processing (components N100, P100), distinguishing emotional 

and neutral facial expressions (components VPP, EPN, N250), and differentiation 

of various emotional facial expressions (components P300, N300, LPP). The 

studies suggest that some basic facial expressions recognition starts together 

with the initial processing of face features. However, the structural encoding of 

faces and the detection of their emotional expression represent parallel and 

independent processes [17]. Thus, brain signals generated by face recognition 

and facial expression processing may overlap in ERP components (i.e., face 

recognition reflected in the N250 component and emotional processing in the 

EPN component). Many different components were identified in the literature as 

correlates of emotional face processing. The most important ones are listed in 

Table 2-7 together with their typical latencies, topographies, short descriptions, 

and relevant references. 
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Table 2-7. Short descriptions of ERP components related to emotional face 

processing. The bold-faced components are of particular interest to my 

dissertation.  

Component Typical latency 
and topography 

Short description 

P100 100 – 130 ms 
Occipital 

Initial processing of visual stimuli 
resembling faces (i.e., in contour or 
shape) [140]. Initial extraction of 
fearful face features [139]. 

N100 60 – 140 ms 
Temporo-occipital 

A concomitant of P100. Processing 
fearful facial expressions [139]. 

N170 150 – 200 ms 
Temporo-occipital 

Early processing and detection of 
face-like objects [141]. No effect of 
facial expression [20], [142].  

VPP 120 – 220 ms 
Medial fronto-
central 
 

A concomitant of the N170. Some 
studies suggest its association with 
fearful faces processing [143]. 

N250 230 – 320 ms 
Temporo-occipital 

Acquiring face representations and 
face recognition [144].  

EPN 240 – 340 ms 
Temporo-occipital 

Increased emotional arousal evoked 
by facial expressions, especially 
expressions of anger and happiness 
[18], [19]. 

P300 280 – 450 ms 
Medial fronto-
central 

Some studies suggest its association 
with fearful faces processing [143]. 

N300 250 – 350 ms 
Temporal 

Processing of fearful [139] and angry 
[145] facial expressions. 

N400 300 – 500 ms 
Medial, occipital 
and temporal 

Retrieval of content from face 
representations and of its associated 
verbal-semantic information [138] 

LPP 400 – 600 ms 
Medial central 

It reflects the relatively rapid and 
dynamic allocation of increased 
attention to emotional stimuli. [146]. 
Discrimination between fearful and 
happy and neutral expressions [147]. 
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In the following paragraphs, I provide extended descriptions of ERP components 

that are particularly important to my thesis: N170, N250, EPN, and P300. 

 

N170 

The N170 component reflects the neural processing of faces or highly familiar 

objects [148]. It is characterized by a sharp negative peak around 170 ms post-

stimulus. It is thought to originate from the fusiform gyrus (specifically from the 

fusiform face area), and thus, it is the strongest at right occipito-temporal 

electrodes. The N170 is not sensitive to the identity of the face, it rather 

represents the early processing and detection of face-like objects [141]. Its 

latency and amplitude can be modulated by the face inversion, especially the 

Thatcher effect [149], or by the race of the face [150]. Many papers are showing 

the effect of facial emotional expression on N170, but the latest meta-analytic 

studies suggest that this effect is small, not robust, and highly dependent on face 

stimuli [142]. The effect was not observed in our experiments either [20]. The 

example of the N170-related peak can be found in Figure 3-4 in Section 3.1. 

 

N250 

The N250 component is connected with the recognition of faces and objects 

[151]. It is a relatively short negative deflection that peaks 230 – 320 ms post-

stimulus. Like N170, it is generated in the fusiform gyrus, and thus, it is the most 

apparent occipito-temporal electrode. It can be treated as an index of face 

familiarity [20] and it is enhanced during the acquisition of face and object 

familiarity [144], [152]–[154]. Our team confirmed these effects in a number of 

studies involving face familiarity and a single-trial ERP analysis [20], [22], [23]. 

The early studies of this component showed that N250 increases when a face 

image is preceded by the same face as compared to a different face (N250r) 

[155]. Additionally, this repetition effect is stronger for familiar than unfamiliar 

faces. The example of an N250-related peak for the target face can be found in 

Figure 3-22 in Section 3.3. 
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EPN (Early posterior negativity) 

The EPN is an emotion-sensitive component that can be characterized as a 

negative deflection starting around 150 ms and peaking 240 – 340 ms post-

stimulus [19]. The neural sources of this component seem to be located in visual 

processing areas of the brain, so it is the most apparent at occipito-temporal 

electrodes. The occurrence of EPN is an indicator of increased emotional arousal 

evoked by images or facial expressions [156], [16], especially expressions of 

anger (high arousal and low valence) and happiness (high arousal and high 

valence) [18]. This was confirmed in one of my studies [15]. It reflects the early 

stages of emotion discrimination and can be modulated by the level of emotional 

engagement and the size of the visual stimulus [157]. An example of EPN-related 

deflection for emotional expression can be found in Figure 3-4 in Section 3.1. 

Important! The EPN component can be easily confounded with N250 when 

interpreting the ERP waveforms. It is even impossible to disentangle these two in 

some experiments [158]. They occur in a similar time range and at similar 

electrode sites, but they are assumed to reflect different cognitive processes. It 

was shown that both EPN and N250 components are enhanced for attractive 

relative to unattractive faces [159], but there is a lack of research on disentangling 

the face learning and emotional expression processing ERP correlates. 

 

P300 

P300 is probably the most popular component in the research literature and 

practical applications like brain-computer interfaces and mental disorders 

diagnosis [160]. It is a very strong positive component elicited during decision-

making, information processing, and memory operations. It spans a relatively 

wide time window of the ERP waveform and usually peaks from 300 to 900 ms 

post-stimulus. It is produced by a pattern of generators in the parietal cortex with 

contributions from stimulus-specific brain areas. One of the most popular 

experimental designs to elicit P300 is the oddball paradigm where the participant 

is presented with sequences of repetitive stimuli (visual or auditory) that are 
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sometimes interrupted by a deviant or target stimulus (called oddball) which elicits 

the P300 response. The participant should be actively engaged in the task (e.g., 

by counting the oddball presentations) to increase the P300 amplitude. The 

latency of P300 is usually proportionate to the response time of the participant 

(or inversely proportionate to the performance of the participant) [161]. Due to its 

popularity and strength, it is usually used to validate new hardware setups and 

algorithms for ERP measurement, as I did in [21]. In the context of emotional face 

processing, some studies suggest its association with fearful faces processing 

[143]. An example of a P300-related peak can be found in the simulated data in 

Figure 3-5 in Section 3.2. 
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3 NEW METHODS OF ERP EXTRACTION FOR 

EMOTIONAL FACE PROCESSING 

This section summarizes the original contribution to knowledge that supports the 

thesis of this dissertation. It focuses on the subject of high-quality ERP extraction 

from EEG and its impact on emotional face processing analysis. The consecutive 

subsections are arranged according to the chronological order of my research 

and publications. The logical order of phases and steps in a typical ERP study is 

defined in Table 3-1. During my research, I was involved in all the mentioned 

phases, but my main contributions cover in particular the underlined steps. Table 

3-1 itself is a significant contribution as a practical checklist for ERP studies. 

 

Table 3-1. The order of phases and steps in a typical ERP study. The underlined 

steps are included in the main contributions of this dissertation. 

Order Phase Consecutive steps 

1 Experimental 

design 

Defining the goal of the study. Defining hardware and 

software requirements. Planning the minimum number 

of participants and trials. Ethical approval. Selection of 

participants. Programming the experimental 

procedure.  

2 Hardware 

setup 

Preparing the laboratory. Setting up the EEG system 

and auxiliary devices. Testing the procedures.  

3 Preparing 

participants 

Instructing the participants. Obtaining written consent 

and collecting necessary data from participants. 

Setting up the EEG cap.  

4 EEG 

acquisition 

Initialization of the experiment and recording. 

Monitoring the status of the participant and the EEG 

system. Keeping the laboratory notebook. 

5 EEG 

preprocessing 

Applying different filters to the raw EEG data, including 

frequency filtering, re-referencing, cropping, 

resampling, artifact filtration, etc. 
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6 ERP 

extraction 

Extracting single-trial epochs. Baseline correction. 

Rejecting corrupted or non-target epochs. Averaging 

epochs for each target class.  

7 ERP analysis Visual analysis of ERP waveforms. Statistical analysis 

of the experimental effects in ERP components. 

Training ERP classifiers [25]f. 

 

Most of the EEG preprocessing and ERP extraction methods in this dissertation 

were implemented in Python programming language using mainly NumPy, SciPy, 

and MNE-Python (MEG + EEG analysis & visualization) packages [162]. The 

statistical analyses were typically performed in the R programming environment. 

To support the reproducibility and replicability of the research, I shared all the 

details of the EEG/ERP methods according to the ARTEM-IS guidelines [7]. Also, 

I shared the data and code in Open Science Framework (OSF) where necessary. 

 

3.1 Adaptation of Emotiv EPOC+ 

This section summarizes materials from the article “Validation of Emotiv EPOC+ 

for extracting ERP correlates of emotional face processing” [15] published in 

Biocybernetics and Biomedical Engineering journal. It presents my proposed 

adaptation of the low-cost Emotiv EPOC+ EEG device for ERP experiments by 

applying an additional stimuli marking circuit to solve problems with the EEG 

signal transmission delay, time drift (a cumulative desynchronization of clocks in 

an EEG device and a recording PC), and jitter (unpredictable variability of the 

timestamps) common to most low-cost wireless systems [163]. The second goal 

was to check the capabilities of our modification in the ERP experiment on 

emotional face processing. Results show that the adaptation allows for 

measuring small differences in the EPN component evoked for neutral and 

emotional (angry/happy) face expressions consistently with previous works using 

research-grade EEG systems. 
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3.1.1 Emotional face processing experiment 

The goal of the experiment was to check if the low-cost Emotiv EPOC+ device 

can be used effectively for ERP measurements in evoked emotion recognition. 

No previous studies offered such analysis. Some of them used Emotiv EPOC+ 

and brain waves analysis for emotional state recognition [164]–[168], and the 

others used it for ERP research in different domains, e.g., auditory ERPs [169], 

N170 [170], or P300 [171]. Hence, we decided to use the experimental design 

from the psychological study using research-grade EEG for analyzing emotional 

facial expression processing [19]. As mentioned in Section 2.5, faces with angry 

and happy expressions generate the face-sensitive N170 and the emotion-

sensitive EPN component in ERP waveforms. Thus, we set two goals for our 

experiment: 

1) To replicate the detection of the N170 component as presented in [170] 

2) To verify the possibility of measuring the emotion-sensitive EPN 

component with Emotiv EPOC+ 

The exact procedure was (citing from [15]): 

“After signing written informed consent, each participant was seated alone in the 

same, dimly lit, quiet room. A computer screen was placed on an empty desk at 

a viewing distance of 70 cm. Participants were instructed to leave any electronic 

devices away, seat still, keep quiet, limit unnecessary blinking during trials and 

remain focused on the task. Subjects were also instructed to maintain central eye 

fixation during the trials. In the task, participants were instructed to monitor the 

centrally presented faces (the centre of the nose was always in the centre of the 

screen) and to respond as quickly and accurately as possible with a right-hand 

button press whenever a male face was displayed and with a left-hand button 

press whenever a face was female. To control lateral bias in motor response, left- 

and right-hand responses were counterbalanced across subjects. Each trial 

began with a 500 ms presentation of the white fixation cross. 750 ms after the 

offset of the fixation cross, the face was presented for 300 ms (specific timings 

derived from [19]). In each trial, one face was presented at the fixation covering 

a 2.5º x 3.5º visual angle. The interval between response and the next stimuli was 
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1200 ms. One experimental unit consisted of 32 trials (16 presentations of faces 

with a neutral expression, 8 presentations of happy faces, and 8 presentations of 

angry faces, each time in random order). A single experiment consisted of 16 

experimental units, it gives 5120 of trials in overall.” [15] 

We selected the stimuli from the MUG dataset [172]. They were grayscale face 

pictures of eight different individuals (four women and four men) displaying angry, 

happy, and neutral expressions. There were ten participants (students and 

lecturers of Silesian University of Technology, right-handed, normal vision, 8 

males). The experimental procedure was implemented in the OpenVibe software 

[173]. 

 

3.1.2 Stimuli marking circuit 

 

Figure 3-1. The simplified diagram of my new proposed stimuli marking circuit 

(source: [15]). 



 

44 

The design of my stimuli marking circuit is presented in Figure 3-1. The whole 

module consists of around one meter of a twisted-pair cable soldered to the 

BPW34 photodiode and two frontal electrodes F7 and F8 isolated from the head 

by a thick rubber. The circuit may be easily reconnected to any other two 

electrodes, according to needs. The diode needs to be attached to the part of the 

screen that changes luminance significantly when a stimulus is displayed. I used 

a little white square in the right bottom corner of each displayed image. The 

change of luminance generates a sharp peak of potential between electrodes F7 

and F8. Then, a dedicated peak finding algorithm inspired by [174] is used to 

identify the exact time of stimulus display (the red circle in Figure 3-1). Details 

about the algorithm can be found in Figure 3-3 and in [15].  

The stimuli marking circuit physically connects Emotiv EPOC+ to the PC, which 

is the main disadvantage of the solution, apart from losing two electrodes. 

However, the circuit is extremely easy and cheap to build, and most importantly, 

it offers almost perfect timing synchronization which is crucial for ERP 

measurements. The effect of using stimuli marking circuit is distinctly visible in 

the example in Figure 3-2. Without the correction using a marking circuit, epochs 

are affected by synchronization problems causing amplitude and latency 

deformations in the averaged signal. After applying the correction, the N170-

related peaks are well aligned and have proper latencies close to 170 ms. 
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Figure 3-2. On the left: the original 8 epochs (dotted lines) and their average 

(solid line). On the right: the same 8 epochs corrected using our stimuli marking 

circuit (source: [15]). 

 

3.1.3 ERP extraction and results 

The complete pipeline for ERP extraction from Emotiv EPOC+ is presented in 

Figure 3-3. The common average reference (CAR) operation was applied to 

reduce the environmental noise and enhance a potential emotional effect [156]. 

Further, to remove a constant offset and irrelevant high frequencies, signals from 

all electrodes (including stimuli marking electrodes) were band-pass filtered at 

the range 0.5 – 15 Hz using 3th-order zero-phase forward-backward digital 

Butterworth filter using Gustafsson's method [175]. 

A set of 512 epochs was extracted separately for electrodes P7, P8, O1, and O2 

for each participant; starting 104 ms before and 512 ms after the stimulus. The 

epochs for specific electrodes were removed from this set if: 

1) The participant did not answer or answer wrongly to the task (to avoid 

samples in which the participant potentially missed the face display) 

2) The peak-to-peak potential in the epoch was larger than 70 µV (to avoid 

artifacts from blinks and muscle movements) 

3) There was no clear N170-related peak detected by the proposed wavelet-

based algorithm (to avoid any other problematic or noisy samples) 
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The algorithm from point 3) is one of the added values of the dissertation. It 

determines the existence of the N170-related peak by calculating the continuous 

wavelet transform (CWT) for each epoch using the inverted Ricker wavelet. It 

detects a peak if the mean value of CWT coefficients over the set of 9 different 

wavelet widths (1, 1. , …,    and   different shifts (1 6 ms, 160.8 ms, …, 180 ms 

post-stimulus) is larger than zero. The parameters were selected empirically to 

reject a limited set of clearly corrupted epochs without any peak in the range 156 

– 180 ms post-stimulus. The details of the algorithm can be found in [15], I do not 

focus on them in the dissertation, because in practice this problem can be 

resolved more effectively by the robust weighted averaging method described in 

Section 3.2. 

After filtering, there were on average 424 out of 512 epochs left per electrode per 

participant (205 for neutral faces, 219 for emotional faces). All epochs were 

baseline corrected and averaged for each electrode, each expression, and each 

participant separately. An example of averaged ERP waveform for the participant 

with the lowest number of rejected epochs at electrode O1 is presented in Figure 

3-4. The more negative values in the EPN component range 240 – 340 ms 

(marked in grey) can be observed for emotional stimuli. 
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Figure 3-3. The block diagram of the ERP extraction pipeline (source: [15]). 
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Figure 3-4. An averaged ERP waveform for emotional and neutral faces for the 

selected participant at the electrode O1 (source: [15]). 

 

The differences in EPN amplitudes were analyzed statistically across all 10 

participants using a two-tailed paired t-test. The tests confirmed the significance 

of the effect of emotional expression on the EPN amplitude at p < 0.01 for 

electrodes O1 (mean: -0.92 µV, t(9,10) = 3.47, p = 0.007) and O2 (mean: -0.84 

µV, t(9,10) = 3.68, p = 0.005). The effect was weaker but still present at p < 0.05 

at electrodes P7 (mean: -0.71 µV, t(9,10) = 2.47, p = 0.035) and P8 (mean: -0.77 

µV, t(9,10) = 3.17, p = 0.011). This is consistent with the results from [156] and 

[17], and partially consistent with [19] where the main difference is the sign of the 

derivative of an averaged signal in the time range of 250 – 400 ms. In conclusion, 

the proposed adaptation of Emotiv EPOC+ allows effective ERP measurements 

for evoked emotion recognition. 
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3.2 Improved robust weighted averaging 

This section summarizes materials from the article “Improved robust weighted 

averaging for event-related potentials in EEG” [21] published in Biocybernetics 

and Biomedical Engineering journal. It presents my proposed ERP-related 

improvements to the previous work “Robust weighted averaging for biomedical 

signals” [176]. The main reason for this study was to increase the quality of 

emotional-related ERPs extracted from the adaptation of Emotiv EPOC+ 

described in the previous Section 3.1. My contribution is fourfold: 

1) Significantly lower averaging error (higher SNR of ERPs) 

2) Increased robustness to local minima 

3) Increased robustness to strong outliers 

4) Increased robustness to uncorrelated epochs 

 

3.2.1 Methods 

As mentioned in Section 0, the ERP waveforms are usually a traditional sample-

wise arithmetic mean of multiple epochs. This is the simplest method of 

increasing the SNR in periodical biomedical signals. However, it holds the 

assumption that the noise is zero mean, stationary and non-correlated with the 

signal. Most types of noise are not stationary, especially in EEG measurements 

affected by many types of noise and artifacts. In this case, it is better to use a 

weighted averaging approach given by Equation (3-1) where 𝑤𝑖 is a weight for 

the 𝑖-th (out of 𝑁) epoch 𝒙𝑖 and 𝒗 is the averaged ERP. 

   𝒗 = ∑ 𝑤𝑖𝒙𝑖

𝑁

𝑖=𝑖

 (3-1) 

The higher weights should be assigned to more reliable epochs. The main 

problem is how to find the weights that reflect the amount of the signal in each 

epoch. In [176], the approach is to iteratively minimize the criterion function 

𝐼𝑚(𝒘, 𝒗) in Equation (3-2) where ϱ is a dissimilarity measure between the epoch 
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𝒙𝑖 and the averaged waveform 𝒗, and 𝑚 is an additional weighting exponent 

larger than 1. 

   𝐼𝑚(𝒘, 𝒗) = ∑ 𝑤𝑖
𝑚

𝑁

𝑖=𝑖

𝜚(𝒙𝑖 − 𝒗) (3-2) 

The optimal solution is represented by  𝒗∗ that characterizes with the minimal 

dissimilarity to all epochs 𝒙 by using optimal weights 𝒘∗. In short, the method 

iterates over the consecutive estimates of 𝒘 and 𝒗 until the convergence defined 

by Equation (3-3) where 𝑙 is the number of the last iteration and ξ is a 

convergence condition set manually. 

   ‖𝑤𝑙 − 𝑤𝑙−1‖2 <  ξ  (3-3) 

The paper [176] points the Vapnik’s 𝜀-insensitive function [177] as the 

dissimilarity measure ϱ providing the best results of the weighted averaging 

based on criterion minimization (WACFM in short). For simplicity, I focused on 

improving the special case of WACFM using Vapnik’s function with 𝜀 set to zero 

(the absolute error function) called later absWACFM. The other parameters were 

set to 𝑚 = 2, ξ = 10−5. The selection of these parameters has no impact on the 

proposed improvements. 

 

Increased robustness to local minima 

The problem with the original implementation of the WACFM method is that 

consecutive iterations are highly biased towards epochs very close to the current 

estimate 𝒗 of the ERP waveform. For example, if the epoch 𝒙𝑖 is identical to the 

current estimate 𝒗 the weight 𝑤𝑖 gets an infinite value and the algorithm runs into 

a local minimum. This is one of the major flaws of the original algorithm that I 

encountered when using it for ERP. I proposed a solution significantly minimizing 

this problem by limiting the maximum weight by adding a small positive constant 

to the dissimilarity metric ϱ, so the value of weight 𝑤𝑖 in equation (12) in [176] 

never reaches infinity. I suggested setting this constant to be equal to the value 

of the least significant bit of the digital resolution of the EEG amplifier used.  
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Increased robustness to strong outliers 

The EEG data may contain extreme outliers, orders of magnitude larger than the 

signal itself, e.g., caused by body or electrode movements. Epochs containing 

such artifacts may affect the waveform estimate 𝒗 even when they have low 

weights assigned. I limited this problem by zeroing out the weights smaller than 

1 / (c * N) where N is the number of epochs to average and the specificity constant 

c > 0 can be adjusted to the needs. The c = 1 means that all epochs with weights 

less than (1 / N) will be zeroed out, this is quite a high sensitivity. The larger the 

value c the higher the specificity and the fewer weights are zeroed out. The 

default value of c = 100 is used here and suggested in typical EEG settings but it 

should be adjusted to the specific task at hand. 

After zeroing out the weights it is important to adjust all the other weights, so they 

sum up to 1 again. I proposed to do it by simply dividing each weight by the sum 

of weights after the zeroing out operation. 

 

Increased robustness to uncorrelated epochs 

This improvement was inspired by the best method from the article [178] about 

weighted averaging in electrocochleography (called Scheme 5). Scheme 5 

updates the weights  𝑤𝑖 using Equation (3-4) where 𝑆𝑖 is a “signal” defined by the 

Pearson’s correlation between the traditionally averaged ERP waveform and the 

epoch 𝒙𝑖 in the time window of interest (depending on the task, i.e., the time range 

of the ERP component of interest), 𝑁𝑖 is a “noise” defined as the standard 

deviation of samples in the time window representing the noise in the ERP 

waveform (i.e., the ERP baseline), and 𝑘 is just a constant that ensures the 

weights are unitless. 

   𝑤𝑖 =  
𝑆𝑖

𝑁𝑖
2 ∗ 𝑘 (3-4) 

In my improvement, I adopted the idea of checking Pearson’s correlation by 

adding a step to the original WACFM procedure which reinforces or attenuates 
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weights for specific epochs depending on their correlation with the current ERP 

waveform estimate. The details are given in steps 4) and 6) in my final procedure 

called corWACFM (WACFM with correlation-based epochs weighting) 

summarized in Table 3-2. 

 

Table 3-2. The proposed corWACFM algorithm for robust weighted averaging of 

ERP epochs. The proposed improvements to the original WACFM are underlined.  

Step Operation 

1 Initialize the current estimate 𝒗 with the traditionally averaged ERP 

waveform 

2 Update the vector of weights 𝒘 using equation 12 from [176] with 

improvements for local minima and strong outliers 

3 Update 𝒗 using equation 14 from [176] 

4 Calculate the vector 𝒖 of Pearson’s correlations between 𝒗 and each 

epoch 𝒙𝑖. Rescale 𝒖 to range (0, 1) where 0 is no correlation and 1 is 

a perfect correlation 

5 Update 𝒘 using the equation 12 from [176] with the improvement for 

local minima 

6 Update 𝒘 by multiplying it sample-wise by 𝒖 

7 Divide each weight by the sum of weights, so they sum up to 1 

8 Update 𝒘 using the improvement for strong outliers 

9 Update 𝒗 using equation 14 from [176] 

10 If the stopping condition from Equation (3-3) is not met, go to step 4. 

Otherwise, set the current estimate 𝒗 as the optimal solution 𝒗∗ and 

stop the algorithm 
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3.2.2 Simulation study 

In real-life EEG data, the underlying signal and noise are not known. Thus, to 

objectively assess the quality of averaging I generated a simulated ERP dataset 

of 260 epochs from 64-electrodes and 128 Hz sampling frequency using the 

SEREEGA Matlab toolbox for mimicking the brain activity [179]. The details and 

code for generating this dataset are accessible as supplementary material to [21]. 

To generate 200 epochs, I used a combination of simulated N70, P100, N135, 

and P300 components. Each epoch includes the natural variability of these 

components. The arithmetic average of these 200 epochs is considered the 

deterministic component of the ERP waveform as presented in Figure 3-5. To 

examine the robustness of averaging the pink noise was added to the first 30 

epochs, the Bernoulli-Gaussian impulsive noise was added to the first 170 

epochs, the Bernoulli impulsive noise was added to epochs 140-170, 30 randomly 

picked epochs were duplicated, and added to the dataset in inverted versions, 

and 30 epochs of white noise were added to the dataset. All 260 distorted epochs 

at the electrode POz are presented in Figure 3-6. They were used for 

benchmarking the new averaging algorithm. 
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Figure 3-5. 200 raw generated epochs and their average (the deterministic 

component) at the POz electrode (source: [21]). 

 

Figure 3-6. 260 distorted generated epochs at the POz electrode and their 

average (source: [21]). 
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The performance of the proposed corWACFM method was tested using the same 

metrics as in [176]: the maximal absolute difference between the deterministic 

component and the averaged signal (MAX) and the root-mean-square error 

between the deterministic component and the averaged signal (RMSE). The 

lower the metric the better the algorithm. The corWACFM was compared with 

traditional averaging, sample-wise median aggregation, the original absWACFM, 

and Scheme 5 from [178]. The bootstrap testing procedure with a sample size of 

130 epochs and 1000 repetitions was used to avoid dependency of results on the 

data. In practice, the EEG data are usually filtered before extracting ERP epochs, 

so the results after 0.5 – 24 Hz bandpass filtering are also presented. Below, I 

present only selected results from my publication [21] which thoroughly compare 

these methods in different aspects. 

The notched boxplots with notches marking the 95% confidence intervals were 

used to assess the statistical significance of the differences. The boxplots in 

Figure 3-7 (for RMSE) and Figure 3-8 (for MAX) both show a significant 

advantage of corWACFM over the traditional averaging and the original 

absWACFM method. The average improvement over the original method is 45% 

lower RMSE and 37% lower MAX. Scheme 5 is a bit better than corWACFM when 

applying bandpass filtering. However, the corWACFM is significantly better for 

the raw data. Also, Scheme 5 is highly dependent on the initial estimate as 

presented in figure 13 from [21] and supported by the results on the real-life 

dataset described in the next Section 3.2.3. 
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Figure 3-7. The notched boxplot of bootstrap RMSE for different averaging 

schemes for the raw simulated dataset and its bandpass filtered version (source: 

[21]). 

 

Figure 3-8. The notched boxplot of bootstrap MAX for different averaging 

schemes for the raw simulated dataset and its bandpass filtered version (source: 

[11]). 
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The weights calculated by the proposed corWACFM method are visualized in the 

ERP image in Figure 3-9. This image contains the same epochs as presented in 

Figure 3-6, but multiplied by weights from corWACFM and multiplied by the 

number of epochs to keep the same amplitude scale. We can observe how the 

distorted epochs were attenuated by assigning lower weights. 

 

Figure 3-9. A weighted ERP image of the generated dataset calculated using the 

new corWACFM method (source: [11]). 

 

3.2.3 Validation on emotional face processing experiment 

To verify the effectiveness of the averaging schemes on challenging real-life data, 

we used epochs for a selected patient from the experiment described in Section 

3.1.1 using our adapted Emotiv EPOC+. To make it particularly challenging, we 

did not use any additional filtering. The epochs are visualized in Figure 3-10. 

There are strong outliers in epochs 17 – 20 visible in the traditionally averaged 

ERP waveform as a sharp peak around 300 ms post-stimulus. 
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Figure 3-10. The epochs from the real-life data for the electrode P8 and their 

average (source: [11]). 

 

It is impossible to directly compare the RMSE of the methods as the deterministic 

component is not known, so only the qualitative assessment was performed using 

the averaged waveforms in Figure 3-11. Scheme 5 achieved the highest N170-

related peak, but it failed to remove the strong outliers. The proposed corWACFM 

has the second-highest N170-related peak method but is robust to outliers. 
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Figure 3-11. Comparison of the averaged ERP waveforms for the real-life dataset 

using different averaging schemes (source: [11]). 

 

The parametrization of the corWACFM method was adjusted to EEG signals but 

it can be easily incorporated into other repetitive electrophysiological 

measurements. The robust methods based on epochs weighting do not modify 

the data, unlike other filtering methods, i.e., the ICA-based ocular artifact removal 

described in the next Section 0, so there is a lower risk of removing relevant 

information. However, it should be noted that robust weighting has several 

assumptions that can prevent us from using it in specific cases. The most 

important one is that it does not account for the effects of changing latencies or 

amplitudes of the components during the experiment, i.e., the effect of face 

learning in the N250 component [20]. The future work includes implementing 

robust averaging as a function in the MNE-Python package. 
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3.3 Semi-automatic ocular artifacts filtration 

As introduced in Section 0, the familiarity-sensitive N250 component (a negative 

deflection peaking 230 – 320 ms post-stimulus) and the emotion-sensitive EPN 

component (a negative deflection peaking 240 – 340 ms post-stimulus) can be 

easily confounded with each other [158]. It complicates the interpretation of N250 

and EPN effects. Thus, to analyze the emotion-related EPN better, we need to 

understand also the N250 component. This section summarizes and extends a 

series of articles to which I significantly contributed [20], [22], [23], focused on the 

fine-grained analysis of the N250 component in face familiarity and face learning. 

The series of articles starts with the replication study [20] which confirmed the 

face familiarity effects previously described in [144]. Based on the collected data, 

I performed the first known single-trial analyses of face learning processes using 

single-trial ERPs [23]. To improve the quality of the analysis, I designed a 

complete pipeline optimized for precise ERP extraction, including the ocular 

artifact filtration method based on independent component analysis (ICA) and 

EOG [22]. This pipeline and its impact on the quality of ERP analysis of N250 are 

presented in this section. 

 

3.3.1 Materials 

The presented EOG artifacts rejection method was validated using both 

simulated and real-life datasets described in this section. 

Simulated dataset 

In the simulation study, I used a semi-simulated dataset from [180] in a version 

from April 2019. It contains 54 data samples obtained from 27 participants. 

Samples have a duration of 27 to 42 s and each one consists of uncontaminated 

EEG recording from 19 electrodes (FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, 

F7, F8, T3, T4, T5, T6, Fz, Cz, Pz), vertical and horizontal EOG (VEOG and 

HEOG), and the EEG artificially contaminated with ocular artifacts according to 

the model from [181]. The dataset has a sampling rate of 200 Hz and is already 

band-pass filtered (0.5 – 40 Hz for EEG, 0.5 – 5 Hz for EOG). 
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Real-life dataset 

In the study [20], our team designed and conducted a close replication of the 

Joe/noJoe experiment described in “Activation of Preexisting and Acquired Face 

Representations: The N250 Event-related Potential as an Index of Face 

Familiarity” by Tanaka et al. [144]. The experiments were conducted in an 

electrically-shielded, quiet, dimly-lit room. Each of 16 participants (12 females; 

mean age = 21.5 years; range: 19–23) was asked to monitor the centrally 

presented faces from FACES Lifespan Database for Facial Expression [182] and 

indicate whether the face was the target (Joe) or not (noJoe) by pressing a right 

or left button. Each participant performed 36 experimental blocks per 24 trials 

(864 trials overall) with self-paced breaks between blocks. In each block, there 

were 2 target faces (Joe), 2 participant’s faces (Own), and 2 presentations of 

each of 10 other faces. The faces were presented in a pseudo-random order in 

each block, but the same faces were never immediately presented one after 

another to avoid repetition effects [183]. 

The EEG recordings during the experiment were collected using the research-

grade BrainProducts actiChamp amplifier and actiCap EEG cap with 64 

electrodes and a 2500 Hz sampling rate. The EOG was recorded from a passive 

electrode located at the outer canthus of the left eye. A Chronos multifunctional 

device was used to collect responses from participants and record the precise 

stimulus display times using a photodiode mounted on the screen (the idea 

similar to our adaptation of Emotiv EPOC+ described in Section 3.1). The 

diagram of the hardware setup is presented in Figure 3-12. More details about 

the experimental procedure and data collection can be found in our original paper 

[20]. The raw EEG recordings were made publicly available at 

https://osf.io/7x6w5. 

https://osf.io/7x6w5


 

62 

 

Figure 3-12. The diagram of a research-grade hardware setup used in N250 

experiments (source: [22]). 

 

3.3.2 Methods 

The methods presented in this section were published in the article “The 

importance of ocular artifact removal in single-trial ERP analysis: the case of the 

N250 in face learning” [22] in the Biomedical Signal Processing and Control 

journal. The code and results of the method are publicly available at 

https://osf.io/aqhmn to support the reproducibility of the research. 

There are multiple techniques for ocular artifact removal (see [184] for a 

systematic review), including regression, frequency filtering, wavelet transform 

[185], blind source separation, empirical mode decomposition, filter banks, deep 

learning, and hybrid methods. One of the most acknowledged EEG artifact 

elimination algorithms is blind source separation using independent components 

analysis (ICA) [186] used for ocular artifacts filtering in many recent studies [187]–

[190]. ICA-based filtering was previously analyzed in the context of single-trial 

ERPs mainly for the detection of the P300 component [187]. The single-trial N250 

https://osf.io/aqhmn
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ERPs with ocular artifacts removed using semi-automatic BESA software (BESA 

GmbH, Germany) were recently utilized by [75] for the classification of the 

viewer’s familiarity with a face. 

ICA can be calculated using many different algorithms, like Infomax [191], 

FastICA [192], or SOBI [193], to name just a few. Infomax is held to give the most 

stable results in ocular artifacts filtration [194], [195]. I’ve decided to use the latest 

Picard algorithm – a fast and accurate approximation of Infomax that shows 

superior performance, especially on real data [196]. The first step of ICA-based 

filtration is a spatial decomposition of EEG signals into a set of statistically 

independent components. The next step is to select and reject artifact-related 

components (i.e., blinks) and reconstruct the filtered signal as presented in Figure 

3-13. 

 

 

Figure 3-13. EEG signal decomposition and filtration using ICA (source: [197]). 

 

The key advantage of ICA-based filtration is that ERP trials are just modified 

instead of being completely rejected. Minimizing data loss is extremely important 

in fine-grained single-trial analysis. The artifactual components can be selected 
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manually by visual inspection of their topographies, power spectra, and time-

courses, or automatically, e.g., by calculating artifact-specific features [198] or by 

machine-learning-based classification [199]. However, if EOG measurements are 

accessible (like in our case), the proper ICA components can be selected much 

easier and more reliably by simply comparing them with EOG. I proposed a semi-

automatic approach for selecting such components using only one 

hyperparameter – the level of correlation between components and EOG. 

 

The initial EEG preprocessing 

The raw EEG signal was first cropped to the relevant time range between 2 s 

before the first stimulus and 2 s after the last stimulus display. Manually identified 

corrupted channels were interpolated using a spherical spline interpolation [200]. 

I applied common average reference and band-pass filtering in the range <2, 40> 

Hz using a third-order zero-phase forward-backward digital Butterworth filter 

[175]. The high-pass limit of 2 Hz was selected as suggested in [201] to improve 

the signal-to-noise ratio for artifact removal using ICA. The low-pass limit of 40 

Hz was selected as in [144] to decrease the irrelevant high-frequency noise. 

 

 

Figure 3-14. The initial EEG preprocessing procedures (source: [22]). 

 

Automatic blinks detection in EOG 
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The significant blink-related peaks were detected in the EOG signal using a 

noise-tolerant fast peak-finding algorithm [202]. The EOG signal was band-pass 

filtered to range <1, 10> Hz using FIR filter with Hann window, so it is easier to 

detect peaks. I used the default peak threshold of (max(EOG) – min(EOG)) / 4, 

however, I rejected the upper and lower percentile of values from the max(EOG) 

and min(EOG) calculation to increase robustness to extensive outliers observed 

for a couple of participants. The blinks were defined as EOG signal fragments of 

<-500, 500> ms around the peaks. I utilized them to select the blink-correlated 

independent components later. The average number of detected blinks per 

minute for a participant was 22 ± 10 which lies in the range of conversational 

spontaneous eyeblink rate of normal adults (10.5 to 32.5) according to [203]. 

 

The proposed method of ocular artifacts filtration 

The ERP epochs of <-100, 500> ms were extracted from EEG around correctly 

recognized face display markers (both target and non-target). The baseline 

correction was not used at that stage to avoid altering the original signal before 

ICA. I calculated the Picard ICA to extract a set of independent components that 

explains 99.9999% variance (mainly to reject zero-variance components) in the 

EEG epochs (on average 61 ± 2 components per participant, min. 56, max. 62). 

I rejected ICA components (on average 3 ± 2 components, min. 1, max. 8) highly 

correlated with blinks automatically identified in the previous paragraph. The 

correlation analysis uses an iterative Z-scoring to find ICA components with 

Pearson’s correlation higher by more than 2 standard deviations than others. 

Such ICA components are considered blink-related, they are rejected, and the 

procedure is repeated until no more blink-related components are identified. The 

threshold of 2 standard deviations (the default in find_bads_eog is 3) is the only 

hyperparameter of the algorithm that needed to be manually adjusted to the 

specific dataset in such a way that blinks for all participants were successfully 

removed. I adjusted it using a qualitative assessment of topographic maps of the 

components (Figure 3-15) and by comparing blink-related EEG epochs before 

and after filtration (Figure 3-16). 
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Figure 3-15. A topographic map (on the left) of the blink-related independent 

component for participant 15 and its amplitude in consecutive EEG segments 

(on the right). The amplitude is given in arbitrary units (source: [22]). 

 

Participant 13 

 

Participant 15 

 

Figure 3-16. The averaged blink-evoked EEG signals before (red plot) and after 

(black plot) ocular artifacts filtration for selected participants. The Nave is the 

number of detected blinks (source: [22]). 

 

A topographic map and a time course of the blink-related component for 

participant 15 are presented in Figure 3-15. The absolute amplitude and polarity 

of the component activations are meaningless, so I used arbitrary units. There 

are many blinks visible in the EEG segments and the topography of the 

component matches the typical template for blink components [204]. In Figure 

3-16, we can observe that strong blinks were successfully filtered from the EEG 

signal. The visualizations of all the other components identified and filtered by our 

1

 1
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procedures for all participants are available in our OSF repository. The ocular 

artifacts were successfully removed for all of them. The described qualitative 

assessment process could be automated by using, e.g., a template-matching 

approach described by [204]. The proposed method is summarized in Figure 3-17 

together with ERP extraction steps described in the next section. 

 

 

Figure 3-17. The proposed method of ocular artifacts removal and ERP epochs 

extraction (source: [22]). 

 

3.3.3 Simulation study and comparison with other methods 

The main goal of the simulation study was to assess the performance of our 

ocular artifact filtration procedure. I assessed the quality of filtering using RMSE 

between pure and filtered data (the closer to 0 the better) as given by Equation 

(3-5) where N is the number of samples times the number of electrodes in the 

signal sample. 
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   𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑛) − 𝑝𝑢𝑟𝑒(𝑛))

2
𝑁

𝑛=1

 (3-5) 

Also, I measured the change of signal-to-noise ratio (∆SNR) between 

contaminated and filtered data (the higher the better) as given by Equation (3-6) 

where 𝜎𝑝𝑢𝑟𝑒
2  is the variance of pure EEG signal, and 𝜎𝑐𝑜𝑛𝑡𝑎𝑚

2 , 𝜎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
2  are 

variances of the errors between contaminated and filtered signals and the pure 

EEG signal. 

   ∆SNR = 10 log10(
𝜎𝑝𝑢𝑟𝑒

2

𝜎𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑
2 ) − 10 log10(

𝜎𝑝𝑢𝑟𝑒
2

𝜎𝑐𝑜𝑛𝑡𝑎𝑚
2 ) (3-6) 

The simulated data are already preprocessed, so the band-pass filtering was 

omitted. To make the data similar to our real-life dataset, each sample was 

divided into 600 ms non-overlapping fragments (so they have the same length as 

epochs in our real-life data). It results in 45 to 70 fragments per data sample. The 

proposed filtration algorithm was used to find and reject components correlated 

with either VEOG or HEOG. 

In the first step, we assessed the impact of our ocular artifact filtration on the 

RMSE metric. The average results and p-values from the two-sided signed-rank 

Wilcoxon test are given in Table 3-3 and they show that filtration statistically 

significantly decreased RMSE nearly by half when taking the average over all 

channels. The effect is strongest for the frontal channels which are usually 

affected the most by the ocular artifacts. The effectiveness of the filtration can be 

observed in Figure 3-18 where RMSE for the electrode Fp1 for sample 12 before 

filtration is 27.74 and after filtration is 8.40 (more than 3 times lower). All extensive 

blink artifacts were removed. For channel Cz in the center of the head, the 

decrease of RMSE is much smaller but still statistically significant. For channel 

Pz in the back of the head, the RMSE is even slightly increased after filtration but 

the change is not statistically significant. It suggests that the ocular artifacts 

filtration has a smaller effect on electrodes farther from the eyes. 
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Table 3-3. The average effect of ocular artifact filtering on the RMSE for different 

channels in the simulated data. The boldfaced font denotes smaller RMSE. The p-

values from two-sided signed-rank Wilcoxon are underlined if p < 0.01 (source: 

[22]). 

 Without filtration With filtration Wilcoxon 

Channels  RMSE  RMSE p-value 

All  12.62  6.73 1.14e-9 

Fp1  31.38  14.39 2.21e-10 

Fp2  31.38  14.46 3.09e-10 

Cz  5.64  4.01 1.22e-5 

Pz  3.21  3.44 0.667 

 

 

Figure 3-18. The comparison of pure, contaminated, and filtered signals for 

electrode Fp1 for sample 12 with the smallest RMSE after filtration (source: [22]). 
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In the second step, we compared our method with 4 different ICA-based 

algorithms for ocular artifacts filtration: ADJUST [198], MARA [201], SASICA 

[205], and the method from (Trigui et al.) [206]. The RMSE and ∆SNR 

distributions for all the methods on the simulated dataset are presented in Figure 

3-19 and Figure 3-20. Our method achieved the highest median ∆SNR with 

median RMSE comparable to the best-performing methods MARA and [206]. We 

were unable to run statistical tests because the authors of [206] did not share the 

code or the detailed results for each sample. However, the boxplots confirm that 

our method has relatively high effectiveness in comparison to other methods. 

 

Figure 3-19. Distributions of RMSE values across all samples in the simulated 

dataset (source: [22]). 
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Figure 3-20. Distributions of ∆SNR values across all samples in the simulated 

dataset (source: [22]). 

 

3.3.4 ERP extraction and results on real-life data 

After removing ocular artifacts, the ERP epochs were corrected with respect to 

the 100 ms pre-stimulus baseline. As in [144], the N250 amplitude for a single 

trial was defined as the mean signal value in the time range of 230 to 320 ms 

post-stimulus at the set of 12 relevant electrodes (left hemisphere: TP10, P8, 

P10, PO8, PO10, O2; right hemisphere: TP9, P7, P9, PO7, PO9, O1). Trials with 

an activity range greater than 200 µV within any channel or with incorrect 

participant responses were discarded from further analyses (as described in 

Figure 3-17).  

In the replication study [20], using the basic ERP extraction pipeline (limited 

sampling rate, less strict frequency filtering, ICA calculated on the whole signal, 

manual ocular artifact filtration), our team concluded that there is no statistically 

significant difference in N250 amplitudes for Joe between experiment halves, 

however, the significance is reached when using the division into the first 1/3 of 

the experiment (when the target face is not yet familiar) and the last 2/3 of the 
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experiment (the familiarity acquired). In this section, I revisit that analysis using 

the new preprocessing pipeline to verify the impact of the proposed ocular 

artifacts filtration on the results. Additionally, I improved two aspects of the 

analysis in accordance with Rule #8 from [90] which suggests avoiding different 

numbers of trials between conditions: 1) I used the division into the first and the 

second 1/3 (instead of the last 2/3) of the experiment, 2) I selected trials for only 

one Other face instead of all 10 of them. Also, I omit the quantitative analysis of 

ERP waveforms for the Own face as they were shown to present a non-specific 

appearance in the original study. 

 

Division into halves 

In the first step, I checked if the significance of the difference in N250 amplitudes 

for Joe between experiment halves can be reached using the new pipeline. The 

grand-average ERPs for both halves and all types of faces using the new pipeline 

with ocular artifacts filtration are presented in Figure 3-21. The opaque regions 

around waveforms denote 95% confidence intervals of the averaging.  

The first half 

 

The second half 

 

Figure 3-21. Grand-average ERPs for the first (on the left) and the second half (on 

the right) of the experiment using the proposed filtering with ocular artifact 

filtration. 
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Like in the original study, the analysis of variance (ANOVA) did not reveal any 

significant interaction between the face type and the experiment part (F(2,15) = 

2.00, MSE = 0.46, p = 0.16). However, the test statistic value was higher than for 

the original study (F(2,15) = 0.91, MSE = 1.89, p = 0.38) and the N250-related 

peak is visible in the second half in Figure 3-21. 

 

The division into the first and the second 1/3 

In the second step, I checked the significance of the alternative division into the 

first and the second 1/3 of the trials. The grand-average ERPs for this case are 

presented in Figure 3-22. The analysis of variance (ANOVA) revealed a 

significant interaction of the face type and the experiment part, F(2,15) = 7.10, 

MSE = 1.64, p = 0.003. The test statistic value was higher than for the original 

study (F(2,15) = 5.73, MSE = 1.56, p = 0.014). Post-hoc pairwise Wilcoxon 

signed-rank tests revealed that N250 values for Joe were significantly more 

negative in the second 1/3 than in the first 1/3 of trials (M = -1.23 vs. -0.15 µV, p 

= 0.005). The strip plots of linked observations in Figure 3-23 show the detailed 

interaction of condition and experiment part per individual participant. The effect 

of increased negativity of the N250 component for Joe is visible for 13 out of 16 

participants. 

The first 1/3 of the trials 

 

The second 1/3 of the trials 

 

Figure 3-22. Grand-average ERPs for the first 1/3 (on the left) and the second 1/3 

(on the right) of trials using the proposed filtering with ocular artifact filtration. 



 

74 

 

Figure 3-23. Strip plots of linked N250 amplitudes between the first 1/3 and the 

second 1/3 of trials for different types of faces. 

 

The impact of ocular artifact filtration on single-trial analysis 

After confirming the face learning effect from the replication study, I analyzed the 

fine-grained dynamics of the face learning process using single-trial amplitudes. 

For each participant, a time series of up to 72 single-trial N250 amplitudes (67 ± 

9, min. 35, max. 72) was extracted for correctly recognized target faces. I applied 

the broken-line regression modeling using a popular segmented R package [207] 

to determine a hypothetical changepoint (chp) in the time series of N250 

amplitudes, demarcating the transition point between memory trace acquisition 

(increasing N250 amplitudes) and maintenance (stable N250 amplitudes). The 

segmented package uses the residual sum of squares (RSS) to find the optimal 

changepoint location for the regression model, so I assessed the impact of ocular 

artifact filtration on this metric. Additionally, I measured if the filtration successfully 

decreased the standard deviation (SD) among the N250 amplitudes. The results 

are presented in Table 3-4. 
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Table 3-4. Changepoint locations (chp) detected by the segmented method with 

corresponding RSS and SD of the N250 amplitude series without and with the 

proposed ocular artifact filtration (source: [22]). 

  Without filtration  With filtration 

Participant # chp RSS SD  chp RSS SD 

2 314 1.880 1.887  302 1.717 1.744 

3 122 2.437 2.495  122 2.072 2.110 

4 206 1.844 2.105  206 1.540 1.704 

5 296 2.780 2.977  268 1.959 2.197 

6 127 2.864 3.138  112 2.252 2.535 

7 440 2.937 3.223  389 2.411 2.675 

9 220 2.777 2.815  235 2.018 2.047 

11 63 3.613 4.033  177 1.866 1.922 

12 - - 2.786  - - 1.503 

13 678 1.942 1.992  572 1.775 1.817 

14 714 2.236 2.241  724 1.995 2.016 

15 678 6.151 6.136  413 2.285 2.352 

17 301 2.159 2.298  297 1.724 1.835 

18 114 3.525 3.492  49 2.680 2.706 

19 92 4.656 4.878  116 2.067 2.594 

20 202 1.501 1.549  209 1.442 1.513 

*The boldfaced font denotes smaller RSS or SD. The dash means that no changepoint was found. 
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The mean absolute difference between changepoints before and after the 

filtration was 48 ± 68 trials (median 15, IQR 58, min. 0, max. 265). This translates 

to 6% ± 8% (median 2%, IQR 7%, min. 0%, max. 31%) mean absolute change 

relative to the full experiment length (864 trials). The filtration changed locations 

of changepoints for 13 out of 15 participants, 8 changepoints were found earlier 

and 5 later (the difference in median changepoint location was not statistically 

significant according to the two-sided signed-rank Wilcoxon test, p = 0.26). The 

filtration decreased the RSS of the broken-line regression model and SD of 

single-trial N250 amplitudes for all participants. RSS is lower by 25% ± 17% (min. 

4%, max. 63%), and SD is lower by 25% ± 17% (min. 2%, max. 62%). The 

changes in RSS and SD are both statistically significant (p < 0.001 according to 

the two-sided signed-rank Wilcoxon test  and highly correlated (Pearson’s r = 

0.99). Thus, there was a significant positive impact of ocular filtration on the 

single-trial ERP analysis. 

 

Significance for emotional face processing 

The results from the single-trial ERP analysis of the N250 component will be used 

by our team to study the relationship between the face representation acquisition 

process reflected in the N250 component and facial expression discrimination 

reflected in the EPN component. Disentangling the time courses of these two 

components would be a major step forward in understanding the differences in 

the structural encoding of faces and the detection of their emotional expression. 
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4 GENERAL DISCUSSION AND CONCLUSIONS 

In my dissertation, I presented a series of methods for improving different aspects 

of the ERP extraction quality. My adaptation of Emotiv EPOC+ helped to limit the 

problem of time drift and jitter between epochs. Additional wavelet-based filtration 

helped to remove distorted and noisy epochs. The improved robust weighted 

averaging increased the signal-to-noise ratio of grand-average ERP waveforms 

by 45%. The proposed ocular artifact filtration based on ICA and EOG helped to 

remove blink-related components and to decrease the variance in single-trial 

ERP epochs by 25%. All methods were thoroughly tested, compared with others 

using simulated and/or real-life EEG data, and published in ISI-indexed journals. 

This fulfills the second (G2) and third goal (G3) of my work.  

To fulfill the primary goal (G1) of my work, I proposed complete pipelines for EEG 

and ERP preprocessing including, e.g., initial filtering, re-referencing procedures, 

or epochs filtration. These pipelines are publicly available and can be used by 

neuroscientists and psychologists working on emotional face processing [22]. 

The higher the quality of ERP extraction the easier it is to observe and discover 

the effects of different stimuli on neural responses. The ERPs are commonly used 

in the recognition of event-evoked emotions from EEG. Thus, the quality of ERPs 

has a direct impact on the results from psychological experiments on emotional 

face processing. The presented methods helped to achieve better extraction of 

two overlapping and related ERP components: the emotion-sensitive EPN and 

the face-sensitive N250.  

To support my thesis, I designed and conducted two separate ERP experiments 

to verify the effectiveness of the proposed methods and to support my thesis. In 

the first study, I presented how EPN can be measured using a low-cost EEG 

system and robust weighted averaging to distinguish the neural responses 

evoked by angry and happy expressions from neutral faces. The results 

were consistent with the psychological study by Wronka & Walentowska 

[19] supporting the (1) part of the thesis. In the second study, I replicated the 

results from the psychophysiological study of face learning by Tanaka et al. [144], 

and using proper EEG processing and ocular artifacts filtration, I extended 
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it to detailed single-trial ERP analysis [22]. The results fulfill the fourth goal 

of my thesis (G4), support the (2) part of the thesis, and will help to reduce 

the confounding effects of N250 when designing future psychological 

experiments about emotional face processing.  

I targeted a specific problem of emotions evoked by facial expressions but there 

are other emotion recognition applications in which similar ERPs are frequently 

used, e.g., emotions evoked by affective images or sounds. However, the lack of 

consensus according to the universal psychological emotion model and the lack 

of standardized emotion-related datasets in the literature limit the current diversity 

and development of large-scale computational emotion recognition models. 

Fortunately, the proposed methods were designed for a wide range of ERP 

settings, not only emotion recognition. The methods were tested also on N70, 

P100, N135, N170, and P300 components [21], and are potentially useful for 

many other components. They can be used in countless applications using ERP 

features, e.g., brain-computer interfaces, medical diagnosis, and psychology 

research. They can be used to improve the quality of input to machine learning 

workflows as presented in my publications [25], [208]. In particular, the proposed 

methods are extremely useful in the fine-grained analysis of the neural processes 

of learning where the quality of every single consecutive epoch is crucial, i.e., I 

presented the importance of ocular artifact filtration on single-trial N250 analysis 

in Section 3.3 and publication [22]. 

The proposed methods have several limitations that should be addressed in 

future research. The adaptation of Emotiv EPOC+ makes it no longer wireless. 

However, it would be possible to design a wireless version of our stimuli marking 

circuit by using the emitter on the screen (like in a remote controller) and a small 

receiver mounted on the head. Also, there is an example in the literature where 

stimuli are time-stamped using a loud sound that appears in an EEG signal due 

to the user's response to it [167]. The improved robust weighted averaging has 

several assumptions that can prevent it from using in specific cases where 

components are not stable across time. It could be potentially improved by 

tracking the components of interest using ICA decomposition as described in 
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[209]. Our ocular artifacts filtration approach requires adjustment of the 

correlation threshold between ICA and EOG depending on the specific dataset. 

Such an approach could be laborious for larger datasets, so it could be improved 

by an automatic selection of the correlation threshold based on template 

matching [204] or a machine learning approach [199]. Our future work includes 

also the collection of a larger dataset and the development of a more robust 

changepoint detection procedure as an alternative to the segmented method [29]. 

Then, we plan to finalize our single-trial analysis and prepare an experiment to 

disentangle ERP components of face learning and emotional face processing.  

The recent development of smaller, cheaper, and reliable methods of measuring 

brain activity (like Neuralink [33], Kernel Flow [37], Emotiv EPOC+ and its 

successors EPOCX, and EPOCFlex, etc.) prepares a foundation for easily-

accessible, consumer-grade brain-computer interfaces. The methods proposed 

in this dissertation may be a building block of this foundation. One of the main 

future challenges is the large-scale EEG/ERP data collection, experimental 

design, and analysis in real-life scenarios, e.g., 24-hour monitoring of medical 

conditions, supporting the drivers and pilots, measuring emotions in everyday 

situations, or more generally, conducting cognitive psychological research out of 

the laboratory. Such new opportunities may engage new groups of researchers 

and users who will kick off the massive data collection. 

However, in the first place, the recent reproducibility and replicability crisis must 

be addressed in neuroscience research [6] by preparing standardized guidelines 

for EEG/ERP research (like proposed by the ARTEM-IS initiative [7]), developing 

reliable large-scale datasets, and most importantly, by sharing the code of the 

solutions. Only then, the neuroscience field could benefit from artificial 

intelligence techniques at the level observed currently for computer vision [210] 

or protein structure prediction [5]. I described and applied some of these 

techniques in my “Deep Learning in Electroencephalography” chapter [25] and 

subsequently presented the effectiveness of U-Net convolutional architecture in 

image segmentation [211], [212], and protein secondary structure prediction 

[213], [214], but for the mentioned reasons I was unable to repeat the same in 
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EEG and emotion recognition domain. Addressing the issue of a lack of 

consensus in psychological emotion models is out of the scope of this 

dissertation, but may be approached in the computer science domain by 

mappings between emotional models as proposed in [24]. 
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