
STUDIA
INFORMATICA
Formerly: Zeszyty Naukowe Politechniki Śląskiej, seria INFORMATYKA
Quarterly

Volume 29, Number 2B (77)

 Silesian University of Technology Press
 Gliwice 2008

Andrzej BIAŁAS

SEMIFORMAL COMMON CRITERIA COMPLIANT
IT SECURITY DEVELOPMENT FRAMEWORK

 STUDIA INFORMATICA Volume 29, Number 2B (77)
Formerly: Zeszyty Naukowe Politechniki Śląskiej, seria INFORMATYKA Nr kol. 1784

Editor in Chief

Dr. Marcin SKOWRONEK
Silesian University of Technology
Gliwice, Poland

Editorial Board

Dr. Mauro CISLAGHI
Project Automation
Monza, Italy

Prof. Bernard COURTOIS
Lab. TIMA
Grenoble, France

Prof. Tadeusz CZACHÓRSKI
Silesian University of Technology
Gliwice, Poland

Prof. Jean-Michel FOURNEAU
Université de Versailles - St. Quentin
Versailles, France

Prof. Jurij KOROSTIL
IPME NAN Ukraina
Kiev, Ukraine

Dr. George P. KOWALCZYK
Networks Integrators Associates, President
Parkland, USA

Prof. Peter NEUMANN
Otto-von-Guericke Universität
Barleben, Germany

Prof. Olgierd A. PALUSINSKI
University of Arizona
Tucson, USA

Prof. Svetlana V. PROKOPCHINA
Scientific Research Institute BITIS
Sankt-Petersburg, Russia

Prof. Karl REISS
Universität Karlsruhe
Karlsruhe, Germany

Prof. Jean-Marc TOULOTTE
Université des Sciences et Technologies de Lille
Villeneuve d'Ascq, France

Prof. Sarma B. K. VRUDHULA
University of Arizona
Tucson, USA

Prof. Hamid VAKILZADIAN
University of Nebraska-Lincoln
Lincoln, USA

Prof. Adam WOLISZ
Technical University of Berlin
Berlin, Germany

Dr. Lech ZNAMIROWSKI
Silesian University of Technology
Gliwice, Poland

STUDIA INFORMATICA is indexed in INSPEC/IEE (London, United Kingdom)

© Copyright by Silesian University of Technology Press, Gliwice 2008
PL ISSN 0208-7286, QUARTERLY
Printed in Poland

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ
OPINIODAWCY:
Dr hab. inż. Leszek BORZEMSKI prof. Pol. Wrocławskiej
Prof. dr hab. inż. Stanisław PASZKOWSKI

KOLEGIUM REDAKCYJNE
REDAKTOR NACZELNY – Prof. dr hab. inż. Andrzej Buchacz
REDAKTOR DZIAŁU – Dr inż. Marcin Skowronek
SEKRETARZ REDAKCJI – Mgr Elżbieta Leśko

CONTENTS

1. Introduction and motivation..9
1.1. Assurance from the Common Criteria point of view... 10
1.2. Selected aspects of the semiformal, UML-based modelling ... 11
1.3. Objectives of the work and the monograph contents... 13
1.4. Permission and acknowledgement... 15

2. Concept of the IT Security Development Framework ..16
2.1. Current state of technology ... 16

2.1.1. Security engineering – the selected issues... 17
2.1.2. UMLsec concept .. 20
2.1.3. Engineered Composition (EC) based on the UML.. 22
2.1.4. UML with the B-method ... 26
2.1.5. UML method supported by the EDEN formal language ... 28
2.1.6. UML method supported by the OCL formal language.. 29
2.1.7. Using AutoFOCUS within the security domain .. 30
2.1.8. SPARK – a programming language for high integrity systems............................... 30
2.1.9. Emerging Common Criteria implementations ... 31
2.1.10. Computer-aided tools... 32
2.1.11. Security engineering environment – around the performed overview..................... 33
2.1.12. Technology overview summary .. 34

2.2. Developers’ needs with respect to the IT security development support 34
2.3. General model of the IT security development framework... 40
2.4. IT security development process as a state machine ... 45

3. Generics, functional and assurance components – internal data representation ...49
3.1. Generics as semiformal, UML-based specification means.. 50
3.2. UML representation of the functional and assurance components...................................... 70
3.3. Generics and components as security specification elements ... 76
3.4. Generics association dealing with generics parameterization ... 79
3.5. Formal approach to the generics parameterization .. 84
3.6. Iteration and refinement of generics .. 88

4 Contents

3.7. Security association – creating the developer’s supporting chains 89
3.8. Formal approach to the security issues mapping... 97
3.9. Formal approach to the library and security models specification 101

4. Capturing the features of an IT security-related product or system.....................108
4.1. General product or system presentation according to the standard 108
4.2. Modelling the basic features of the product or system (BCL)... 109
4.3. Security Target introductory part elaboration ... 113
4.4. Modelling structural and behavioural aspects (UAL) ... 114
4.5. Compatibility with the UMLsec .. 122

5. Elaboration of the TOE security environment ..125
5.1. TOE security environment specification defined by the standard..................................... 125
5.2. TOE security environment data model .. 125
5.3. TOE security environment elaboration process... 128
5.4. Use cases for threat scenarios analysis .. 133
5.5. Selected UMLsec issues concerning the TOE security environment 134
5.6. Formal approach to the TOE security environment specification 137

6. Security objectives elaboration..140
6.1. Security objectives section of the Security Target defined by the standard 140
6.2. Security objectives data model .. 140
6.3. Security objectives specification workout... 145
6.4. Formal approach to the security objectives specification.. 150

7. Preparing security requirements...153
7.1. Security requirements specification according to the standard ... 153
7.2. Security requirements data model ... 154
7.3. Security requirements specification workout .. 159

7.3.1. TOE security requirements .. 160
7.3.2. TOE environment security requirements ... 166

7.4. Formal approach to the security requirements specification ... 172

8. Workout of the TOE summary specification (TSS) ..174
8.1. TOE summary specification defined by Common Criteria ... 174
8.2. TSS data model.. 175
8.3. TSS elaboration ... 176
8.4. Formal approach to the TOE summary specification .. 177

9. Protection Profile claims ..179

Contents 5

10. Rationale process ..180
10.1. Security objectives rationale ... 181
10.2. Security requirements rationale .. 184
10.3. TOE summary specification rationale... 190
10.4. Formal approach to the security target rationale... 192

11. IT security self-evaluation framework..200

12. Implementation and evaluation of the framework ..204
12.1. Generics and components library.. 205
12.2. IT security development process support.. 206
12.3. IT security evaluation support .. 210

13. Conclusions..213

Appendix A. Basic Common Criteria terminology ..220

Appendix B. Object Constraint Language (OCL) syntax and semantics – the used
definitions and terms...224

Appendix C. Basic terms and definitions concerning the UMLsec approach to
modelling cryptography..230

Appendix D. Basic principles of naming the terms ..232

Appendix E. Elements of the security target for a firewall system...............................233

References...253

Abstract...261

SPIS TREŚCI

1. Wprowadzenie i motywacja ... 9
1.1. Uzasadnione zaufanie według standardu Wspólne kryteria ... 10

1.2. Wybrane zagadnienia dotyczące półformalnego modelowania w języku UML 11

1.3. Cel i zawartośc pracy 13

1.4. Pozwolenie i podziękowanie .. 15

2. Koncepcja szkieletowego systemu do konstruowania zabezpieczeń informatycznych ... 16
2.1. Przegląd stosowanych metod i rozwiązań .. 16

2.1.1. Wybrane zagadnienia inżynierii zabezpieczeń ...17
2.1.2. Koncepcja dotycząca rozszerzenia języka UML (UMLsec) 20
2.1.3. Metoda kompozycji (EC – Engineered Composition) oparta na UML 22
2.1.4. Połączenie UML oraz B-method ... 26
2.1.5. Metoda wykorzystująca UML wspierana przez język formalny EDEN 28
2.1.6. Metoda wykorzystująca UML wspierana przez język formalny OCL 29
2.1.7. Wykorzystanie metody AutoFOCUS w inżynierii zabezpieczeń 30
2.1.8. Język programowania SPARK dla systemów o wysokiej integralności 30
2.1.9. Nowe zastosowania standardu Wspólne kryteria .. 31
2.1.10. Komputerowe narzędzia wspomagające .. 32
2.1.11. Inne metody i rozwiązania dotyczące inżynierii zabezpieczeń 33
2.1.12. Podsumowanie przeglądu .. 34

2.2. Potrzeby konstruktorów zabezpieczeń w zakresie metod i narzędzi wspomagających 34

2.3. Model ogólny systemu szkieletowego do konstruowania zabezpieczeń informatycznych .. 40

2.4. Proces konstruowania zabezpieczeń informatycznych jako maszyna stanowa 45

3. Generyki, komponenty funkcjonalne i uzasadnionego zaufania – reprezentacja danych .. 49
3.1. Generyki jako półformalne, oparte na UML środki do tworzenia specyfikacji 50

3.2. Modele komponentów funkcjonalnych i uzasadnienia zaufania w języku UML 70

3.3. Generyki i komponenty jako elementy do budowy specyfikacji bezpieczeństwa 76

3.4. Asocjacje generyków związane z ich parametryzacją .. 79

3.5. Podejście formalne do zagadnienia parametryzacji generyków ... 84

3.6. Iteracje i uszczegóławianie generyków .. 88

Spis treści 7

3.7. Asocjacje bezpieczeństwa – łańcuchy do wspomagania działań konstruktorów 89

3.8. Podejście formalne do budowy relacji miedzy elementami specyfikacji (mapowania) 97

3.9. Podejście formalne do modelowania bibliotek i elementów specyfikacji 101

4. Identyfikacja własności zabezpieczanego produktu lub systemu informatycznego . 108
4.1. Ogólny sposób opisu produktu lub systemu informatycznego w świetle standardu 108

4.2. Uproszczony model produktu lub systemu informatycznego – model typu BCL 109

4.3. Opracowanie specyfikacji wprowadzenia do zadania zabezpieczeń 113

4.4. Model wyrażający aspekty strukturalne i behawioralne – model typu UAL 114

4.5. Uwagi dotyczące zapewnienia zgodności z metodą UMLsec .. 122

5. Wypracowanie specyfikacji otoczenia zabezpieczeń przedmiotu oceny 125
5.1. Specyfikacja otoczenia zabezpieczeń przedmiotu oceny w świetle standardu 125

5.2. Model danych otoczenia zabezpieczeń przedmiotu oceny ... 125

5.3. Proces wypracowania specyfikacji otoczenia zabezpieczeń przedmiotu oceny 128

5.4. Wykorzystanie przypadków użycia do analizy scenariuszy zagrożeń 133

5.5. Język UMLsec a specyfikowanie otoczenia zabezpieczeń przedmiotu oceny 134

5.6. Podejście formalne do specyfikowania otoczenia zabezpieczeń – zagadnienia wybrane .. 137

6. Wypracowanie specyfikacji celów zabezpieczeń .. 140
6.1. Cele zabezpieczeń w świetle standardu Wspólne kryteria ... 140

6.2. Model danych do wyrażania celów zabezpieczeń .. 140

6.3. Proces wypracowania specyfikacji celów zabezpieczeń .. 145

6.4. Podejście formalne do specyfikowania celów zabezpieczeń – zagadnienia wybrane 150

7. Przygotowanie wymagań bezpieczeństwa ... 153
7.1. Wymagania bezpieczeństwa w świetle standardu Wspólne kryteria 153

7.2. Model danych do wyrażenia wymagań bezpieczeństwa .. 154

7.3. Proces wypracowania specyfikacji wymagań bezpieczeństwa .. 159
7.3.1. Wymagania bezpieczeństwa dla przedmiotu oceny 160
7.3.2. Wymagania bezpieczeństwa dla otoczenia przedmiotu oceny 166

7.4. Specyfikacja formalna wymagań bezpieczeństwa – zagadnienia wybrane 172

8. Wypracowanie końcowej specyfikacji przedmiotu oceny (TSS) 174
8.1. Końcowa specyfikacja przedmiotu oceny w świetle standardu Wspólne kryteria 174

8.2. Model danych specyfikacji typu TSS ... 175

8.3. Wypracowanie specyfikacji typu TSS ... 176

8.4. Wybrane zagadnienia dotyczące formalnego opisu specyfikacji typu TSS 177

9. Deklaracje profili zabezpieczeń ... 179

10. Proces uzasadnienia zadania zabezpieczeń .. 180

8 Spis treści

10.1. Uzasadnienie celów zabezpieczeń .. 181

10.2. Uzasadnienie wymagań bezpieczeństwa .. 184

10.3. Uzasadnienie końcowej specyfikacji przedmiotu oceny .. 190

10.4. Podejście formalne do uzasadnienia zadania zabezpieczeń ... 192

11. Podsystem do samodzielnej oceny konstruowanych zabezpieczeń informatycznych ... 200

12. Implementacja programowa i badania systemu szkieletowego 204
12.1. Biblioteka generyków i komponentów .. 205

12.2. Wspomaganie procesu konstruowania zabezpieczeń informatycznych 206

12.3. Wspomaganie procesu oceny zabezpieczeń ... 210

13. Podsumowanie ... 213

Dodatek A. Pojęcia podstawowe dotyczące standardu Wspólne kryteria 220

Dodatek B. Składnia i semantyka języka OCL – wykorzystywane definicje i pojęcia . 224

Dodatek C. Pojęcia dotyczące modelowania zastosowań kryptografii w UMLsec 230

Dodatek D. Podstawowe zasady dotyczące nazewnictwa pojęć 232

Dodatek E. Elementy projektu zadania zabezpieczeń dla systemu zaporowego 233

Literatura ... 253

Streszczenie ... 264

1. INTRODUCTION AND MOTIVATION

Informatics is a discipline of science and technology that focuses on the processing,
storing and transferring of information. This monograph deals with the selected yet important
aspects of the foundations which enable these activities.

The development of e-business, e-government or e-health applications and the critical
information infrastructure protection strongly depends on the development of trust and
confidence technologies. The development of these technologies, however, needs an
assurance basis.

Assurance is the confidence that an entity, i.e. IT (ICT) (Information (and
Communication) Technology) product or system, called the TOE (Target of Evaluation),
meets the security objectives which are specified for it. The Common Criteria standard
(abbrev. CC), i.e. ISO/IEC 15408, is a well established methodology dealing with the
creation of assurance. This standard is currently available in version 3.1 (from September
2006) and provides criteria for evaluating IT products or systems with focus on their
assurance. The importance of the Common Criteria methodology is still growing. The basic
information, latest standard versions and related documentation are available in the Common
Criteria Portal [42].

The monograph presents the Common Criteria- and UML-based (Unified Modelling
Language) method for IT security-related products development, ensuring the expected
assurance level for them. The method represented by the developed UML framework is
generally compliant with the Common Criteria, but it introduces some significant extensions
and improvements as well. It can be used directly as the development method or can be the
basis of a computer-aided tool that supports design and evaluation processes.

The monograph deals with the following main issues that should be briefly presented at
the beginning:
• understanding the Common Criteria philosophy concerning the assurance,
• general aspects of the semiformal, UML-based modelling in the information security

domain.

10 1. Introduction and motivation

1.1. Assurance from the Common Criteria point of view

Assurance can be considered as a passport of the given IT product or system to the
security critical applications. The basis of the Common Criteria philosophy is the assumption
that the assurance foundation is created during a rigorous IT development process. The
assurance verification, on the other hand, is carried out during independent evaluation and
later during operation of a certified IT product or system. The users, who entrust their
information and other business assets to IT systems, should have confidence that these
systems with their safeguards guarantee the right assurance, i.e. they offer intended
functionality and eliminate unexpected, malicious behaviour.

Almost all today’s systems are security-critical and should be developed in a special way.
It is difficult, mainly because of the conflict between the cost of the development and
verifiable correctness. The products or systems security should be considered at their early
development stage and within development context. Security mechanisms should not be
inserted into products or systems blindly, but prudently, and this requires security
engineering knowledge, methods and tools. It should be noted that the IT security efficiency
seems to be higher than simpler methods and techniques that are used to achieve it.
Modelling methods serve this purpose very well.

The monograph focuses on the development method of IT products or systems providing
the right assurance. IT consumers who use different IT products or systems expect that these
products should work just as they were designed. The consumers also require that the built-in
functionality of these products or systems should provide well defined, expected behaviour
and eliminate unexpected behaviour. In other words, the IT consumers need assurance for
their products and systems. The above definition of assurance implies two basic issues:
• precise and coherent specification of the security objectives for the TOE provided by the

IT security development process,
• creating the basis of the above mentioned confidence (assurance) provided by the

independent evaluation and certification by independent bodies.
These two goals can be achieved by the Common Criteria (ISO/IEC 15408) methods

[38-40], [45-46], [60].
IT products or systems should be developed in a rigorous manner. Rigorous is understood

as more precise, more coherent, mathematically based, supported by the rationale and
verification processes, etc. In order to achieve this, a more formalized IT security
development methodology should be applied. The formalization, however, has its own
limitations (e.g. cost, special trainings for developers) and can be applied in a reasonable way
only for these areas where it can bring real advantages.

1.1. Introduction and motivationAssurance from the Common Criteria point of view 11

The Common Criteria IT security development methodology has precise, but rather
informal character [60], with the semiformal functional [39] and assurance [40] components.
These components function as the specification language, but only at the security
requirements elaboration stage. It should be noted that “semiformal” means: “expressed in
a restricted syntax language with defined semantics” [38].

The CC standard can be considered as an object-oriented semiformal modelling language
or toolset for a specific context (e.g. IT security) [51]. Common Criteria impose rigorous
development and evaluation on any security-related product, which depends mostly on the
declared Evaluation Assurance Level (in the range: EAL1-EAL7, where the EAL7 is the
highest value). Basically, stricter discipline in development and evaluation means better
assurance. The development and evaluation processes are very complicated due to many
details, dependencies and feedbacks, which should be taken into consideration, and rather
difficult rationales. That is why the need of specialized frameworks and computer-aided tools
that are based on them is important and growing.

All secured IT hardware or software products or systems, i.e. TOEs, should be rigorously
developed and then evaluated. The TOEs are created on the basis of the security requirements
specifications, well defined within the standard, i.e.:
• Security Target (ST) – an implementation-dependent set of security requirements for

a given TOE, satisfying specific consumer needs,
• Protection Profile (PP) – an implementation-independent set of security requirements for

a group of similar TOEs, meeting consumer needs.
Before developing the TOE, an ST or PP document should be created. The TOE may be

developed:
• straight on the ST basis; the evaluator first evaluates the ST documents and then the

corresponding TOE, according to its specification;
• on the ST created according to the evaluated PP; with the use of positively evaluated

Protection Profiles, specific Security Targets describing TOEs are developed and
evaluated in two stages: first the ST is evaluated (PP compliance) and then the TOE.

1.2. Selected aspects of the semiformal, UML-based modelling

The methods dealing with the UML [36], [49], [76], [102] are very promising, also in the
information security domain. They prove a unified approach to the products and their security
features description. The UML creates unprecedented possibilities for secure-critical
products or systems development which are feasible in industrial context. The UML is de
facto an industrial modelling standard now, supported by different analyses, testing,
simulations, and transformation tools. The UML community is still growing thus facilitating

12 1. Introduction and motivation

the use of the CC methodology is very important, especially for the increasing number of the
secure COTS (commercial off-the-shelf) products.

The word framework has a more general meaning there as it was assumed in the UML:
“a framework” is an architectural pattern that provides an extensible template for applications
within a domain. This template specifies a set of mechanisms that define a skeleton of an
architecture together with the “slots, tabs, knobs, and dials” that are exposed to adapt the
framework to a specific context” [36].

The modelling approach is growing and the UML-approach is commonly used by IT
developers to solve design problems. The UML models can be simplified, presenting the
selected issues of the entire concepts, and not always are they transferred to the executable
code. The IT developers face IT security problems during their work too. It will be easier for
them to use the same approach to solve both issues. For these reasons it is vital to integrate
the IT product design and IT security development. This can be achieved by using the
common approach – the UML modelling approach. Aspect-oriented modelling [4] extension
can be helpful to express the complex, cross-cutting concerns.

The current state of researches, presented later, shows that modelling is one of
mainstream tools for the information systems industry but not for the security specialty
within the industry. IT security modelling requires a slightly different approach in
comparison with the IT systems modelling, which is mainly focused on the functionality
offered to its users. IT security must be considered as a whole, but it consists of many
security items dealing with different IT items, like: properties, functions, modules and
mechanisms with cross-cutting concerns inside.

Security-related products design, as other IT systems design, needs several
decompositions (top-down analyses) and compositions (bottom-up syntheses), alternating
each other, and the separation of concern is a well known general principle. The
composition/decomposition problems of an IT system with considered IT security are not
trivial. It is very difficult for the designers to comprehend a large number of functional
elements with their numerous details on one side, and global behaviour and properties of the
system connected with them on the other. Additionally, the level of abstraction used in the IT
domain and in the IT security domain may be inconsistent. The modelling can help to solve
these problems, contributing to simplify and better organize the IT security development
process. The modelling is very promising but there is still a challenge to build more effective
models with the use of object-oriented methods.

Any IT design can be expressed by its vertical (functionality, structure, etc.) and
horizontal (security concerns, objectives, requirements, etc.) views. For both, a unified

1.2. Selected aspects of the semiformal, UML-based modelling 13

approach based on the CC and UML is proposed, open to new achievements and the changes
occurring in standards in these two areas.

1.3. Objectives of the work and the monograph contents

Generally, the issue presented there concerns how to perform the IT security development
rigorously, i.e. more precisely, formally, and consistently, and more effectively, i.e. more
quickly and cheaply.

In this monograph, on the basis of:
• the analysis of the assurance concept provided by the Common Criteria methodology

(Section 1.1),
• the analysis of the modelling issues concerning the information security domain, focusing

mainly on the security engineering (Section 1.2, Section 2.1),
• the analysis of the Common Criteria methodology and the identification of the

developers’ needs concerning the support they require in most difficult and complicated
tasks performed during the IT security development process (Section 2.2),

it will be shown that it is possible to:
• elaborate the IT Security Development Framework (ITSDF) and the related method,

specifying step by step the developers’ efforts focused on the IT product or system
development at the required assurance level, particularly:
− elaborate a semiformal model of the IT security development process with the use of

the UML approach,
− create a set of semiformal and formal means and methods to build IT security related

specifications of the TOE in a more precise and consistent way,
• implement this framework as the computer-aided tool facilitating these efforts.

The main concept assumes concurrent development of three UML-based models,
representing the ITSDF framework (Section 2.3). The first one, the model of the security-
related product, presents its elements, functionality offered to users, requirements and
working environment. On this basis the second model – the security model of the security-
related product – is created, using the Common Criteria method of specification. The third
one is responsible for evaluation of the developed security model.

To provide the IT security developers with the Common Criteria compliant framework,
and the tool based on it, the following methodology was applied – presented in this
monograph and in other several publications of the author:
• understanding the Common Criteria philosophy and applications,
• identifying the CC developers needs,
• identifying the gaps of existing solutions,

14 1. Introduction and motivation

• developing a general concept of the ITSDF framework,
• building its model incrementally and recursively,
• model validation during case studies with experts, trainings and discussions,
• implementing the model as the computer-aided tool,
• publication and presentation of the concept and solutions at many scientific conferences

or workshops, including the NATO Advanced Research Workshop in Gdansk [13], the
World Congress in Applied Computing in Las Vegas [22], [29], 8th International
Common Criteria Conference in Rome [28],

• model refinement and supplementing some formal issues,
• planning to continue the work, based on the results and current experiences.

The monograph consists of 13 chapters including this introductory one, showing full
range of works and their results.

Chapter 2 starts from a short presentation of the current state of technology, focusing on
the gaps identification. The review includes the most relevant publications concerning: IT
security development process, general modelling aspects, UML and OCL (Object Constraint
Language) implementation, semiformal and security engineering methods, particularly
concerning Common Criteria, and computer aided tools. This chapter also summarizes the
Common Criteria development process, identifying points whose support for the developers
is especially required (i.e. developers’ needs) and, generally, presents the concept of the
developed framework (main structural model and the state machine representing its
elaboration). Short discussion of the available specification means is added, that is the
motivation to improve them.

Chapter 3 introduces “a specification language” implemented as a design library available
for the IT security developers. The library consists of CC functional and assurance
components and a set of generics – all represented as the UML classes.

Chapter 4 encompasses the initial stage of the development methodology, focusing on
capturing the basic features of an IT product or system as “input data”.

Chapters 5 through 10 are of the different sizes because they reflect the security target
development stages. These stages are expressed by the use of the introduced ITSDF
framework. First sections of each of these chapters summarize (on the UML diagrams) what
the CC standard offers to developers, the successive sections represent the author’s
contribution, including formal aspects concerning a given development stage, placed in the
final sections.

Chapter 11 concerns the evaluation model and processes that were fully implemented
within the tool, but are not discussed in details in this monograph.

1.3. Objectives of the work and the monograph contents 15

Chapter 12 presents the software implementation of the IT Security Development
Framework, including the library of specification means. The presentation is very concise,
exemplifying some solutions and referring to the technical documentation.

The final chapter, 13, summarizes the goals, range and results of the whole work.
The monograph includes also five appendices devoted to: the basic Common Criteria

terminology, the selected OCL syntax and semantics used for the UML model representation
in the monograph, selected cryptographic terms, naming of the chosen terms and an example
of the ST for a firewall.

The work is compliant with the [60]. Please note some differences (rather simplifications)
influenced by the latest CC v.3.1. [42].

It was assumed that the reader is familiar with the basic issues included in the Common
Criteria standard and related documents, because it is not possible to discuss them in this
monograph. Basic terminology contained in the Appendix A may be very helpful.

1.4. Permission and acknowledgement

The screenshots of the ITSDF-tool, developed on the basis of the author’s concepts and
under the author’s supervision, are printed with their owner’s permission, i.e. the Institute of
Control Systems – Chorzów, Poland. The initial software tool version, called POZIT, was
supported in part by a grant from the State Committee for Scientific Research (the Ministry
of Science and Information Society Technologies).

The author1 wishes to thank the President of the Management Board of the Institute of
Innovations and Information Society (INSI), Mr Przemysław Gnitecki for his decision to
finance the publication of this work. The author also wishes to thank for the support from
INSI R&D Director, Mr Leszek Żychoń, and for the support from Ms Barbara Flisiuk, Ms
Irena Styczeń, Mr Oleksandr Pidlisny, Mr Jacek Bagiński – key members of the ITSDF-tool
development team.

1 Andrzej BIAŁAS: Instytut Innowacji i Społeczeństwa Informacyjnego,

ul. Wita Stwosza 7, 40-954 Katowice, Polska, Andrzej.Bialas@insi.pl

2. CONCEPT OF THE IT SECURITY DEVELOPMENT FRAMEWORK

This chapter presents the background (existing solutions, their gaps and the developers’
needs with respect to the support of their activities) and the general concept of the created
framework.

2.1. Current state of technology

The methods reviewed there do not deal with highly secure systems but systems in
general, called “High integrity systems”, where the cost of loss or failure is significant. This
term, introduced in [47], covers also safety-critical systems (such as those controlling
aircraft, nuclear power plants and so on), and systems, where failure may result in a
significant financial loss or embarrassment, like launch control systems.

High integrity systems require specific, well formalized methods and tools used for their
development. Some of them are UML-based. The formal methods are used rather as the
extensions of the UML-based ones, to support them in specific areas.

The development process of high-integrity systems must be fully controlled, including the
use of ready-made components, like library components, and should satisfy many constraints
to avoid any ambiguities with respect to the specification and implementation.

The UML is a modelling language, intended to be a commonly shared language used not
only in medium- to large-scale software projects, but also in very diverse areas of application,
very often beyond computer science and telecommunications. IT security is one of these
areas.

Currently, many IT security-related methods, presented below, refer to the UML, trying
to adopt this modelling approach to solve IT security problems.

The review of existing works is focused on the publications and the tools dealing with:
• the use of the UML for IT security development, especially for the Common Criteria

development and evaluation,
• formal and semiformal methods used for the IT security development, as the support or

extension of the UML-based methods,
• IT security frameworks, especially UML-based,

2.1. Current state of technology 17

• computer-aided tools supporting design and evaluation,
• some new trends in the information and electronic services security,
closely connected with the proposed framework.

2.1.1. Security engineering – the selected issues

To better understand the methodology presented in this monograph and its relationship
with the security engineering, a short review of this domain is provided at the beginning.

The Common Criteria standard has been intended to provide a semiformal or formal way
to specify and evaluate the security properties of hardware or software. It should be noted
that most development and evaluation problems occur with software. A very important thing
is low quality of the software, especially in the case of COTS. Many existing information
security issues are implied [97] “by unfortunate trends in the way software is produced,
acquired, deployed, and then used.” There is a general need of the right use of software
engineering methods concerning also security engineering principles.

Security engineering, like other engineering areas, can be considered both as an art and
a science, encompassing and consistently applying a set of principles that are intended to
ensure the consistency and quality of the results it produces [79]. There are some common
engineering principles that can be interpreted and applied in security engineering – the
engineers:
• take responsibility for the results they produce,
• have developed material goods for ages – a very old area of human activity,
• do not begin work until the requirements of the system are well understood and

documented,
• address requirements as an ordered list, do not consider any of them separately,
• study the strengths and limitations of the materials they use,
• prefer simplicity,
• do not mix the controls intended for the exclusive use of the management with those

intended for end users,
• prefer to reuse proven designs.

The problem is that “IT people in general and security people in particular do not
consistently apply traditional engineering principles to their work” [79].

Security engineering is not software engineering, although there exist areas covered by
both. Security engineering does not focus on how to build secure software, but rather on how
to build secure systems using available software [79].

Security engineering is often concerned with safeguards, especially against viruses, direct
network attacks or with cryptography applications, although it deals rather with how to

18 2. Concept of the IT Security Development Framework

integrate the intended product or system functionality with its security at an early
development stage.

Security engineering emphasizes an analysis of the system requirements, for example
around the following questions [53]:
• “What is the purpose of this system?
• What types of data will it store or process?
• How critical is the data or its accuracy?
• Does the security of the information warrant the cost?
• Where is the true threat likely to come from?”

Security engineering is an important element of the system designing process – its
principles should be taken into consideration when a project is first conceived, during the
development stages of a system, to ensure effective measures implementation, and for the
security maintenance when the system is used. Security engineering encompasses also non-
technical aspects – organizational, dealing with management, even with culture, tradition and
education.

The key issue of security engineering can be the design for securability concept,
understood as applying engineering principles to system security design in accordance with
the fact that “no system can be designed to be secure, but can include the necessary
prerequisites to be secured during operations” [54]. The design for securability encompasses
very distinguished means and ways, like: mutual trust between system owners and operators,
requirements engineering, system modelling, methods and tools for design support, risk
management, etc.

Generally, two types of system models can be developed:
• design models – built before the system is implemented,
• analytical models – built for the existing systems.

System models are created on the basis of:
• system requirements,
• high-level description of the system,
• models of system components.

The system models are analyzed and then modified on the basis of the analysis results,
using distinguished methods and tools (automatic or manual activities). During the modelling
process the system description is transformed from a textual form, through a set of loose
security-related statements, to the validated, consistent set of statements.

The Common Criteria standard supports different aspects of the design for securability
approach at different levels, and they were taken into consideration too within the proposed

2.1. Current state of technology 19

IT Security Development Framework. Three steps of this approach are usually considered
[54] (compare with Fig. 2.1):
• capturing interactions and relations between the IT system and its environment,
• formulating a set of security requirements on the IT system,
• implementing this set of requirements.

The first issue is rather poorly supported by the CC, although its results decide about the
effectiveness of the whole design. It depends on the IT security developers’ knowledge,
experience and used “high-level“ methods. The proposed IT Security Development
Framework recommends to use the UML approach, especially the UMLsec approach
discussed later (see 2.1.2). The second issue is fully supported by the Common Criteria. The
third, depending on the development environment for the software or hardware, is supported
by different existing methods and tools, discussed later.

The key principle of security engineering, applicable especially to software engineering,
is the separation of concerns. This principle says that software should be decomposed in such
a way that different “concerns” or aspects of the problem at hand are solved in well separated
modules or parts of the software [104].

The security problems have pervasive nature, and two kinds of this pervasiveness are
recognized. One of them deals with secure coding, the second one is related to crosscutting of
the security items. Both can be minimized using the separation-of-concerns principle.

Such pervasive problems as buffer overflow or invalid input data can be avoided by
enforcing right coding rules or by using appropriate software development or run-time tools.

The second kind of pervasiveness deals with a common but scattered part of the code that
is introduced into the application to meet specific security requirements. For example, the
code responsible for events recording in the system logs or access control module can be
spread among many classes. In this case the security can be considered as a crosscutting
concern since it is related to many classes or functions in the program. This kind of security
pervasiveness deals with the structural difference between application and security logic.
Other examples of crosscutting concerns are application interactions with the cryptographic
library or security manager calls to different places controlled by them.

It should be noted that, by applying the separation-of-concerns principle, more evolvable
systems can be built and they can be more easily adapted to unanticipated or changing threats
during the product life cycle [104].

Recently, new separation or modularization techniques related to the Aspect-Oriented
Programming [4] have been developed. Generally, the separation of concerns entails
partitioning the program into distinct elements that overlap in functionality as little as
possible and encapsulate these concerns into separate entities with the use of such methods as
procedures, packages, and classes. Some specific concerns cutting across many software

20 2. Concept of the IT Security Development Framework

modules defy this encapsulation, e.g. system logging, errors handling and recovery, and
different security concerns. Such concerns should be handled in a specific way, i.e. they are
captured in the so-called “aspects”. There are two categories of handling the aspects:
• interception-based approaches that intercept certain events in the execution of a program

to do some additional processing (implementing the crosscutting concern) before or after
the event;

• weaving-based approaches where a weaver tool weaves in the code implementing the
crosscutting concern with the other application code, at compile time, load time or even
run time.
By separating the security concern as much as possible, two important advantages can be

achieved:
• better adaptability of security mechanisms to changes during the life cycle,
• reducing the number of implementation errors, because a well separated concern is easier

to capture than a crosscutting concern.

2.1.2. UMLsec concept

Jan Juerjens’s works [62-71], summarized in [72], deal mainly with the UML extension,
called UMLsec, providing a unified approach to security features description during the
secure systems development. The UMLsec can be used to evaluate UML specifications
against vulnerabilities. Established formal rules of security engineering can be encapsulated
and hence made available to a wider group of developers.

The UMLsec introduces:
• the set of stereotypes (specialized model elements using <<label>>); new meaning to the

UML concerning different security features was added, like: <<Internet>>,
<<encrypted>>, <<secure dependency>>, <<no-down-flow>>, <<no up-flow>>;

• tagged values i.e. pairs {tag=value} to the stereotyped elements e.g.
{confidentiality=TRUE};

• constraints that refine semantics of the stereotyped element, e.g. constraint <<no up-
flow>> means that a component prevents up-flow;

• profiles that gather previously mentioned information, e.g. profile <<fair exchange>> of
base class package, having tags: start and stop, relating to the constraints: after start,
eventually reach stop; this profile is used for enforce fair exchange between a buyer and
seller or a sender and receiver, etc. (e-business or network protocols validation);
The UMLsec profiles are used for:

• recurring security requirements offered as stereotypes, like <<secrecy>>, <<integrity>>,

2.1. Current state of technology 21

• using associated constraints to evaluate specifications and indicate potential vulnerabili-
ties,

• ensuring that stated security requirements enforce given security policy,
• ensuring that the UML specification provides requirements.

The UMLsec uses specific subsets of the UML:
• use case diagrams, describing typical interactions between a user and a computer system

or between different components, used to capture requirements, particularly security
requirements,

• activity diagrams for the flow of control (workflow) between system components,
explaining use cases in more detail,

• class diagrams to show the static structure of the system, including class attributes,
interfaces, operations, signals and relationships,

• interaction diagrams (i.e. collaboration- or sequence-type), presenting interactions
between objects by messages exchange (communication protocols explanation, showing
directly the handshaking process),

• state-chart diagrams, expressing dynamic behaviour of given objects, allowing “guards”,
and showing how events may cause states changing or actions triggering,

• package diagrams, used for grouping the system parts into named higher-level units, and
specifying objects visibility,

• deployment diagrams presenting underlying environmental aspects of the system, i.e.
hardware, software, communication, environment, meeting the system requirements.
The UMLsec allows the patterns that encapsulate the design knowledge in the form of

recurring design problems, and consist of the “pattern name”, “problem description”,
“problem solution” and “consequences”. The wrapper pattern is a type of pattern used to
augment the security of COTS application, working as the intermediate element, ensuring the
security of the objects not directly controlled by the developers – instead of calling the
original object directly, the wrapper is called and then it passes the call to the original object.

The UMLsec is used to:
• evaluate the UML specification for vulnerabilities,
• encapsulate security engineering patterns, also for designers not specialized in security

from early design stages in the system context.
The global formal semantics was provided for the UML subsystems. It incorporates the

formal semantics of diagrams included in the subsystems. The introduced semantics allows:
• to express directly internal activities and actions,
• to pass messages between objects or components belonging to different diagrams, by

adding a dispatching mechanism for events and handling for actions.

22 2. Concept of the IT Security Development Framework

This is the foundation:
• for formal specification of the whole design,
• to solve composition problems in a formal way, to compose subsystems by including

others into them,
• to provide tool support, based on this precise semantics, allowing the possibility to

simulate specifications or create executable UML specifications.
These works focus on modelling the IT security features and behaviour within the system,

and not on the IT security development process. There are no explicit relations with ST or PP
development procedures presented in the ISO/IEC TR 15446 standard, and there is no
general purpose framework provided for IT security development, according to Common
Criteria.

The UMLsec approach is compatible with the presented method of identifying product
features and can be very useful for this job.

2.1.3. Engineered Composition (EC) based on the UML

The Shari Galitzer method deals with the composability problem using the CC and the
UML. His works are focused on modelling complex security-related products, consisting of
other security-related products, evaluated or not, requiring advanced composition methods.
The dedicated UML-based specialized framework was provided, not fully compatible with
the ISO/IEC TR 15446 standard.

The paper [51] presents an approach, being an extension of Common Criteria, called
Engineered Composition (EC), focused on effective composability and verified during the
Critical Infrastructure Grants Program from the NIST (National Institute of Standards and
Technology). The objective of this work was to achieve the ability to predict that
a composition of components will have the desired properties without unpredictable side
effects. The composition problem was considered as a modelling problem with security as its
subject domain.

It should be noted that according to the CC paradigm the components are PPs and STs
and the composition is an evaluated system that reuses the components. The three Common
Criteria decomposition approaches were analyzed:
• component TOEs may be combined into composite TOEs in a PP or ST,
• component TOEs may be combined to build a more complex system by users who rely on

the TOEs IT environment requirements,
• the TOE may be a system without regard to its component parts.

2.1. Current state of technology 23

The EC method seems to be especially convenient for large systems that require
distributed development. It provides a means to develop PPs or STs for ensuring that
components are combinable and comparable.

The main EC features are:
• top-down decomposition approach,
• based on principles and techniques of information systems object-oriented modelling

(UML).
The EC applies these modelling methods and tools to the development of the composed

security-related systems according to the Common Criteria, facilitating [51]:
• “the expression of the security requirements of both a system and its components:

− capturing the security requirements of a component;
− capturing how the component contributes to the system security requirements;
− exposing security issues that result from aggregation of the components;

• making combinable and comparable independently developed PPs and STs;
• developing PPs more efficiently by:

− making PPs ‘refinements’ for specific environments rather than a ‘re-creation’ for
each specific environment;

− requiring fewer PPs to meet the users’ needs;
• developing STs more efficiently by:

− making STs combinable so it is possible to claim compliance with multiple PPs;
currently this approach is assumed as not practical enough;

− being able to define a scope for an ST that is a component of a set of requirements and
being able to reuse those requirements in the ST.

− reusing PP specifications for an ST that is a component of a PP;
• supporting the fluid nature of systems.”

The Engineered Composition method encompasses the following elements:
• standard modelling principles and techniques adopted from system engineering,
• CC paradigm extensions by constructs, like: framework, collaboration, interface and

aspects,
• evaluation criteria for the model constructs properties, like: separation of concerns,

cohesion and coupling,
• evaluation criteria for rigorous enforcement of the consistent terminology for the CC

artefacts and documents.
The EC approach is based on the following concepts: patterns, aspect-oriented modelling

methods [4], and interfaces.

24 2. Concept of the IT Security Development Framework

Generally, patterns [36] are used in the UML to solve a common problem in a common
way. The EC uses two kinds of patterns:
• frameworks – to capture architectural patterns that specify the structure and behaviour of

the entire system,
• collaborations – to capture design patterns that specify a set of abstractions that work

together to carry out a common and interesting behaviour.
Aspect-oriented modelling can be considered as a newly emerging extension to object-

oriented modelling methods to better achieve separation of concerns for complex systems. It
is especially convenient to express the complication of cross-cutting concerns.

During the designing process the decomposition took place around concerns, splitting
a system into manageable and comprehensible parts. The EC method distinguishes the cross-
cutting concerns being the parts that do not decompose neatly. In the composed systems the
cross-cutting concerns are properties that apply across several functions or components
within a system. They can range from high-level security notions like audit, cascading risk or
‘whole-program effects’ to low-level notions like redundant copies of data for fault tolerance
or synchronization policies, e.g. concerning locking protocol [51]. Also authentication and
audit can be good examples of the cross-cutting concerns.

Interfaces are a collection of operations that are used to specify a service of a class or
a component, and represent the major seams in the system that permit component parts to
change independently [36]. In the EC method “interfaces provide the basis for the recursive
property of a system where collaborations and components of a system are themselves made
of component parts. The interfaces are represented in the component view of the model. This
view exposes the seams of the system and the glue that binds the components. The interfaces
that are realized by the cross-cutting properties of the system and represented by the aspect-
oriented constructs are called join points” [51].

The EC framework comprises the followed parts:
1. A domain framework definition including:
• text description of general technologies and services of the domain,
• security services and capabilities of the domain,
• domain trusted and untrusted users (within models referred to as actors),
• domain-specific terminology.
2. A framework model, capturing 3 levels of decomposition and 2 views of interest.

The EC framework encompasses three kinds of inter-connected models expressing a
static view of the system from a perspective which supports composition of its component
parts.

2.1. Current state of technology 25

The models are:
• a system-level object model – a set of classes organizing objects, attributes, operations,

relationships, and semantics of the system and establishing its vocabulary,
• a set of object models for the collaborations, i.e., services identified in the domain

framework definition, inheriting information from the system level, with added
refinements and details relevant to the collaborations,

• a component model that is the representation for the physical seams of the system,
inheriting information from the collaborations, with added refinements and details
relevant to the components, created from modelling the interfaces.
The two specified views of the EC framework are:

• the threats and policies view, showing the relationship between the threats and policy
rules, that implies the requirements, and objects and components.

• the requirements view, taking into account attributes of the objects and components.
3. A new CC composition class of requirement components, capturing and organizing

special composition requirements and dealing with:
• adequacy of the composition attributes of the model;
• an interface specification attribute;
• an attribute dealing with the composition risk.
4. A section for administrative information comprising:
• procedures for framework life cycle management;
• profile specifications or references identified by policy requirements;
• policy information on STs claiming compliance with the framework.

The presented above EC framework needs to have its formats established. Three formats
for data presentation were considered:
• a modified PP format,
• the UML or other modelling method format,
• a hypertext document.

The EC framework provides the templates for constituent PPs and STs. Development
errors may occur and they can involve the exponential error effect. For this reason, the
quality of the EC framework must be under control. Therefore an additional APE-type
assurance requirement, i.e. additional to those used for the PP evaluation, to evaluate the
quality of the framework was introduced. During the evaluation the following two aspects
should be considered:
• checking if the EC framework presents a coherent set of security services and

capabilities, using suitable CC defined assurance requirements,

26 2. Concept of the IT Security Development Framework

• checking if the EC framework and its models are valid from a modelling perspective, by
establishing the quality models and its associated metrics, and verifying the basic object
modelling principles, like: separation of concerns, collaboration, encapsulation,
aggregation and cohesion.
Due to the evolving nature of IT systems the life cycle support for the EC framework was

adopted from the information systems engineering modelling industry.
A very important issue for the created frameworks, such as the EC framework, is the

consistency of the terminology. Any occurring discrepancies influence the quality of the
framework.

The author has focused on the creation of a supplement to the general CC development
framework, especially convenient for solving composition/decomposition problems of the
complex IT system with respect to its IT security, rather than on general purposes of the CC
development framework creation. The EC method is based on the CC UML framework,
ensuring that the component PPs and STs for the system are combinable and comparable. It is
focused on solving composability problems of large distributed systems.

2.1.4. UML with the B-method

The B-method [34] is a set of mathematically based techniques for the specification,
design and implementation of software components. It covers the complete software life
cycle, from the specification of the requirements, through the design and its refinement, to
implementation, and finally code generation and maintenance. The resulting code can be
proven if it is consistent with the original specification. The specification is the abstract
representation of the requirements, which express what behaviour is required rather than how
to ensure that behaviour. The same rule is applied during IT security product specification.

The formal methods, like B-method, allow to describe behaviour, but within the
considered application domain. While implementing this specification, the formal method
produces proof obligations that represent the complete set of tests. They confirm that there is
no inconsistency between the behaviours of the specification and the design.

The B-method is an object-based method. Systems are modelled as sets of abstract
machines which are interdependent and described with the use of the introduced Abstract
Machine Notation (AMN). AMN ensures a uniform notation for all levels of description,
from specification, through design, to implementation. It encompasses:
• states, comprising a set of variables constrained by an invariant, expressed with the use of

notions, like: sets, relations, functions, sequences etc.,

2.1. Current state of technology 27

• operations on those states, modelled with the use of pre-conditions or post-conditions;
operations may change the state, while maintaining the invariant, and may return
a sequence of results.
The general Machine Structure [92] encompasses the following elements:

MACHINE name set and numeric parameters
CONSTRAINTS predicate
INCLUDES/SEES/USES machine parameters
SETS names
CONSTANTS names
PROPERTIES predicate
VARIABLES names
INVARIANT predicate
INITIALIZATION substitution
OPERATIONS operations
END

The safety or integrity conditions, dealing with the integrity or consistency of the
information modelled by the state of a machine, are controlled by the invariant of the
machine, for example: “given variable must be a negative number”. The obligation regarding
the invariants ensures that the invariant is true before an operation is invoked. It is also the
duty of the operation to ensure that the invariant is true after the operation.

The precondition of the operation controls the invariant by capturing, before the
operation, all combinations of the state, as well as operation arguments, both of which may
break the invariant after the operation.

The B-Method allows:
• to structure large designs,
• the reusability of specification models and software modules,
• consistency of specification checking (preservation of the invariant),
• correctness of designs and implementations checking (correctness of data refinement and

correctness of algorithmic refinement).
The B-method is willingly used by the engineers community due to the used formal

notation that looks like a simple pseudo programming notation and is rather easy to learn.
The existing computer-based tools (B-Toolkit/B-Core, Atelier B/Steria), which are the
implementation of the B-method, are used to write, verify and maintain software, including
project documenting, formulation of proof obligations, automatic proving, automatic control
of the dependencies within complex systems and large libraries of mathematical rules.

Formal methods are used in various mission critical applications, like train or flight
control systems and advanced access control systems that use smart cards. AMN is a state-
based formal specification language in the same school as VDM and Z (J-R. Abrial).

The work [78] presents an overview of techniques used to get higher EALs, according to
the CC standard, for Java smart cards. These techniques are UML- and B-method based, in
contrast to [74] which is UML- and EDEN-based (see section 2.1.5).

28 2. Concept of the IT Security Development Framework

With the UML approach (semiformal) the following means are used (assurance
components belonging to the families responsible for the TOE development, encompassed by
the ADV class – Development assurance requirements):
• for the SPM (Security Policy Model) – a correspondence matrix of entry parameters

(based on use cases) and security policy issues,
• for the FSP (Functional specification) – sequence diagrams to express interactions

between actors and systems,
• for HLD (High level design) – collaboration diagrams to express interactions between

classes and objects,
• for LLD (Low level design) – sequence diagrams showing modules interrelationships or

state diagrams showing modules internal working – depending on the applied granularity,
• and for RCR (Correspondence relation) – a correspondence matrix for abstract

representation and refinement.
With the B-method (formal) the following means are used (depending on the existing

assurance components within the EAL CC package):
• for the SPM – security automates corresponding to security functions with policies

applied as transition constraints,
• for the FSP and HLD – B-model architecture,
• for RCR – B-machine refinement (transformation of the abstract machine into a more

concrete one) and refinement proof.
The B-method can be considered as the formal extension for the semiformal UML

language used for the higher EAL products, especially for smart cards systems. This
approach is focused on the products, not on the IT security development process according to
the CC. The B-method can support the framework presented there.

2.1.5. UML method supported by the EDEN formal language

The works concerning the development of an advanced Java smartcard meeting the
highest EALs [74] are based on the EDEN specification language, the UML framework and
a tool called TL FIT [100]. The EDEN language, having Java-like instructions, is used for
logical specification of state changes and events.

The CC requires semiformal approach to EAL5 (designing and testing) and EAL6
(designing, testing, verification), but products gaining EAL7 should be formally designed,
verified and tested. For these reasons, special components of the ADV assurance class were
defined in the Common Criteria, grouped by families: SPM (Security Policy Model), FSP
(Functional specification), HLD/LLD (High/Low level design), IMP (Implementation) and
RCR (Correspondence relation). These representation levels (i.e. families) can be expressed

2.1. Current state of technology 29

informally, semiformally or formally. The TL FIT framework enables a semiformal
description based on the UML, but the EDEN language is the extension of the formal
representation. This approach is still under validation through industrial case studies (Java
smartcard) and the CC evaluation laboratory works are underway. The below mentioned TL
FIT tool (section 2.1.10) is a good example of specialized framework implementation.

This approach can be also considered as the formal (EDEN) extension of the semiformal
UML, used for the higher EAL products, especially for smart cards systems. This concept is
focused on the products, not on the IT security development process according to the CC, and
there is no inconsistency between the concept and the methodology presented in the
monograph.

2.1.6. UML method supported by the OCL formal language

The OCL (Object Constraint Language) [103] is a formal textual assertion language used
for precise modelling with the UML, facilitating design by contract. It is free of side-effects.
The basic constraints, represented in the UML as stereotypes, are: invariants, preconditions
and post-conditions. The OCL is a kind of trade-off between strict formal mathematical
notation, can be used by a limited group of developers only, and is an easily used natural
language. The OCL has a well defined mathematical basis, but is friendly to systems
engineers and programmers.

The paper [75] focuses on expressing Common Criteria security requirements as
constraints using the OCL in a UML domain model to improve the embedded software
development process. It was noted that this software is usually implemented in low-level
languages, without formal requirements and models, especially without security
requirements.

Implementation requirements were provided by using model-based architecture
developed by OMG (Object Management Group) [85] which considers multiple levels of
abstraction:
• computation independent domain model,
• platform independent computational model,
• platform specific implementation model.

The first one, a domain model, expresses domain knowledge, e.g. concerning smart cards.
It also implements business requirements of a domain, e.g. how to use these smart cards. The
Common Criteria functional and assurance requirements (described by CC components) are
used to support domain modelling and are expressed with the use of the OCL language. The
OCL is used to specify requirements as the constraints for domain model attributes and
operations, for example:

“FCS_CKM.1: Cryptographic key depends on algorithm and key size”

30 2. Concept of the IT Security Development Framework

can be presented using the OCL as:

--Key constraints
self.key=KeyGeneration(a: algorithm, s: keySize)

The security requirements which are not directly related to domain attributes or
operations, e.g. those dealing with audit data storage and management, belong to the
computational model. The OCL language will be broadly used in the framework introduced
there to extend the UML approach and achieve higher modelling preciseness.

2.1.7. Using AutoFOCUS within the security domain

AutoFOCUS [3] is a model-based tool for the development of reliable embedded systems.
It supports different steps of the top-down development process, providing many views of
a component-oriented model:
• structural view in the form of a system structure diagram, considering: hierarchy of

components, ports and channels for message exchange,
• interaction view as sequence diagrams, extended event traces, message sequence charts,
• behavioural view, as a state transition diagram defining behaviour of components by

means of transitions with their pre- and post-conditions, and patterns of exchanged
messages,

• data view, presenting definitions of values and functions, encompassing user-defined
data.
AutoFOCUS was used in the implementation of many responsible technical systems,

including smart cards systems. AutoFOCUS can be extended with information security
features, allowing seamless consideration of security aspects in the development process that
can be supported in modelling, simulation, consistence checking, code generation, validation,
verification, and testing.

2.1.8. SPARK – a programming language for high integrity systems

The paper [47] considers a description language called SPARK, based on ADA, widely
used in the aerospace and rail industries [98], suited to the development of high-integrity
systems. The paper shows that SPARK can be also suitable for ITSEC [61] and the Common
Criteria secure systems development process.

The author notes that the use of formal methods in the specification of systems is widely
spread, while the use of formal implementation languages is not well known. The
implementation stage can introduce ambiguity that can be a source of serious security
breaches, like “buffer overflow”. The widely spread programming languages have many
ambiguity sources, for instance: float point number operation, libraries, dependencies on the

2.1. Current state of technology 31

compiler and target processor, evaluation order of expressions, order of associations of
parameters, subprogram parameter passing, etc.

Growing potential and internal complexity of recently used programming languages are
not convenient for designing high-integrity systems in which all details must be under
control. For this reason, SPADE ADA Kernel, called SPARK, and tools associated with the
language, were introduced.

While developing SPARK, some elements of the ADA environment were removed to
assure no ambiguities and simplicity, but the language was left rich enough to describe real
systems. SPARK can determine statically whether a program conforms to the language rules.
SPARK programs are verifiable. They have built-in mechanisms eliminating the possibility
of run-time errors caused by exhausting finite resources such as time and space. SPARK is
designed to be compiled with no supporting run-time library. Many ADA features were
removed, like goto statement, aliasing, recursion, user-defined exceptions, or simplified –
mostly those dealing with “types”.

The following features of SPARK are convenient for the development of secure systems
[47]:
• program-wide, complete data- and information-flow analysis;
• proof of correctness of SPARK programs is achievable; this allows to extend the

formality in the design and specification of a system through its implementation;
• proof of the absence of predefined exceptions (for such things as buffer overflows,

dividing by zero); it offers strong static protection against a large class of common
security flaws;

• SPARK can be compiled without a supporting run-time library.
The paper presents experiences with SPARK used for designing specific Certification

Authority (CA) for the smart cards Multi-Application Operating System (MULTOS)
environment, to meet the standard ITSEC E6 level (corresponding CC EAL7).

MULTOS CA was developed with the use of different tools, however it was SPARK that
was applied (30% of rough code) for the “security kernel” of the tamper-proof software.
ADA95 (30%) was used for infrastructure (concurrency, inter-task and inter-process
communication) bindings to ODBC and Win32. C++ coding (30%) was used for GUI
components, C (5%) for device drivers and SHA-1 implementation, while SQL (5%) for
database stored procedures.

2.1.9. Emerging Common Criteria implementations

SECOQC (Development of a Global Network for Secure Communication based on
Quantum Cryptography) [96] is one of the UE 6th Framework Program projects in the trust
and security area. Its aim is “to specify, design, and validate the feasibility of an open,

32 2. Concept of the IT Security Development Framework

Quantum Key Distribution (QKD) infrastructure dedicated to secure communication as well
as to fully develop the basic enabling technology”. One of its subtasks is that the CC ought to
create the basis for the IT security certification of QKD applications.

The CC is focused on providing „the systematic proof of the existence and effectiveness
of the intended security properties, from quantum physics through key establishment to the
distribution of keys in a network”. It is assumed that the assurance of the QKD applications
will be gained in the same way as the assurance for other IT applications, i.e. by means of
specification and evaluation by independent testing laboratories. This project shows that the
mature and general-purpose Common Criteria methodology goes towards the emerging IT
technologies, i.e. cryptography based on quantum physics, though no papers presenting
results of this subtask were found up until now.

2.1.10. Computer-aided tools

There are three main groups of tools designed for IT security developers and evaluators.
The first one supports the Common Criteria IT security development process in a less or
more detailed way [43], [90], [101]. These applications help to manage design stages and
related documentation. All tools have CC functional and assurance components implemented
and allow to define mnemonic descriptors expressing IT security features, called “generics”.
Some tools [43], [90] have only a basic set of generics predefined with relations between one
another, some offer the possibility of using only the generics defined by the user [101]. These
tools are designed rather for lower EALs (informal specification) and can be useful for
commonly used products, like COTS. They encompass both developers’ and evaluators’
tools. The basic features of the tools belonging to the first group are:
• structured production and edition of Security Targets or Protection Profiles,
• generation of Common Criteria documentation,
• consistency verifications and traceability.

The second group of tools, designed for higher EALs, is enhanced but also application-
specific (usually for Java smartcards). The tools focus mainly on proper implementation of
the ADV class, based on semiformal or formal approach, like the UML, OCL, B-method and
tools [100] being an extended version of the TL SET [101]. TL FIT is a unique environment
shared by designers, developers and evaluators, providing them with a variety of modules for
textual, graphical, semiformal and formal specification, tools for verification and document
generation – integrated within the above mentioned TL SET suite of tools. TL FIT also
supports the evaluation documents management (UML-based). It provides automatic
generation of the ADV class assurance components and construction of security policy
definition.

2.1. Current state of technology 33

The third group, designed for the evaluators, supporting the implemented evaluation
scheme, like [56], will not be considered there. These features are offered by [90] and also by
ITSDF-tool, which is the implementation of the methodology presented there.

It should be noted that some tools are developed as a part of know-how of the IT
development or evaluations laboratories, and for this reason their description as well as the
tools are not often publicly available.

2.1.11. Security engineering environment – around the performed overview

From the general point of view the security engineering ought to deliver IT products or
systems with the assurance at the expected level. These deliverables are used to build IT
systems which provide information processing and different forms of IT services for
organizations. Using such deliverables evaluated against this level, i.e. certified, allows to
achieve the information and services security more easily, though does not guarantee this.
The information security always needs the right management. For this reason, specific
methodologies were developed, mainly around the ISO/IEC 27001 standard [58], presented
also in a few works by the author: [8-9], [11], [17-18], [23], [25], [31].

Today’s global organizations often belong to critical infrastructures for which assurance
is extremely important and quite new R&D challenges exist, e.g. concerning global
dimension, new forms of threats, inter- and intra-dependencies, enabling cascading effects
[48], [16], [20-21]. The Common Criteria methodology seems to be promising in these
applications.

The draft report [84] presents results of the work on OSMOSE (Open Source Middleware
for Open Systems in Europe), a security framework that uses the Common Criteria to achieve
the assurance. The basic framework entities are defined for: security policy, roles, privileges,
credential, security service, permissions, resources, and certification authority. Different open
platforms are mapped. The number of certificates of open source products is still growing.
Additionally, please note the above mentioned recent research and development concerning
the quantum cryptography which take into consideration the Common Criteria approach [96].

The above overview also shows the growing importance of both the Common Criteria
and the UML methodologies. The UML has recently become a very important tool in the
realm of the information security and systems safety domains. Let us present a few other
examples.

The paper [55] uses the UML to present the behaviour of the system of systems belonging
to high-integrity real time systems (military, aerospace applications). Particularly, it shows
how the safety policy is decomposed into rules that an individual system ought to satisfy. The
paper [52] discusses the UML-based trust ontology. The discussed trust cases are intended to
justify and support claims concerning trustworthiness of IT applications and services. The

34 2. Concept of the IT Security Development Framework

report [35] presents a CORAS-based approach to the risk modelling. CORAS is a graphical
language and tool. Graphical elements are UML stereotypes representing different security
issues, like assets, threats, risks and safeguards, playing the key role during the risk
modelling. This report demonstrates the use of CORAS for modelling threats in relation to
Microsoft® technologies, like Web Services, ASP.NET, SQL Server, Active Directory and
Smart Cards, though CORAS is suitable and broadly used in many other applications.

Ontological approach to the CC methodology is presented in the papers [50], [105], and
in the recent paper of the monograph author [106].

2.1.12. Technology overview summary

The conclusions of the above review show that there are three main groups of researches
based on the UML, focused on:
• solving complex composition problems, like the Engineered Composition (EC) method

[51],
• modelling behavioural aspects of IT security-related products using a UML subset called

UMLsec [72],
• solving application-specific problems, like Java smartcards, for higher EALs [74].

All of them provide different types of supporting tools. These tools need better
integration with the UML world as well as improving their basic functionality offered for
developers.

The above surveyed frameworks and tools are focused on one side of the dedicated issues
only: either on the framework representation or on the developed security product modelling
with the use of the UML. There are no IT security development frameworks and tools
allowing to harmonize both.

Some works postulate: creating unified assurance frameworks mostly for COTS,
implementing risk management features and evaluating non-IT components [81], [77] issuing
products of low-cost evaluation [82], improving compliance with information security
management standards [86], [73], [37], [12] and a broad use of the XML language.

To sum up, there are not any general-purpose, CC development process-centric,
modelling methods for common security-related products based on the UML and CC, and
compliant with the ISO/IEC TR 15446 approach.

2.2. Developers’ needs with respect to the IT security development support

The development of the IT security-related products or systems is specific and more
formalized [38]. There are two issues to be distinguished at the beginning:

2.2. Developers’ needs with respect to the IT security development support 35

• the IT product or system (i.e. TOE) development process, which has broader meaning
than the IT security development, and encompasses all developer’s efforts from
identification of users’ requirements, product/system development including IT security
development, to final deployment,

• the IT security development process related to the TOE, i.e. ST/PP elaboration, which is
a middle and very important part of the above efforts – the ST/PP elaboration starts from
the identification of IT security needs and concerns (using the preliminary IT
product/system specifications) and completes at the requirements for the security
functions elaboration (implemented later in the product/system).
The IT product or system development process gives an input to the ST specification

elaboration, and later, when the ST is ready, uses the ST as the basis for the further TOE
development.

The IT security development defined as part of the CC methodology is common but IT
development methods may be different and specific for hardware, software, and network
equipment designs. In the software engineering the UML, OCL, and Java approaches are
growing. Hardware description languages (e.g. VHDL, Verilog) and related aiding tools are
used for hardware products. The IT development process may be supported by the methods
specified in a framework for IT security assurance [59]. It is important to note that no
restrictions on the TOE development were specified.

Usually, the TOE development encompasses two kinds of efforts, compliant with the
elaborated IT security specification:
• top-down efforts – refinement of the design specifications: from security requirements,

through functional specification, high-level design specification, implementation, to low-
level specification; the higher the EAL, the more detailed specification required;

• bottom-up efforts – correspondence analysis and integration testing in reverse direction;
and, on this basis, modification of the specification on a more general level.
This monograph concerns better formalization of the IT security development process

however it does not concern IT (hardware, software, systems) development and IT security
evaluation processes, though these three complex issues are strongly related with one another
and mutually supportive. The IT security development of products or systems according to
the CC methodology was shown in the Fig. 2.1 and Fig. 2.2. This process consists of four
(three for PP) main steps:
• establishing security environment, defined by sets of assumptions, threats and

organizational security policies (OSP), worked out during an analysis: TOE assets,
purpose and physical environment,

• setting security objectives – for the TOE and its environment, using CC components
catalogues and analyzing the above objectives, working out the sets of functional and

36 2. Concept of the IT Security Development Framework

assurance requirements for the TOE and for the environment, using functional and
assurance requirements, preparing the TOE summary specification (TSS) – for the ST
specification only.
Different ways of creating the ST or PP main specifications were shown. The TOE can be

designed:
• straight on the basis of consumer needs,
• using consumer needs, and additionally in compliance with given PPs,
• based only on the requirements defined within the previously evaluated PPs.

TOE physical
environment

Asset requiring
protection

TOE
purpose

Assumptions Threats
to assets

Organizational security
policies (OSP)

.. for TOE

CC components catalogues
(CC Part 2, 3 or
user-defined)

Workout of the TOE
summary specification

TOE summary specification (TSS)

... for
environment

SECURITY ENVIRONMENT

SECURITY OBJECTIVES

SECURITY REQUIREMENTS

SECURITY FUNCTIONS, MECHANISMS AND MEASURES

S
TP

P

TOE EVALUATION AND IMPLEMENTATION

... functional
requirements

for TOE

... for
environment

... assurance
requirements

for TOE

Identification of
security environment

Identification of
security objectives

Workout of the
security requirements

Fig. 2.1. General scheme of IT security development process
Rys. 2.1. Schemat ogólny procesu konstruowania zabezpieczeń

On this basis a more detailed scheme of elaborating Protection Profiles and Security
Targets was worked out, presented in the Fig. 2.2. After each stage a rationale process is

2.2. Developers’ needs with respect to the IT security development support 37

required and the compiled security model is getting more and more precise. Different means
and methods are used for security model expression at these stages. Please note that the
Common Criteria include semiformal specification means, called functional and assurance
components, though they can be used only on the requirements specification level (Table
2.1).

START

Descriptors and identifiers

PP?

Identification of security environment
(concerns)

Y (PP)

N (ST)

Using PP
only?

N
Y

Establishing the
security

requirements

Identification of security objectives

Objective rationale

Objectives
OK?

Y

N

Other PP
needed?

Y

N
Append PP

Workout of the security requirements

Requirements rationale

Requirements
OK?

N

ST?

Y
N

(PP finished)

Workout of the TOE summary specification (TSS)

TOE summary specification rationale

TSS OK?

Descriptors and identifiers
update

Y
ST finished

END

Changing
objectives
needed?

N

Y

Changing TSS is
enough?

N

Changing
requirements

needed?

Y

Changing
environment

needed?

N

Change
environment?

Y
N

Y

N

N

Y

Y

Fig. 2.2. Security Target (ST) and Protection Profile (PP) development process
Rys. 2.2. Konstruowanie zadania zabezpieczeń (ST) i profilu zabezpieczeń (PP)

38 2. Concept of the IT Security Development Framework

Functional requirements, designed for safeguards functionality modelling, are expressed
with the use of functional components taken from [39], according to the functional paradigm
defined there. Assurance requirements, designed for assurance (safeguards “reliability and
credibility”) modelling, are expressed with the use of assurance components taken from [40],
meeting the declared EAL and evidences. The CC standard provides hierarchically ordered
means (class –> family –> component) for specifying functional and assurance requirements
only. For the other model stages precise verbal descriptors are used, sometimes formed as
simple generics.

Table 2.1
The specification means at any stage of the IT security development process

IT security
development stage

Used specification means Proposed specification means

TOE description Informal (textual) Informal (textual),
semiformal UML models

Security environment
(problem)

Informal (textual, simple
generics)

Semiformal, enhanced
generics

Security objectives Informal (textual, simple
generics)

Semiformal, enhanced
generics

Requirements:
• functional for

the TOE
Semiformal CC functional
components

Semiformal CC functional
components

• assurance for
the TOE

Semiformal CC assurance
components

Semiformal CC assurance
components

• functional for
the environment

Informal (textual, simple
generics)

Semiformal, enhanced
generics or semiformal CC
functional components

• assurance for
the environment

Informal (textual, simple
generics)

Semiformal, enhanced
generics or Semiformal CC
assurance components

Trusted security
functions

Informal (textual, simple
generics)

Semiformal, enhanced
generics

Generics, having features comparable with the semiformal CC components, called there
enhanced generics, were introduced for the first time in [13], but this monograph will provide
a more comprehensive and well formed definition. The enhanced generics have the following
features:
• possibility of parameterization,
• operations on generics – iteration, refinement, assigning value to a parameter or leaving it

uncompleted,
• defining any generic on the basis of the other (derivation), grouping generics by their

domains of application,

2.2. Developers’ needs with respect to the IT security development support 39

• assigning attributes, performing operations,
• building generics chains – proposing solutions to elementary security problems.

Providing the developers with the uniform specification language at any development
stage allows to implement generics and components as the design library for the computer-
aided tool, which makes the development process easier and more effective. Better efficiency
of the IT security development process means the improvement of the specification
preciseness and reduction of the development time and cost.

For IT security development, especially computer-aided, two key issues are important for
developers:
• defining a general scheme of actions provided, with respect to different options – creating

a kind of a roadmap for developers,
• providing developers with means and tools serving for the specification of different

aspects of security models created and refined during the development process.
The solution to these issues is the subject of this monograph. While analysing the

Common Criteria philosophy and the related development process, the most difficult and
complex elements of this methodology were identified. Developers need right support in
these matters. For that reason, the following general assumptions were specified:
• design procedure is compatible with the ISO/IEC TR 15446 standard, but significantly

extended and expressed more precisely with the use of the semiformal, or sometimes even
formal, approach;

• the framework has open general-purpose character, especially convenient for COTS;
• the framework will be provided with the advanced library of the unified specification

means, including enhanced generics, having features mentioned above;
• better focus on problem solving due to the possibility of direct design specification with

the use of the UML;
• the framework facilitates the selection of the right security items (solutions) to cover

other security items (problems);
• there is a risk analyzer built in;
• better support of the design trade-offs dealing with a developed security-related product,
• compatibility with information security management standards, which define the

environment for evaluated security-related products in organizations;
• advanced approach: 2-step rationale process, SOF-claims elaboration, managing the

assurance requirements of different sources;
• better management of the design documentation, including evidence,
• offering features and facilities for self-evaluation of the project;
• providing better composition support and design reusability.

40 2. Concept of the IT Security Development Framework

Better support offered to developers is very important to issue more precise designs in a
shorter time.

2.3. General model of the IT security development framework

The IT security development process can be considered in two aspects:
• as a definitional problem – dealing with a statement of the nature of a thing,
• as a methodological one – concerning the way of doing something,
but each of them within the following domains:
• IT systems modelling domain,
• IT security modelling domain.

It has a big influence on the kinds of models that can be created. The UML-based IT
Security Development Framework should be open to any kind of IT security-related products
or systems that have or do not have their UML model (called there EUM_EntryUML model).
For this reason, at the beginning of the development process it was necessary to create
simple, auxiliary models of these products and systems to capture any relevant product
features in the unified manner. To express and solve the definitional and methodological
problems within the IT systems modelling domain, it is recommended to use the standard
approach, based on the latest UML achievements.

The main objective of this work is to establish a workable structure of the IT security
development system, considered as the framework, evolving into successful implementation.
The IT Security Development Framework and IT security domain models should comply
with the Common Criteria and related standards. To simplify the problem, IT security
development can be considered as the creation of the STs or PPs, understood as the superior
IT security domain models. To achieve this, both definitional and methodological aspects can
be considered in relation to the matter of fact, i.e. designed security-related products (TOE).
The definitional aspect encompasses data structures and objects related to the CC
terminology, like: threats, assumptions, policies, objectives, requirements, security functions,
etc. The methodological aspect deals with coordinated actions attempted at passing from one
development stage to other, like: preparing TOE description, IT environment elaboration
(called “security problem definition”in the latest CC version), risk analyzing, performing the
functional security requirements rationale, prediction of the strength of security functions or
their audit needs. The definitional aspect support is provided by CC-defined components [39-
40] and user-defined generics. The methodological aspect is described on a very general level
in [38] and on a detailed level in [60], but all of them are expressed verbally or semiformally
(CC components), without using UML specification means and ways. The use of UML

2.3. General model of the IT security development framework 41

facilities for elementary development actions e.g. decomposition (top-down) and composition
(bottom-up), will make the developers’ work easier and more effective. They can focus on
a limited number of details and how these details influence the whole at the considered level
of abstraction, i.e. at the considered development hierarchy level.

By using the UML approach in the security modelling domain, all UML benefits [36] can
be achieved. Still, the three major ones are the following:
• easier visualization of STs or PPs structures, behaviours, and relations – at different

levels of abstraction,
• elaborating a set of templates convenient to use in any circumstances,
• documenting the whole process and related decisions.

The IT development both according to the CC and UML modelling is well known.
However, the question how to merge these approaches effectively is the subject of the recent
researches and the challenge for many of them.

The ITSDF_ITSecurityDevelopmentFramework class represents the IT Security
Development Framework as a whole. It is based on Common Criteria and encompasses three
concurrently developed UML-based models (Fig. 2.3):
• the model of the security-related product, called the PM model, presenting its elements,

functionality offered for users, product-concerning requirements and working
environment – related to the technical documentation.

• the security model of the security-related product, called the SM model, created on this
basis of and using the Common Criteria method of specification – related to the security
documentation, i.e. the ST or PP, required for evaluators and other CC consumers,

• the security self-evaluation model, called the SEM model, responsible for the developed
product or system security features assessment, according to the evaluation scheme and
methodology.
The IT Security Development Framework is provided with the security library

(SL_SecurityLibrary class), which makes the whole designing easier.
The ST_Elaboration class is responsible for the ST development process. The

ST_Elaboration class behaviour will be presented later using the finite state machine (see
Fig. 2.6). The PP_Elaboration class will not be discussed there as it is similar to the above
mentioned ST_Elaboration. The classes representing evaluation processes
(STSelfEvaluation, PPSelfEvaluation) will be presented briefly in the chapter dealing
with the evaluation.

The model of the security-related product (PM_ProductModel class) depends strongly on
the domain of application (kind of product). Building such a model corresponds with typical
activities carried out during the UML modelling of IT products or systems, but some product

42 2. Concept of the IT Security Development Framework

or system features have to be emphasized, i.e. those which provide the input for the security
model. It could be assumed that for very many commonly used IT products or systems their
UML-based models exist and their detail levels are enough.

SM_SecurityModel

PM_ProductModel

BCL_BusinessConsumerLevel

UAL_UserAdministratorLevel

DEL_DesignerEvaluatorLevel

SEM_SelfEvaluationModel

ETR_EvaluationTechnicalReport

Existing UML model of the
security-related

product or system
(EUM_EntryUMLmodel)

ITSDF_ITSecurityDevelopmentFramework

SL_SecurityLibrary

+createST()
+openExistingST()
+saveST()

+<<stateAttribute>>
+develstage : byte

ST_Elaboration

+createPP()
+openExistingPP ()
+savePP()

+<<stateAttribute>>
+develstage : byte

PP_Elaboration

+newSTEval()
+openSTEval()
+finalizeSTEval ()

+<<stateAttribute>>
+evalstage : byte

STSelfEvaluation

1

*

1

*

1

*

1

*

+newSTEval()
+openSTEval()
+finalizeSTEval ()

+evalstage : byte
+<<stateAttribute>>

PPSelfEvaluation
ST_SecurityTarget

PP_ProtectionProfle one ETR
can be
for both

Fig. 2.3. PM, SM and SEM models – general concept of the UML IT Security Development Frame-

work, according to the Common Criteria standard
Rys. 2.3. Modele PM, SM, SEM – ogólna koncepcja szkieletowego systemu konstruowania zabezpie-

czeń informatycznych, opartego na UML i zgodnego ze standardem Wspólne krytreria

The problem of creating the model of a security-related product is how to transform
a freely existing UML model (i.e. EUM_EntryUMLmodel) of the product into an auxiliary PM
model. When no UML model exists, creating a simple PM model is recommended. It can be
developed concurrently with the SM model refinement needs. It was assumed that the PM
model, being input to the SM model, should contain the following three basic levels with
elements that partially correspond to elements of ST or PP structures, and partially are their
simple extensions, presented in a more detailed way in security-related products:
• BCL (BCL_BusinessConsumerLevel class) – business and consumer level for sponsors

and managers (buyers) – expresses general information about the product or system
sufficient to select them on the market to meet specific consumer needs,

• UAL (UAL_UserAdministratorLevel class) – user and administrator level –
encompasses information for the product or system users and administrators,

2.3. General model of the IT security development framework 43

• DEL (DEL_DesignerEvaluatorLevel class) – designer and evaluator level – represents
data exchanged between them during the evaluation process performed in the security
labs.
Developers should be able to self-evaluate on the fly the results of their work, making

necessary corrections and improvements as soon as possible. For this reason the development
process has many feedback loops at different stages and these loops are based on different
evaluations of the current results. The most important of these checks can be performed at the
final stage of the work almost in the same way as it was done with independent security lab
during the official evaluation/certification process.

This possibility is provided by the third part of the IT Security Development Framework
presented there, i.e. by the IT security self-evaluation framework built in the ITSDF
framework. It is represented by the SEM self-evaluation model (SEM_SelfEvaluationModel
class). Simplifying the problem, the IT security evaluation process is related to the creation of
the formalized, ETR-type document (Evaluation Technical Report) that summarizes its
efforts and achieved results. The SEM model allows to imagine how the developer’s work
will be evaluated by an independent body. Please note that SEM represents the data
concerning supportive, internal evaluation made by the developer, the DEL model contains
almost the same data, however exchanged between the developer and evaluator during the
real evaluation process.

The SM model is compliant with the Security Target (ST) – Fig. 2.4 or Protection Profile
(PP) – Fig. 2.5 structures, well defined within the CC standard. The Fig. 2.4 shows classes
representing the developed ST data structures and classes responsible for their development.
The monograph is focused on the ST elaboration which is a more comprehensive task than
the PP workout.

The development of IT security encompasses the following main tasks:
• building the PM model,
• development of the SM model.

It is assumed that the development of PM does not have to be completed, but must be
refined enough to provide some input data for the development process of the SM model. The
development of SM corresponds to the main stages of creating PP/ST specification and each
of the stages will be successively expressed.

The IT development framework has two views corresponding to the above mentioned
models:
• horizontal view expressed by the PM model,
• vertical view expressed by the SM model.

44 2. Concept of the IT Security Development Framework

SM_SecurityModel

BCL_BusinessConsumerLevel

+createST()
+openExistingST()
+saveST()

+<<stateAttribute>>
+develstage : byte

ST_Elaboration

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

BCLWorkout

STIntroduction

ST_SecurityTarget

TOESecurityEnvironment

SecurityObjectives

SecurityRequirements

TSS_TOESummarySpecification

PPclaims

SecObjectiveRationale

1

1

1

1

1

1

1

1

TSSRationale

SecReqsRationale

STRationale

1

1

1

1

STRationaleElaboration

1
1

1

1

1

1

1

1

1

1

1

1

ITSDF_ITSecurityDevelopmentFramework1

*

1

1

SL_SecurityLibrary

1 1

1

1

C
la

ss
es

 e
xp

re
ss

in
g

th
e

ST
 a

nd
 B

CL
 d

at
a

st
ru

ct
ur

es

Cl
as

se
s

re
sp

on
si

bl
e

fo
r t

he
 B

C
L

m
od

el
 a

nd
 S

T
el

ab
or

at
io

n

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

STIntroWorkout

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

TOESecEnvElaboration

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

TOESecObjElaboration

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

TOEReqsElaboration

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

TSSElaboration

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

TSSRationaleElabor

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

SecReqsRationaleElabor

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

SecObjRationaleElabor

+forward()
+back()

+<<stateAttribute>>
+stagestatus : byte

PreparePPclaims

Existing UML model of the
security-related

product or system
(EUM_EntryUMLmodel)

Fig. 2.4. Security Target (ST) and its elaboration
Rys. 2.4. Zadanie zabezpieczeń (ST) i jego konstruowanie

2.3. General model of the IT security development framework 45

It is recommended to use security engineering principles and methods together with the
presented IT Security Development Framework, although none of them is especially
preferred.

PPIntroduction

PP_ProtectionProfle

TOESecurityEnvironment

SecurityObjectives SecurityRequirements

PPRationale1

1

1

1

1
1

Fig. 2.5. Protection Profile (PP) as the set of classes (aggregation)
Rys. 2.5. Profil zabezpieczeń (PP) jako zbiór klas (agregacja)

The presented ITSDF framework has built-in facilities for capturing interactions and
relations between the IT system and its environment, allowing to define the developed
products more precisely, giving no restriction on the used development method (e.g. software
engineering).

The auxiliary PM model does not have to be a full UML product description. Its precision
should be adequate to its possibility to sample all features needed to build an SM model. It
can be created on the basis of technical documentation or on the basis of parts of the existing
UML products or system models.

2.4. IT security development process as a state machine

The ST or PP are the basic artefacts issued on the output of the development process.
This process can be expressed as a simple state machine in which all development stages are
states that have their own substates. It will be shown for the ST, as a more complex example
than PP (Fig. 2.6). The discussed state machine is the implementation of classes responsible
for the ST development, placed on the left part of the Fig. 2.4.

Due to the complexity of the problem, all stages will be refined in the next chapters on
separate diagrams (UML notes show their figure numbers), representing the above mentioned
internal state machines of particular stages. A simple transition control mechanism, one of
many possible ones, was assumed. It is very intuitive because it is similar to the IT security
developers’ activities. As it is not shown in the Fig. 2.62, a short comment will be necessary.

2 The transition control between the development stages is explained in the Fig. 4.3, as in the first discussed

development stage example.

46 2. Concept of the IT Security Development Framework

Two enumeration variables are introduced to control the IT security development process.
The enumeration type indicating the current development stage is defined for the ST3 as
follows (see the state attribute develstage in the Fig. 2.3):

Definition 2.1: Semantics of the state attribute expressing the current IT security
development stage – see details about semantics of the enumeration types included in the
Appendix B.

The semantics of enumeration type tdevelstage ∈ TE of the develstage state attribute is the
function:
 I(tdevelstage) = literals(tdevelstage) {U ⊥ }.
The following interpretation of literals of type tdevelstage is assumed:
 I(e1) = I(BCL): “Business/consumer level model elaboration”,
 I(e2) = I(ST_INTRO): “ST introduction elaboration”,
 I(e3) = I(SEC_ENV): “Security environment/concerns elaboration”,
 I(e4) = I(SEC_OBJ): “Security objectives elaboration”,
 I(e5) = I(SEC_REQ): “Security requirements elaboration”,
 I(e6) = I(TSS): “TSS elaboration”,
 I(e7) = I(PP_C): “Preparing PP claims”,
 I(e8) = I(SEC_OBJ_RAT): “Security objectives rationale”,
 I(e9) = I(SEC_REQ_RAT): “Security requirements rationale”,
 I(e10) = I(TSS_RAT): “TSS rationale”.

The second enumeration type expresses the development status of the given stage,
showing overall progress of the whole IT security development process. It concerns any ST
(see Fig. 2.4) or PP (Fig. 2.5 – not discussed) stage.

Definition 2.2: Semantics of the state attribute expressing the development status of the
given stage.

The semantics of enumeration type tstagestatus ∈ TE of the stagestatus state attribute is the
function:
 I(tstagestatus) = literals(tstagestatus) {U ⊥ }.
The following interpretation of literals of type tstagestatus is assumed:
 I(e1) = I(ELABORATED): “Under development”,
 I(e2) = I(CHECKED): “After positive checkings dealing with the specification
completeness, coherency, mapping of items, justifications, correctness, etc., performed at the
end of the stage”,
 I(e3) = I(CLOSED): “All stages are checked positively, rationale finished”.

Every state (expressed by the develstage) has entry and exit actions. At the exit of the
state, a general review of the specification issued during the current stage is performed

3 For the PP, not discussed there, the develstage can be defined similarly, expressing each PP development
stage.

2.4. IT security development process as a state machine 47

(checking: completeness, coherency, items covered by other items, issued justifications,
correctness, etc. – discussed later).

BCL workout

EUM analyzing

Done

EUMexists

ST introduction workout

forward(develstate) back(develstate)

TOE security environment

forward(develstate) back(develstate)

TOE security objectives

forward(develstate) back(develstate)

TOE requirements elaboration

TSS for ST workout

back(develstate)

back(develstate)

forward(develstate)

forward(develstate)

Prepare PP claims

back(develstate)

forward(develstate)

Security objectives rationale

Security requirements rationale

TSS rationale

forward(develstate)

back(develstate)

forward(develstate)

forward(develstate)

back(develstate)

back(develstate)

Done

see Fig. 4-3

see Fig. 4-5, Fig. 4-11

see Fig. 4-4

see Fig. 5-4 and related

see Fig. 6-8 and related

see Fig. 7-7, Fig. 7-14 and related

see Fig. 8-3

trivial, specifying elements shown in the Fig. 9-1

see Fig. 10-3

see Fig. 10-12

see Fig. 10-6

Fig. 2.6. IT security development process as the state machine
Rys. 2.6. Proces konstruowania zabezpieczeń informatycznych jako maszyna stanowa

A positive result allows to go to the next IT security development stage, while a negative
result suggests passing to the current stage or to one of the prior stages to do some
corrections or improvements. The name of the destination state is used as the transition
parameter “develstage”.

48 2. Concept of the IT Security Development Framework

The entry action analyzes the received transition parameter. If it contains the entered state
name, the internal state machine of this stage is put into operation and the processing is
performed, going from one substate to the next, until the final substate is reached. If the
parameter contains other stage name (prior or further stage), the new transition with this
parameter is generated and passed to the next or previous state, regarding the ordered set of
the IT security development stages.

This mechanism allows to pass freely in both directions within the ordered set of stages.
The above mentioned actions have auxiliary meaning, organizing the whole of the
developers’ activities. They are not described directly within the Common Criteria standard,
though they comply with it. The Fig. 2.6 shows only main states. Please remember that all of
them have their internal state machines.

The product model (PM) elaboration will be discussed in the chapter 4. The translation of
the PM model to the security model (SM) during the IT security development process will be
discussed in the chapters 5 through 10, and some issues concerning the evaluation process
will be presented in the chapter 11.

3. GENERICS, FUNCTIONAL AND ASSURANCE COMPONENTS – INTERNAL
DATA REPRESENTATION

The chapter deals with the semiformal means considered as the “specification language”
needed to build security models of the IT product or system. The accuracy of the semiformal,
UML-based model can be improved by the use of the OCL [103]. This approach will also be
applied to the methodology presented there. Moreover, semantic aspects will be considered
by using the results of the author’s earlier works. The semantics of the OCL was developed in
[91], and adopted for the OCL 2.0 specification (for more details see: Appendix A
“Semantics” of [83], and Appendix B of this monograph developed on this basis). Using the
introduced there basic notation and definitions, the syntax and semantics of the developed IT
security models will be presented.

The full compatibility with the formal OCL specification is assumed, though a specific
subset of classes, attributes, and operations will be defined to better express different kinds of
security issues, used by the IT security developers within the framework defined there.
Especially, there is a need to present the developers’ library items – predefined or user-
defined, and items which are elements of any security specification.

The key OCL issue is the class CLASS N, where N is a set of finite, non-empty

names over the given alphabet A. A class represents a common description for a set of
objects having the same properties. Each class induces an object type t

⊆

c ∈T, having the same
name as the class. Please note that CLASS represents all class names possible to define. In
this monograph the subset SICLASS CLASS will be used to represent any security issues

in the security domain. The abstract class SICLASS induces an object type
t

⊆

SIC ∈T. This class is a generalization of other classes defined below, representing different
kinds of security issues, i.e. generics and Common Criteria components, and their taxonomy.
Generally, a four-level taxonomy is assumed:
• high-level description using the defined abstract items – “generic” and “Common Criteria

component”,
• groups of generics and classes of components,
• families of generics and components,

50 3. Generics, functional and assurance components – internal data representation

• generic items and functional/assurance components – concrete items existing in the
library or placed in the specifications.
All these issues will be progressively discussed and finally a formal full-class descriptor

will be presented for the generic items and functional/assurance components used by the
developers.

3.1. Generics as semiformal, UML-based specification means

The following general, informal definition of a generic was assumed:

Definition 3.1: Generic (informal).

A generic is a mnemonic name, expressing the set of common features, behaviours or actions,
relating to different aspects or elements of an IT security system, like subjects, objects,
assumptions for the security environment, organizational security policies, threats, security
objectives for the TOE and its environment, security requirements for the environment,
security functions, as well as vulnerabilities4, risks, and impacts.

The following, dot-notation based, general format of a generic was assumed, which is
very similar to the format of components and simple generics used by the developers. This
notation of generics will be called the “developers’ style”.

Definition 3.2:5 Syntax and semantics of a generic – a general definition.

A generic is a structure of dot-separated fields, where each optional field is marked with
square brackets (a syntax):
 Generic ::=
 [domain.][group.]family.mnemonic[_Dderver][_Iinsnum].
 description.refinement[.genattrib][.genoper()].
The fields can be interpreted as follows (semantics):
• domain – specifies the area of IT applications that the generic concerns; this field allows

to group the generics according to the specific application needs;
• group – specifies the aspects or elements of the assumed IT security model that the

generic applies to; this field allows to group the generics by the security target elements;
• family – provides a more detailed taxonomy for the given group;
• mnemonic – a concise expression of a feature, behaviour, or action; may include

parameters to be a generic too, usually representing assets or subjects;
• _Dderver – where “_D” is a prefix, derver is a successive derived version number (an

identifier); for derver=0 the entire field can be omitted, and this means that this is a basic
version of the generic; this field concerns generics placed in the library and/or security
specification;

4 This definition has a more general meaning. Generics expressing vulnerabilities, risks, impacts and other

security issues are not discussed in this monograph.
5 The main changes, in comparison with the author’s earlier works: „type” replaced by „family”, „version”

by „derver”, „attributes” by „genattrib”, and „group”, “insnum” and ”genoper()”) added.

3.1. Generics as semiformal, UML-based specification means 51

• _Iinsnum – where “_I” is a prefix, insnum is an identifier (a successive number) of
exemplars of the given generic placed in the specification; for insnum=0 the entire field
can be omitted, and this means that only one instance (one exemplar) of the generic is
placed in the specification; this field does not concern generics in the library;

• description – a full description, expressing mnemonic meaning;
• refinement6 – details and interpretations dealing with the “description”; a field attached

by the developer, matching the meaning of a generic to the TOE reality7;
• genattrib – a list of attributes expressing additional features;
• genoper() – a list of internal operations expressing auxiliary aspects derived from other

fields.

Different kinds of attributes and operations will be introduced for specific families and
groups, e.g.:
• assetValue – the value of the asset;
• eventLikelihood – the likelihood of the event concerning a threat,
• riskValueAssess() – risk value concerning the threat;
• preventive, corrective, detective – Boolean flags of the security objectives.

For the domain, group, and family fields the appropriate enumeration types expressing the
generics taxonomy are defined. i.e.: tDOMAIN ∈ TE, tGROUP ∈ TE, tFAMILY T∈ E, while other
fields are mostly String type.

Definition 3.3: Syntax of generic domain.

The Generic field domain is defined as the enumeration type tDOMAIN ∈ TE, where:
literals(tDOMAIN) = {GNR, CRP, COM, DAB, TTP, SCR, USD}.

Definition 3.4: Semantics of generic domain.

The semantics of enumeration type tDOMAIN ∈ TE is a function
 I(tDOMAIN) = literals(tDOMAIN) {U ⊥ }.
The following interpretation of literals of type tDOMAIN is assumed:
 I(e1) = I(GNR): “Common aspects for all applications”,
 I(e2) = I(CRP): “Specific cryptographic applications”,
 I(e3) = I(COM): “Communication, networks aspects, firewalls, intrusion detection or
prevention systems specifics”,
 I(e4) = I(DAB): “Database Management Systems (DBMS)”,
 I(e5) = I(TTP): “Specific applications for Trusted Third Party (TTP)”,
 I(e6) = I(SCR): “Smart cards”,
 I(e7) = I(USD): “User-defined domain”.

6 Defined analogically to the CC components refinements. Usually, the developers precede the component

refinement section by the underlined word „Refinement:”.
7 Not included in the library but added to the project.

52 3. Generics, functional and assurance components – internal data representation

The generic can be considered as the UML class. The Fig. 3.1 shows the abstract class
Generic SICLASS, implying type t∈ GENERIC ∈ TSIC. Please note that the fields of the
generic (see Definition 3.2) can be expressed by the UML class attributes or operations.

Definition 3.5: Basic and auxiliary attributes of a generic.

Let t∈ T be an OCL type, N is a set of finite, non-empty names over alphabet A to be given.
The attributes of the class Generic ∈ SICLASS, defined as a set ATTGeneric of signatures:
 a: tGENERIC → t,
where the attribute name a∈ N, and an implied class type tGENERIC ∈ TSIC, can be expressed
as:
 ATTGeneric =
 {domain: tGENERIC → tDOMAIN,
 group: tGENERIC → tGROUP,
 family: tGENERIC → tFAMILY,
 mnemonic: tGENERIC → String,
 derver: tGENERIC → String,
 insnum: tGENERIC → String,
 description: tGENERIC → String,
 refinement: tGENERIC → String,
 genattrib: tGENERIC → OclType,
-- and auxiliary attributes for the generic management (see chapter 3.3)
 userdefined: tGENERIC → Boolean,
 assignstat: tGENERIC → tASSTAT}, where
tASSTAT ∈ TE and the semantics of the tASSTAT is the function
 I(tASSTAT) = literals(tASSTAT) {U ⊥ }.
The following interpretation of literals of the type tASSTAT is assumed:
 I(e1) = I(NON-EXISTING): “The generic or CC component is not defined yet”,
 I(e2) = I(DEFINED): “The generics or CC components exist in the library”,
 I(e3) = I(ASSIGNED): “Library element was added to the specification”.

Definition 3.6: Basic operations of a generic.

Let t ∈T be an operation result of the OCL type, t1, ... , tn ∈ T be operation parameters of
the OCL types, N is a set of finite, non-empty names over the given alphabet A. The
operations of the class Generic ∈ SICLASS , defined as a set OPGeneric of signatures:
 ω: tGENERIC × t1 × ... × tn → t,
where the operation symbol ω ∈ N, and tGENERIC ∈ TSIC is an implied class type, can be
expressed as:
 OPGeneric =
 {genoper: tGENERIC × OclType × OclType× ..., × OclType → t,
 develsname: tGENERIC String × × String × String → String}.

The first symbol, “genoper” represents any operation defined for a generic, but the
second one, the “develsname”, is used to identify generics objects for a given domain and a

3.1. Generics as semiformal, UML-based specification means 53

given family. The first string-type argument concerns a unique mnemonic of the generic, the
second derver preceded by the prefix _D, and the third – the instance identifier preceded by
the prefix I_. Besides, some other basic attributes and operations can be added to child
classes in the same way.

The Generic class is a generalization of abstract classes representing individual domains,
e.g. GENGeneric, COMGeneric, etc. Every domain generic must have the proper OCL
constraint assigned concerning the domain attribute.

Example 3.1: OCL constraints for domain attribute example.8

GENGeneric
self.domain = #GEN

COMGeneric
self.domain = #COM
�

Expressing generics as UML classes implies another, along with the “developers’ style”,
notation style. It will be called the “UML style”, generally compliant with the UML object
notation including object_name: object_type.

An additional operation is added to the generic class to issue the developers’ style name,
i.e. develsname(). It can be expressed using the OCL notation concerning pre- and post-
conditions for this operation:

GENGeneric::develsname()
-- for generics in the library (it depends on the special
-- attribute assignstat discussed later)
pre: -- none
post: result = self.mnemonic.concat(’_D’.concat(derver))
GENGeneric::develsname()
-- for generics in the specification (it depends on the
-- special attribute assignstat discussed later)
pre: -- none
post: result = self.mnemonic.concat(’_D’.concat(derver(’_I’.concat(insnum))))

�

Assuming that the result, containing the issued generic names that ought to be unique, is
stored in the hypothetical class attribute uniqueName: String, i.e. uniqueName = result,
the uniqueness of the issued generic names can be expressed with the following OCL
constraint:

GENGeneric
self.allInstances->forAll(p1, p2 | p1<>p2 implies
p1.uniqueName <> p2.uniqueName)

�

Please note that the “_Dderver” field assures the uniqueness of the generic names in the
library. The uniqueness of the generic names in the specification is assured by the additional
field “_Iinsnum” to distinguish exemplars of the same generic, usually with different

8 The name of class being a context of the invariant will be underlined as in [WK03].

54 3. Generics, functional and assurance components – internal data representation

parameters assigned. Both these fields will be used to define the function oid(Generic), used
for the UML objects identification, where tGENERIC ∈ TSIC..

Ordering generics by domain has auxiliary meaning and is parallel to ordering them by
group. Let us assume, for further considerations, that domain = constant, e.g. is equal to
#GEN.

+genoper()
+develsname() : string

+domain
+group
+family
+mnemonic
+derver
+insnum
+description
+refinement
+genattrib

Generic

GENGeneric

CRPGeneric USDGeneric

SCRGeneric

TTPGenericDABGeneric

COMGeneric

{domain=#GEN}

{domain=#USD}

{domain=#SCR}

{domain=#TTP}{domain=#DAB}

{domain=#COM}

{domain=#CRP}

Generics by the domain of application

GenDomain
1

*

1

*

1

*
1

*

1
*

1

*

1
*

Fig. 3.1. Generic and generic domains as the UML class diagram
Rys. 3.1. Generyk jako klasa oraz domeny generyków na diagramie klas UML

Definition 3.7: Decomposition of generics with respect to the application domains.

Let SGeneric be a set of all generics and SGENGeneric, SCRPGeneric, SCOMGeneric, SDABGeneric, STTPGeneric,
SSCRGeneric, SUSDGeneric be sets of generics of individual domains. The domains of generics are
disjointed, which can be expressed as follows:
i. SGeneric = SGENGeneric SU CRPGeneric SU COMGeneric SU DABGeneric
 SU TTPGeneric SU SCRGeneric SU USDGeneric,
ii. SGENGeneric S∩ CRPGeneric ∩ SCOMGeneric ∩ SDABGeneric
 S∩ TTPGeneric S∩ SCRGeneric S∩ USDGeneric = ∅ .

Please note that the equivalent OCL-style notation of this property is:
i. Set(tGeneric) = Set(tGENGeneric) U Set(tCRPGeneric) Set(tU COMGeneric) Set(tU DABGeneric)

 Set(tU TTPGeneric) Set(tU SCRGeneric) Set(tU USDGeneric),

ii. Set(tGENGeneric) ∩ Set(tCRPGeneric) ∩ Set(tCOMGeneric) ∩ Set(tDABGeneric)
 Set(t∩ TTPGeneric) ∩ Set(tSCRGeneric) ∩ Set(tUSDGeneric) = ∅ .

The second, and parallel classification of generics with respect to the security model parts
(i.e. security target structure) is provided by the attribute group.

Definition 3.8: Syntax of generic group.

The Generic field group is defined as the enumeration type tGROUP ∈ TE, where:
literals(tGROUP) = {DAgr, Sgr, Tgr, Pgr, Agr, Ogr, REgr, Fgr}.

3.1. Generics as semiformal, UML-based specification means 55

Definition 3.9: Semantics of generic group.

The semantics of enumeration type tGROUP∈ TE is a function
 I(tGROUP) = literals(tGROUP) {U ⊥ }.
The following interpretation of literals of type tGROUP is assumed:
 I(e1) = I(DAgr): “Assets, passive entities – internal or external to the TOE”,
 I(e2) = I(Sgr): “Subjects, active entities – legal or illegal, sources of undesirable

 events”,
 I(e3) = I(Tgr): “Threats concerning the TOE and its environment”,
 I(e4) = I(Pgr): “OSP (Organizational Security Policies) rules”,
 I(e5) = I(Agr): “Assumptions”,
 I(e6) = I(Ogr): “Security objectives for the TOE and its environment”,
 I(e7) = I(REgr): “Security requirements for the TOE environment”,
 I(e8) = I(Fgr): “Trusted security functions”.

The Fig. 3.2 shows abstract class Generic ∈ SiClass as a generalization of generics
classes representing particular groups. Please note specific attributes added for some classes
and OCL constraints concerning the class attribute group that can be specified in the similar
way as in the example 3.1. Some types of generics have paramDAgr/paramSgr attributes
assigned, allowing the parameterization of generics which is discussed later.

Generic
+assetValue
DAgrGeneric

SgrGeneric
FgrGeneric

+paramDAgr
+paramSgr

REgrGeneric

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool

OgrGeneric
+paramDAgr
+paramSgr

AgrGeneric

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool

PgrGeneric

+riskValueAssess () : uint

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+eventLikelihood
+assetValLoss

TgrGeneric

{group=#DAgr}

{group=#Fgr}

{group=#REgr}

{group=#Ogr}

{group=#Agr}{group=#Pgr}

{group=#Tgr}

{group=#Sgr}

Generics by the IT
security issues

GenGroup
1

*

1

*

1
*

1*

1 *
1

*

1

*

1

*

Fig. 3.2. Generic groups
Rys. 3.2. Grupy generyków

Definition 3.10: Decomposition of generics with respect to the generic groups.

Let SGeneric be a set of all generics, and SDAgrGeneric, SSgrGeneric, STgrGeneric, SPgrGeneric, SAgrGeneric,
SOgrGeneric, SREgrGeneric, SFgrGeneric be sets of generics of the individual groups. The groups of
generics are disjointed, which can be expressed as follows:

56 3. Generics, functional and assurance components – internal data representation

i. SGeneric = SDAgrGeneric SU SgrGeneric U STgrGeneric SU PgrGeneric U SAgrGeneric U SOgrGeneric
 SU REgrGeneric SU FgrGeneric,
ii. SDAgrGeneric S∩ SgrGeneric S∩ TgrGeneric ∩ SPgrGeneric ∩ SAgrGeneric S∩ OgrGeneric
 S∩ REgrGeneric ∩ SFgrGeneric = ∅

The next generic attribute (field) – see Definition 3.5 – is the family field. It represents
the set of different enumeration types dedicated to the individual group of generics:
i. Set(tFAMILY) = Set(tDAgrfam) Set(tU Sgrfam) Set(tU Tgrfam) Set(tU Pgrfam)

 Set(tU Agrfam) Set(tU Ogrfam) U Set(tREgrfam) Set(tU Fgr),

ii. Set(tDAgrfam) Set(t∩ Sgrfam) ∩ Set(tTgrfam) ∩ Set(tPgrfam)
 Set(t∩ Agrfam) ∩ Set(tOgrfam) ∩ Set(tREgrfam) ∩ Set(tFgr) = ∅ ,
and tFAMILY. ∈ TE. For each group a set of families is defined that ought to be considered
separately. The real library or specification elements are represented by the particular family
members, i.e. generic items.

Definition 3.11: Syntax of generic families of the group dealing with the assets.

If the Generic field group = #DAgr, the generic field family is defined as the enumeration
type tDAgrfam ∈ TE, where:

literals(tDAgrfam) = {DAD, DAS, DAE, DAP}
and the set of attributes is:
ATTDAgrGeneric = {assetValue},
and the set of operations is:
OPDAgrGeneric = ∅ .

Definition 3.12: Semantics of generic families of the group dealing with the assets.

The semantics of enumeration type tDAgrfam∈ TE is a function
 I(tDAgrfam) = literals(tDAgrfam) {U ⊥ }.
The following interpretation of literals of type tDAgrfam is assumed:
 I(e1) = I(DAD): “Data objects and other assets”,
 I(e2) = I(DAS): “Asset as service”,
 I(e3) = I(DAE): “General purpose assets placed in the TOE IT environment”,
 I(e4) = I(DAP): “General purpose assets placed in physical environment of the TOE”.

The Fig. 3.3 shows the abstract class DAgrGeneric ∈ SiClass as a generalization of
generics classes representing its particular families. The diagram shows a four-level model of
data. The generic items belonging to different families of particular groups represent library
items used to create security specifications.

Definition 3.13: Decomposition of DAgrGeneric with respect to its families.

3.1. Generics as semiformal, UML-based specification means 57

Let SDAgrGeneric be a set of all generics with group = #DAgr, and SDADGen, SDASGen, SDAEGen,
SDAPGen be sets of generics of individual families. The families of DAgrGenerics are
disjointed, which can be expressed as follows:
i. SDAgrGeneric = SDADGen U SDASGen U SDAEGen U SDAPGen,
ii. SDADGen S∩ DASGen ∩ SDAEGen ∩ SDAPGen = ∅ .

Please note that each of the SDADGen SDASGen SDAEGen SDAPGen sets of generics contains its
own elements, i.e. DADItem ∈ SDADGen, DASItem ∈ SDASGen, DAEItem ∈ SDAEGen and DAPItem

 S∈ DAPGen. For example:

DADGen DASGen DAPGenDAEGen

DAgrGeneric

{group=˛#DAgr}

{fa
m

ily
=#

D
AD

}

{fa
m

ily
=#

DA
S

}

{fa
m

ily
=#

DA
P

}

{fa
m

ily
=#

D
AE

}

GenGroup

1

*

1

*

1

*

1

*

GenItem

GenFamily

DADItem DASItem DAPItemDAEItem

Generic

1* 1*1*1*

Fig. 3.3. Generic families expressing data and other assets
Rys. 3.3. Rodziny generyków reprezentujące dane i inne zasoby

• SDADGen = {BioData, CertStore, CipherText, EncKey, HashVal, InputData, OutputData,
PlainText, ...},

• SDASGen = {CryptoAPIServices, SysServices,...}.
The GenItem elements represent the concrete generics of the given family placed in the

library or defined by the developers. The generic family can be decomposed to generics, and
the semantics of generics represented by their description can be defined in the same way as
the groups were decomposed to the families.

All generic items (GenItem), belonging to different families, must have distinct names.
For this reason, the class attribute mnemonic (Fig. 3.1) has the scope=classifier, and is
marked by underlining. It is the key issue in constructing unique generics names (see
develsname() operation), used as the objects identifiers and role names for the navigation
through the model.

Due to large number of generics, the developed UML model is a bit simplified and
abstract classes are used. Each of them is expressed by GenItem or a given family item, e.g.
DADItem, DASItem, OCONItem, TDAItem to express common features or behaviour. Only

58 3. Generics, functional and assurance components – internal data representation

examples of generics can be shown there, and the full list of generics is placed in the
technical documentation [94]. This remark concerns any generic family defined further in this
chapter. Similar simplifications, allowed in the UML modelling, will be introduced later for
the Common Criteria components.

Definition 3.14: Syntax of generic families of the group dealing with the subjects.

If the Generic field group = #Sgr, the generic field family is defined as the enumeration type
tSgrfam ∈ TE, where:

literals(tSgrfam) = {SNA, SAU, SAH, SNH}
and the set of attributes is:
ATTSgrGeneric = ∅ ,
and the set of operations is:
OPSgrGeneric = ∅ .

Definition 3.15: Semantics of generic families of the group dealing with the subjects.

The semantics of enumeration type tSgrfam∈ TE is a function
 I(tSgrfam) = literals(tSgrfam) U { ⊥ }.
The following interpretation of literals of type tSgrfam is assumed:
 I(e1) = I(SNA): “Represents an unauthorized subject (individual, user, process); may
be internal or external to the TOE; usually expresses threat agents”,
 I(e2) = I(SAU): “Represents an authorized subject; may be internal or external to the
TOE; usually expresses legal users or administrators”,
 I(e3) = I(SAH): “Deals with the source of an undesirable event caused by accidental
human actions or errors”,
 I(e4) = I(SNH): “Deals with the source of an undesirable event caused by non-human
actions, deals with physical environment, like fire, flood, earthquake, different disturbances
or technical failures”.

The Fig. 3.4 shows the abstract class SgrGeneric ∈ SICLASS as a generalization of
generics classes representing its particular families and their items.

Definition 3.16: Decomposition of SgrGeneric with respect to its families.

Let SSgrGeneric be a set of all generics with group = #Sgr, and SSNAGen, SSAUGen, SSAHGen, SSNHGen
be sets of generics of individual families. The families of SgrGeneric are disjointed, which
can be expressed as follows:
i. SSgrGeneric = SSNAGen SU SAUGen SU SAHGen SU SNHGen,
ii. SSNAGen ∩ SSAUGen ∩ SSAHGen ∩ SSNHGen = ∅ .

3.1. Generics as semiformal, UML-based specification means 59

SNAGen SAUGen SNHGenSAHGen

SgrGeneric

{group=#Sgr}

{fa
m

ily
=#

SN
A}

{fa
m

ily
=#

SA
U

}

{fa
m

ily
=#

SN
H

}

{fa
m

ily
=#

S
AH

}

GenGroup

1

*

1

*

1

*

1

*

GenItem

GenFamily

Generic

SNAItem SAUItem SNHItemSAHItem

1* 1*1*1*

Fig. 3.4. Subject generic families
Rys. 3.4. Rodziny reprezentujące podmioty

Definition 3.17: Syntax of generic families of the group dealing with the threats.

If the Generic field group = #Tgr, the generic field family is defined as the enumeration type
tTgrfam ∈TE, where:

literals(tTgrfam) = {TDA, TUA, TAA, TIT, TPH, TFM}
and the set of attributes is:
ATTTgrGeneric = {paramDAgr, paramSgr, dealingTOE, dealingEnviron,
eventLikelihood, assetValLoss},
and the set of operations is:
OPTgrGeneric = {riskValueAssess}.

Definition 3.18: Semantics of generic families of the group dealing with the threats.

The semantics of enumeration type tTgrfam∈ TE is a function
 I(tTgrfam) = literals(tTgrfam) {U ⊥ }.
The following interpretation of literals of type tTgrfam is assumed:
 I(e1) = I(TDA): “Concerns direct attacks made by hackers and other intruders,
including users and administrators”,
 I(e2) = I(TUA): “Deals with users’ activities, except their direct, malicious activities”,
 I(e3) = I(TAA): “Concerns administrators’ activities, except their direct, malicious
activities”,
 I(e4) = I(TIT): “Deals with IT aspects – software (flaws, malicious codes, etc.) or
hardware (failures, power disruption, tampering, electromagnetic emanation, etc.)”,
 I(e5) = I(TPH): “Deals with technical infrastructure and physical security of the TOE
environment”,
 I(e6) = I(TFM): “Concerns force majeures, accidents, catastrophes, terrorism acts, and
other undesired events, and failures possible within the TOE environment”.

60 3. Generics, functional and assurance components – internal data representation

More detailed information concerning semantics of the threat families is included in the
Table 3.1 below. The Fig. 3.5 shows the abstract class TgrGeneric SICLASS as a
generalization of generics classes representing its particular families and their items.

∈

Definition 3.19: Decomposition of TgrGeneric with respect to its families.

Let STgrGeneric be a set of all generics with group = #Tgr, and STDAGen, STUAGen, STAAGen, STITGen,
STPHGen, STFMGen be sets of generics of individual families. The families of TgrGeneric are
disjointed, which can be expressed as follows:
i. STgrGeneric = STDAGen SU TUAGen U STAAGen SU TITGen SU TPHGenU STFMGen,
ii. STDAGen ∩ STUAGen ∩ STAAGen ∩ STITGen ∩ STPHGen ∩ STFMGen = ∅ .

TgrGeneric

TITGenTUAGen TAAGen TPHGenTDAGen TFMGen

{group=#Tgr}

{fa
m

ily
=#

TD
A}

{fa
m

ily
=#

TF
M

}

{fa
m

ily
=#

TP
H

}

{fa
m

ily
=#

TI
T}

{fa
m

ily
=#

TA
A}

{fa
m

ily
=#

TU
A}

1

* 1
*

1
*

1

*

1

* 1
*

TUAItemTDAItem TITItemTAAItem TPHItem TFMItem

1

*

1

*

1

*

1

*

1

*

1

*

GenGroup

GenItem

GenFamily

Generic

Fig. 3.5. Generic families dealing with threats
Rys. 3.5. Rodziny generyków dotyczące zagrożeń

Definition 3.20: Syntax of generic families of the group dealing with the security policy
rules.

If the Generic field group = #Pgr, the generic field family is defined as the enumeration type
tPgrfam ∈TE, where:

literals(tPgrfam) = {PIDA, PACC, PADT, PINT, PAVB, PPRV, PDEX, PCON, PEIT,
 PEPH, PSMN, POTL},
and the set of attributes is:
ATTPgrGeneric = {paramDAgr, paramSgr, dealingTOE, dealingEnviron},
and the set of operations is:
OPPgrGeneric = ∅ .

3.1. Generics as semiformal, UML-based specification means 61

Definition 3.21: Semantics of generic families of the group concerning the security policy
rules.

The semantics of enumeration type tPgrfam∈ TE is a function
 I(tPgrfam) = literals(tPgrfam) {U ⊥ }.
The following interpretation of literals of type tPgrfam is assumed:
 I(e1) = I(PIDA): “Deals with identification and authentication”,
 I(e2) = I(PACC): “Specifies access control and information flow control rules”,
 I(e3) = I(PADT): “Concerns accountability and security audit”,
 I(e4) = I(PINT): “Concerns integrity”,
 I(e5) = I(PAVB): “Concerns availability”,
 I(e6) = I(PPRV): “Deals with privacy”,
 I(e7) = I(PDEX): “Specifies general secure data exchange rules”,
 I(e8) = I(PCON): “Deals with confidentiality”,
 I(e9) = I(PEIT): “Deals with the right use of software and hardware within the TOE
 environment”,
 I(e10) = I(PEPH): “Deals with technical infrastructure (media) and physical security of
 the TOE environment”,
 I(e11) = I(PSMN): “Encompasses security maintenance (management) aspects”,
 I(e12) = I(POTL): “Concerns technical solutions and legislation, obligatorily used
 within the organization”.

More detailed information concerning semantics of the OSP families is included in the
Table 3.2 below. The Fig. 3.6 shows the abstract class PgrGeneric SICLASS as
a generalization of generics classes representing its individual families with their items.

∈

Definition 3.22: Decomposition of PgrGeneric with respect to its families.

Let SPgrGeneric be a set of all generics with group = #Pgr, and SPIDAGen, SPACCGen, SPADTGen,
SPINTGen, SPAVBGen, SPPRVGen, SPDEXGen, SPCONGen, SPEITGen, SPEPHGen, SPSMNGen, SPOTLGen be sets of
generics of individual families. The families of PgrGeneric are disjointed, which can be
expressed as follows:
i. SPgrGeneric = SPIDAGen U SPACCGen U SPADTGen U SPINTGen U

 SPAVBGen SU PPRVGen SU PDEXGen U SPCONGen U

 SPEITGen U SPEPHGen SU PSMNGen SU POTLGen,
ii. SPIDAGen S∩ PACCGen ∩ SPADTGen ∩ SPINTGen ∩

 SPAVBGen S∩ PPRVGen ∩ SPDEXGen ∩ SPCONGen ∩

 SPEITGen ∩ SPEPHGen S∩ PSMNGen ∩ SPOTLGen = ∅ .

Definition 3.23: Syntax of generic families of the group dealing with the assumptions for the
environment.

If the Generic field group = #Agr, the generic field family is defined as the enumeration type
tAgrfam ∈TE, where:

literals(tAgrfam) = {AX, AU, AE, AC, AP, AA}
and the set of attributes is:
ATTAgrGeneric = {paramDAgr, paramSgr},

62 3. Generics, functional and assurance components – internal data representation

and the set of operations is:
OPAgrGeneric = ∅ .

PgrGeneric

PINTGenPACCGen PADTGen PAVBGenPIDAGen PPRVGen

PEPHGenPCONGen PEITGen PSMNGenPDEXGen POTLGen

{group=#Pgr}

{fa
m

ily
=#

PD
EX

}

{fa
m

ily
=#

PO
TL

}

{fa
m

ily
=#

PS
M

N}

{fa
m

ily
=#

PE
PH

}

{fa
m

ily
=#

PE
IT

}

{fa
m

ily
=#

PC
O

N
}

{fa
m

ily
=#

PP
RV

}

{fa
m

ily
=#

PA
VB

}

1

*

{fa
m

ily
=#

PI
N

T}

{fa
m

ily
=#

PA
C

C
}

{fa
m

ily
=#

PA
D

T}

{fa
m

ily
=#

PI
D

A}

1*

1

*

1

*

1

*
1

*

1

*

1

*

1

*

1
*1 *1 *

PEPHItemPCONItem PEITItem PSMNItemPDEXItem POTLItem

1

*

1

*

1

*

1

*

1

*

1

*

PINTItemPACCItem PADTItem PAVBItemPIDAItem PPRVItem

1

*

1

*

1

*

1

*

1

*

1

*

GenGroup GenItemGenFamily

Generic

Fig. 3.6. Generic families dealing with OSP rules
Rys. 3.6. Rodziny generyków reprezentujące reguły polityki bezpieczeństwa

Definition 3.24: Semantics of generic families of the group dealing with the assumptions for
the environment.

The semantics of enumeration type tAgrfam∈ TE is a function
 I(tAgrfam) = literals(tAgrfam) U { ⊥ }.
The following interpretation of literals of type tAgrfam is assumed:
 I(e1) = I(AX): “Deals with the relevance of the considered threat”,
 I(e2) = I(AU): “Deals with the intended usage of the TOE”,
 I(e3) = I(AE): “Must be satisfied by the TOE environment (i.e. in a technical or
 physical way)”,
 I(e4) = I(AC): “Deals with the connectivity aspects of the TOE”,
 I(e5) = I(AP): “Deals with the personnel”,

3.1. Generics as semiformal, UML-based specification means 63

 I(e6) = I(AA): “Leads to a choice-given assurance requirement”.

The Fig. 3.7 shows the abstract class AgrGeneric ∈ SICLASS as a generalization of
generics classes representing each of family of this group.

AgrGeneric

AEGenAUGen ACGen APGenAXGen AAGen

{group=#Agr}

{fa
m

ily
=#

AX
}

{fa
m

ily
=#

AA
}

{fa
m

ily
=#

AP
}

{fa
m

ily
=#

AE
}

{fa
m

ily
=#

A
C}

{fa
m

ily
=#

AU
}

1

* 1
*

1
*

1

*

1

*
1

*

AUItemAXItem AEItemACItem APItem AAItem

1

*

1

*

1

*

1

*

1

*

1

*

GenGroup

GenItem

GenFamily

Generic

Fig. 3.7. Generic families dealing with the assumptions
Rys. 3.7. Rodziny generyków dotyczące założeń dla otoczenia zabezpieczeń

Definition 3.25: Decomposition of AgrGeneric with respect to its families.

Let SAgrGeneric be a set of all generics with group = #Agr, and SAXGen, SAUGen, SACGen, SAEGen,
SAPGen, SAAGen be sets of generics of the individual families. The families of AgrGeneric are
disjointed, which can be expressed as follows:
i. SAgrGeneric = SAXGen SU AUGen SU ACGen SU AEGen SU APGenU SAAGen,
ii. SAXGen S∩ AUGen S∩ ACGen ∩ SAEGen ∩ SAPGen ∩ SAAGen = ∅ .

The Fig. 3.8 shows the abstract class OgrGeneric ∈ SICLASS as a generalization of
generics classes representing its individual families and their items. Please note that the OCL
constraints regarding family class attribute for this group and also that the OEITGen, OEPHGen,
OSMNGen concern only the environment.

Definition 3.26: Syntax of generic families of the group dealing with the IT security
objectives for the TOE or its IT environment.

If the Generic field group = #Ogr, the generic field family is defined as the enumeration type
tOgrfam ∈TE, where:

literals(tOgrfam) = {OIDA, OACC, OADT, OINT, OAVB, OPRV, ODEX, OCON,
OEIT, OEPH, OSMN}
and the set of attributes is:

64 3. Generics, functional and assurance components – internal data representation

ATTOgrGeneric = {paramDAgr, paramSgr, dealingTOE, dealingEnviron, corrective,
detective, preventive},
and the set of operations is:
OPOgrGeneric = ∅ .

OgrGeneric

OINTGenOACCGen OADTGen OAVBGenOIDAGen OPRVGen

OEPHGenOCONGen OEITGen OSMNGenODEXGen
{group=#Ogr}

{fa
m

ily
=#

O
DE

X}

{fa
m

ily
=#

O
SM

N
de

al
in

gT
O

E=
fa

lse
}

{fa
m

ily
=#

O
EP

H
de

al
in

gT
O

E=
fa

ls
e}

{fa
m

ily
=#

O
E

IT
de

al
in

gT
O

E=
fa

ls
e}

{fa
m

ily
=#

O
C

O
N

}

{fa
m

ily
=#

O
PR

V}

{fa
m

ily
=#

O
A

VB
}

1
*

{fa
m

ily
=#

O
IN

T}

{fa
m

ily
=#

O
A

CC
}

{fa
m

ily
=#

O
AD

T}

{fa
m

ily
=#

O
ID

A}

1
*

1

*

1

*

1

* 1*
1

*

1

*

1

*

1
1

OEPHItemOCONItem OEITItem OSMNItemODEXItem

1

*

1

*

1

*

1

*

1

*

OINTItemOACCItem OADTItem OAVBItemOIDAItem OPRVItem

1

*

1

*

1

*

1

*

1

*

1

*

GenGroup GenItemGenFamily

Generic

OEIT, OEPH, OSMN
- for the TOE environment
only, the others for both

Fig. 3.8. Generic families dealing with the security objectives
Rys. 3.8. Rodziny generyków dotyczące celów zabezpieczeń

Definition 3.27: Semantics of generic families of the group dealing with the IT security
objectives for the TOE or its IT environment.

The semantics of enumeration type tOgrfam∈ TE is a function
 I(tOgrfam) = literals(tOgrfam) {U ⊥ }.
The following interpretation of literals of type tOgrfam is assumed:
 I(e1) = I(OIDA): “Deals with identification or authentication”,
 I(e2) = I(OACC): “Deals with access control and information flow control rules”,

3.1. Generics as semiformal, UML-based specification means 65

 I(e3) = I(OADT): “Concerns accountability and security audit”,
 I(e4) = I(OINT): “Concerns integrity”,
 I(e5) = I(OAVB): “Concerns availability”,
 I(e6) = I(OPRV): “Deals with privacy”,
 I(e7) = I(ODEX): “Concerns data exchange”,
 I(e8) = I(OCON): “Deals with confidentiality”,
 I(e9) = I(OEIT): “Deals with software or hardware aspects of the TOE environment”,
 I(e10) = I(OEPH): “Deals with technical infrastructure and physical security of the
 TOE environment”,
 I(e11) = I(OSMN): “Deals with security maintenance (management) – all non-IT
 aspects”.

Definition 3.28: Decomposition of OgrGeneric with respect to its families.

Let SOgrGeneric be a set of all generics with group = #Ogr, and SOIDAGen, SOACCGen, SOADTGen,
SOINTGen, SOAVBGen, SOPRVGen, SODEXGen, SOCONGen, SOEITGen, SOEPHGen, SOSMNGen be sets of generics
of individual families. The families of OgrGeneric are disjointed, which can be expressed as
follows:
i. SOgrGeneric = SOIDAGen U SOACCGen SU OADTGen SU OINTGen U

 SOAVBGen SU OPRVGen U SODEXGen SU OCONGen U

 SOEITGen U SOEPHGen SU OSMNGen,
ii. SOIDAGen ∩ SOACCGen S∩ OADTGen ∩ SOINTGen ∩

 SOAVBGen S∩ OPRVGen ∩ SODEXGen ∩ SOCONGen ∩

 SOEITGen ∩ SOEPHGen S∩ OSMNGen = ∅ .

Definition 3.29: Syntax of generic families of the group dealing with the security
requirements for the environment, impossible or difficult to express by functional or
assurance components.

If the Generic field group = #REgr, the generic field family is defined as the enumeration
type tREgrfam ∈TE, where:

literals(tREgrfam) = {REIT, REPH, RENIT},
and the set of attributes is:
ATTREgrGeneric = {paramDAgr, paramSgr},
and the set of operations is:
OPREgrGeneric = ∅ .

Definition 3.30: Semantics of generic families of the group dealing with the security
requirements for the environment, impossible or difficult to express by functional or
assurance components.

The semantics of enumeration type tREgrfam∈ TE is a function
 I(tREgrfam) = literals(tREgrfam) {U ⊥ }.
The following interpretation of literals of type tREgrfam is assumed:
 I(e1) = I(REIT): “Security requirements for the environment – general IT aspects,
difficult to express with the use of functional components”,

66 3. Generics, functional and assurance components – internal data representation

 I(e2) = I(REPH): “Security requirements for the environment dealing with technical
infrastructure or physical security”,
 I(e3) = I(RENIT): “Non-IT security requirements for the environment – difficult to
express with the use of assurance components”.

The Fig. 3.9 shows the abstract class REgrGeneric ∈ SICLASS as a generalization of
generics classes representing its particular families. Please note the OCL constraints
regarding family and dealingTOE class attributes.

Definition 3.31: Decomposition of REgrGeneric with respect to its families.

Let SREgrGeneric be a set of all generics with group = #REgr, and SREITGen, SREPHGen, SRENITGen be
sets of generics of individual families. The families of REgrGeneric are disjointed, which
can be expressed as follows:
i. SREgrGeneric = SREITGen SU REPHGen SU RENITGen,
ii. SREITGen S∩ REPHGen ∩ SRENITGen = ∅ .

Definition 3.32: Syntax of generic family of the group dealing with the security functions.

If the Generic field group = #Fgr, the generic field family is defined as the enumeration type
tFgrfam ∈ TE, where:

literals(tFgrfam) = {F},
and the set of attributes is:
ATTFgrGeneric = ∅ ,
and the set of operations is:
OPFgrGeneric = ∅ .

Definition 3.33: Semantics of generic family of the group dealing with the security functions.

The semantics of enumeration type tFgrfam∈ TE is a function
 I(tFgrfam) = literals(tFgrfam) {U ⊥ }.
The following interpretation of literals of type tFgrfam is assumed:
 I(e1) = I(F): “Security functions derived from the functional security requirements for
the TOE, called “trusted security functions – TSF”.

The Fig. 3.9 shows also the abstract class FgrGeneric ∈ SICLASS being a
generalization of the FGen class. Please note the OCL constraints regarding family and
dealingTOE class attributes. Taxonomy of this group requires further investigation, for this
reason only one family is defined, and its decomposition is trivial.

Definition 3.34: Decomposition of FgrGeneric with respect to its families.

Let SFgrGeneric be a set of all generics with group = #Fgr, and SFGen be a set of generics of this
family. The group FgrGeneric contains only one family FGen:
SFgrGeneric = SFGen.

3.1. Generics as semiformal, UML-based specification means 67

REgrGeneric

REPHGenREITGen RENITGen

{fa
m

ily
=#

R
EP

H
}

{fa
m

ily
=#

RE
N

IT
}

{fa
m

ily
=#

R
EI

T}

{group=#REgr
dealingTOE=false}

FgrGeneric

{group=#Fgr
dealingTOE=true}

FGen

{fa
m

ily
=#

F}

1

*
1
* 1 * 1*

GenGroup

GenItem

GenFamily

Generic

REPHItemREITItem RENITItem FItem

1

*

1

*

1

*

1

*

Fig. 3.9. Generic families dealing with the security requirement for the environment and dealing

with the security functions
Rys. 3.9. Rodziny generyków dotyczące wymagań na zabezpieczenia środowiska oraz dotyczące

funkcji zabezpieczających

The assumed definition of a generic has open character – a new application area or new
security aspects can be added. It shows common rules used to build a generic set
implemented within the application library. It would be very difficult to specify all possible
mnemonics due to their open nature. Thus only general rules will be shown in this example.
Please note that families contain generic items existing in the library and used to build
security specifications.

Example 3.2: Simple and derived generics9 placed in the developer’s library.

DAD.StoredData. Data stored on media
DAD.StoredData_D1. Data stored on flash memory
The latter one is a derived (more compliant with the designer’s needs) version of the above
mentioned.
SNA.CleaningPers. Internal personnel, not authorized to access the server room
OCON.DataEncrypt. Use data encryption
F.DataIntegrityCtrl. Data integrity control function (software or hardware module
representation).

To allow recognition and formal specification of the above mentioned different kinds of
elementary security issues, called generics, the following grammar is proposed.

9 All generics descriptions are shortened in comparison with the descriptions in real projects.

68 3. Generics, functional and assurance components – internal data representation

Definition 3.35: Grammar of generics.

Let us assume:
AN – set of non-terminal symbols,
AT – set of terminal symbols,
P – set of production,
STS – starting symbol of grammar,

The following structure is called Grammar of generics GG :
GG = (AN, AT, P, STS), where:

AN ::= <Generic>,<domain>,<group>,<family>,<mnemonic>,<derver>,<insnum>,
<description>, <refinement>,<GenAttribOp>,<Prefix>,<BasicGen>,<Postfix>,
<MnemParameter>, <RefmPrefix>,<DerVerPrefix>,<InsNumPrefix>,
<AttrPrefix>,<AttrList>,<AttrItem><AttrName>,<AttrValue>,
AT ::= [,], ., <=, (,), :,

-- [,] are used for the specification of the parameter being a generic
-- . (a dot) is used to separate different parts of a generic
-- <= means substitution of value to a parameter or attribute
-- () is used to distinguish a generic operation from generic attributes
-- : separates an attribute, operation or argument name from its type

GNR, CRP, COM, DAB, TTP, SCR, USD
DAgr, Sgr, Tgr, Pgr, Agr, Ogr, REgr, Fgr,
DAD, DAS, DAE, DAP,
SNA, SAU, SAH, SNH,
TDA, TUA, TAA, TIT, TPH, TFM,
PIDA, PACC, PADT, PINT, PAVB, PPRV, PDEX, PCON, PEIT, PEPH, PSMN, POTL,
AX, AU, AE, AC, AP, AA,
OIDA, OACC , OADT, OINT, OAVB, OPRV, ODEX, OCON, OEIT, OEPH, OSMN,
REIT, REPH, RENIT , F

-- the above terminal symbols are previously discussed names of domains, groups and
-- generic families

paramDAD, paramDAS, paramDAE, paramDAP,
paramSNA, paramSAU, paramSAH, paramSNH,

-- the above terminal symbols are previously discussed names of parameters
-- expressing assets or subjects

ANYSTRING, ANYNUMBER, Refinement:, _D, _I, Attributes:, Operation:,
-- ANYSTRING means “sensible” text, name or acronym used by the developers to
express semantics of the security issues
-- ANYNUMBER means the “right” numeric value
-- for the refinement, attribute or operation sections special underlined keywords are
-- used at the beginning

STS ::= <Generic>
P:
<Generic> ::= <Prefix >.<BasicGen> | <BasicGen> | <BasicGen>.<Postfix>
<Prefix> ::= <domain>. | <group>. | <domain>.<group>.
<Postfix> ::= <refinement> | <GenAttribOp> | <refinement>.<GenAttribOp>
<BasicGen> ::= <family>.<mnemonic>.<description> |
 <family>.<mnemonic><derver>.<description> |

3.1. Generics as semiformal, UML-based specification means 69

 <family>.<mnemonic><insnum>.<description> |
 <family>.<mnemonic><derver><insnum>.<description>
<domain> ::= GNR | CRP | COM | DAB | TTP | SCR | USD
<group> ::= DAgr | Sgr | Tgr | Pgr | Agr | Ogr | REgr | Fgr
<family> ::= <DAfamily> | <Sfamily> | <Tfamily> | <Pfamily> | <Afamily> |
 <Ofamily> | <REfamily> | <Ffamily>
<DAfamily> ::= DAD | DAS | DAE | DAP
<Sfamily> ::= SNA | SAU | SAH | SNH
<Tfamily> ::= TDA | TUA | TAA | TIT | TPH | TFM
<Pfamily> ::= PIDA | PACC | PADT | PINT | PAVB | PPRV | PDEX |
 PCON | PEIT | PEPH | PSMN | POTL
<Afamily> ::= AX | AU | AE | AC | AP | AA
<Ofamily> ::= OIDA | OACC | OADT | OINT | OAVB | OPRV | ODEX | OCON | OEIT |
 OEPH | OSMN
<REfamily> ::= REIT | REPH | RENIT
<Ffamily> ::= F
<mnemonic> ::= ANYSTRING | <MnemParameter> |
 <MnemParameter> | <MnemParameter> |
 <MnemParameter><MnemParameter><MnemParameter> |
 <MnemParameter><MnemParameter><MnemParameter><MnemParameter>

-- the max. number of generic-type parameters is assumed as 4
<MnemParameter> ::= ANYSTRING[<paramlist>]ANYSTRING
<paramlist> ::= <paramlist> | <genparam>, <paramlist> |
 <paramlist>,<genparam>

-- list of parameters is recursively defined – generic-type parameter may have many
-- items assigned

<genparam> ::= <paramFamily> | <paramFamily><=<Generic>
-- parameter is left uncompleted or has a generic assigned

<paramFamily> ::= paramDAD | paramDAS | paramDAE | paramDAP | paramSNA |
 paramSAU | paramSAH | paramSNH

-- please note that the allowed parameters represent assets and subjects
<description>::= ANYSTRING
<refinement> ::= <RefmPrefix>ANYSTRING
<RefmPrefix> ::= Refinement:
<derver> ::= <DerVerPrefix>ANYNUMBER
<DerVerPrefix> ::= “_D”
<insnum> ::= <InsNumPrefix>ANYNUMBER
<InsNumPrefix> ::= “_I”
<GenAttribOp>::= <genattrib> | <genattrib>.<genoper> | <genoper>
<genattrib>::= <AttrPrefix><AttrList>
<genoper>::= <OperPrefix><OperList>
<AttrPrefix> ::= Attributes:
<OperPrefix> ::= Operation:
<AttrList> ::= <AttrItem> | <AttrList>,<AttrItem>
<AttrItem> ::= <AttrName> | <AttrName><=<AttrValue> |
 <AttrName>:<AttrType>| <AttrName>:<AttrType><=<AttrValue>
<AttrName> ::= ANYSTRING
<AttrType> ::= ANYSTRING

70 3. Generics, functional and assurance components – internal data representation

<AttrValue> ::= ANYNUMBER | ANYSTRING
<OperList> ::= <OperItem> | <OperList>,<OperItem>
<OperItem> ::= <OperName>() | <OperName>():<OperType> |
 <OperName>(<ArgList>) | <OperName>(<ArgList>):<OperType> |
<OperName> ::= ANYSTRING
<OperType> ::= ANYSTRING
<ArgList> ::= <ArgItem> | <ArgList>,<ArgItem>
<ArgItem> ::= <ArgName> | <ArgName><=<ArgValue> |
 <ArgName>: <ArgType>| <ArgName>:<ArgType><=<ArgValue>
<ArgName> ::= ANYSTRING
<ArgType> ::= ANYSTRING
<ArgValue> ::= ANYNUMBER | ANYSTRING.

The GG grammar issues the set of possible generics. Let us mark it by Γ. It helps to
construct the proper names.

Definition 3.36: Language of generics.

The generics language Γ(GG) specified by the GG grammar is the set of all generics consisting
of the AT terminal symbols derived from the staring symbol STS of the GG grammar:

Γ(GG) = {Generic: Generic ∈ ZG ∧ STS ⇒ Generic },
 GG
where ZG is the set of all generics created by the use of the AT terminal symbols .

Please note that the above generics syntax definition is compatible with the earlier

discussed generics classes definitions. It is much more precise in comparison with the
components definition included within the Common Criteria.

3.2. UML representation of the functional and assurance components

The Common Criteria standard provides developers with a set of components – means for
doing security requirements specifications only – functional [39] and assurance [40]. The
components are well-defined within the standard in a semiformal way. For this reason only
some aspects concerning the components compatibility with generics to integrate them in
a common design library will be briefly discussed. For both kinds of components the same
and a simplified UML class (abstract) representation is assumed, i.e. CCSecComponent.

The UML class CCSecComponent ∈ SICLASS implies the type tCCSecComponent ∈TSIC for
which the UML class attributes and operations can be defined in the same way as for the
generics.

3.2. UML representation of the functional and assurance components 71

Definition 3.37: Basic and auxiliary attributes of a CC component.

Let t∈ T be an OCL type, N is a set of finite, non-empty names over the given alphabet A.
The attributes of the class CCSecComponent ∈ SICLASS, defined as a set ATTCCSecComponent of
signatures:
 a: tCCSecComponent →t,
where the attribute name a∈ N, and an implied class type tCCSecComponent T, can be
expressed as:

∈

 ATTCCSecComponent =
 {class: tCCSecComponent → tCCclass,
 family: tCCSecComponent → tCCFAMILY,
 mnemonic: tCCSecComponent → String,
 description: tCCSecComponent → String,
 refinement: tCCSecComponent → String,
 compattrib: tCCSecComponent → String,
 compnumber: tCCSecComponent → Integer,
 insnum: tCCSecComponent → String,
-- and auxiliary attributes for the component items management (see chapter 3.3)
 userdefined: tCCSecComponent → Boolean,
 assignstat: tCCSecComponent → tASSTAT}, where
tASSTAT ∈ TE and the semantics of the tASSTAT is the function
 I(tASSTAT) = literals(tASSTAT) {U ⊥ }.
The following interpretation of literals of the type tASSTAT is assumed:
 I(e1) = I(NON-EXISTING): “The generic or CC component is not defined yet”,
 I(e2) = I(DEFINED): “The generics or CC components exist in the library”,
 I(e3) = I(ASSIGNED): “Library element was added to the specification”.

Definition 3.38: Basic operations of a CC component.

Let t ∈T be an operation result of the OCL type, t1, ..., tn ∈ T be operation parameters of the
OCL types, N is a set of finite, non-empty names over the given alphabet A. The operations
of the class CCSecComponent ∈ SICLASS, defined as a set OPCCSecComponent of signatures:
 ω: tCCSecComponent × t1 × ... t× n → t,
where the operation symbol ω ∈ N, and tCCSecComponent ∈T is an implied class type, can be
expressed as:
 OPCCSecComponent =
 {compoper: tCCSecComponent × OclType × OclType× ..., × OclType → t,
 dispname: tCCSecComponent String × × String × Integer × String → String}.

The first symbol, “compoper” represents any operation defined for a CC component, but
the second one, the “dispname”, is used to identify CC components objects.

The semantics of the terms concerned with this class depends on the Common Criteria
standard version. These terms were described in details in the standard [39-40], and could not
be discussed there. For the general overview of the security issues presented in the standard,
the enumeration types concerning functional requirements tFunCCclass (FunSecClass – Fig.

72 3. Generics, functional and assurance components – internal data representation

3.10) and assurance requirements tAssCCclass (AssSecClass – Fig. 3.11) will be specified only.
Both UML abstract classes are child classes of the CCSecComponent that means:

Set(tFunCCclass) Set(tU AssCCclass) = Set(tCCclass) and Set(tFunCCclass) Set(t∩ AssCCclass) =

. ∅

Definition 3.39: Syntax of the functional CC components classes.

The class attribute of the FunSecClass ∈ SICLASS UML class is defined as the enumeration
type tFunCCclass ∈ TE, where:

literals(tFunCCclass) = {FAU, FCO, FCS, FDP, FIA, FMT, FPR, FPT,
 FRU, FTA, FTP}.

Definition 3.40: Semantics of the functional CC components classes.

The semantics of the enumeration type tFunCCclass∈ TE is a function
 I(tFunCCclass) = literals(tFunCCclass) U { ⊥ }.
The following interpretation of literals of type tFunCCclass is assumed:
 I(e1) = I(FAU): “Security audit – components dealing with recognizing, recording,
storing and analyzing relevant information concerning security activities”,
 I(e2) = I(FCO): “Communications – components assuring non-repudiation of both the
origin and receipt of the information”,
 I(e3) = I(FCS): “Cryptographic support – components expressing key management
and cryptographic operation”,
 I(e4) = I(FDP): “User data protection – is addressed to access control, information
flow control, internal TOE transfer, residual information protection, rollback, stored data
integrity, data authentication and import/export from/to the outside TOE security functions”,
 I(e5) = I(FIA): “Identification and authentication – encompasses the requirements for
functions to establish and verify the claimed user identity”,
 I(e6) = I(FMT): “Security management – covers different aspects of the security
functions data management (e.g. their attributes, data as banners, etc.)”,
 I(e7) = I(FPR): “Privacy – protecting the user against disclosure and misuse of his/her
identity by others”,
 I(e8) = I(FPT): “Protection of the TOE security functions – covers requirements
addressing the integrity and management of the mechanisms that provide these functions, and
the integrity of their data”,
 I(e9) = I(FRU): “Resource utilization – encompasses the components responsible for
resource availability, like processing or storage capability, including fault tolerance, service
priority and resource allocation”,
 I(e10) = I(FTA): “TOE access – includes components used to control the user’s
sessions with the TOE”,
 I(e11) = I(FTP): “Trusted paths or channels – covers requirements addressing trusted
communication paths (i.e. between the user and the TOE security function) or trusted
communication channels (i.e. between the TOE security function and other trusted IT
products)”.

3.2. UML representation of the functional and assurance components 73

Definition 3.41: Syntax of the assurance CC components classes.

The class attribute of the AssSecClass ∈ SICLASS UML class is defined as the enumeration
type tAssCCclass ∈ TE, where:

literals(tAssCCclass) = {ASE, APE, ACM, ADO, ADV, AGD, ALC,
 ATE, AVA, AMA}.

Definition 3.42: Semantics of the assurance CC components classes.

The semantics of the enumeration type tAssCCclass ∈ TE is a function
 I(tAssCCclass) = literals(tAssCCclass) {U ⊥ }.
The following interpretation of literals of type tAssCCclass is assumed:
 I(e1) = I(APE): “Contents and coherency of the security target”,
 I(e2) = I(ASE): “Contents and coherency of the protection profile”,
 I(e3) = I(ACM): “Configuration management – components responsible for the control
whether functional requirements and specifications are used in the TOE implementation
(integrity of the parts of the TOE, tracking and authorization of changes, etc.)”,
 I(e4) = I(ADO): “Delivery and operation – components addressing correct delivery,
installation, generation and start-up of the TOE”,
 I(e5) = I(ADV): “Development – a very important class concerning the TOE
assurance, encompassing components dealing with the possible levels of abstraction (i.e.
functional specification, high-level design, implementation representation, low-level design),
components for correspondence mapping between various TOE security functions
representations, components concerning TOE security policy model, and components of the
internal structure of these functions (modularity, layering, minimization of complexity)”,
 I(e6) = I(AGD): “Guidance documents – represents the requirements for the TOE user
and the TOE administrator guidance documentation”,
 I(e7) = I(ALC): “Life cycle support – includes components responsible for the
discipline and control of the TOE refinement during its development and maintenance”,
 I(e8) = I(ATE): “Tests – represents the requirements concerning test depth and
coverage, independent testing by evaluators and functional testing by developers”,
 I(e9) = I(AVA): “Vulnerabilities assessment – includes components addressed to
cover channels analysis, the possibility of misuse or incorrect configuration, the possibility to
defeat probabilistic or permutation mechanisms when applied, and general TOE vulnerability
analysis”,
 I(e10) = I(AMA): “Maintenance of assurance – encompasses the requirements to be
applied after the TOE certification, ensuring TOE compliance with its ST when changes
occur within the TOE or its environment (e.g. detecting new threats or vulnerabilities,
changes in user requirements, and bugs removing from the TOE)”.

Each Common Criteria class concerns a general group of the security issues. Classes are
decomposed (see [39-40]) to families, representing sets of common security issues. Each
family contains components, each representing an elementary security requirement that can
be used by the developer, though components have elements as well. It was assumed that the
reader is familiar with the basic Common Criteria issues.

74 3. Generics, functional and assurance components – internal data representation

In the Fig. 3.10 the UML abstract class FunSecClass ∈ SICLASS representing the
functional component, and the general taxonomy “by the component class” is shown. Every
CC component class has its own families, and these contain their CC components (hundreds
of items). The figure shows the four-level model of functional security requirements.

The Fig. 3.10 shows an example of the functional class decomposition. The FCS class
dealing with the cryptographic support has only two families:
• FSC_COP – Cryptographic operation,
• FCS_CKM – Cryptographic key management

FCOreqs

{class=#FAU}

{class=#FCS}

{class=#FCO}

FDPreqs

FCSreqs

FIAreqs

FAUreqs

FMTreqs

FTAreqs

FRUreqs

FTPreqs

FPRreqs

{class=#FRU}

{class=#FTP}

{class=#FTA}

+compoper()
+dispname()

+class
+family
+mnemonic
+description
+refinement
+compattrib
+compnumber
+insnum

CCSecComponent

Note concerning the taxonomy:
"group" of generic is the same
as "class" of component

Common Criteria defined

FunSecClass

1

*

1

*

1

*
1

*

1

*

1

*

1

*

1

*

1

*

1

*

FunComp

FunCompFamily

FCS_CKMFCS_COP

FCS_COP_1 FCS_CKM_1 FCS_CKM_2 FCS_CKM_3 FCS_CKM_4

1 *

1* 1 *

1
1 1 *

1

1

FCS class
decomposition

FPTreqs
{class=#FPT}

{class=#FPR}

{class=#FMT}

{class=#FIA}

{class=#FDP}

Fig. 3.10. Functional security requirements elements for the TOE and its environment
Rys. 3.10. Wymagania funkcjonalne bezpieczeństwa dla przedmiotu oceny (TOE) i jego środowiska

The first family has only one component having the same name as the family:
• FCS_COP.110 – Cryptographic operation.

The second family has four components:
• FCS_CKM.1 – Cryptographic key generation,
• FCS_CKM.2 – Cryptographic key distribution,

10 To avoid conflicts with OCL dot-separated notation, sometimes the dots in the components name will be
replaced by the underscored characters.

3.2. UML representation of the functional and assurance components 75

• FCS_CKM.3 – Cryptographic key access,
• FCS_CKM.4 – Cryptographic key destruction.

A similar four-level model of security requirements, though dealing with the CC
assurance components, is shown in the Fig. 3.11.

{class =#ADV}

Note concerning the taxonomy:
"group" of generic is the same
as "class" of component

AGDreqs

ADOreqs

ADVreqs

ALCreqs

ACMreqs

ATEreqs

AMAreqs

AVAreqs

Common Criteria defined

AssSecClass

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

+compoper()
+dispname()

+class
+family
+mnemonic
+description
+refinement
+compattrib
+compnumber
+insnum

CCSecComponent

AssComp

AssCompFamily

ADV class
decomposition

ADV_FSP

ADV_HLD_1

1

*

ADV_HLD ADV_IMP ADV_LLD ADV_SPMADV_RCRADV_INT

ADV_HLD_5ADV_HLD_4ADV_HLD_3ADV_HLD_2

{class=#ACM}

{class =#ADO}

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1
*

1
*1 *1 *

Only ADV_HLD
components are shown

{class=#AVA}

{class=#ATE}

{class=#ALC}

{class=#AGD}

{class=#AMA}

Fig. 3.11. Assurance security requirements elements for the TOE and its environment
Rys. 3.11. Wymagania uzasadniające zaufanie dla przedmiotu oceny (TOE) i jego środowiska

All Assurance components are represented by the abstract class AssSecClass ∈

SICLASS. The Fig. 3.11 shows an example of the assurance class decomposition.
The ADV class dealing with the TOE development has seven families:

• ADV_FSP – Functional specification,
• ADV_HLD – High-level design,
• ADV_IMP – Implementation representation,
• ADV_INT – TSF internals,
• ADV_LLD – Low-level design,
• ADV_RCR – Representation correspondence,
• ADV_SPM – Security policy modelling.

76 3. Generics, functional and assurance components – internal data representation

As an example the decomposition of the family ADV_HLD is shown. This family has
five components:
• ADV_HLD.1 – Descriptive high-level design,
• ADV_HLD.2 – Security enforcing high-level design,
• ADV_HLD.3 – Semiformal high-level design,
• ADV_HLD.4 – Semiformal high-level explanation,
• ADV_HLD.5 – Formal high-level design.

These figures (Fig. 3.10, Fig. 3.11) deal with the Common Criteria version 2.1. The
rearrangement and simplification introduced with the latest 3.1 standard version have no
essential meaning for the methodology presented there. The figures present classes of the
functional and assurance requirements.

Please note that similar data structures for the generics and components are assumed,
which is important for the software implementation. A class of Common Criteria components
corresponds to a group of generics. Components in the specification, as generics, can be
represented by many instances distinguished by the insnum attribute. The UML class
representing the CC component has an additional operation to issue the developers’ style
name, i.e. dispname(). It can be expressed using the OCL notation, as follows:

CCSecComponent
-- assumption: the class attribute family contains
-- the part of CC family name only, located after
-- the prefix “_”, e.g.”HLD”, not “ADV_HLD”,
-- for components in the library
self.dispname()=
self.class.concat
 (’_’.concat(family.concat(‘.’.concat(compnumber))))
-- for components in the specification
self.dispname()=
self.class.concat
 (’_’.concat(family.concat(‘.’.concat
 (compnumber(’_I’.concat(insnum)))))).
�

3.3. Generics and components as security specification elements

Please note that the presented above generics and components are only the specification
means, a “language” to build real IT security specifications, i.e. the security models (SM).
There is a need to distinguish the generics or components placed in the developer’s library
from those used as the elements of the security model specification, called “assigned”.
Moreover they can be generics or components of the additional two categories: predefined
and placed in the library and defined by developers.

3.3. Generics and components as security specification elements 77

+<<stateAttribute>>
+usersdefined : bool
+assignstat : byte

Generic

+assignGenItem()
+deassignGenItem()
+refineGenItem()
+mergeGenItems()
+assignCCSecComp()
+deassignCCSecComp()
+refineCCSecComp()

SM_SecurityModel

+<<stateAttribute>>
+usersdefined : bool
+assignstat : byte

CCSecComponent

+defineGenItem()
+removeGenItem()
+modifyGenItem()
+defineCCSecComp()
+removeCCSecComp()
+modifyCCSecComp()

SL_SecurityLibrary

{assignstat=#DEFINED} {assignstat=#ASSIGNED}

1

*

1

*

1

*

1

*

{assignstat:
enum {NON-EXISTING, DEFINED, ASSIGNED}}

Fig. 3.12. Security items library and security model elements – status flags and operations
Rys. 3.12. Elementy biblioteki bezpieczeństwa i modelu bezpieczeństwa – atrybuty stanu i operacje

To distinguish these cases, special attributes type <<stateAttribute>> were added to the
Generic and CCSecComponent classes (Fig. 3.12): usersdefined, assignstat, and operations to
manipulate these flags were added to the SL_SecurityLibrary and SM_SecurityModel
classes. The Boolean usersdefined attribute allows to distinguish the generics and/or
components defined by the developer from those predefined .

The Fig. 3.13 presents a simplified state machine reflecting the operations results on the
generics or components flags. The above flags are used to distinguish the elements defined
and placed in the library from those used to build the security specifications.

DEFINEDNON-EXISTING ASSIGNED

defineGenItem

removeCCSecComp

assignCCSecComp

deassignCCSecComp

generics/ components available in the library
(ready-made or defined by the developer)

generics/ components as
the specifications elements

defineCCSecComp

assignGenItem

deassignGenitem

modifyGenItem modifyCCSecComp

removeGenItem

refineGenItem refineCCSecComp

mergeGenItem

Fig. 3.13. Status of generic or component – main transitions
Rys. 3.13. Stany generyka lub komponentu – przejścia podstawowe

The presented operations: defineGenItem(), removeGenItem() and modifyGenItem(),
defined to allow the manipulation on generic-type library elements, can be expressed more
precisely using the OCL constraints. This will be shown by a few examples.

SL_SecurityLibrary::defineGenItem(c:Generic)
pre: not sL_SecurityLibrary->includes(c) and c.assignstat=#NON-EXISTING
post: sL_SecurityLibrary=
 sL_SecurityLibrary@pre->including(c) and c.assignstat=#DEFINED
�
SL_SecurityLibrary::removeGenItem(c:Generic)

78 3. Generics, functional and assurance components – internal data representation

pre: sL_SecurityLibrary->includes(c) and c.assignstat=#DEFINED
post: sL_SecurityLibrary=
 sL_SecurityLibrary@pre->excluding(c) and c.assignstat=#NON-EXISTING
-- and then the corresponding data structure may be deleted or marked for
-- deletion – depending on the application
�
SL_SecurityLibrary::modifyGenItem(c:Generic)
pre: sL_SecurityLibrary->includes(c) and c.assignstat=#DEFINED
-- required modifications and consistency checkings
post: sL_SecurityLibrary->includes(c) and c.assignstat=#DEFINED
�

The operations provided for the manipulation on component-type library elements, i.e.
defineCCSecComp(), removeCCSecComp() and modifyCCSecComp(), can be expressed in a
very similar way:

SL_SecurityLibrary::defineCCSecComp(c:CCSecComponent)
pre: not sL_SecurityLibrary->includes(c) and c.assignstat=#NON-EXISTING
post: sL_SecurityLibrary=
 sL_SecurityLibrary@pre->including(c) and c.assignstat=#DEFINED
�
SL_SecurityLibrary::removeCCSecComp(c:CCSecComponent)
pre: sL_SecurityLibrary->includes(c) and c.assignstat=#DEFINED
post: c sL_SecurityLibrary=
 sL_SecurityLibrary@pre->excluding(c) and c.assignstat=#NON-EXISTING
-- and then the corresponding data structure may be deleted
-- or marked for deletion – depending on the application
�
SL_SecurityLibrary::modifyCCSecComp(c:CCSecComponent)
pre: sL_SecurityLibrary->includes(c) and c.assignstat=#DEFINED
-- required modifications and consistency checkings
post: sL_SecurityLibrary->includes(c) and c.assignstat=#DEFINED
�

The defined generic items can be placed in or removed from the security specification. At
this moment the item changed its status. These operations, i.e. assignGenItem() and
deassignGenItem(), can be expressed by the following constraints:

SM_SecurityModel::assignGenItem(c:Generic)
pre: not SM_SecurityModel->includes(c) and c.assignstat=#DEFINED
post: SM_SecurityModel=
 SM_SecurityModel@pre->including(c) and c.assignstat=#ASSIGNED
�
SM_SecurityModel::deassignGenItem(c:Generic)
pre: SM_SecurityModel->includes(c) and c.assignstat=#ASSIGNED
post: SM_SecurityModel=
 SM_SecurityModel@pre->excluding(c) and
 c.assignstat=#DEFINED
�

Two additional operations are proposed for the manipulations on generic-type
specification elements: refineGenItem(), mergeGenItems():

SM_SecurityModel::refineGenItem(c:Generic)
pre: SM_SecurityModel->includes(c) and c.assignstat=#ASSIGNED
-- required refinements and consistency checkings
post: SM_SecurityModel->includes(c) and c.assignstat=#ASSIGNED
�

SM_SecurityModel::mergeGenItems(main:Generic, aux:Generic)
pre: SM_SecurityModel->includes(main) and main.assignstat=#ASSIGNED and
 SM_SecurityModel->includes(aux) and aux.assignstat=#ASSIGNED
-- when main overlaps aux, both can be merged
-- main item is refined with respect to aux and aux is

3.3. Generics and components as security specification elements 79

-- removed from the specification; consistency checkings of
-- modified main is provided
post: SM_SecurityModel->includes(main) and main.assignstat=#ASSIGNED and
 SM_SecurityModel=
 SM_SecurityModel@pre->excluding(aux) and
 aux.assignstat=#DEFINED
�

For the component-type items only three operations to manipulate them are provided, i.e.
assignCCSecComp(), deassignCCSecComp() and refineCCSecComp(). They can be
expressed using the OCL constraints as well:

SM_SecurityModel::assignCCSecComp(c:CCSecComponent)
pre: not SM_SecurityModel->includes(c) and c.assignstat=#DEFINED
post: SM_SecurityModel=
 SM_SecurityModel@pre->including(c) and c.assignstat=#ASSIGNED

SM_SecurityModel::deassignCCSecComp(c:CCSecComponent)
pre: SM_SecurityModel->includes(c) and c.assignstat=#ASSIGNED
post: SM_SecurityModel= SM_SecurityModel@pre->excluding(c)

and c.assignstat=#DEFINED

SM_SecurityModel::refineCCSecComp(c:CCSecComponent)
pre: SM_SecurityModel->includes(c) and c.assignstat=#ASSIGNED
-- required refinements and consistency checkings
post: SM_SecurityModel->includes(c) and c.assignstat=#ASSIGNED

These definitions have very general meaning and deal with all library items or

specification items. Please note that the arguments for these operations will always be
concrete generics, functional components or assurance components.

3.4. Generics association dealing with generics parameterization

Some groups of generics, i.e. TgrGeneric, PgrGeneric, AgrGeneric and OgrGeneric
have parameters, being DAgrGeneric or SgrGeneric generics. The parameterization allows
to express different relationships within the security model with respect to the TOE, its
environment, internal or external assets, legal or illegal subjects, etc. For example the
relationships between threats families and the TOE and its environment were presented in the
Fig. 3.14. For every threat a place of undesirable influence is shown, i.e. a place where
exploiting of the vulnerabilities may occur.

The Table 3.1 presents the threat scenarios – the relationships between generic families
used for the threat specification. Please note threatened assets and threat agents represented
by generics. The Table 3.2 presents the relationships between generic families used for the
OSPs specification. They express different aspects of right behaviour of the entities
(SgrGeneric) concerning the assets (DAgrGeneric), i.e. security policy rules.

80 3. Generics, functional and assurance components – internal data representation

TOE physical environment

TOE IT environment

TOE

TAATFM

TPH

TIT

TDA

TUA

TDA

TDATUA

TUA

TAA

TAA

SAU/SNA/
SAH/SNH

SAU/SNA/
SAH/SNH

SAH/SNH

SNA/SAU

SNA/SAU

SNA/SAU

S
A

U

S
A

U

S
A

U

S
A

U

S
A

U

S
A

U

DAD/DAS

DAP

DAE

Fig. 3.14. Threat families influencing the TOE and its environment
Rys. 3.14. Rodziny generyków zagrożeń odnoszące się do przedmiotu oceny (TOE) i jego środowiska

The similar paramDAgr and paramSgr may occur in AgrGeneric and OgrGeneric
generics specification (see proper class attributes in the Fig. 3.2).

Table 3.1
The common relationships between threats, assets and subject families

Threat family Threatened asset
expressed by the

parameter
(paramDAgr)

Subject – the
trespasser,

expressed by the
parameter

(paramSgr)

Concerns

{family=#TUA} {family=#DAD}
{family=#DAS}

{family=#SAU} Users’ errors/mistakes, negligence

{family=#TAA} {family=#DAD}
{family=#DAS}

{family=#SAU} Administrators’ errors/mistakes,
negligence

{family=#TIT} {family=#DAE} {family=#SAU}
{family=#SNA}
{family=#SAH}
{family=#SNH}

Software (flaws, malicious codes,
etc.) and hardware (failures, power
disruption, tampering,
electromagnetic emanation, etc.)
aspects – accidents, failures
dealing with the TOE IT
environment

{family=#TPH} {family=#DAP} {family=#SAU}
{family=#SNA}
{family=#SAH}
{family=#SNH}

Failures and accidents within the
TOE physical environment
including the technical
infrastructure

3.4. Generics association dealing with generics parameterization 81

{family=#TFM} {family=#DAE} {family=#SAH}
{family=#SNH}

Force majeures, accidents,
catastrophes – global-scale
undesirable events

{family=#TDA} {family=#DAD}
{family=#DAS}
{family=#DAE}
{family=#DAP}

{family=#SNA}
{family=#SAU}

Direct and intentional attacks on
different families of assets
(information, availability, IT
systems and their physical
environment), and also
administrators’ and users’
malicious activities

Please note (see Tables 3.1, 3.2) that not all parameter types (generic family) are allowed
for the given threat, OSP, assumption or security objectives. The operation of the value
assignment to the parameter is expressed by the symbol “<=”. It was assumed that generics
(or components) in the library have parameters unassigned. After placing the generics and/or
components in the specification (assignstat= #ASSIGNED) the parameter can have the right
generic assigned or can be left empty. This is similar to the “uncompleted components”.

Table 3.2
The common relationships between policies, assets and subject families

OSP family Ruled asset
expressed by the

parameter
(paramDAgr)

Ruling subject
expressed by the

parameter
(paramSgr)

Concerns

{family=#PIDA} {family=#DAD}
{family=#DAS}
{family=#DAE}
{family=#DAP}

{family=#SAU}
{family=#SNA}

Identification and authentication
of any authorized actor
attempting to gain access to the
asset

{family=#PACC} {family=#DAD}
{family=#DAS}
{family=#DAE}
{family=#DAP}

{family=#SAU}
{family=#SNA}

Access control and information
flow control rules

{family=#PADT} {family=#DAD}
{family=#DAS}
{family=#DAE}
{family=#DAP}

{family=#SAU}
{family=#SNA}

Accountability and security audit

{family=#PINT} {family=#DAD}
{family=#DAS}
{family=#DAE}
{family=#DAP}

{family=#SAU}
{family=#SNA}
{family=#SAH}
{family=#SNH}

Any aspects of integrity
(information, services, software,
hardware, technical
infrastructure)

{family=#PAVB} {family=#DAD}
{family=#DAS}
{family=#DAE}
{family=#DAP}

{family=#SAU}
{family=#SNA}
{family=#SAH}
{family=#SNH}

Any aspects of availability
(information, services, software,
hardware, technical
infrastructure)

{family=#PPRV} {family=#DAD}
{family=#DAS}

{family=#SAU} Authorized actors’ privacy while
using IT systems and their assets

{family=#PDEX} {family=#DAD} {family=#SAU} Any aspects of the secure data

82 3. Generics, functional and assurance components – internal data representation

exchange by authorized actors
{family=#PCON} {family=#DAD} {family=#SAU} Any aspects of confidentiality of

the information owned by
authorized actors

{family=#PEIT} {family=#DAE} {family=#SAU}
{family=#SNA}
{family=#SAH}
{family=#SNH}

Right use of software or
hardware within the TOE IT
environment

{family=#PEPH} {family=#DAP} {family=#SAU}
{family=#SNA}
{family=#SAH}
{family=#SNH}

Right behaviour within the TOE
physical environment

{family=#PSMN} {family=#DAD}
{family=#DAS}
{family=#DAE}
{family=#DAP}

{family=#SAU}
{family=#SNA}
{family=#SAH}
{family=#SNH}

Compatibility with the
organizational security
management systems

{family=#POTL} {family=#DAD}
{family=#DAS}
{family=#DAE}
{family=#DAP}

{family=#SAU}
{family=#SNA}

Legal and technical compatibility
with the organization where the
TOE will work

The constraints shown in the Table 3.1 or Table 3.2 can be expressed using the OCL
language. Assuming that the types of parameter attributes are: paramDAgr:DAgrGeneric and
paramSgr:SgrGeneric, the constraints can be presented by two examples, each having two
variants:

TgrGenerics
-- deals with the first row of the Table 3.1/variant #1
if family=#TUA then
 ((paramDAgr.family=#DAD or paramDAgr.family=#DAS or paramDAgr->isEmpty) and
 (paramSgr.family=#SAU or paramSgr->isEmpty))
else
 ‘Exception: Not allowed combination of generics parameters!’
endif

TgrGenerics
-- deals with the first row of the Table 3.1/variant #2 (using “self”)
self.family=#TUA and
 ((paramDAgr.family=#DAD or paramDAgr.family=#DAS or paramDAgr->isEmpty) and
 (paramSgr.family=#SAU or paramSgr->isEmpty))
else
 ‘Exception: Not allowed combination of generics parameters!’
endif

PgrGenerics
-- deals with the first row of the Table 3.2/variant #1
if family=#PIDA then
 ((paramDAgr.family=#DAD or paramDAgr.family=#DAS or
 paramDAgr.family =#DAE or paramDAgr.family =#DAP or paramDAgr->isEmpty) and
 (paramSgr.family=#SAU or paramSgr.family =#SNA or paramSgr->isEmpty))
else
 ‘Exception: Not allowed combination of generics parameters!’
endif
PgrGenerics
-- deals with the first row of the Table 3.2/variant #2 (using “self”)

3.4. Generics association dealing with generics parameterization 83

self.family=#PIDA and
 ((paramDAgr.family=#DAD or paramDAgr.family=#DAS or
 paramDAgr.family =#DAE or paramDAgr.family =#DAP or paramDAgr->isEmpty) and
 (paramSgr.family=#SAU or paramSgr.family =#SNA or paramSgr->isEmpty))
else
 ‘Exception: Not allowed combination of generics parameters!’
Endif
�

The parameterization of generics implies special kind of association GenParAssoc,
represented by the association classes existing on the generic group level. In the Fig. 3.15 the
associations between generics representing their parameterization was shown. Please note the
assumed multiplicities and that there were no explicit role names assigned. The
multiplicity = 0 can be interpreted as “a generic has a parameter, but the value, i.e. other
generic, was not assigned”. The class names will be used as the role names.

AgrGeneric
+paramDAgr
+paramSgr

PgrGeneric
+paramDAgr
+paramSgr

TgrGeneric
+paramDAgr
+paramSgr

ParamDA4T

1..*
0..*

SgrGeneric

DAgrGeneric
+assetValue

ParamS4T

1..*
0..*

OgrGeneric
+paramDAgr
+paramSgr

GenParameter

ParamDA4P

1..*
0..*

SgrGeneric

DAgrGeneric
+assetValue

ParamS4P

1..*
0..*

ParamDA4A

1..*
0..*

SgrGeneric

DAgrGeneric
+assetValue

ParamS4A

1..*
0..*

ParamDA4O

1..*
0..*

SgrGeneric

DAgrGeneric
+assetValue

ParamS4O

1..*
0..*

REgrGeneric
+paramDAgr
+paramSgr

ParamDA4RE

1..* 0..*

SgrGeneric

DAgrGeneric
+assetValue

ParamS4RE

1..*
0..*

GenParAssoc

Generic SiAssoc1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

SecAssoc

deals with the mapping
of security issues

Fig. 3.15. The associations of generics concerning their parameterization
Rys. 3.15. Powiązania generyków dotyczące ich parametryzacji

Example 3.3: Parameterized generics.

84 3. Generics, functional and assurance components – internal data representation

TPH.MediaDisposal. Data [paramDAD] is disclosed or inferred from the disposal medium
by an unauthorized [paramSNA <= SNA.CleaningPers]
The first paramDAD was left unassigned which means “any data classified as DAD family”.
The paramSNA represents one of the threat agents, for example SNA.CleaningPers (Example
3.2) could be optionally assigned (marked by “<=”) in the same way as it was allowed for the
components.

The parameters presented in the Fig. 3.15 are generic-type parameters. During the IT
security development process also other types of parameters are used for components, e.g.
numeric, textual, enumerative.

Please note the SiAssoc class representing all kinds of associations and its two
subclasses: GenParAssoc expressing generics parameterization and SecAssoc representing
mapping of the security issues, discussed later.

3.5. Formal approach to the generics parameterization

Apart from the class issue providing a common description for a set of objects having the
same property, there is a need to describe relationships between these classes existing in the
library and/or security model. The general formal definition of association is included in the
Appendix B. The association is concerned with the ASSOC N, where N is a set of finite,

non-empty names over the given alphabet A and with the function associates. Assuming full
compatibility with the formal OCL model, all possible names ASSOC can be used, though
a subset of names SIASSOC ASSOC, representing any associations with the considered

security domain is defined.

⊆

⊆

The first kind of associations, i.e. GenParAssoc is related to the generics
parameterization.

Definition 3.43: Associations of generics concerning their parameterization.

The set of association names concerning parameterization of generics
GenParAssoc SIASSOC ⊆ ASSOC is: ⊆
 GenParAssoc = {ParamDA4T, ParamS4T, ParamDA4P, ParamS4P, ParamDA4A,
 ParamS4A, ParamDA4O, ParamS4O, ParamDA4RE, ParamS4RE},
and the set of related functions associates: GenParAssoc → SICLASS+ can be expressed as:
 as∀ ParamDA4T ∈ParamDA4T, asParamDA4T a 〈 TgrGeneric, DAgrGeneric , 〉
 as∀ ParamS4T ∈ParamS4T, asParamS4T a 〈 TgrGeneric, SgrGeneric , 〉
 as∀ ParamDA4P∈ParamDA4P, asParamDA4P a 〈 PgrGeneric, DAgrGeneric , 〉
 as∀ ParamS4P∈ParamS4P, asParamS4P a 〈 PgrGeneric, SgrGeneric , 〉
 as∀ ParamDA4A∈ParamDA4A, asParamDA4A a 〈 AgrGeneric, DAgrGeneric , 〉
 as∀ ParamS4A∈ParamS4A, asParamS4A a 〈 AgrGeneric, SgrGeneric , 〉

3.5. Formal approach to the generics parameterization 85

 as∀ ParamDA4O∈ParamDA4O, asParamDA4O a 〈 OgrGeneric, DAgrGeneric , 〉
 as∀ ParamS4O∈ParamS4O, asParamS4O a 〈 OgrGeneric, SgrGeneric , 〉
 as∀ ParamDA4RE∈ParamDA4RE, asParamDA4RE a 〈 REgrGeneric,DAgrGeneric , 〉
 as∀ ParamS4RE∈ParamS4RE, asParamS4RE a 〈 REgrGeneric,SgrGeneric . 〉

While every associates function encompasses two groups of generic families, called
Parameterized and Parameter classes, all these cases can be expressed in a more
generalized way, i.e.

 as∀ Param4Parameterized ∈ GenParAssoc,
 asParam4Parameterized a 〈Parameterized, Parameter . 〉

To avoid repeating very similar definitions, the associations concerning parameterization
are defined on the generic group level (abstract classes). The GenParAssoc set of
associations represents the common issues dealing with the parameterization. These
properties are inherited by lower level classes. The particular association deals with the
family member classes, where real generic items have links implied by the associations.

The problem is how to define role names and multiplicities. It was assumed that no
explicitly defined role names exist and the class names on the generic items level will be used
as the role names. According to the UML convention, the class name can be used as a role
name, though after changing its first letter to the lower case. Distinction of the role names is
assured by the distinction of the generic names.

Definition 3.44: Class name to the role name translation.

Let ClassName be a name of the target end class of the association. The role name
 roleName(ClassName)
can be defined as follows:

If ClassName.size=1 then
roleName(ClassName) = ClassName.toLower
else
-- ClassName.size>1
roleName(ClassName) = ((ClassName.substring(1,1)).toLower)).
concat(ClassName.substring(2,ClassName.size))
endif �

Definition 3.45: Role names for associations representing parameterization.

Let asParam4Parameterized ∈ GenParAssoc be an association with the function associates:
 asParam4Parameterizeda 〈Parameterized, Parameter 〉 .
Role names r1, r2, r3, ..., rn for an association are defined by the function:
 roles: GenParAssoc → N+, and asParam4Parameterizeda 〈r1, r2, r3, ...rn 〉 with n≥2,
where:
 i. all role names ought to be distinct: ∀ i, j ∈ {1, ..., n}: i ≠ j r⇒ i ≠ rj,
 ii. for i=1,
 r1 = roleName(ClassName) ∧ ClassName ∈ Set(Parameterized),

86 3. Generics, functional and assurance components – internal data representation

 iii. ∀ i∈{2, ..., n}
 ri = roleName(ClassName) ∧ ClassName ∈ Set(Parameter).

The function roles(asParam4Parameterized) = 〈r1, r2, r3, ...rn 〉 assigns a unique role name to each

class which represents a generic of the right group (see Definition 3.43) participating in the
association. The unique role name is the translation result of the considered class name.

Definition 3.46: Multiplicities for associations representing parameterization.

Let asParam4Parameterized ∈ GenParAssoc be an association with the function associates:
 asParam4Parameterizeda 〈Parameterized, Parameter 〉 .
The function multiplicities(asParam4Parameterized) = 〈M1, M2, M3, ...Mn 〉 assigns to each class ci
participating in the association a non-empty set Mi ⊆ N (N represents natural numbers),
where:
 i. for i=1 M1 =1; c1 ∈ Set(Parameterized),
 ii. ∀ i∈ {2, ..., n} Mi ⊆ N; ci ∈ Set(Parameter).

For the given Parameterized many generics representing families of the Parameter can
be associated that can be expressed as:

Parameterized
self.Parameter = Bag(Parameter).
�

The parameterization may concern the navigation over library and/or specification items.
While the security models are elaborated, the developers ought to be provided with two kinds
of navigation facilities. The first one concerned with parameterization, discussed there, and
the second one concerned with mapping the given security item by others, which will be
discussed later.

The OCL formal model introduces (see Appendix B) the functions participating and
navends. The former one gives the set of associations to which a class belongs. The latter one
returns the set of role names that are reachable (navigable) from a class along all associations
the class participates in. Both functions can be used directly, but their interpretation
concerning parameterization or mapping requires a short discussion.

Please note that the following sets are considered with respect to parameterization:
• SICLASS ⊆ CLASS,
• GenParAssoc SIASSOC ⊆ ASSOC. ⊆

Definition 3.47: Function participating with respect to associations representing
parameterization.

Let asParam4Parameterized ∈ GenParAssoc be an association with the function associates:
 asParam4Parameterizeda 〈Parameterized, Parameter 〉 .

3.5. Formal approach to the generics parameterization 87

Let c be a class c ∈ Set(Parameterized) c ∨ ∈ Set(Parameter),
and both Set(Parameterized), Set(Parameter) ⊆ SICLASS .
The function participating(c) can be considered as a function:
 SICLASS → P(GenParAssoc),
 c {asa Param4Parameterized | asParam4Parameterized ∈ GenParAssoc ∧

 associates(asParam4Parameterized) = 〈 c1, ... , cn 〉
 i ∈ {1, ..., n}: c∃ i = c}.

The function participating(Parameterized) returns the set of associations the class
Parameterized participates in:

participating(TgrGeneric) = {asParamDA4T | asParamDA4T∈ParamDA4T}
 U {asParamS4T | asParamS4T ∈ ParamS4T},

participating(PgrGeneric) = {asParamDA4P | asParamDA4P∈ParamDA4P}
 U {asParamS4P | asParamS4P ∈ ParamS4P},

participating(AgrGeneric) = {asParamDA4A | asParamDA4A∈ParamDA4A}
 U {asParamS4A | asParamS4A ∈ ParamS4A},

participating(OgrGeneric) = {asParamDA4O | asParamDA4O∈ParamDA4O}
 U {asParamS4O | asParamS4O ∈ ParamS4O},

participating(REgrGeneric) = {asParamDA4RE | asParamDA4RE∈ParamDA4RE}
 U {asParamS4RE | asParamS4RE ∈ ParamS4RE}.

The function participating(Parameter) returns the set of associations the class
Parameter participates in:

participating(DAgrGeneric) = {asParamDA4T | asParamDA4T∈ParamDA4T}

{as

U

ParamDA4P | asParamDA4P∈ParamDA4P} {asU ParamDA4A | asParamDA4A∈ParamDA4A} U

{asParamDA4O | asParamDA4O∈ParamDA4O} {asU ParamDA4RE | asParamDA4RE∈ParamDA4RE},

participating(SgrGeneric) = {asParamS4T | asParamS4T ∈ ParamS4T}

{as

U

ParamS4P | asParamS4P ∈ ParamS4P} U {asParamS4A | asParamS4A ∈ ParamS4A} U

{asParamS4O | asParamS4O ∈ ParamS4O} {asU ParamS4RE | asParamS4RE ∈ ParamS4RE}.

Please note that the sets of associations are the same when viewed from both sides:
 Set(participating(Parameterized)) = Set(participating(Parameter)).

Definition 3.48: Function navends with respect to the given association representing
parameterization.

Let asParam4Parameterized ∈ GenParAssoc be an association with the function associates:
 asParam4Parameterizeda 〈Parameterized, Parameter 〉 .
Let c be a class c∈ Set(Parameterized) c ∨ ∈ Set(Parameter),
and both Set(Parameterized), Set(Parameter) ⊆ SICLASS.

88 3. Generics, functional and assurance components – internal data representation

The function navends, returning the set of all role names reachable or navigable from a class
c over a given association asParam4Parameterized, can be defined as:
 SICLASS × GenParAssoc → P(N),

 (c, asParam4Parameterized) {r | associates(asa Param4Parameterized) = 〈 c1, ... , cn 〉
 roles(as

∧
Param4Parameterized) = r〈 1, ... , rn 〉 ∧

 i,j ∃ ∈ {1, ..., n}: (i ≠ j ∧ ci = c ∧ rj =r)}.

Please note that role names are derived from the target end class names. The above
definition of navends is focused on the role names derived from a pair (class, association)
that can be interpreted as a single parameter issue. The generics can have many parameters
and models contain many parameterized generics. For this reason, a more comprehensive
version of the function navends(c) is introduced that returns the set of all role names
reachable from a class c along all associations the class participates in.

Definition 3.49: Function navends with respect to all associations representing
parameterization.

Let asParam4Parameterized ∈ GenParAssoc be an association with the function associates:
 asParam4Parameterizeda 〈Parameterized, Parameter 〉 .
Let c be a class c∈ Set(Parameterized) c ∨ ∈ Set(Parameter),
and both Set(Parameterized), Set(Parameter) ⊆ SICLASS.
The function navends(c), returning the set of all role names reachable from a class c along all
associations asParam4Parameterized, can be defined as:
 SICLASS → P(N),
 c a navends(c, asU

 ing(c)participat erizedam4ParametasParamPar ∈
Param4Parameterized).

3.6. Iteration and refinement of generics

The parameterization of generics is the foundation of their iteration. The iteration is the
use of the same generic (e.g. threat) in the specification many times (instances are numbered)
with different parameters assigned (e.g. assets) to express different aspects of a given security
issue. The iteration allows more consistency and has the same possibility as the iteration for
the CC components. For any generic the developer can add some comments or details as the
generic refinement, to better express the given security issue.

Example 3.4: Iteration and refinement of a generic.

TDA.CrpAnal. Card attacker [paramSNA] may compromise [paramDAD] – user data being
encrypted by the TOE or the key needed to calculate the plain text from cipher text.
Refinement: To perform this attack the intruder has to know the cipher text but is neither able

3.6. Iteration and refinement of generics 89

to use the decryption function of the TOE nor to observe the behaviour of the TOE during the
cryptographic operation.

This (refined) generic has two parameters allowing to assign different but relevant security
issues concerning threatened assets (the first of two is also refined) and attackers, as follows:
DAD.PlainText. Plain document to be encrypted.
Refinement: placed in the smartcard register.
DAD.EncKey. Cryptographic keys used as input parameter for encryption or decryption.
SNA.HighPotenIntrud. Intruder having high level skills, enough resources and deep
motivation to perform a deliberate attack.

The following instances of iterated generics can be considered (the refinement is omitted for
simplification):
TDA.CrpAnal_I011. Card attacker [paramSNA <=SNA.HighPotenIntrud] may compromise
[paramDAD <=DAD.PlainText] – user data being encrypted by the TOE or the key needed
to calculate the plain text from cipher text.
TDA.CrpAnal_I1. Card attacker [paramSNA <=SNA.HighPotenIntrud] may compromise
[paramDAD <=DAD.EncKey] – user data being encrypted by the TOE or the key needed to
calculate the plain text from cipher text.

Please note that the instances are numbered consecutively in the given security project.
The developer can leave a parameter unassigned in the same way as “uncompleted”
components [39-40]. In this case it means “any of the relevant”. The selection operation,
allowed for the components, was not introduced up until now, while it can be easily
performed by the iteration.

3.7. Security association – creating the developer’s supporting chains

The relationships between the generics and/or components of neighbouring IT security
development stages, called the security associations, were added to support the whole
development process. These relationships are used to propose the basic items to cover the
considered item – all items expressed by generics or components. There is a need to
distinguish different kinds of these relations. They are expressed by the association class
SecAssoc which is an integral part of the security library (SL) or the security model (SM) –
Fig. 3.16. This class has enumeration <<stateAttribute>> assocstat attribute expressing the
life cycle of the security relationships that can be defined as follows:

Definition 3.50: Semantics of the enumeration attribute concerning security association life
cycle.

The semantics of the tASSOCSTAT ∈ TE is the function
 I(tASSOCSTAT) = literals(tASSOCSTAT) {U ⊥ }.
The following interpretation of literals of the type tASSTAT is assumed:

11 When 0, the simplified name can be used TDA.CrpAnal

90 3. Generics, functional and assurance components – internal data representation

 I(e1) = I(NON-EXISTING): “The association does not exist”,
 I(e2) = I(PROPOSED): “The association exists on the library level only”,
 I(e3) = I(MAPPED): “The association is used in the security specification, but was not
justified completely yet”,
 I(e4) = I(JUSTIFIED): “The association is used in the specification and is fully
justified – ready for the rationale”.

+<<stateAttribute>>
+assocstat : byte
+usersdefined : bool

SecAssoc

{assocstat: enum {NON-EXISTING, PROPOSED, MAPPED, JUSTIFIED}}

+setAsMapped()
+removeMapping()
+setAsJustified ()
+modifyJustification ()

SM_SecurityModel

+defineAssoc()
+removeAssoc()
+modifyAssoc()

SL_SecurityLibrary

1

*
1

*

Fig. 3.16. The security association class, its state (enumeration-type) attribute and main operations
Rys. 3.16. Klasa powiązania typu “security association”, jej atrybut stanu (typu wyliczeniowego)

i podstawowe operacje

The second, Boolean attribute usersdefined allows to distinguish the relationships
assigned by the developer from the predefined ones. The operations to manipulate
associations were added to the SL_SecurityLibrary and SM_SecurityModel classes. The
Fig. 3.17 presents a simplified state machine reflecting the operations results on the
relationships between a generic and a generic, or between a generic and a component.

PROPOSED

association in the library – defined
and used as the proposed

MAPPED JUSTIFIEDNON-EXISTING

defineassoc()

removeassoc()

setasmapped()

removemapping()

setasjustified()

modifyjustification ()

association in the specification
- from mapping to the final rationale

Fig. 3.17. Changing the status of the security association – main transitions
Rys. 3.17. Zmiany stanu klasy powiązania typu “security association” – podstawowe przejścia

Different types of relationships, on the generic family level, between generics and/or

components imply the set of subclasses of the SecAssoc association class. Please note the
assumed multiplicities and that there were no explicit role names assigned. The multiplicity =
0 can be interpreted as “a generic and/or component has a covering issue, but it was
intentionally removed from the specification by a developer”. The class names will be used
as the role names. Please note that every specification element, called principal, can be
supported by others, supportive, to fully cover the considered issue. They are usually added

3.7. Security association – creating the developer’s supporting chains 91

by the developer during the rationale process. They will be marked on the class diagram as
the UML dependency.

The presented operations: defineAssoc(), removeAssoc() and modifyAssoc(), defined to
allow the manipulation on security associations in the library, can be expressed more
precisely using the OCL constraints, that will be shown by a few examples.

SL_SecurityLibrary::defineAssoc(c:SecAssoc)
pre: not sL_SecurityLibrary->includes(c) and c.assocstat=#NON-EXISTING
post: sL_SecurityLibrary=
 sL_SecurityLibrary@pre->including(c) and c.assocstat=#PROPOSED
�
SL_SecurityLibrary::removeAssoc(c:SecAssoc)
pre: sL_SecurityLibrary->includes(c) and c.assocstat =#PROPOSED`
post: sL_SecurityLibrary=
 sL_SecurityLibrary@pre->excluding(c) and c.assocstat=#NON-EXISTING
-- and then the corresponding data structure may be deleted
-- or marked for deletion – depending on the application
�

SL_SecurityLibrary::modifyAssoc(c:SecAssoc)
pre: sL_SecurityLibrary->includes(c) and c.assocstat=#PROPOSED
-- required modifications and consistency checkings
post: sL_SecurityLibrary->includes(c) and c.assocstat=#PROPOSED
�

All “proposed” associations can be used to create “mapped” associations, meaning
associations placed into the developed specification. These can be justified and finally
“closed” while the entire design is closed after a successful rationale. These operations can
also be refined using the OCL constraints:

SM_SecurityModel::setAsMapped(c:SecAssoc)
pre: not SM_SecurityModel->includes(c) and c.assocstat=#PROPOSED
post: SM_SecurityModel=
 SM_SecurityModel@pre->including(c) and c.assocstat=#MAPPED
�
SM_SecurityModel::removeMapping(c:SecAssoc)
pre: SM_SecurityModel->includes(c) and c.assocstat=#MAPPED
post: SM_SecurityModel=
 SM_SecurityModel@pre->excluding(c) and c.assocstat=#PROPOSED
�
SM_SecurityModel::setAsJustified(c:SecAssoc)
pre: not SM_SecurityModel->includes(c) and c.assocstat=#MAPPED
post: SM_SecurityModel=
 SM_SecurityModel@pre->including(c) and c.assocstat=#JUSTIFIED
�
SM_SecurityModel::modifyJustification(c:SecAssoc)
pre: SM_SecurityModel->includes(c) and
(c.assocstat=#MAPPED or c.assocstat=#JUSTIFIED)
-- required modification and consistency checkings
post: SM_SecurityModel->includes(c) and c.assocstat=#MAPPED
�

The Fig. 3.18 shows default relationships between the security environment and security
objectives generics.

The SecAssoc concerning mapping the security issues and GenParAssoc concerning the
parameterization are subclasses of abstract SiAssoc class.

92 3. Generics, functional and assurance components – internal data representation

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool

OgrGeneric

+paramDAgr
+paramSgr

AgrGeneric

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool

PgrGeneric

+riskValueAssess () : uint

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+eventLikelihood
+assetValLoss

TgrGeneric +whyNeeded : string
+coveringGaps : string
+coveringExtras : string

Ogr4Tgr

1..* 0..*

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool

OgrGeneric

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool

OgrGeneric
+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

Ogr4Pgr

1..* 0..*

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

Ogr4Agr

1..* 0..*

-<<stateAttribute>>
-assocstat : int
-usersdefined : bool

SecAssoc

1

*

1

*
1

*

SiAssoc

GenParAssoc

deals with the
parameterization

Fig. 3.18. The associations of the security environment and security objectives generics
Rys. 3.18. Powiązania między generykami otoczenia zabezpieczeń i celów zabezpieczeń

The Fig. 3.19 shows the proposed security requirements for the security objectives. Both
functional and assurance requirements of the TOE and its environment are considered and
expressed by the CC components. Please note REgrGeneric elements needed for the TOE
environment defined at a very general level.

The Fig. 3.20 shows security functions proposed for the functional security requirements.
The functions are strongly dependent on the application character, and for this reason only
some of their commonly used examples are defined as generics.

The security associations can be discussed with respect to their placement either in the
library or in the model specification. First, let us consider their placement in the security
library (SLM).

3.7. Security association – creating the developer’s supporting chains 93

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

FunSec4Ogr

1..*
0..*

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool

OgrGeneric

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool

OgrGeneric

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

AssSec4Ogr

1..*
0..*

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

REgr4Ogr

1..* 0..*

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool

OgrGeneric

+dispname()

+class
+family
+mnemonic
+description
+refinement

FunSecClass

+dispname()

+class
+family
+mnemonic
+description
+refinement

AssSecClass

{dealingTOE=false} {dealingEnviron=true}

-<<stateAttribute>>
-assocstat : int
-usersdefined : bool

SecAssoc

+paramDAgr
+paramSgr

REgrGeneric

1

*

1

*

1

*

SiAssoc

GenParAssoc

deals with the
parameterization

Fig. 3.19. The associations of the security objectives and security requirements
Rys. 3.19. Powiązania między celami zabezpieczeń a wymaganiami bezpieczeństwa

Starting from the security environment generics, through the security objectives and the
security requirements, and finally reaching the security functions, the “proposed” generics
form chains of elementary security issues. This chain encompasses all proposed designing
issues, starting from the problem, ending at the proposed solution. For this reason, such
chains will be called “supporting chains”. They represent a set of defaults, common issues as
a good starting point for any security related design, during which the security specifications
are elaborated (PP or ST).

Second, the security associations can be discussed with respect to the security
specification (SM model). The proposed generics and/or components, when placed in the
security specification, are called “mapped” and have uncompleted justification.

After the final analysis, the justification is completed and they reach the “justified” status.
This is expressed by the assocstat attribute of the SecAssoc class. The final justification is
related to the rationale stage of the IT security development process.

94 3. Generics, functional and assurance components – internal data representation

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

Fgr4FunSec

1..*
0..*

+dispname()

+class
+family
+mnemonic
+description
+refinement

FunSecClass

FgrGen

-<<stateAttribute>>
-assocstat : int
-usersdefined : bool

SecAssoc SiAssoc

1

*

GenParAssoc

deals with the
parameterization

Fig. 3.20. The associations of the security functional requirements and the security functions
Rys. 3.20. Powiązania między wymaganiami funkcjonalnymi bezpieczeństwa i funkcjami

zabezpieczającymi

The simple generic chain is presented in the example 3.5.

Example 3.5: The generics relationships chain supporting the IT development process.

The presented chain of the proposed generics and components, covering security items needs,
is exemplified by a class diagram shown in the Fig. 3.21, but the Fig. 3.22 presents
corresponding generics on an object diagram. Some of the presented definitions are
parameterized versions of definitions taken from the real Security Target concerning the
smart card controller [87-89].
The entire example, being the continuation of the Example 3.4, concerns one supporting
chain started from the TDAItem threat family generic item, i.e. CrpAnal, though some others
are shown too, i.e. generic classes representing parameters or playing supportive roles to the
principal ones, and association classes. The Fig. 3.21 shows a part of the simplified security
model of a smart card system. This general class diagram, concerning relationships on the
group or family level, can be represented on a more detailed level, showing concrete
exemplars of generic items and/or CC components as the UML objects (Fig. 3.22), which
correspond to the generics in the specification (a security model, please note instances).
Please note that the naming convention of the developers’ style and the UML style (objects
names) is agreed as much as possible. Additionally, please note that the mnemonic name with
the concatenated derived version and instance number is the unique identifier of the generic
of a given family and a group.
Let us consider the chain started at the TDA.CrpAnal_D0_I0 generic instance (the second
instance TDA.CrpAnal_D0_I1, not discussed, only shown), representing the real security
problem, having two parameters assigned: DAD.PlainText, SNA.HighPotenIntrud. Other
presented security environment generics are:

DAD.EncKey. Cryptographic key stored within the TOE register;
DAD.CipherText. Ciphertext stored within the TOE register;
SAU.CardApp. Smart Card operating system (OS) and its application (AP) residing
within the TOE and not being its part.

3.7. Security association – creating the developer’s supporting chains 95

Subjects and assets

Threats, OSPs and assumptions

Security
requirements

Security functions (SF)

DADItem SNAItem SAUItem

TDAItem

OCONItem OEITItem

REITItemFunComp

ParamDA4T

1..*

0..*

ParamS4T

1..*

0..*

ParamDA4O

1..*

0..*

ParamS4O

1..*

0..*

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

FunSec4Ogr
1..*
0..*

FItem

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

Ogr4Tgr
1..*
0..*

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

Fgr4FunSec
1..*
0..*

Security
objectives

ParamDA4O

1..*

0..*

ParamDA4RE

1..*

0..*
ParamS4O

1..*

0..*

ParamS4RE

1..*

0..*

+whyNeeded : string
+coveringGaps : string
+coveringExtras : string

REgr4Ogr

1..*
0..*

+dispname()

+class
+family
+mnemonic
+description
+refinement

FunSecClass

Fig. 3.21. The class diagram concerning the example 3.5 – an example of the generic chain suppor-

ting the IT security development process
Rys. 3.21. Diagram klas dotyczący przykładu 3.5 – przykład łańcucha generyków wspomagającego

konstruowanie zabezpieczeń

To avoid impacts concerning the TDA.CrpAnal_D0_I0 threat, the OCON.BlockCipher TOE
security objective is proposed, supported by the OEIT.StrongKey, OEIT.RespAppl and
OEIT.Tamper TOE IT environment security objectives (see notes on the Fig. 3.22 regarding
simplifications), where:

OCON.BlockCipher. The TOE will implement a cryptographic strong symmetric
block cipher algorithm to ensure the confidentiality of [paramDAD <=
DAD.PlainText] by encryption and to support secure authentication protocols;
OEIT.StrongKey. [paramSAU <= SAU.CardApp] will only use appropriate secret
cryptographic keys (chosen from a sufficient key space and with sufficient entropy) as
input for the TOE cryptographic function;
OEIT.RespAppl. [paramSAU <= SAU.CardApp] will not disclose security relevant
user data, especially the data which will be used as [paramDAD <= DAD.EncKey,
DAD.PlainText] to unauthorized users or processes when communicating with a
terminal;
OEIT.Tamper. The environment will not expose the TOE to attacks which directly
affect or manipulate the device; thus the environment will ensure that security
relevant user data and cryptographic keys will not be disclosed and that the random
number generator will not be manipulated.

96 3. Generics, functional and assurance components – internal data representation

CrpAnal_D0I0:TDAItem

HighPotenIntrud_D0I0:SNAItemPlainText_D0I0:DADItem EncKey_D0I0:DADItem CipherText_D0I0:DADItem CardApp_D0I0:SAUItem

BlockCipher_D0I0:OCONItem

FCS_COP_D1I0:FunComp

DEA_D0I0:FItem

StrongKey_D0I0:OEITItem RespAppl_D0I0:OEITItem

RespAppl_D0I0:REITItem

TamperResist_D1I0:REITItem

Tamper_D0I0:OEITItem

Subjects and assets

Threats, OSPs and assumptions

Security
requirements

Security functions (SF)

Ogr4Tgr

REgr4Ogr
REgr4OgrREgr4Ogr

Fgr4FunSec

FunSec4Ogr

supports supports supports

supports

supports

ParamDA4O

ParamDA4T

ParamS4T

CrpAnal_D0I1:TDAItem

Simplifications :
1. For some objects no links are specified
2. Parameters for supporting objects are not shown

Two TDA.CrpAnal instances
with different parameters

ParamDA4T ParamS4T

An example of the object based
on the derived version of a generic

Fig. 3.22. The object diagram concerning the example 3.5 – objects of the generic chain supporting

the IT security development process
Rys. 3.22. Diagram obiektów dotyczący przykładu 3.5 – obiekty tworzące łańcuch generyków wspo-

magający dobór zabezpieczeń

The specified threat is addressed by the four above mentioned objectives, one principal, i.e.
OCON.BlockCipher, and three others supporting. For the OCON.BlockCipher TOE objective
the following functional requirement component is proposed with its dependable components
(FDP_ITC.1 or FCS_CKM.1, FCS_CKM.4, FMT_MSA.2 [39] – not discussed/shown there):

FCS_COP.1 Cryptographic operation
The TSF shall perform [list of cryptographic operations<=encryption and
decryption] in accordance with a specified cryptographic algorithm [cryptographic
algorithm<= Data Encryption Algorithm (DEA)] and cryptographic key sizes
[cryptographic key sizes<=112 bit (Triple DES-Data Encrypting Standard)] that
meet the following [list of standards<= FIPS PUB 46, ISO 8732].

For both OEIT.StrongKey and OEIT.RespAppl objectives one TOE IT environment
requirement is proposed:

REIT.RespAppl. Developer of the [paramSAU <=SAU.CardApp] ensures non
disclosure of the sensitive data [paramDAD <=DAD.EncKey, DAD.PlainText] to
unauthorized subjects [paramSNA12] during input/output data operations,

while for the OEIT.Tamper the next TOE IT environment requirement is suggested:

12 left unrefined; means “any of this type“

3.7. Security association – creating the developer’s supporting chains 97

REIT.TamperResist_D113. The TOE environment equipment (i.e. card reader) should
provide the TOE physical integrity and enforce its usage in well defined conditions,
detecting symptoms of tamper attacks, and ensuring the used equipment (like: card
readers) resistance to them.

It can be said that the specified objectives are addressed by the above mentioned
requirements. To meet the functional security requirement FCS_COP.1 and its dependencies
the following security function is proposed:

F.DEA. The DEA is a cryptographic module based on a crypto processor
implementing the triple DES algorithm with the key size of 112 bits.

The implementation of the considered supporting chain includes:
 TDA.CrpAnal_D0_I0 –> OCON.BlockCipher –> FCS_COP.1 –> F.DEA
generics or components. Other objects, especially concerning the TOE environment, play an
auxiliary role.
Please note similarities between generics and components parameterization. The example
shows how:
• one of the numerous generics chains, built in the library, can be used to find the common

items, covering the given item at any IT security development stage;
• non-parameterized, “flat” generics so far usually used in real STs or PPs, can be

parameterized to achieve more flexible and reusable solutions.

The above mentioned generics and components deal with the basic (common) relations
only, forming the environmental generics – objectives generics – components – and functions
generics relationships chain.

During the development process some of the “proposed” solutions can be removed,
modified, or quite new can be added to meet specific design needs. The developed library
contains hundreds of generics and numerous relationship chains between them. Each of the
chains is the solution of an elementary IT security problem.

3.8. Formal approach to the security issues mapping

In the chapter concerning generics parameterization the first kind of association was
considered, i.e. GenParAssoc SIASSOC ASSOC. The second group of associations,

represented by the SecAssoc SIASSOC ASSOC and dealing with the mapping of the

security issues in the security library and/or security model, will be discussed now.

⊆ ⊆

⊆ ⊆

The general formal definition of association that will be refined there is included in the
Appendix B.

Definition 3.51: Associations concerning the mapping of the security issues.

The set of association names dealing with the mapping of the security issues (i.e. generics
and/or components) SecAssoc SIASSOC ASSOC is: ⊆ ⊆

13 derived generic; both parentheses (..) contain refining

98 3. Generics, functional and assurance components – internal data representation

 SecAssoc = 〈Ogr4Tgr, Ogr4Pgr, Ogr4Agr, FunSec4Ogr,
 AssSec4Ogr, REgr4Ogr, Fgr4FunSec ,
and the set of related functions associates: SecAssoc → SICLASS

〉
+ can be expressed as:

 as∀ Ogr4Tgr ∈ Ogr4Tgr, asOgr4Tgr a 〈 TgrGeneric, OgrGeneric , 〉
 as∀ Ogr4Pgr ∈ Ogr4Pgr, asOgr4Pgr a 〈 PgrGeneric, OgrGeneric , 〉
 as∀ Ogr4Agr ∈ Ogr4Agr, asOgr4Agr a 〈 AgrGeneric, OgrGeneric , 〉
 as∀ FunSec4Ogr ∈ FunSec4Ogr, asFunSec4Ogr a 〈 OgrGeneric, FunSecClass , 〉
 as∀ AssSec4Ogr ∈ AssSec4Ogr, asAssSec4Ogr a 〈 OgrGeneric, AssSecClass , 〉
 as∀ REgr4Ogr ∈ REgr4Ogr, asREgr4Ogr a 〈 OgrGeneric, REgrGeneric , 〉
 as∀ Fgr4FunSec ∈ Fgr4FunSec, asFgr4FunSec a 〈 FunSecClass, FgrGeneric . 〉

Every associates function encompasses two groups of generics and/or components
families, represented by the IsCovered and Covers classes. The above cases can be
generalized and expressed as follows:

 as∀ Mapping ∈ SecAssoc, asMapping a 〈IsCovered, Covers . 〉

The associations concerning mapping are defined at a very general level, i.e. on the
generic group level (abstract classes). They represent the common issues dealing with the
mapping. These properties are inherited by lower level classes. Real mapping relationships
exist on the generic items and components level, where real library and/or specification items
have links implied by the associations. This way the repetition of very similar definitions can
be avoided.

The role names and multiplicities defining was done in the similar way as for the
parameterization. According to the UML convention, it is possible to use the class name as a
role name, though its first letter has to be changed to the lower case. Distinction of the role
names is assured by the distinction of the generic and component names. The function
translating the class name to the role name roleName(ClassName) can be used – see
Definition 3.44.

Definition 3.52: Role names for associations concerning the mapping of the security issues.

Let asMapping ∈ SecAssoc be an association with the function associates:
 asMappinga IsCovered, Covers . 〈 〉
Role names r1, r2, r3, ..., rn for an association are defined by the function:
 roles: SecAssoc → N+, and asMappinga 〈r1, r2, r3, ...rn 〉 with n≥2,
where:
 i. all role names ought to be distinct: ∀ i, j ∈ {1, ..., n}: i ≠ j r⇒ i ≠ rj,
 ii. for i=1,
 r1 =roleName(ClassName) ClassName ∧ ∈ Set(IsCovered),
 iii. ∀ i∈{2, ..., n}
 ri = roleName(ClassName) ∧ ClassName ∈ Set(Covers).

3.8. Formal approach to the security issues mapping 99

The function roles(asMapping) = 〈r1, r2, r3, ...rn 〉 assigns a unique role name to each class

which represents a generic of the right group (see Definition 3.51) and/or any functional or
assurance component participating in the association.

Definition 3.53: Multiplicities for associations concerning the mapping of the security
issues.

Let asMapping ∈ SecAssoc be an association with the function associates:
 asMappinga IsCovered, Covers . 〈 〉
The function multiplicities(asMapping) = 〈M1, M2, M3, ...Mn 〉 assigns to each class ci
participating in the association a non-empty set Mi ⊆ N (N represents natural numbers),
where:
 i. for i=1 M1 =1; c1 ∈ Set(IsCovered),
 ii. ∀ i∈{2, ..., n} Mi ⊆ N; ci ∈ Set(Covers).

For the given IsCovered many generics representing families of Covers can be
associated which can be expressed as:

IsCovered
self.Covers = Bag(Covers).

Please note that a bag, sometimes called a multi-set, contrary to the set, may contain
multiple copies of an element, e.g. {{1,1,2,3,4,4,5,5}}.

During the elaboration of security models, the developers must be provided with two
kinds of navigation facilities. The first one is concerned with parameterization and was
discussed earlier. The second one is concerned with mapping the given security item by
others and will be presented now. The above defined associations concern neighbouring
development stages, creating some kind of virtual interfaces between them, especially
important for the project rationale. For coverage analysis of the mapped items, the refined
functions participating and navends (see Appendix B) can be used.

Definition 3.54: Function participating with respect to associations concerning the mapping
of the security issues between two development stages.

Let asMapping ∈ SecAssoc be an association with the function associates:
 asMappinga IsCovered, Covers . 〈 〉
Let c be a class c∈ Set(IsCovered) c∨ ∈ Set(Covers),
and both Set(IsCovered), Set(Covers) ⊆ SICLASS.
The function participating(c), can be considered as a function:
 SICLASS → P(SecAssoc),
 c {asa Mapping | asMapping ∈ SecAssoc ∧

 associates(asMapping) = 〈 c1, ... , cn 〉
 i ∈ {1, ..., n}: c∃ i = c}.

100 3. Generics, functional and assurance components – internal data representation

Let us look at associations from the IsCovered class point of view, answering the
question “what issue covers the considered one, what items can be used to solve an
elementary problem”. The function participating(IsCovered) returns the set of associations
the class IsCovered participates in:

participating(TgrGeneric) = {asOgr4Tgr | asOgr4Tgr ∈ Ogr4Tgr},
participating(PgrGeneric) = {asOgr4Pgr | asOgr4Pgr ∈ Ogr4Pgr},
participating(AgrGeneric) = {asOgr4Agr | asOgr4Agr ∈ Ogr4Agr},
participating(OgrGeneric) = {asFunSec4Ogr | asFunSec4Ogr ∈ FunSec4Ogr}
 U {asAssSec4Ogr | asAssSec4Ogr ∈ AssSec4Ogr}

 U {asREgr4Ogr | asREgr4Ogr ∈ REgr4Ogr},

participating(FunSecClass) = {asFgr4FunSec | asFgr4FunSec ∈ Fgr4FunSec}.
Seeing the associations from the Covers class viewpoint, the question is “what issue can

solve the considered item, why is it needed”. The function participating(Covers) returns the
set of associations the class Covers participates in:

participating(OgrGeneric) = {asOgr4Tgr | asOgr4Tgr ∈ Ogr4Tgr}
 U {asOgr4Pgr | asOgr4Pgr ∈ Ogr4Pgr}

 U {asOgr4Agr | asOgr4Agr ∈ Ogr4Agr},

participating(FunSecClass) = {asFunSec4Ogr | asFunSec4Ogr ∈ FunSec4Ogr},
participating(AssSecClass) = {asAssSec4Ogr | asAssSec4Ogr ∈ AssSec4Ogr},
participating(REgrGeneric) = {asREgr4Ogr | asREgr4Ogr ∈ REgr4Ogr},
participating(FgrGeneric) = {asFgr4FunSec | asFgr4FunSec ∈ Fgr4FunSec}.

Definition 3.55: Function navends with respect to the given association concerning the
mapping of the security issues between two development stages.

Let asMapping ∈ SecAssoc be an association with the function associates:
 asMappinga IsCovered, Covers . 〈 〉
Let c be a class c∈ Set(IsCovered) c ∨ ∈ Set(Covers),
and both Set(IsCovered), Set(Covers) ⊆ SICLASS.
The function navends, returning the set of all role names reachable or navigable from a class
c over a given association asMapping, can be defined as:
 SICLASS SecAssoc → P(N), ×

 (c, asMapping) a {r | associates(asMapping) = 〈 c1, ... , cn 〉 ∧
 roles(asMapping) = r〈 1, ... , rn 〉 ∧
 i,j ∃ ∈ {1, ..., n}: (i ≠ j ∧ ci = c ∧ rj =r)}.

The target end class names are used, in the same way as for the parameterization, to
derive the role names. The above definition of navends assumes that the role names derived

3.8. Formal approach to the security issues mapping 101

from a pair (class, association) can be interpreted as a single mapping issue. For more
complex relationships with respect to mapping, a more comprehensive version of function
navends(c) is introduced that returns the set of all role names reachable from a class c along
all associations the class participates in.

Definition 3.56: Function navends with respect to all associations concerning the mapping
of the security issues between two development stages.

Let asMapping ∈ SecAssoc be an association with the function associates:
 asMappinga IsCovered, Covers . 〈 〉
Let c be a class c∈ Set(IsCovered) c ∨ ∈ Set(Covers),
and both Set(IsCovered), Set(Covers) ⊆ SICLASS.
The function navends(c), returning the set of all role names reachable from a class c along all
associations asMapping, can be defined as:
 SICLASS → P(N),
 c a navends(c, asU

 ing(c)participat erizedam4ParametasParamPar ∈
Mapping).

Please note that the navigations are considered there only between classes belonging to

the neighbouring development stages.

3.9. Formal approach to the library and security models specification

Summarizing the discussion on internal data representation for the IT Security
Development Framework, the full descriptor of classes will be presented. It expresses
relationships between hierarchically ordered classes and their properties.

For the security library and the security specifications the four-level taxonomy is assumed
(Fig. 3.23):
• high-level description using the abstract items – generics and Common Criteria

components – the SiClass encompasses both: Generic representing all generics and
CCSecComponent representing the set of functional and assurance components as a whole
specified in the standard; on this level only common properties have been defined;

• groups of generics GenGroup and classes of components FunSecClass, AssSecClass for
general classification of these items; please note different meanings of the word “class” in
the CC standard and the in the UML modelling domains;

• families of generics GenFamily and components FunCompFamily, AssCompFamily –
detailed classification of security issues; associations are considered on this level;

• generic items GenItem and functional (FunComp)/assurance (AssComp) components –
concrete items existing in the library or placed in the specifications; when placed into the

102 3. Generics, functional and assurance components – internal data representation

security model (specification), they are called “instances” and have attributes assignstat
= #ASSIGNED.

1
*

1
*

1

*

ITSDF_ITSecurityDevelopmentFramework

SM_SecurityModel SL_SecurityLibrary

ST_SecurityTarget

PP_ProtectionProfle

GenItem FunComp

SiClass represents
any security issue

Generic CCSecComponent

SiClass

GenItem AssComp

PM_ProductModel

SEM_SelfEvaluationModel
1*

1*

1

*

1

*

1

*

GenDomain GenGroup

GenFamily FunCompFamily

1
*1 *1

*

1

*

FunSecClass AssSecClass

AssCompFamily

FunCompAssComp

1

*
1

*

1

*

1

*

{assignstat=#DEFINED}{assignstat=#ASSIGNED}

Fig. 3.23. General IT Security Development Framework model – class diagram
Rys. 3.23. Model ogólny szkieletowego systemu konstruowania zabezpieczeń – diagram klas

The first three levels have abstract character (note italicised names), allowing to specify

common properties. The fourth one expresses the real security items existing in the library
and/or specification. The basic four-level hierarchy is created by the UML generalization,
which is a taxonomic relationship between two classes (Appendix B). The generalization
hierarchy is a partial order on the set of classes SICLASS ⊆ CLASS. The child and parent

classes are considered. Assuming that classes c

p

1, c2∈ CLASS with c1 p c2; then c1 is called
a child class of c2, and c2 is called a parent class of c1.

Definition 3.57: Function parents(c) with respect to the considered security domain.

The function parents(c) is SICLASS → P(SICLASS),
c a {c’ | c’ ∈ SICLASS c ∧ p c’};

collects all parents of a given class c.

3.9. Formal approach to the library and security models specification 103

With respect to the models of SICLASS discussed there, the following generalization
hierarchy can be considered:

GenItem p GenFamily GenGroup Generic, p p

FunComp p FunCompFamily FunSecClass CCSecComponent, p p

AssComp p AssCompFamily AssSecClass CCSecComponent. p p

For the three child classes the full descriptors FDGenItem, FDFunComp, FDAssComp will be
specified, which provide detailed specifications of the whole security items encompassed by
the SICLASS ⊆ CLASS.

Definition 3.58: Full descriptor of a class – see Appendix B.

The full descriptor of a class c ∈ CLASS is a structure FDc = (ATT*c, OP*c, navends*(c)),
containing all attributes, operations and navigable role names for a considered class c and all
of its parents.

With the assumed above general definition of a full descriptor of a class, particular
descriptors will be specified.

Definition 3.59: Full descriptor of the class GenItem.

The full descriptor of the class GenItem ∈ SICLASS is a structure:
 FDGenItem = (ATT*GenItem, OP*GenItem, navends*(GenItem)), where:
i. attributes: ATT*GenItem = ATTGenItem ATTU GenFamily ATTU GenGroup U ATTGeneric,
ATTGenItem = , ATT∅ GenFamily – different for the groups – see Definitions 3.11, 3.14, 3.17,
3.20, 3.23, 3.26, 3.29, 3.32, ATTGenGroup = ∅ , ATTGeneric – see Definition 3.5;
ii. operations: OP*GenItem = OPGenItem U OPGenFamily OPU GenGroup OPU Generic,
OPGenItem = ∅ , OPGenFamily – different for the groups – see Definitions 3.11, 3.14, 3.17, 3.20,
3.23, 3.26, 3.29, 3.32, OPGenGroup = , OP∅ Generic – see Definition 3.6;
iii. navigable role names: navends*(GenItem) = navends(GenItem) U navends(GenFamily)

 navends(GenGroup) navends(Generic), U U

navends(GenItem) = ∅ , navends(GenFamily) – see Definition 3.56, navends(GenGroup) –
see Definition 3.49, navends(Generic) = ∅ .

Definition 3.60: Full descriptor of the class FunComp.

The full descriptor of the class FunComp ∈ SICLASS is a structure:
 FDFunComp = (ATT*FunComp, OP*FunComp, navends(FunComp)), where:
i. attributes: ATT*FunComp = ATTFunComp ATTU FunCompFamily ATTU FunSecClass
ATT

U

CCSecComponent,
ATTFunComp = ∅ , ATTFunCompFamily = ∅ , ATTFunSecClass = ∅ ,
ATTCCSecComponent – see Definition 3.37;
ii. operations: OP*FunComp = OPFunComp OPU FunCompFamily U OPFunSecClass U OPCCSecComponent,
OPFunComp = , OP∅ FunCompFamily = ∅ , OPFunSecClass = ∅ ,
OPCCSecComponent – see Definition 3.38;

104 3. Generics, functional and assurance components – internal data representation

iii. navigable role names: navends*(FunComp) = navends(FunComp) U
navends(FunCompFamily) navends(FunSecClass) U navends(CCSecComponent), U

navends(FunComp) = ∅ , navends(FunCompFamily) – can be defined in a similar way as in
Definition 3.56, navends(FunSecClass) – can be defined in a similar way as in Definition
3.49, navends(CCSecComponent).

Definition 3.61: Full descriptor of the class AssComp.

The full descriptor of the class AssComp ∈ SICLASS is a structure:
 FDAssComp = (ATT*AssComp, OP*AssComp, navends*(AssComp)), where:
i. attributes: ATT*AssComp = ATTAssComp ATTU AssCompFamily ATTU AssSecClass
ATT

U

CCSecComponent,
ATTAssComp = ∅ , ATTAssCompFamily = ∅ , ATTAssSecClass = ∅ ,
ATTCCSecComponent – see Definition 3.37;
ii. operations: OP*AssComp = OPAssComp U OPAssCompFamily U OPAssSecClass OPU CCSecComponent,
OPAssComp = ∅ , OPAssCompFamily = , OP∅ AssSecClass = ∅ ,
OPCCSecComponent – see Definition 3.38;
iii. navigable role names: navends*(AssComp) = navends(AssComp) U
navends(AssCompFamily) navends(AssSecClass) U navends(CCSecComponent), U

navends(AssComp) = ∅ , navends(AssCompFamily) – can be defined in a similar way as in
Definition 3.56, navends(AssSecClass) – can be defined in a similar way as in Definition
3.49, navends(CCSecComponent).

Each of the above defined full descriptors FDGenItem, FDFunComp, FDAssComp ought to
satisfy the following conditions:

i. Attributes are defined in exactly one class:
∀ (a: tc → t , a’: tc’ → t’ ∈ ATT*c): (a=a’ t=t⇒ c’ ∧ t=t’).

The condition i. is satisfied because attributes sets for particular descriptors are disjointed:
ATTGenItem ATT∩ GenFamily ATT∩ GenGroup ∩ ATTGeneric = ∅ ,
ATTFunComp ATT∩ FunCompFamily ATT∩ FunSecClass ∩ ATTCCSecComponent = ∅ ,
ATTAssComp ATT∩ AssCompFamily ∩ ATTAssSecClass ∩ ATTCCSecComponent = ∅ .

ii. An operation may only be defined once:
∀ (ω: tc × t1 × ... × tn → t, ω: tc’ × t1 × ... × tn → t’ ∈ OP*c):(tc=tc’,).

The condition ii. is satisfied because operations sets for particular descriptors are disjointed:
OPGenItem ∩ OPGenFamily OP∩ GenGroup ∩ OPGeneric = ∅ ,
OPFunComp OP∩ FunCompFamily OP∩ FunSecClass ∩ OPCCSecComponent = ∅ ,
OPAssComp ∩ OPAssCompFamily ∩ OPAssSecClass ∩ OPCCSecComponent = ∅ .

iii. Role names are defined in exactly one class:
∀ c1, c2 ∈ parents(c) U {c}: (c1 ≠ c2 navends(c⇒ 1) ∩ navends(c2) =). ∅

3.9. Formal approach to the library and security models specification 105

The condition iii. is satisfied because role names are derived from class names and these must
be unique.

iv. Role names and attribute names must not conflict:
∀ (a: tc → t ∈ ATT*c) r∈∧ ∀ navends*(c): (a ≠ r).

For all classes defined there the condition iv is satisfied.
There are hundreds of predefined generics and CC components, and many user-defined

ones. For all of them this condition ought to be satisfied by design. It is also
a recommendation how to construct names for generics and/or components.

The all previously defined terms allow to define the syntax of the security-related object
model MSi representing any security issue that can be placed in the security library (i.e.
concerning the SL_SecurityLibrary) and/or in the security specifications (i.e. concerning
the SL_SecurityModel). It can be defined analogically to the way the general formal syntax
of the object model M for the OCL language was defined (see Appendix B). The MSi model
is a part of the M model, and for this reason all OCL data representations and expressions
can be used for MSi as well.

Definition 3.62: Syntax of the security-related object model.

Let c ∈ SICLASS ⊆ CLASS be a class representing a given security-related issue. The
syntax of the security-related object models is a structure of the above defined elements:

MSi = (SICLASS, ATTc, OP c, SIASSOC, associates, roles, multiplicities,). p

In the UML/OCL the class c CLASS represents the set of objects sharing the same
properties. This set is called the domain of the class c.

∈

The objects ought to have unique identifiers assigned. The class c is represented by the
infinite set of its objects identifiers: oid(c) = {c1, c2,}. Usually single letters combined with
increasing indexes are used to derive the objects identifiers. The examples of object names
definitions are implemented as the class operations: develsname() for generics (see the
chapter 3.1) and dispname() for CC components (see the chapter 3.2). Please note that there
are no different objects with the same name assigned. The domain of the class c ∈ CLASS
encompasses all objects of the class c and all objects of its child classes:
 ICLASS(c) = {oid(c’) | c’ ∈ CLASS U ∧ (c’ p c c’ = c)}. ∨

Please note that in this monograph two domains representing developers’ specification
means are created: ISICLASS(Generic) and ISICLASS(CCSecComponent).

The developers use objects of the GenItem, FunComp, AssComp classes, i.e. generics
and/or components that have identifiers issued respectively by the develsname() or
dispname() operations. Their parent classes have rather taxonomical meaning. The assumed

106 3. Generics, functional and assurance components – internal data representation

naming convention is a little complicated but it complies with the syntax of generics and
components used by developers.

The generalization hierarchy implies a subset relation on the semantic domain of classes:
 c∀ 1, c2∈ CLASS: c1 p c2 ⇒ I(c1) I(c⊆ 2).

For each of the above defined full descriptors FDGenItem, FDFunComp, FDAssComp (with
respect to their generalization hierarchies) the following subset relations exist:

I(GenItem) I(GenFamily) I(GenGroup) ⊆ I(Generic), ⊆ ⊆

I(FunComp) I(FunCompFamily). ⊆ I(FunSecClass) I(CCSecComponent), ⊆ ⊆

I(AssComp) I(AssCompFamily) ⊆ I(AssSecClass) I(CCSecComponent). ⊆ ⊆

Some comments ought to be added concerning links implied by two kinds of associations:
GenParAssoc SIASSOC ASSOC and SecAssoc SIASSOC ASSOC. Both are

defined on the group level expressing common relationships between security items
concerning the parameterization and/or mapping. Links implied by these associations
concern the objects of the GenItem, FunComp, AssComp classes.

⊆ ⊆ ⊆ ⊆

With respect to parameterization:
 as∀ Param4Parameterized ∈ GenParAssoc,

 asParam4Parameterized a 〈Parameterized, Parameter :

 GenItem p Parameterized GenItem Parameter.

〉

∨ p

With respect to mapping:
 as∀ Mapping ∈ SecAssoc, asMapping a 〈IsCovered, Covers :

 (GenItem p IsCovered ∨ GenItem Covers)

〉

p ∧
 (FunComp p IsCovered ∨ FunComp Covers) p ∧ AssComp Covers. p

The association asParam4Parameterized ∈ GenParAssoc with
associates(asParam4Parameterized) = 〈 c1, ... , cn 〉 , where ∀ i∈{1, ..., n} ci ∈ GenItem,

is interpreted as the Cartesian product of the set of object identifiers of the participating
classes:

IGenParAssoc (asParam4Parameterized) = ISiCLASS(c1) × ... × ISiCLASS (cn),
where a link denoting a connection between objects is an element
 lasParam4Parameterized ∈ IGenParAssoc (asParam4Parameterized).

The objects linked by mapping can be expressed in a similar way though in this case not
only generics are used but also components.
The association asMapping ∈ SecAssoc with associates(asMapping) = 〈 c1, ... , cn 〉 ,

where ∀ i∈{1, ..., n} (ci ∈ GenItem) (c∨ i ∈ FunComp) (c∨ i ∈ AssComp) is interpreted as
the Cartesian product of the set of object identifiers of the participating classes:

3.9. Formal approach to the library and security models specification 107

IGenParAssoc (asMapping) = ISiCLASS(c1) × ... × ISiCLASS (cn),
where a link denoting a connection between objects is an element
 lasMapping ∈ ISecAssoc(asMapping).

Definition 3.63: System state of the MSi.

The system state of the model MSi is a structure:
 σ(MSi) = (σSICLASS, σATT, σSIASSOC), where:
i. The finite sets σSICLASS(c) include all objects of the class c ∈ SICLASS existing in the
system state:
 σSICLASS(c) ⊂ oid(c),
ii. Functions σATT assign attribute values to each object:
 σATT(a): σSICLASS(c) → I(t) for each a: tc → t ∈ ATT*c ,
iii. The finite sets σSICLASS contain links (satisfying multiplicities) connecting objects:
 as ∈ SIASSOC, σ∀ SIASSOC(as) I⊂ SIASSOC (as).

4. CAPTURING THE FEATURES OF AN IT SECURITY-RELATED PRODUCT
OR SYSTEM

4.1. General product or system presentation according to the standard

The introductory parts of the ST or PP documents require a concise presentation of the
developed product (or system). It will be used for a quick product review by the people who
select products to meet specific needs of the organization. Usually, they are business or IT
managers. It is obvious that a short presentation will be developed to get the ST or PP
documents ready for the evaluation as well.

The presented IT Security Development Framework assumes that the first step of
capturing the security-relevant system characteristics is taken during the internal product or
system description and the TOE description developed on this basis, required by the ST or PP
documents.

This should be concentrated around the security attributes, i.e. integrity, confidentiality
and availability. This is a commonly used approach for security needs or risk analysis.
During the development of the product models, the separation-of-concern principle is
recommended.

The designing process of the security-related product, corresponding to the elaboration of
Security Target documentation, begins with preparing Security Target [38] introduction,
containing rather trivial information, such as ST identification, general description, PP claims
and TOE description that should be worked out. The TOE description, containing a concise
product presentation for consumers, includes the following kinds of data (Fig. 4.1):
• General TOE functionality – not limited to the security features unless the TOE is

a special-purpose security product,
• Product or system type, like database, encrypting device, firewall, etc.
• Logical boundaries – what is there in the TOE and what is not, in terms of security

features and services,
• Physical boundaries – what is there in the TOE and what is not, in terms of

hardware/software components or modules,
• TOE operational environment.

4.1. General product or system presentation according to the standard 109

Generally, it should be known how the TOE works within its environment and what it
consists of, using logical or physical terms. This is the reference point for further stages of
the whole TOE development process, deciding about its cost and quality. The TOE may be
software, hardware or a system. Its design analysis is needed. How deep it should be depends
mostly on the assumed EAL level. Sometimes full technical documentation exists, sometimes
it is created concurrently with the security documentation (PP/ST).

STIdentification GeneralDescription UsedPPClaims

GeneralTOEFunctionality LogicalBoundaries PhysicalBoundaries TOEOperationalEnvironment

STIntroduction

TOEDescription

ProductType

1

*

1

*

1*

1
1

1*

1

* 1*

1

*

Fig. 4.1. Security Target introduction elements (Common Criteria)
Rys. 4.1. Elementy wprowadzenia do zadania zabezpieczeń (Wspólne kryteria)

The following sections of this chapters contain the concept how to semiformally elaborate
the ST introduction specification being the starting point of the whole ST development.

4.2. Modelling the basic features of the product or system (BCL)

The required product or system descriptors (Fig. 4.1) can usually be prepared straight on
the basis of technical documentation, although a more convenient and more formal approach
is proposed there. For any developed product or system, a rough, three-level auxiliary model
is created (i.e. PM model – Fig. 2.3), being input for the ST or PP model.

According to the presented methodology, the actual ST introduction model elaboration is
preceded by the preliminary stage – the BCL – Business/consumer level model workout. The
left part of the Fig. 4.2 contains the BCL classes, and the right part – the ST introduction
classes, elaborated on this basis.

The elaboration of the BCL model is shown in the Fig. 4.3. Please note the states (grey
colour) concerning the control of the IT security development process on entry and on exit of
the BCL development stage.

This elaboration begins (the first white state) with a short presentation of the purpose of
the product or system, answering the question: “What tasks will be performed using the
product or system?” Next, the kind of data – processed, stored or transmitted within the TOE,
is described. At minimum, the following kinds of data should be considered: financial

110 4. Capturing the features of an IT security-related product or system

information (credit card numbers, bank account information, reports), personal data, data
dealing with health, technological data, research data, organization-strategic data, or other
specified sensitive data.

STIdentification

GeneralDescription

UsedPPClaims

GeneralTOEFunctionality

LogicalBoundaries

PhysicalBoundaries

TOEOperationalEnvironment

TOEDescription

ProductType

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

BCL_BusinessConsumerLevel

+createST()
+openExistingST()
+saveST()

+<<stateAttribute>>
+develstage : byte

ST_Elaboration

STIntroduction

ProductPurpose

KindOfData

DataIntegrityProtectionNeeds

LocationOfData

DataAvailabilityProtectionNeeds

DataConfidentialityProtectionNeeds

UsersAndDataAccess

TOEServices

ConnectivityAspects

GeneralRiskConsideration

IntrudersAndUndesirableEvents

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

BCLWorkout

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

STIntroWorkout
Existing UML model of the

security-related
product or system

1
1

1
1

1

1

1

1

Th
e

as
so

cia
tio

n
be

tw
ee

n
ST

In
tro

du
ct

io
n

an
d

BC
L_

Bu
si

ne
ss

Co
ns

um
er

Le
ve

l c
la

ss
es

 re
pr

es
en

ts

th
e

na
vi

ga
tio

n
po

ss
ib

ilit
y

be
tw

ee
n

th
ei

r s
ub

cl
as

se
s

Fig. 4.2. The classes participating in the BCL and the Security Target introduction models

elaboration
Rys. 4.2. Klasy wykorzystywane podczas tworzenia modelu BCL oraz modelu wprowadze-

nia do zadania zabezpieczeń

Three additional items deal with identifying the scope of the protection needs. The effects

of the loss, fabrication or modification of the information, should be considered with respect

4.2. Modelling the basic features of the product or system (BCL) 111

to the data integrity. It should be noted how critical the data accuracy for the TOE users is.
For the data availability, the effects of the denial or delay of the information should be
considered. It ought to be analyzed how critical the data availability can be. In the scope of
the data confidentiality needs, the following questions should be clear:

Present the purpose of the product or system

Identify the kind of data processed, stored or transmitted

Identify data integrity protection needs

Identify data availability protection needs

Identify data confidentiality protection needs

Describe the location of the information

Present the connectivity aspects

Identify the users of the product or system and their data access

Identify the main services offered by the TOE to its users

Identify intruders and sources of undesirable events

Do general risk consideration

:ProductPurpose

:DataAvailabilityProtectionNeeds

:DataIntegrityProtectionNeeds

:KindOfData

:ConnectivityAspects

:LocationOfData

:DataConfidentialityProtectionNeeds

:GeneralRiskConsideration

:IntrudersAndUndesirableEvents

:TOEServices

:UsersAndDataAccess

Overall check of the stage

/ OK / not OK

/ develstage=#BCL

/ develstage≠#BCL

/ ForwardCommand
/ BackwardCommand

/ stagestatus=#CHECKED or stagestatus=#CLOSED

/ stagestatus=#ELABORATED

Gray states concern passing
between stages internal control

The developer decides

stagestatus=#CHECKED Choose the right development stage to solve the problem

develstage=#ST_INTRO

Exception service – send a message

stagestatus=#ELABORATED

Fig. 4.3. The BCL model elaboration
Rys. 4.3. Wypracowanie modelu typu BCL

• What kind of data can be considered as sensitive data?
• What are the effects of disclosing the information to unauthorized parties?

112 4. Capturing the features of an IT security-related product or system

• How critical is data confidentiality?
The next two stages concern the location of the information and connectivity aspects. The

following important questions have to be taken into consideration:
• Where are the information assets protected by the TOE?
• Are they inside the product or system, or outside?
• Is the TOE a closed IT product or a distributed IT system?
• What are other modules or subsystems which create an IT environment for a given

system?
• What are the systems interconnections?

The next step encompasses a short presentation of the product or system users (main
group of the model actors) and basic rules of the data access:
• Who will be the users of the product or system?
• Who has access to the system and its data?
• Have all individuals access to all data on the system or will different levels of access be

considered?
The key issue is always the TOE services, because they are the reason for developing the

product or system. The main services offered by the TOE to its actors should be identified.
On this basis the use case models will be created.

Not only the legal users will affect the TOE. The intruders and other sources of
undesirable events that may cause impacts should be considered too:
• human entities may disturb the TOE usage (trusted insiders, authorized users who may

unintentionally invoke errors or accidents, external intruders);
• non-human causes of undesirable events may disturb the TOE work.

They will be used as actors during the risk model refinement at the TOE environment
elaboration stage.

Finally, the general risk consideration is recommended, encompassing:
• a simple trade-off analysis dealing with the assumed assurance and cost of measures,
• analyzing the warranty of the cost of intended measures to achieve information security at

the desired level.
The above mentioned trade-off analysis should evaluate the consequences of each of the

following scenarios:
• protection (or over protection) of the product or system with expensive measures that can

also affect its performance,
• implementing a minimal set of measures that leave the system almost open to either

outside intrusion or internal attack.

4.3. Security Target introductory part elaboration 113

4.3. Security Target introductory part elaboration

The information captured during the BCL model (Fig. 4.2) workout is general but precise
enough to develop an ST introduction (Fig. 4.2). This is shown in the Fig. 4.4. The states
marked grey concern the control of the IT security development process.

Prepare the general TOE description

Declare the PP claims - if needed

Present the general TOE functionality

Declare the product type

Present the TOE logical boundaries

Present the TOE physical boundaries

Describe the TOE operational environment

:ProductPurpose

:DataAvailabilityProtectionNeeds

:DataIntegrityProtectionNeeds

:KindOfData

:ConnectivityAspects

:LocationOfData

:DataConfidentialityProtectionNeeds

:GeneralRiskConsideration

:IntrudersAndUndesirableEvents

:TOEServices

:UsersAndDataAccess

:STIdentification

:GeneralDescription

:TOEOperationalEnvironment

:PhysicalBoundaries

:LogicalBoundaries

:ProductType

:GeneralTOEFunctionality

:UsedPPClaims

/ OK

/ not OK

/ develstage=#ST_INTRO

/ develstage≠#ST_INTRO

/ ForwardCommand

/ BackwardCommand

/ stagestatus=#ELABORATED

Gray states concern passing
between stages internal control

The developer decides

/ stagestatus=#CHECKED or stagestatus=#CLOSED

Overall check of the stagestagestatus=#CHECKED

Choose the right development stage to solve the problem

develstage=#BCL

develstage=#SEC_ENV

stagestatus=#ELABORATED

Insert ST identifiers

Fig. 4.4. ST introduction workout
Rys. 4.4. Wypracowanie modelu wprowadzenia do ST

The sampled information is textual and informal, dedicated mainly to the product or
system recognition on the market. The BCL model is precise enough to specify an ST
introduction, but it is not enough as a basis for future SM model development. On the basis of
the BCL model, a more detailed UAL model is developed.

114 4. Capturing the features of an IT security-related product or system

4.4. Modelling structural and behavioural aspects (UAL)

The UAL model, generally optional but recommended, should present a product or
system at an appropriate level to develop PP/ST, particularly it can be helpful for the BCL
workout on its basis. Please note that it depends strongly on the subject, i.e. the product or
system can be presented there at a very general level. It is assumed that given UML
specifications exist, like those presented in the Fig. 4.5. The UAL models can be created
using the existing UML methodologies, e.g. those mentioned in chapter 1, like the UMLsec.

UAL_UserAdministratorLevel

PM_ProductModel

Existing UML model of the
security-related

product or system

Actors
affecting

TOE

Product
implementation

diagrams

Product
use cases

Product
components

diagrams

Product
collaboration

diagrams

Product
class

diagrams
Product

sequence
diagrams

Product
state

machines

Fig. 4.5. The UAL model
Rys. 4.5. Model typu UAL

The presented method of the TOE description workout assumes the UML approach. It is
based on the use cases and actors concept. On this basis the collaborations and interaction
diagrams are worked out. This detail level is suitable and enough for capturing the basic TOE
features, especially for COTS. These features should be contained in the TOE description, i.e.
basic functionality, logical and physical boundaries, basic modules and the TOE
environment. A more detailed model can be elaborated when needed (higher EALs, the need
of investigating specific behavioural aspects or performing a detailed risk analysis).

The TOE, as an IT product, can be considered as a black box with certain functions
provided for the outside environment. The actors, i.e. users, administrators, attackers, etc.,
can stimulate operations on the TOE. It should be noted that non-security features are
considered unless the TOE is a special-purpose security product (Fig. 4.6). The actor works
outside the TOE (i.e. system) boundaries.

4.4. Modelling structural and behavioural aspects (UAL) 115

The TOE is a rather complex system, having a set of use cases, bringing expected results
to the actors. For example, they expect to perform the specified set of operations on the TOE
successfully.

TOE
Security-related product /

system

Use case

Actor

Use case

Fig. 4.6. TOE use case concept
Rys. 4.6. Koncepcja przypadków użycia dla przedmiotu oceny (TOE)

Let us consider the TOE as the source of services provided for actors, bringing them the
expected results. The actors act according to the scenarios encompassed by the use cases.

There are many use cases and many actors too. Some of them are legal, some may be
illegal and even malicious. All main types of actors and their generalizations are shown in the
Fig. 4.7. Please note the SgrGeneric elements representing them.

Unauthorized user (SNA-type)

External intruder

Authorized user (SAU-type)

UserAdministrator

Entity affecting TOE

Non-human entity (SNH-type)
Human entity

Human entity provoking accidents, errors
 (SAH-type)

Fig. 4.7. Main actor types affecting the TOE
Rys. 4.7. Główne rodzaje aktorów oddziaływujących na przedmiot oceny (TOE)

Please note that the presented method not only considers human actors but also
introduces non-human ones, expressing different sources of undesirable events within the
TOE environment that should be taken into consideration during a future risk analysis. The
actors correspond to different subject-group generics (in the CC called “active entities”) [13].

116 4. Capturing the features of an IT security-related product or system

While identifying the TOE functionality, many use cases should be considered. Some of
them provide legal actors with desired results, some do not. While preparing the TOE
description, only legal actors and TOE services offered for them are taken into consideration.

It should be emphasized that there are both human and non-human actors, like intruders,
reckless people, force majeures, natural catastrophes, etc., negatively influencing the system
and bringing undesirable results. All of them will be considered later while carrying out the
risk analysis.

Every use case is generalization of its scenarios (i.e. given variants of its development)
representing a set of interactions or events bringing the expected and well defined result to
the actor.

In the UML a given use case can include (<<uses>>) or be extended (<<extends>>) by
other use cases. It allows to order actions on the TOE and group them into the subsets of use
cases (Fig. 4.8).

Use cases have their own attributes, as internal variables, and the operations representing
internal actions.

TOE – Security-related product /system

Use case 1

ExtensionPoint1
ExtensionPoint2

Unauthorized user

Use case 2

Use case 4

Use case 5 Use case 6

External intruder

Authorized user

UserAdministrator

«uses»«uses»

«uses»

Use case 3

«extends»

«extends»

Fig. 4.8. The set of actors interacting with the system and the set of use cases
Rys. 4.8. Zbiór aktorów prowadzących interakcje z systemem oraz zbiór przypadków użycia

There are two main problems during security-related product identification. The first one

is to specify the TOE functionality, based on the expected behaviour. These functions must
be performed by the users in a secure way. For this reason all potential causes that may
disturb the TOE operations have to be detected too. This is the second issue to solve. It will
be considered later using the risk analysis approach during the TOE security environment
elaboration.

4.4. Modelling structural and behavioural aspects (UAL) 117

In the Fig. 4.9 actors, use cases and their associations were shown as an example. There
are two actors (user, administrator), each belonging to two associations. Use case 1 has two
extension points suitable for Use cases 2 and 3, representing optional variants of Use case 1.
Use case 4, with its Use cases 5 and 6, are all included in Use case 1, and they are never
stimulated by the actors. The extension point is a place to take the decision if an extended use
case (as the variant) should be processed.

Please note that the actors reside outside the TOE – within its environment, but according
to the CC functional paradigm [39] each of them is represented by a subject belonging to the
TOE. Notes with requirements or remarks for future consideration can be added to the
diagram. Sometimes minor additional use cases, performing internal, not actor’s tasks, may
be attached (monitoring, self testing, etc).

TOE

Use case 1

ExtensionPoint1
ExtensionPoint2

Use case 2

Use case 4

Use case 5
Use case 6

User

Administrator

«uses»«uses»

«uses»

Use case 3

«extends»

«extends»

Use case 7

Use case 8

Use case 9

ExtensionPoint A

«uses»

«uses»

Use case 10
«extends»

*

*

*

*

*

*

*

*

Use case 11

Fig. 4.9. Use case diagram
Rys. 4.9. Diagram przypadków użycia

Every use case should be focused on a single important issue (expected results). Its set of
actions can be expressed verbally by a pseudo-code, or better, by an activity diagram or even
by a state machine. Use cases stimulated by actors will be called main use cases. Each of
them corresponds to one of the TOE providing services.

In the Fig. 4.10 an example of an activity diagram for Use case 7 (Fig. 4.9) is shown. The
number of activities encompassed by a given use case depends on the TOE features. In the
extension point, placed within Use case 9, the decision dealing with the inclusion of Use case
10 was made, expressing one of the possible processing variants of Use case 7. Use case 8 is
always included but it is not stimulated by any actor.

118 4. Capturing the features of an IT security-related product or system

Elementary functionality, called there the TOE service, corresponding to any main use
case processing, can be now identified and added do the General TOE functionality within
the ST data structure.

Use case 10Use case 9Use case 8Use case 7 (main)

UC7_Action 1

UC9_Action 1

UC7_Action 2

UC7_Action 3

UC8_Action 2

UC8_Action 1

[<<uses>>]

[<<uses>>]

UC9_Action 2

UC10_Action 1

UC10_Action 2

UC9_Action 3

[allow extended variant]

UC7_Action 4

extension point

Fig. 4.10. Activity diagram for a use case – example
Rys. 4.10. Diagram czynności odpowiadający przypadkowi użycia – przykład

After preparing the use case diagram the next step is possible on this basis – the
development of corresponding collaborations.

4.4. Modelling structural and behavioural aspects (UAL) 119

Each collaboration, being the development of a use case, has two aspects, strongly
dependent on the TOE nature:
• structural (static), presenting collaborating classes, interfaces, and elements in the form of

a class diagram,
• behavioural (dynamic), represented by interaction diagrams.

Identify all legal actors working around TOE

Group them by their roles, use generalization

Identify interactions with the TOE specific for a given group

Consider interactions changing internal states, influencing the environment or being reactions to the specific events - if existing

Consider the exceptions - if existing

Group these interactions by use cases, apply <<uses>> or <<extension>> stereotypes

Identify use cases and associations belonging to the actors

Identify structural elements needed and sufficient for modelling any use case

Express them as the class diagram

Consider use case scenarios for any use case

Express any scenario on the interaction (sequence or collaboration) diagram

Order structural/behavioral elements of collaboration and assign them to the use case

:TOEServices

:UsersAndDataAccess

:SAUItem

Fig. 4.11. The UAL model refinement
Rys. 4.11. Uszczegółowienie modelu typu UAL

The whole modelling process, providing the UAL model (Fig. 4.5), starting from use
cases specification to identifying internal elements of collaboration, is summarized by means
of the activity diagram presented in the Fig. 4.11.

120 4. Capturing the features of an IT security-related product or system

Please note that all use cases mentioned there deal with the TOE intentional usage. The
UAL model is based on the main use cases corresponding to the TOE-offered services. It
expresses interactions between the TOE and the actors representing legal users, acting with
the TOE environment. In the same case additional groups of actors, representing illegal
activities and undesirable events, will be added during the next stage of the IT security
development process – the threat analysis. The third possibility, not discussed there, are
typical use case diagrams to specify users’ (i.e. IT security – developers, officers, sponsors,
and IT administrators) interactions with the computer-aided tool developed on the basis of
the methodology presented there.

The collaborations specify basic TOE elements, relations and interactions between them,
presenting global behaviours of the system and all its actors.

A general example of collaboration with its two aspects is presented in the Fig. 4.12.
These elements ought to correspond to the modelled TOE.

Class 1

Class 2
*

*

Class 3

Class 3A Class 4A

Class 4

*

*

Structural aspect of the collaboration

:Class 1 :Class 2 :Class 3

Message1

Message 3
Message 2

Answer1
Info1

Done
Behavioral aspect of the collaboration

The TOE
Collaboration

Actor1

* *

Fig. 4.12. Structural and behavioural aspects of the collaboration
Rys. 4.12. Strukturalne i behawioralne aspekty kooperacji

The modelling process allows to refine the key parts of the TOE description, if higher
precision offered by this UML approach is needed:
• General TOE functionality – by using all TOE services dealing with main use cases and

behavioural aspects of the collaboration,
• Logical boundaries – corresponding to a class diagram, expressing structural aspects of

the collaboration,

4.4. Modelling structural and behavioural aspects (UAL) 121

• Physical boundaries – using a deployment diagram,
• TOE operational environment – using a deployment diagram.

Deployment diagrams present physical components and nodes that belong to the TOE but
also work outside the TOE – within its operational environment (Fig. 4.13).

The level of details of all above diagrams and schemes strongly depends on the declared
EAL level.

Component A

Node 1

Component B

Class 1

Class 2

Interface 1

Interface 2

Class 3 Class 1
TOE - Deployment diagram

User

Administrator

Node 2

* *

*
*

*

*

TOE - Operational environment

Fig. 4.13. TOE physical boundaries and operational environment
Rys. 4.13. Fizyczne granice przedmiotu oceny (TOE) oraz jego środowisko eksploatacji

The summarizing scheme of the ST introduction elaboration was presented in the Fig.
4.14. It corresponds to the first ST development stage.

STIdentificationGeneralDescription UsedPPClaims

GeneralTOEFunctionality

LogicalBoundaries

PhysicalBoundaries

TOEOperationalEnvironment

ProductType
Main use case

TOE
collaboration

TOE Component

TOE physical
components
and nodes

TOE node

TOEServices

TOE logical
elements
(classes)

Security Target introduction elements

Fig. 4.14. ST introduction collaboration
Rys. 4.14. Kooperacja odpowiadająca wprowadzeniu do zadania zabezpieczeń

General TOE functionality expresses the TOE services identified on the use case
diagrams. Every TOE service will be considered as a pair: an authorized user and elementary
functionality offered to him/her by the TOE. Logical boundaries encompass the TOE
structural elements developed on the use case diagram analysis. The package containing

122 4. Capturing the features of an IT security-related product or system

identified physical elements, being the final implementation of the TOE collaboration, is used
for physical boundaries specification and operational environment. The latter depends also on
the use case diagram, which represents, among other things, actors acting outside the TOE.

The elements of the ST introduction are on a very general level. All of them should be
refined and supplemented during next development stages.

4.5. Compatibility with the UMLsec

The mentioned above UMLsec formal methodology (and the formal verification tools)
[72] can be useful for modelling some kinds of IT products of higher EALs. Such models,
used there as input models, are expressed by the EUM_EntryUMLmodel (Fig. 2.3, Fig. 2.6).
The problem is how to use and interpret the UMLsec-type model on entry of the IT security
development process, where the BCL_BusinessConsumerLevel model is created.

Continuing the UMLsec presentation (Section 2.1.2), this transformation will be shown
very briefly, explaining the selected UMLsec issues, as well as some issues concerning
cryptographic protocols that quite frequent. The UMLsec and the methodologies presented in
the monograph are complementary regarding the area of application:
• the UMLsec can be used for the precise modelling of IT products (rather products, not

systems) allowing to achieve higher EALs for which a formal approach is required,
• the presented Common Criteria compliant IT security development methodology can be

used concurrently, issuing documentation required for the IT product evaluation and
certification.
Ensuring their compatibility allows also to achieve their mutual support.
The entire IT product or (sub)system is modelled as a set of stereotyped objects and/or

(sub)systems that exchange messages with the use of the UML diagrams. The work of each
object or system component O can be expressed by the UML machine processing input
queues inQuO to the output queues outQuO. The UML machine [[C]] represents the
behaviour of all such objects or components C directly contained in C.

Events is a set of messages exchanged between objects and/or systems while they
communicate with each other. Receiving such a message is called event. The message
consists of a message name ∈MsgNm and message arguments. The message name may be
preceded by object or system instance names O ∈UMNames. The message arguments
belong to Exp which is a set of expressions.

Sending a message msg=op(exp1, , expi, , expn) from an object or subsystem instance
S to an object or subsystem instance R can be described as follows in a concise way, where
msg ∈Events, expi ∈Exp, and op is an operation:

4.5. Compatibility with the UMLsec 123

i. S places the message R.msg into its outQuS,
ii. A scheduler removes the R.msg from the outQuS to the inQuR,
iii. R removes R.msg from the inQuR and starts its processing.
This behaviour is usually presented on sequence diagrams. An execution of a UML

subsystem S, which may contain the components C1,..., Cj,..., Cm, is expressed by the
sequence of states and the associated bags of input and output messages of [[S]].

In [72] the common cryptographic terms are used, which are presented in the Appendix
C. Please note that the UMLsec uses common name space for the product or system models
and for the applied cryptography. The following sets represent: Keys – cryptographic keys,
Var – variables and Data – data values, where:
• Keys Var Data = , and ∩ ∩ ∅

• UMNames MsgNm U Secrets Data. U ⊆

The UMLsec introduces its own definitions [72] of security properties that ought to be
presented in a concise way, i.e. confidentiality (there: secrecy), integrity, authenticity,
freshness, and secure data flow – all considered with respect to the attacker (here: adversary)
model and attacker knowledge, represented by the set of knowledge K.

It is assumed that a UML subsystem S preserves the secrecy of an expression E from
adversaries of type A if E does not appear in the knowledge set K of adversary A during any
execution of [[S]]A. In order to preserve the secrecy of a variable it is necessary to preserve
the secrecy of all expressions in which this variable occurs. The secrecy of data means that
only legitimate parties are allowed to read the data. Please note that sending {m}K::K ∈Exp
does not preserve secrecy, though sending only {m}K ∈Exp does.

The integrity of data means that only legitimate parties are allowed to modify the data.
Let a set E Exp represent acceptable expressions. It is assumed that a UML subsystem

S preserves the integrity of an attribute a with respect to E from adversaries of type A with
initial knowledge K

⊆

0 if during any execution of [[S]]A, at any point, the attribute a is
undefined or refers to an element of E. The E=Exp\K0 (“\” – subtractions of sets) means that
S preserves the integrity of an attribute a with respect to E from adversaries of type A with
initial knowledge K0. In other words, the integrity of a variable means that no potential
adversary is able to change the value of the variable into an unacceptable one during the
execution of S.

The authenticity may consider a message or an entity. Message authenticity (i.e. data
origin authenticity) means that one can trace back a piece of data to its original source. Let us
assume that in a system S there exist attributes a and o, where o is supposed to store the
origin of the message stored in a. S provides message authenticity of the attribute a with

124 4. Capturing the features of an IT security-related product or system

respect to its origin o threatened by adversaries of type A with initial knowledge K0 if during
any execution of [[S]]A, at any point, the attribute a appears as the first in the sub-expression
in outQuo, and in all output queues and link queues in S. It means that a message has its
origin in a part of the system if, during any execution of the system, the message appears in
that part of the system for the first time. Entity authenticity ensures that one can identify
a participant in the protocol and, in particular, make sure that the party has actually actively
participated in the protocol at that time.

In the UMLsec it was assumed that the freshness of a value data∈Data Keys is

related to its:

U

• unpredictability – the adversary cannot guess this value;
• newness – the value has never appeared since the time the system began to operate.
Particularly, a message is fresh if it was created during the current execution round of the
considered system and therefore cannot be used by the adversary as a replay of an older
message. A nonce is a good example of a fresh value.

In multi-level secure systems there are different levels of data sensitivity, e.g.: high level
encompassing highly sensitive (trusted) data, and low level including less sensitive (trusted)
data. The communication between these parts of the system requires a method that would
prevent the sensitive data from leaking from a trusted part to an untrusted one. For that
reason the UMLsec uses the following secure information flow rules:
• “no down-flow” policy, i.e. low data may influence high data and not vice versa,
• “no up-flow” policy, i.e. high data may influence low data and not vice versa.

The UMLsec stereotypes and tags are based on these property definitions. Besides, many
of the mentioned above can be used. Please note that:
• stereotypes, e.g.: <<fair exchange>>, <<provable>>, <<encrypted>>, <<rbac>>,

<<Internet>>, <<smart card>>, <<no up-flow>>, <<guarded>>, etc.,
• tags, e.g.: start, stop, adversary, secrecy, integrity, authenticity, role, etc.,
• constraints, e.g.: “action is non-deniable”, “prevents down-flow”, etc.,
are added to the subset of standard UML elements, called there “base classes”, e.g.:
subsystem, link, node, dependency, object – to better, i.e. more precisely, specify security
properties of the modelled security-related product or system.

5. ELABORATION OF THE TOE SECURITY ENVIRONMENT

5.1. TOE security environment specification defined by the standard

The second main development stage is establishing the TOE security environment (in the
CC v. 3.x called “Security problem definition”). Its purpose is to define the nature and scope
of the security needs (concerns) to be addressed by the TOE [38]. The Common Criteria
evaluation is generally oriented towards the products (including system products), rather than
working systems. The systems are built using certified and not certified products. The
standard says that this requires precise and realistic specification of the working environment,
including assumptions, threats and security policy rules that must comply. This concept can
be expressed as the class diagram, shown in the Fig. 5.1. It will be the basis for further
developed models presented in this monograph. The ITSDF framework has many facilities to
issue precise specifications of the security environment – the methodology and the
specification language, especially an enhanced set of security environment generics,
including OSPs, compliant with the common security management standards, e.g. [58].

Assumptions Threats OSPs

Assets Subjects

TOESecurityEnvironment

1 *

1

*
1

*

Fig. 5.1. TOE security environment – the CC defined basic elements
Rys. 5.1. Otoczenie zabezpieczeń przedmiotu oceny – elementy określone w standardzie

Wspólne kryteria

5.2. TOE security environment data model

The below Fig. 5.2 is the proposed extension of the element structure presented in the
Fig. 5.1. The figure specifies all details used for modelling key aspects of the TOE security

126 5. Elaboration of the TOE security environment

environment and its elaboration on the basis of the ST introduction model (with the use of
some BCL model elements). Please note the classes responsible for the elaboration process
and those representing both specification elements.

STIdentification

GeneralDescription

UsedPPClaims

GeneralTOEFunctionality

LogicalBoundaries

PhysicalBoundaries

TOEOperationalEnvironment

TOEDescription

ProductType

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1

1

BCL_BusinessConsumerLevel
+createST()
+openExistingST()
+saveST()

+<<stateAttribute>>
+develstage : byte

ST_Elaboration

STIntroduction

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

TOESecEnvElaboration

1
1

1
1

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

STIntroWorkout

TOESecurityEnvironment

Assets

+assetValue : unsigned char = 0
TOEInternalAssets

+assetValue : unsigned char = 0
AssetsProtectedByTOE

Subjects

Threats

OSPs

Assumptions

AEItemAUItem ACItemAPItemAXItem AAItem

1

*

1

*

1

*

1

*

1

*

1

*

SAHItemSNAItem SAUItem SNHItem

TITItemTUAItem TAAItem TPHItemTDAItem TFMItem

PINTItemPACCItem PADTItem PAVBItemPIDAItem PPRVItem

PEPHItemPCONItem PEITItem PSMNItemPDEXItem POTLItem

1
*

1
*

1
*

1
*

1
*

1
*

1
*

1
*

1
*

1
*

1
*

1
*

1
*

1
*

1

*

1

*

1

*

1

*

1

*

1

*

+assetValue : unsigned char = 0
TOERelatedAssets

UncoveredConcerns

DADItem DASItem

DAEItem DAPItem

1*
1 *

1 *

1 *
1 *

1 *

1
*

1
*

DADItem DASItem

1
1

1

1

1
*

11

1

1

1

1

1 1

Fig. 5.2. TOE security environment elaboration on the basis of the ST introduction model – the

assumed static structure diagram
Rys. 5.2. Wypracowanie specyfikacji otoczenia zabezpieczeń przedmiotu oceny na podstawie

wprowadzenia do zadania zabezpieczeń – przyjęty diagram struktury statycznej

The TOE security environment is expressed by different sets grouping the generic items.
Three main kinds of assets are distinguished, though all are expressed by the asset group
generics. As it was mentioned earlier, generics can be predefined and placed into the library
or created on demand by developers. Any generic can be refined to express adequately and
more precisely unique design needs. It will be discussed later that security environment and
security objectives generics have their basic inter-relations assigned. All these features

5.2. TOE security environment data model 127

facilitate the IT security development process. The key issue for the model presented there is
the assumed TOE security environment paradigm, concerning risk assessment, security
policy rules and assumptions features (Fig. 5.3). Please note basic triplets, containing a threat,
threat source, also called threat agent, (SgrGeneric), threatened assets (DAgrGeneric). The
threat scenario is considered along with the exploited vulnerability. Please note that assets
have their owners (SgrGeneric) for management purposes, and values used during risk
assessment. For every threat simple risk information was added, containing event likelihood,
impacts and the operation to estimate the risk value. This simple method allows to order the
risk scenarios by the risk value and helps to select proper measures.

Vulnerability

+assetValue
DAgrGeneric

SgrGeneric

+paramDAgr
+paramSgr

AgrGeneric

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool

PgrGeneric

+riskValueAssess () : uint

+paramDAgr
+paramSgr
+dealingTOE : bool
+dealingEnviron : bool
+eventLikelihood
+assetValLoss

TgrGeneric

Threats1

*

OSPs1

*

Assets

1

*

1

*Subjects

Assumptions1

*

ParamDA4A

1..*

0..*

ParamS4A

1..*

0..*

ParamDA4P

1..*

0..*
ParamS4P

1..*
0..*

ParamDA4T

1..*

0..*

ParamS4T

1..*

0..*

TOESecurityEnvironment

1

*

1

*

1

*

1

*

1

*

Fig. 5.3. TOE security environment paradigm
Rys. 5.3. Paradygmat otoczenia zabezpieczeń przedmiotu oceny (TOE)

The model also allows to separate items dealing with the TOE and/or its operational
environment and set relations between them and the assets and subjects. Please note that it is
very difficult to specify all security items at the beginning of the development process,
especially to decide what should be covered by the TOE only, by its environment or by both.
For this reason the presented framework allows to postpone these design decisions when
more details have been known. A similar problem occurs while choosing the way of the TOE
security environment specification: the threat based or the OSPs based. For this stage it is
very important to provide the trade-off between its elements, especially between threats and
policies, albeit generally the threat specification has higher priority.

128 5. Elaboration of the TOE security environment

5.3. TOE security environment elaboration process

The general elaboration scheme (the behaviour of the TOESecEnvElaboration class), as
the UML activity diagram, was shown in the Fig. 5.4.

OSPRiskThreatsAsset and
assumptions

Security Environment
Elaboration

/ Not all

/ All analyzed

:TOEServices

:TOESecurityEnvironment

:TOESecurityEnvironment

:TOESecurityEnvironment

:TOEDescription

/ Fully covered

/ Not fully covered

/ Adding the threat possible

:TOESecurityEnvironment

/ Adding the threat is not possible

:UncoveredConcerns

Mark uncovered or partially covered issues

Analyze TOE service

Specify assets and assumptions

Specify threats concerning the TOE service

Analyze the risk

Order threats by the risk value

Security concerns covering analysis

Add threats concerning the TOE service Specify OSPs concerning the TOE service

Overall check of the stage

/ OK / not OK

/ develstage=#SEC_ENV

/ develstage≠#SEC_ENV

/ ForwardCommand

/ BackwardCommand

/ stagestatus=#ELABORATED

G
ra

y
st

at
es

 c
on

ce
rn

 p
as

si
ng

be
tw

ee
n

st
ag

es
 in

te
rn

al
 c

on
tro

l

The developer decides

/ stagestatus=#CHECKED or stagestatus=#CLOSED

Choose the right development stage to solve the problem

stagestatus=#CHECKED

develstage=#ST_INTRO

develstage=#SEC_OBJ

stagestatus=#ELABORATED

Fig. 5.4. TOE security environment elaboration – the general activity diagram
Rys. 5.4. Wypracowanie specyfikacji otoczenia zabezpieczeń – nadrzędny diagram czynności

The diagram presents main and auxiliary swimlanes which will be considered below on

separate diagrams. Please note that this TOE security environment elaboration diagram is
“risk-based” and represents “threat approach”, while only those items that could not be

5.3. TOE security environment elaboration process 129

expressed by threats are expressed by OSPs. This is generally preferable as a more concise
and precise means.

Identify TOE assets and specify them by a DAD/DAS-family generics; assess its value

Specify AX-family generics , excluding some threats within the TOE boundary and its environment

Specify AU-family generics dealing with the TOE intentional usage

Assign AE-family items to express the environment responsibility in the TOE protection

Assign AC-family generics (if needed) reflecting connectivity aspects

Analyze special needs , like considerable protected assets value , assign AA-family generics if needed

Use AP-family items to define appropriate personnel behavior during the use of the TOE within its environment

:TOEDescription

:TOEInternalAssets

Identify assets protected by the TOE and specify them by a DAD/DAS-family generics; assess its value

:AssetsProtectedByTOE

:AXItem

:AUItem

:APItem

:AEItem

:ACItem

:AAItem

:AssetsProtectedByTOE

Define a basic set of subjects , using SAU-family items and assign them as the primary assets owners
:SAUItem

:TOEServices

:TOEDescription

Introductory part
- the assets and the assumptions

Go to the threats specification elaboration :AssetsProtectedByTOE:TOEInternalAssets
{OR}

Identify IT assets in TOE environment influencing the TOE and specify them by a DAE-family generics; assess its value

:TOERelatedAssets

Identify physical assets in TOE environment influencing the TOE and specify them by a DAP -family generics; assess its value

:TOERelatedAssets

:TOERrelatedAssets

{OR}

:KindOfData

:ConnectivityAspects

:LocationOfData

:UsersAndDataAccess

:GeneralRiskConsideration

:ConnectivityAspects

:DADItem

:DAEItem

:DAPItem

:DASItem

:DADItem:DASItem

:LocationOfData

Fig. 5.5. TOE security environment elaboration – the introductory part diagram (assets and

assumptions)
Rys. 5.5. Wypracowanie specyfikacji otoczenia zabezpieczeń – część wstępna (zasoby i założenia

na otoczenie)

The first subordinated diagram (Fig. 5.5) presents introductory TOE developer’s
activities, attempted at specifying assets and assumptions. Three different assets specifi-
cations were assumed: included within the TOE, protected by the TOE, and those auxiliary
environmental assets which should be protected for the whole TOE security.

130 5. Elaboration of the TOE security environment

Identify users' malicious activities and specify them by a TUA -family generics

Identify threats triggered by SAHItems influencing the IT assets within the TOE environment and specify them by a TIT-family generics

:TUAItem

:TITItem

:TFMItem

:TDAItem

The threats
specification elaboration

Go to the risk analysis

:SAUItem

Repeat this for each
of the main use cases

:SAHItem

Identify users' accidental activities or errors and specify them by a TUA-family generics

Identify sources of undesirable events caused by accidental human actions or errors and specify them by a SAH-family generics

:TUAItem

Identify administrators' malicious activities and specify them by a TAA -family generics :TAAItem

Identify administrators' accidental activities or errors and specify them by a TAA-family generics :TAAItem

:TOEDescription

:Assets

Identify threats triggered by SAHItems influencing the technical/physical assets within the TOE environment and specify them by a TPH-family generics

:TPHItem:SAHItem

Identify sources of undesirable events caused by non-human actions and specify them by a SNH-family generics

Identify threats triggered by SNHItems influencing the IT/technical/physical assets within the TOE environment and specify them by a TFM-family generics

:SNHItem:TOEDescription

Identify unauthorized actors (intruders) and specify them by a SNA-family generics
:TOEDescription :SNAItem

Identify threats triggered by SNAItems influencing the TOE assets and specify them by a TDA-family generics

Identify threats triggered by SNAItems influencing the IT/technical/physical assets within the TOE environment and specify them by a TDA -family generics

:TDAItem:TOEServices

:IntrudersAndUndesirableEvents

:UsersAndDataAccess

:IntrudersAndUndesirableEvents

Fig. 5.6. TOE security environment elaboration – the threat specification diagram
Rys. 5.6. Wypracowanie specyfikacji otoczenia zabezpieczeń – specyfikowanie zagrożeń

The developed STs are considered more useful when written for a specific environment
and when they take into account risk assessment results [97]. For this reason a simple risk
analyzer was built into the IT Security Development Framework. The second subordinated
diagram (Fig. 5.6) presents threat specifications of different families. During these activities
some other actors and their generics are identified – unauthorized actors and different sources
of undesirable events.

The analyzed assets requiring protection (DAgrGeneric), their value and vulnerabilities,
potential threats agents, sources of undesirable events, etc., allow to create a list of possible

5.3. TOE security environment elaboration process 131

threats dealing with the TOE and/or its environment. By adding the assessed threats
likelihood and impacts (percentage of the asset value loss), the risk value for these threats is
assessed (Fig. 5.7). It allows to order threats by the risk value.

For every reviewed TUA-family threats assess eventLikelihood and assetValueLoss

For every reviewed TFM-family threats assess eventLikelihood and assetValueLoss

:TITItem

:TFMItem

The risk analysis

Go to the OSPs elaboration

For every reviewed TAA-family threats assess eventLikelihood and assetValueLoss

For every reviewed TPH-family threats assess eventLikelihood and assetValueLoss

For every reviewed TDA-family threats assess eventLikelihood and assetValueLoss

:TAAItem

For every reviewed TIT-family threats assess eventLikelihood and assetValueLoss

:TPHItem

:TDAItem

Repeat this for each of the specified threats

:TUAItem

:TITItem

:TFMItem

:TAAItem

:TPHItem

:TDAItem

:TUAItem

Fig. 5.7. TOE security environment elaboration – the risk assessment diagram
Rys. 5.7. Wypracowanie specyfikacji otoczenia zabezpieczeń – ocena ryzyka

The last swimlane of the Fig. 5.4 encompasses the elaboration of the OSP specification
(Fig. 5.8). It was assumed the lowest priority in comparison with the threats specification, as
it is suggested in [60]. For every family of the OSPs, the three basic elements are most
important: the assets – internal, externally protected by the TOE or related, expressed by the
DAD family/DAS family generics, the authorized subjects (SAU family) and the given policy
rule, usually strongly related to the TOE service. The Fig. 5.8 presents key input objects
considered during the OSPs elaboration.

It is important to review specified threats against the security concerns, revealing topics
not covered, not fully covered, or difficult to cover by threats, and cover them by defining
OSPs. Usually some assumptions described by the AU-family or AP-family generics should
be modified too.

132 5. Elaboration of the TOE security environment

Identify rules dealing with identification and authentication and specify them by PIDA family generics

:PIDAItem

The OSP specification
elaboration. Repeat this
for each of the uncovered
concerns

G
o

to
 th

e
se

cu
rit

y
en

vi
ro

nm
en

t s
um

m
ar

y

Identify rules dealing with access control and specify them by PACC family generics
:PACCItem

Identify rules dealing with audit and specify them by PADT family generics
:PADTItem

Identify rules dealing with integrity and specify them by PINT family generics
:PINTItem

:PAVBItem

:PPRVItem

:PDEXItem

:PCONItem

:PEITItem

:PEPHItem

:PSMNItem

:POTLItem

Identify rules dealing with availability and specify them by PAVB family generics

Identify rules dealing with privacy and specify them by PPRV family generics

Identify rules dealing with data exchange and specify them by PDEX family generics

Identify rules dealing with confidentiality and specify them by PCON family generics

Identify rules dealing with right use of software/hardware within the TOE environment (use PEITItems)

Identify rules dealing with technical/physical security within environment (use PEPHItems)

Identify rules dealing with security management (maintenance) within environment (use PSMNItems)

Identify rules concerning obligatory technical solutions and legislation (use POTLItems)

Only main input objects
are shown - assets and
subjects are considered
for all P-type

:Assets

:DataAvailabilityProtectionNeeds

:DataConfidentialityProtectionNeeds

:KindOfData

:ConnectivityAspects

:LocationOfData

:SAUItem

:UsersAndDataAccess

:IntrudersAndUndesirableEvents

:TOEServices

Fig. 5.8. TOE security environment elaboration – the OSP specification diagram
Rys. 5.8. Wypracowanie specyfikacji otoczenia zabezpieczeń – reguły polityki bezpieczeństwa

The OSPs identification finishes the TOE security environment specification, though this
is rather a recursive process and some other items can be added, removed or modified later.

5.4. Use cases for threat scenarios analysis 133

5.4. Use cases for threat scenarios analysis

In developing the TOE security environment it is very helpful to analyze use case
diagrams.

They express TOE functionality, i.e. the expected behaviour, and also support the TOE
environment modelling with threats that may disturb this behaviour.

TOE

Use case 1

ExtensionPoint 1
ExtensionPoint 2

Use case 2

Use case 4

Use case 5 Use case 6

External intruder

User

Administrator

«uses»«uses»

«uses»

Use case 3

«extends»

«extends»

Use case 7

Use case 8

Use case Malicious 1

Use case 9

ExtensionPoint A

Use case Malicious 2

Use case Malicious 3

«uses»

«uses»

Use case 10
«extends»

«uses»

«uses»

Use case Malicious 4
«uses»

* *

*

*

*

*

*

*

*

*

Malicious activity

Fig. 5.9. Use case diagram with legal and illegal interacting actors
Rys. 5.9. Diagram przypadków użycia z uprawnionymi i nieuprawnionymi aktorami

prowadzącymi interakcje

In the real world there are many use cases and actors, legal or illegal, assigned to them. It
is convenient to represent them all on a use case diagram (Fig. 5.9) which shows actors, use
cases and their associations. In comparison with the Fig. 4.9, an additional use case dealing
with the intruder’s malicious activity was added. It should be noted that use cases may be
very convenient to identify risk scenarios, especially with malicious cascading effects.

134 5. Elaboration of the TOE security environment

5.5. Selected UMLsec issues concerning the TOE security environment

The UMLsec methodology [72] has introduced specific formal issues that ought to be
interpreted with the use of the Common Criteria methodology. All information concerning
assets, assumptions, security policies, and first and foremost threats should be properly
extracted from the UMLsec models during the TOE security environment elaboration, though
the UMLsec does not directly provide security issues compatible with the Common Criteria
methodology.

The UMLsec allows to model potential adversary behaviour. The set of abstract threats is
introduced: {delete, read, insert, access}, emerging from a physical layer of the system. The
access (an adversary may access to the physical node) concerning the system node can be
decomposed to atomic actions: delete, read and insert, with respect to the communication
links connected with this node.

The ThreatsA(s) function specifies the threat scenario related to the adversary type
A against a component or link expressed by the stereotype s, and returns a subset of {delete,
read, insert, access}. From these abstract threats concrete threats are derived, used for
modelling a specific behaviour, e.g.: for a link or node x in a deployment diagram in a UML
subsystem specification S, it can be expressed as: threatsS

A(x). The security evaluation of the
system is performed with respect to a given type of adversary and the knowledge he/she
possesses.

Specifying the TOE security environment, the security properties of the IT product or
system, specified in the UMLsec, ought to be expressed by the TgrGeneric, AgrGeneric,
and PgrGeneric generics.

For each case of ThreatsA(s) the right TgrGeneric generics can be identified within the
library or defined. Please note that:
• Threats related to the threat scenario with returned value, i.e. delete, read, insert, access,

can be expressed by the generic mnemonic, description and refinement fields,
• A, representing an adversary, can be expressed by paramSgr, substituted or not by the

attacker SgrGeneric,
• s, representing a component or link being the threatened asset, can be expressed by

paramDAgr, substituted or not by the DAgrGeneric asset.
The UMLsec stereotypes with related tags presenting the security properties can be

expressed with the assumptions (AgrGeneric) or OSPs (PgrGeneric), e.g.:
• <<rbac>> is directly related to the existing PACC.RBAC policy generic,
• <<fair exchange>> can be the basis for the PDEX.FairExchange generic definition for e-

business applications,

5.5. Selected UMLsec issues concerning the TOE security environment 135

• <<no down-flow>> is de facto information flow policy, not available in the current
version of the generic library, but can be defined by developers, as PDEX.NoDownFlow,

• <<Internet>>, <<LAN>> can be the basis to define AC.Internet, AC.LAN, while
<<encrypted>> can be the basis for PCON.EncData generics definitions.
The TOE security environment stage plays the key role in transforming the IT product or

system (TOE) model to its CC-compliant IT security development model (i.e. ST or PP),
regardless of the methodology applied to create the IT product or system model. These issues
concern the ADV assurance class. All security relevant properties of the TOE ought to be
extracted from the TOE model. It will be shown on the selected issues concerning the
UMLsec as the TOE model specification methodology. Please refer also to the example 3.5
which deals with an informal TOE representation.

Example 5.1: UMLsec TOE model interpretation during TOE security environment
elaboration – selected issues.

The Fig. 5.10 shows a part of the distributed data communication system, called there Secure
channel, based on cryptography (similar to broadly implemented SSL – Secure Socket Layer
protocol). Please note the Client (e.g. a web browser) and Server (e.g. a web server) classes
and the objects corresponding to them and exchanging information according to the assumed
protocol.
Please note UMLsec stereotypes:
• <<data security>> of the Secure channel system meaning that the [72] “system provides

secrecy, integrity, authenticity, freshness” as a whole with respect to the given adversary
model;

• both the Client and Server classes are <<critical>> and this criticality is expressed in
more detail using the corresponding tags, i.e. secrecy, integrity, authenticity, freshness.

Please note protocol data and operations declared for both classes. The data exchange is
initiated from the client side. The web browser sends (invoking init() operation) the
following to the server: the nonce N, the client public key KC, and the record containing the
client name and client public key KC signed with the use of its private key KC

-1:
 init(N, KC, SignKC-1(C::KC)).
The server response to this invoking:
 resp({SignKS-1(K::N::KC)}KC, SignKCA-1(S::KS)),
where the meaning of the arguments is:
 {SignKS-1(K::N::KC)}KC – the encrypted record, using the client public key KC and
including the symmetric server generated session key K, returned the N nonce value and the
client public key KC authenticating the server,
 SignKCA-1(S::KS) – the digital certificate of the server public key KS.
Using a common session, the key K client can send the confidential data s invoking:
 xchd({s}K).

136 5. Elaboration of the TOE security environment

C:Client S:Server

«system»
Secure channel <<data security>>

+resp()

+S,s,N,i: Data
+Kc,Kc-1,Kca:Keys

Client <<critical>>

{
secrecy={s,Kc-1}
fresh={N}
integrity={s,N,Kc,Kc-1,Kca}
authenticity={K,S}
}

+init()
+xchd()

+J: Data
+Ks,Ks-1,Kca,K:Keys

Server <<critical>>

init (N,Kc,SignKc-1(C::Kc)

resp({SignKs-1(K::N::Kc)}Kc, SignKca-1(S::Ks))

xchd({s}K)

Syntax of Client class operation :
resp(shrd:Exp, cert:Exp)
 shrd - shared value
 cert - digital certificate

Syntax of Server class
operation:
init(n:Data, k:Key, cert:Exp)
 n - nonce data
 k- public key
 cert - digital certificate

{
secrecy={Ks-1,K}
fresh={K}
integrity={Ks,Ks-1,K,j,Kca}
}

both dependencies
are <<send>> type

Syntax of Server class operation:
xchd({s}K)
 s - confidential data
 K - symmetric session key

Fig. 5.10. Key exchange protocol implementation – an example
Rys. 5.10. Implementacja protokołu wymiany klucza – przykład

Analyzing this simplified protocol implemented within the TOE, the developer ought to
specify the TOE security environment elements, like assumptions, threats and OSP policies.
The <<data security>> stereotype applied for the security channel requires to consider a
given adversary model. For this reason, the developers use and refine, for example, the
following generic related to the man-in-the-middle type attack:

TDA.ModInfor_D0I0. Message content modification. A hacker [paramSNA] modifies
information intercepted from a communication link between two unsuspecting entities before
passing it on, thereby deceiving the intended recipient.
Refinement: This manipulation is to exploit any design flaws that may exist in the
cryptographic protocol.

The developer also assumes that:
AX.ResistCrypto_D0I0. Adversary is not able to break the encryption system implemented in
the protocol (a user-defined generic).
AE.StronKey_D1I0. Application [paramDAS] uses only appropriate secret keys (chosen from
a large key space) as input for the cryptographic function of the TOE to ensure the strength
of cryptographic operation (a derived generic).

The developer can add other generics and continue the development until successful rationale
process.

5.5. Selected UMLsec issues concerning the TOE security environment 137

This example shows that the TOE development can base on the UMLsec formal
methodology and the TOE security development can base on the methodology presented in
the monograph. Finally, they can meet together where security-related IT product or system
is specified according to the ADV assurance class requirements.

5.6. Formal approach to the TOE security environment specification

The Common Criteria IT security development methodology allows less or more formal
approaches. A reasonable level of formalization can bring many advantages (the development
time, cost, preciseness, etc.). The level of the model formalization depends on the user’s need
and her/his ability to implement the selected formal approach. The methodology presented in
the monograph has a semiformal character. It can be complemented by some formal elements
to create more precise models.

Definition 5.1: TOE security environment.

The TOE security environment is a pair of sets:
 STOESecEnv = <STOESecEnvItems, STOESecEnvPars>.
1. The first element of the pair, STOESecEnvItems is the sum of five disjointed sets of generics:

STOESecEnvItems = SSubjects SU Assets SU Threats SU OSPs SU Assumpt and
SSubjects S∩ Assets S∩ Threats S∩ OSPs ∩ SAssumpt = ∅ ,
where:

 SSubjects = {SgrGeneric | SgrGeneric.assignstat=#ASSIGNED},
 SAssets = {DAgrGeneric | DAgrGeneric.assignstat=#ASSIGNED},
 SThreats = {TgrGeneric | TgrGeneric.assignstat=#ASSIGNED},
 SOSPs = {PgrGeneric | PgrGeneric.assignstat=#ASSIGNED},
 SAssumpt = {AgrGeneric | AgrGeneric.assignstat=#ASSIGNED}.
2. The second element of the pair, STOESecEnvPars is the sum of six sets of parameterization
associations:

STOESecEnvPars GenParAssoc and S⊆ TOESecEnvPars =
{ParamDA4T, ParamS4T, ParamDA4P, ParamS4P, ParamDA4A, ParamS4A}.

This definition is exemplified by two figures: Fig. 5.2 and Fig. 5.3. The parameters

should be properly assigned or left empty. Assuming that the types of parameter attributes
are: paramDAgr:DAgrGeneric and paramSgr:SgrGeneric, this condition can be easily
expressed as the OCL invariants:

ParamDA4T
TgrGeneric.paramDAgr=DAgrGeneric or DAgrGeneric->isEmpty
ParamDA4P
PgrGeneric.paramDAgr=DAgrGeneric or DAgrGeneric->isEmpty
ParamDA4A
AgrGeneric.paramDAgr=DAgrGeneric or DAgrGeneric->isEmpty
ParamS4T
TgrGeneric.paramSgr=SgrGeneric or SgrGeneric->isEmpty
ParamS4P
PgrGeneric.paramSgr=SgrGeneric or SgrGeneric->isEmpty
ParamS4A

138 5. Elaboration of the TOE security environment

AgrGeneric.paramSgr=SgrGeneric or SgrGeneric->isEmpty
�

For the risk value assessment operation the OCL constraints can be defined as follows
(Fig. 5.3):

TgrGeneric::riskValueAssess()
-- check if declared asset exists
pre: self.paramDAgr->notEmpty
-- check if declared value is in the assumed range:
 and (self.paramDAgr.assetValue>=MIN_ASSET_VALUE and
 self.paramDAgr.assetValue<=MAX_ASSET_VALUE)
 and (self.assetValLoss>=MIN_ASSET_VAL_LOSS and
 self.assetValLoss <=MAX_ASSET_VAL_LOSS)
 and (self.eventLikelihood >=MIN_EV_LIKELIHOOD and
 self.eventLikelihood <=MAX_EV_LIKELIHOOD)
post:result= self.paramDAgr.assetValue*self.assetValLoss*self.eventLikelihood
�

The definition is on the generic group level, though the risk is estimated on the generic
items level, where there exists a concrete threat, threatened asset and intruder or undesirable
event represented by generic items (GenItem).

The security environment encompasses disjointed sets of different types of generic items
(including their instances). The OCL offers different operations on collections that can be
very helpful in defining quantity measures for the model, the model analysis and its
optimization. These features are important in the design complexity analysis that will be
shown in the selected examples. The operations presented below can be used for other stages
as well.

Example 5.2: Counting the generic items of a given type placed in the specification using the
OCL expression.

Let us assume for example that the Threats class has the noOfTDAItems:Integer attribute
defined (not shown on the class diagrams) to store the number of generics of the given type
(including instances):

Threats
self.noOfTDAItems=self.tDAItem14->size
�

Example 5.3: Checking the uniqueness of the specification items names.

Please note that all items within the specification should be unique with respect to their
mnemonic name, derivation number and instance number. This property can be expressed as
the OCL constraints, e.g. (see Fig. 3.22):

Threats
self.tDAItem->count(crpAnal_D0I0)=0
 -- when the given generic item was not placed into the specification
or self.tDAItem->count(crpAnal_D0I0)=1
 -- otherwise
--
-- or in a more compact way:
self.tDAItem->includes(crpAnal_D0I0)

14 According to the OCL convention, the class names used in the navigations are written using the first

lower letter.

5.6. Formal approach to the TOE security environment specification 139

-- returns true if this item was placed, false otherwise
�

Example 5.4: Finding the selected specification items using the OCL select operation.

Let us assume that the developer analyzes OSP rules concerning availability.

OSPs
self.pAVBItem
-- returns the set of all PAVBItem items placed in the specification
self.pAVBItem->size
-- count them
self.pAVBItem->select(dealingTOE=true and dealingEnviron=false)
-- only the rules concerning TOE are selected
�

Example 5.5: Creating the complete specifications.

Let allassumptions:Set be the set containing all items of the assumptions specification. It
is the Assumptions class attribute.
Please note that Assumptions.allassumptions = SAssumpt, and, in a similar way, other TOE
security environment subsets can be extracted from the model.

Assumptions
allassumptions=self.aXItem->union
 (self.aUItem->union
 (self.aPItem->union
 (self.aEItem->union
 (self.aCItem->union
 (self.aAItem)))))
�

Example 5.6: Creating the collection of TIT-family items placed in the specification that
have the risk above the assumed acceptance level, for example > 35% (percentage measure
was applied in considered design).

Threats
self.tITItem->select(riskValueAssess()>0.35)
�

The last example needs extra comment concerning the risk estimation. The
riskValueAssess() operation always concerns a threat item having the DAgrGeneric assigned,
which ought to have the asset value declared.

6. SECURITY OBJECTIVES ELABORATION

6.1. Security objectives section of the Security Target defined by the standard

The third main development stage is the establishment of the TOE security objectives.
The standard says that the objectives provide a concise statement of the intended response to
the security problem [38], indicating the extent to which the security needs, defined by the
security environment, are addressed by the TOE and its environment. This is the central point
of the whole ST or PP, a kind of bridge between security concerns and precise security
specification based on CC components. The trade-off concerning responsibility for security
between the TOE and its environment (using IT and non-IT aspects) is very important there
because it implies the nature and cost of the developed product. The concept included in the
standard can be expressed as the class diagram, shown in the Fig. 6.1. It will be the basis for
further developed models presented in this monograph, concerning the security objectives
elaboration methodology and the specification means.

TOE_IT_Objectives Environment_IT_Objectives EnvironmentAuxiliaryObjectives

SecurityObjectives
1

*
1

*

1

*

Fig. 6.1. TOE security objectives – the CC defined basic elements
Rys. 6.1. Cele zabezpieczeń przedmiotu oceny (TOE) – elementy zdefiniowane w standardzie

Wspólne kryteria

6.2. Security objectives data model

For specification purposes different classes (including abstract ones) of security
objectives should be distinguished (Fig. 6.2). The proposed objectives can be threats-, OSPs-
or assumptions-driven. They concern the Ogr4Tgr, Ogr4Pgr, Ogr4Agr security association
classes respectively (Fig. 3.18). The developers-defined auxiliary objectives can be driven in
the same way.

6.2. Security objectives data model 141

TOE_IT_Objectives Environment_IT_Objectives EnvironmentAuxiliaryObjectives

SecurityObjectives

ProposedObjectives AuxiliaryObjectives
SelectedSecurityObjectives

ThreatsProposedObjectives OSP_ProposedObjectives AssumptionsProposedObjectives

{OR}

Fig. 6.2. Inherited classes expressing TOE security objectives
Rys. 6.2. Klasy dziedziczone, przedstawiające cele zabezpieczeń przedmiotu oceny (TOE)

The detailed class diagram was developed (Fig. 6.3) on the basis of the CC standard
defined elements (Fig. 6.1) and the assumed types of security objectives (Fig. 6.2). The
diagram presents more information concerning the modelling of any aspects of the TOE
security objectives. As it was mentioned in the previous chapter, the TOESecEnvElaboration
class is responsible for the security environment data structure workout. On the basis of this
structure, the elements of the security objectives specification are elaborated. The
TOESecObjElaboration class is responsible for that.

Different class attributes were indicated. Two Boolean-type flags: dealingTOE,
dealingEnviron, assigned previously (i.e. during the security environment elaboration) to any
identified threat or OSP, are now transferred to the assigned security objectives, although
during subsequent security objectives trade-off the flags can be ultimately changed,
allocating intentional response to the security concern. Each of the assigned security
objectives should be justified – why it is needed, what is covered, what gaps still exist, what
additional concerns are covered. The coverage flag should be false until the concern is not
fully covered. All this information is sampled for a detailed analysis during the rationale
process.

Three additional Boolean-type flags characterize the ways in which the security
objectives affect a given threat or support a given OSP, i.e.: detective, corrective or
preventive.

Any threat, OSP or assumption has its own list of proposed security objectives, covering
them by default. This mechanism is an element of developers’ decision support while
safeguarding measures are selected. The developers can define their own security objectives
(auxiliary) when the existing ones are inadequate.

There are other Boolean-type flags pointing to the security objective origin: i.e.:
threatDerived, ospDerived or assumptDerived, used during the rationale process.

142 6. Security objectives elaboration

+createST()
+openExistingST()
+saveST()

+<<stateAttribute>>
+develstage : byte

ST_Elaboration

1

1

1

1
TOESecurityEnvironment

Assets

Subjects

Threats

OSPs

Assumptions

1

*

1 * 1

*

1

*

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

TOESecEnvElaboration

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

TOESecObjElaboration

TOE_IT_Objectives

Environment_IT_Objectives

EnvironmentAuxiliaryObjectives

AuxiliaryObjectives

ThreatsProposedObjectives

OSP_ProposedObjectives

AssumptionsProposedObjectives

+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool
+threatDerived : bool
+ospDerived : bool
+assumptDerived : bool

SecurityObjectives

+relatedThreat
+relatedAssumption
+related OSP
+coverage : bool
+whyNeeded : string
+whatIsCovered : string
+coveringGaps : string
+coveredExtras : string

SecurityObjectiveJustification

1

1

Reprezent other than
"proposed" library objective
items - predefined
or users' defined

1*

*

1

*

*

*

*
*

*

*

1

*

*

Fig. 6.3. TOE security objectives elaboration (the right side) on the basis of the TOE security

environment (the left side) – the assumed static structure diagram
Rys. 6.3. Wypracowanie celów zabezpieczeń TOE (strona prawa) na podstawie otoczenia

zabezpieczeń (strona lewa) – założona struktura statyczna

The key issue for the model presented there is using the risk assessment results and

performing a coverage analysis with justification for the security concerns specified in the
security environment. Every threat has additional data concerning the risk assigned, i.e. the
asset value and the event likelihood, allowing to assess the risk value in a simple way and to
order all scenarios according to these values, thus getting clear directions for security
objectives selection.

The “proposed” objectives concern the Ogr4Tgr, Ogr4Pgr, Ogr4Agr security associations
with assocstat=#PROPOSED (Fig. 3.17). These associations express the default assignments
of security objectives to the threat-, OSP-, and assumption-families respectively. Due to the
complicity of relationships between generic families of different types, all proposed relations
will be presented on separate diagrams. Each of them can be considered as the refinement of
the proper security association.

6.2. Security objectives data model 143

ThreatsProposedObjectives

TPHProposed

TFMProposed

1

*

TDAProposed

1

*

OINTItemOACCItem OADTItem OAVBItemOIDAItem OPRVItem

OCONItemODEXItem OEPHItemOEITItem OSMNItem

1
*

1
*

1
*

1*1
*

1
*

1

*

1

*

1

*

1

*

1

*

TITProposed

Fo
r T

IT
, T

P
H

an
d

TF
M

se
e

th
e

ne
xt

 F
ig

ur
e

TUAProposed

OINTItemOACCItem OADTItem OAVBItemOIDAItem OPRVItem

OCONItemODEXItem OEPHItemOEITItem OSMNItem

1
*

1
*

1
*

1*1
*

1
*

1

*

1

*

1

*

1

*

1

*

TAAProposed

OINTItemOACCItem OADTItem OAVBItemOIDAItem OPRVItem

OEITItem OSMNItem

1
*

1
*

1
*

1*1
*

1
*

1

*

1

*

1

*

1

*

1
*1

*

Fig. 6.4. Threats-proposed security objectives – families: TAA, TUA, TDA
Rys. 6.4. Cele zabezpieczeń sugerowane na podstawie rodzajów zagrożeń – rodziny

typu: TAA, TUA, TDA

ThreatsProposedObjectives

TUAProposed

TDAProposed

1

*

TFMProposed

1

*

OADTItem OAVBItem

OEPHItemOEITItem OSMNItem
1

*
1

*

1

*

1

*

1

*

TAAProposed

Fo
r T

AA
, T

U
A

an
d

TD
A

se
e

th
e

pr
ev

io
us

 F
ig

ur
e

TPHProposed

OADTItem OAVBItem

OEPHItem OSMNItem

1
*

1
*

1

*

1

*

TITProposed

OINTItemOADTItem OAVBItemOIDAItem

1
*

1
*

1*1
*

1

*

1

*

1 *1

*

OCONItemODEXItem OEPHItemOEITItem OSMNItem1

*

1
*

1
*

1
*

1
*

Fig. 6.5. Threats-proposed security objectives – families: TIT, TPH, TFM
Rys. 6.5. Cele zabezpieczeń sugerowane na podstawie rodzajów zagrożeń – rodziny

typu: TIT, TPH, TFM

144 6. Security objectives elaboration

Every threat family, expressed by its generic, has a proposed security objectives subset
defined (Fig. 6.4, Fig. 6.5), allowing developers’ direct decision support. Please note the
specific generic types allowed for the given threat family.

PINTProposed

PACCProposed

PADTProposed

PAVBProposed

PIDAProposed

PPRVProposed

PEPHProposed

PCONProposed

PEITProposed

PSMNProposed

PDEXProposed

POTLProposed

1

*

1

*

1

*

1
*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

OSP_ProposedObjectives
OINTItem

OACCItem

OADTItem

OAVBItem

OIDAItem

OPRVItem

OCONItem

ODEXItem

OEPHItem

OEITItem

OSMNItem

1

* 1
*

1

*

1

*
1

*

1

*

1
*

1

*

1

*

1
*1

*

OSMNItem

OIDAItem

OSMNItem

OSMNItem

OSMNItem

OSMNItem

OSMNItem

OSMNItem

OSMNItem

OSMNItem

OACCItem OIDAItem

ODEXItemOADTItem OEPHItem

OEITItemOADTItemOACCItem OINTItem OSMNItem

OEITItem

ODEXItem OEPHItemOEITItem
1

*
1

*
1

*

1

* 1

*

1

*

1

*

1
*

1

*

1
*

1

*

1

*

1

*

1

*

1
*

1

*

1

*

1

*

1

*
1

*

OSMNItem

1
*

1

*

1
*

1
*

1

*

1

*

Fig. 6.6. The OSP-driven security objectives
Rys. 6.6. Cele zabezpieczeń sugerowane na podstawie reguł polityki bezpieczeństwa

The OSP-driven security objectives are presented in the Fig. 6.6. Every OSP family can
be covered by the right security objectives items, selected after the security concern analysis.
Please refer to the Ogr4Pgr security association which is expressed there in a more detailed
way (on the generic family level).

6.2. Security objectives data model 145

The Fig. 6.7 presents security objectives influenced by the assumptions. Please note the
right generic item family assigned to the given assumption generic family. This assignment is
the refinement of the Ogr4Agr security association.

AssumptionsProposedObjectives

AEProposed AUProposed

ACProposed

APProposed

AAProposed

1

*

1
*

1

*

1 *
1

*

1

*

ODEXItemOEPHItemOEITItem

OSMNItem

OSMNItem

OSMNItem

OEPHItemOEITItem

AXProposed

OINTItemOACCItem OADTItem OAVBItemOIDAItem OPRVItem

OCONItemODEXItem OEPHItemOEITItem OSMNItem

1
*

1
*

1
*

1*1
*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1

*

1
*

1 *

1

*

1

*

Fig. 6.7. The assumption-driven security objectives
Rys. 6.7. Cele zabezpieczeń sugerowane na podstawie założeń otoczenia zabepieczeń

The security objectives assignments, including those for threats and OSPs, refer to basic
generics chains implemented in the generics library.

6.3. Security objectives specification workout

The general elaboration scheme, as a UML activity diagram, was shown in the Fig. 6.8
and represents the behaviour of the TOESecObjElaboration class. Four main steps are
distinguished:
• working out security objectives specification implied by threat specification – starting

from the threat is preferred by [60], generally allowing more optimal design,
• adding security objectives implied by OSPs (sometimes may be more convenient),
• finishing with adding some objectives influenced by assumptions,
• partitioning elaborated security objectives between the TOE and/or its environment.

Please note that threat specification has the highest priority, although when it does not
exist all security objectives may be elaborated on the OSPs and/or assumptions basis. For the
security objectives selection the following rules are assumed. First, the developer should
merge or join the security objective proposed for the security item (i.e. the threat, the OSP, or

146 6. Security objectives elaboration

the assumption), if existing, to the previously selected security objectives. Merging is
possible when the proposed item overlaps the previously selected one, while joining is equal
to adding separate proposed issues to the selected items.

This allows to get more compact specifications. Then the developer uses predefined
generics (modifying them if needed) and joins them to the selected ones. If an adequate
generic does not exist, a user-defined one is created and then added to the library resources
and to the selected security objectives.

:Threats

:OSPs

:SecurityObjectives

:SecurityObjectives

:Assumptions

:Environment_IT_Objectives

:EnvironmentAuxiliaryObjectives
:TOE_IT_Objectives

Transform OSPs to security objectives starting from these that have objectives proposed

Transform assumptions to security objectives starting from these that have objectives proposed

TOE-Environment trade-off

Transform threats to security objectives starting from these that have objectives proposed

/ OK

/ not OK

/ develstage=#SEC_OBJ

/ develstage≠#SEC_OBJ

/ stagestatus=#ELABORATED

/ stagestatus=#CHECKED or stagestatus=#CLOSED

/ ForwardCommand

/ BackwardCommand

G
ra

y
st

at
es

 c
on

ce
rn

 p
as

sin
g

be
tw

ee
n

st
ag

es
 in

te
rn

al
 c

on
tro

l

stagestatus=#ELABORATED

Overall check of the stage

The developer decides

Choose the right development stage to solve the problem

stagestatus=#CHECKED

develstage=#SEC_REQ

develstage=#SEC_ENV

Fig. 6.8. TOE security objectives elaboration – the general activity diagram
Rys. 6.8. Wypracowanie celów zabezpieczeń TOE – nadrzędny diagram czynności

Each of the above mentioned steps will be shown on a separate activity diagram. The first
subordinated diagram is focused on the threats basis selection (Fig. 6.9). This is the key part
of the elaboration, encompassing almost all security concerns, because for any threat
involved, supporting or redundant (should be removed) OSPs are analyzed with respect to
risk scenarios.

6.3. Security objectives specification workout 147

These are the three main factors that should be considered while objectives are selected.
This method allows to minimize the quantity of security objectives, no matter whether they
are expressed by threats or/and by OSPs.

Threats analysis Security objectives selection on the threats basis

:SecurityObjectives

/ Not all

/ All sec . concerns for given threat analyzed

:Threats

/ Predefined are enough

/ Adding user defined objective necessary

/ Not all

/ All threats analyzed

:SecurityObjectives

:OSPs

:AuxiliaryObjectives

:SecurityObjectiveJustification

/ Proposed obj. does not exist

/ Proposed obj. exists

/ Merging/joining is enough

/ New one must be added to the selected

Refine and justify them, analyzing and expressing the coverage of the considered security concern

Create the auxiliary security objective and add it to the selected

Select the considered sec. obj. from predefined - if adequate (based on: threat/risk/OSP)

Try to merge or join the concern into selected security objectives (based on: threat/risk/OSP)

Review OSPs adjacent to the proposed objective - if exist

Consider previously selected objectives for the threat vs . those proposed

Review adjacent risk scenario and value

Review threats and select the next one

Fig. 6.9. TOE security objectives elaboration – objectives selection on the threats basis
Rys. 6.9. Wypracowanie celów zabezpieczeń TOE – selekcja celów według zagrożeń

Finally, security objectives refinement and justification are performed, allowing not fully
covered entities. All aspects of the identified security needs expressed by the TOE threat
specification ought to be suitably addressed by the security objectives.

The second subordinated diagram presents the identified objectives using the OSPs
specification (Fig. 6.10). At the beginning it is assumed that the threat specification was

148 6. Security objectives elaboration

previously processed or it does not exist at all. In this case OSPs-expressed concerns are
grouped too and if an adequate one does not exist, a new one can be defined – it is a general
rule for all elaborations described there. In the end, refinement and justification are
performed.

OSP analysis Security objectives selection on the OSPs basis

:SecurityObjectives

/ Not all

/ All sec . concerns for given OSP analyzed

/ Predefined are enough

/ Adding user defined objective necessary

/ Not all

/ All OSPs analyzed

:SecurityObjectives

:AuxiliaryObjectives

:SecurityObjectiveJustification

:OSPs

/ Merging/joining is enough

/ New one must be added to the selected

/ Proposed obj. does not exist

/ Proposed obj. exists

Refine and justify them, analyzing and expressing the coverage of the considered security concern

Create the auxiliary security objective and add it to the selected

Select the considered sec. obj. from predefined - if adequate (based on: threat/risk/OSP)

Try to merge or join the concern into selected security objectives

Review OSPs adjacent to the proposed objective - if exist

Consider previously selected objectives vs . those proposed

Review OSPs and select the next one

Fig. 6.10. TOE security objectives elaboration – objectives selection on the OSPs basis
Rys. 6.10. Wypracowanie celów zabezpieczeń TOE – selekcja celów według reguł polityki

bezpieczeństwa

All aspects of the identified security needs expressed by the OSP specification should be
suitably addressed by the security objectives. The security objectives specification should be
finally supplemented by the TOE environmental requirements, expressed by the assumptions
(Fig. 6.11) – it is the whole specification refinement. All aspects of the identified security
needs expressed by the TOE threat or OSP specification, suitably addressed by the security
objectives, ought to be upheld by the assumptions.

6.3. Security objectives specification workout 149

Assumptions analysis Security objectives selection on the assumptions basis

:SecurityObjectives

/ Not all

/ All sec. concerns for given assumption analyzed

/ Predefined are enough

/ Adding user defined objective necessary

/ Not all

/ All assumptions analyzed

:SecurityObjectives

:AuxiliaryObjectives

:SecurityObjectiveJustification

:Assumptions

/ Merging/joining is enough

/ New one must be added to the selected

/ Proposed obj. does not exist

/ Proposed obj. exists

Refine and justify them, analyzing and expressing the coverage of the considered security concern

Create the auxiliary security objective and add it to the selected

Select the considered sec . obj. from predefined - if adequate (based on: threat/risk/OSP)

Try to merge or join the concern into selected security objectives

Review OSPs adjacent to the proposed objective - if exist

Consider previously selected objectives vs . those proposed

Review assumptions and select the next one

Fig. 6.11. TOE security objectives elaboration – objectives selection on the assumptions basis
Rys. 6.11. Wypracowanie celów zabezpieczeń TOE – selekcja celów według założeń otoczenia

The elaborated security objectives specification includes items assigned by default to the

TOE and/or its environment (Fig. 6.12) according to the mentioned Boolean flags. The
developer is able to optimize the specification assigning the responsibility for the intended
security problems response between the TOE and/or its environment, and deciding about the
functionality and cost of the designed TOE.

Please note that TOE security objectives will be implemented and evaluated, but those
dealing with the environment will be satisfied by the environment (usually in the
organizational way) and will be considered as dogmas during evaluations. In the first case the
developer can achieve the TOE with rich functionality, working automatically, probably

150 6. Security objectives elaboration

more reliable but more costly. In the second case he/she can obtain products that need
permanent personal assistance, have inconvenient maintenance, but are considerably cheaper.
This trade-off depends indirectly on the declared EAL. In any case, two kinds of the
environmental objectives should support the TOE objectives.

SecurityObjectives

Environment_IT_Objectives

TOESecurityEnvironment

1

*

OINTItemOACCItem OADTItem

OIDAItem

OCONItemODEXItem

1

*

1

*

1

*

1
*

1
*

1
*

1
*

1
*

1
*

1
*

EnvironmentAuxiliaryObjectives

1

*

1

*

Concerns the TOE IT aspects - will be transformed to the requirements for the TOE

Dealing with the TOE environment

OEPHItemOEITItem OSMNItem

OAVBItem OPRVItem
1

*

TOE_IT_Objectives

OINTItemOACCItem OADTItemOIDAItem OCONItemODEXItem

1
*

1

*

1

*

1

*

1

*

1

*

1

*

OAVBItem OPRVItem

1

*

Fig. 6.12. TOE security objectives elaboration – objectives partitioning between the TOE

and/or its environment
Rys. 6.12. Wypracowanie celów zabezpieczeń TOE – rozdział celów pomiędzy TOE lub jego

otoczenie

The elaborated security objectives specification is the basis for the security requirements

elaboration. Every security objective has its proposed security requirements assigned,
supporting developers’ decisions.

6.4. Formal approach to the security objectives specification

In the same way as for the security environment, some formalisms for the security
objectives elaboration will be proposed. The security objectives specification can be
expressed as the triplet of sets.

Definition 6.1: TOE security objectives.

The TOE security objectives is the triplet of sets:
 SSecObj = <SSecObjItems, SSecObjPars, SSecObjAssocs>.

1. The first element of the triplet, SSecObjItems is the sum of three disjointed15 sets of generics:
SSecObjItems = STOE_ITObjectives U SEnvirITObjectives SU EnvirAuxObjectives and
STOE_ITObjectives ∩ SEnvirITObjectives S∩ EnvirAuxObjectives = ∅ , where:

15 This condition ought to be satisfied at the end of work on security objectives specification. At the
beginning, IT security objectives for the TOE and environment usually have common items. It is a post-
condition, not precondition, with respect to TOESecObjElaboration.elaborate() (Fig. 6.3).

6.4. Formal approach to the security objectives specification 151

 STOE_ITObjectives = {OgrGeneric | OgrGeneric.assignstat=#ASSIGNED},
 SEnvirITObjectives = {OACCGen | OACCGen.assignstat=#ASSIGNED} U
 {OADTGen | OADTGen.assignstat=#ASSIGNED} U
 {OINTGen | OINTGen.assignstat=#ASSIGNED} U
 {OAVBGen | OAVBGen.assignstat=#ASSIGNED} U
 {OPRVGen | OPRVGen.assignstat=#ASSIGNED} U
 {ODEXGen | ODEXGen.assignstat=#ASSIGNED} U
 {OCONGen | OCONGen.assignstat=#ASSIGNED}.
 SEnvirAuxObjectives = {OEITGen | OEITGen.assignstat=#ASSIGNED} U

 {OEPHGen | OEPHGen.assignstat=#ASSIGNED} U
 {OSMNGen | OSMNGen.assignstat=#ASSIGNED}.

2. The second element of the triplet, SSecObjPars is the sum of two sets of parameterization
associations:

SSecObjPars GenParAssoc and S⊆ SecObjPars = {ParamDA4O, ParamS4O}.
3. The final element of the triplet, SSecObjAssocs is the sum of three sets of associations dealing
with the mapping of the security objectives to the threats, OSPs and assumptions items:

SSecObjAssocs ⊆ SecAssoc and SSecObjAssocs = {Ogr4Tgr, Ogr4Pgr, Ogr4Agr}.

Please refer to the Fig. 6.3, 6.12, 3.15 and 3.18 which exemplify this definition. The
parameters can be left empty, i.e. uncompleted or should be properly assigned. Assuming that
the types of parameter attributes are: paramDAgr: DAgrGeneric and paramSgr: SgrGeneric,
this condition can be easily expressed as the OCL invariants:

ParamDA4O
OgrGeneric.paramDAgr=DAgrGeneric or DAgrGeneric->isEmpty
ParamS4O
OgrGeneric.paramSgr=SgrGeneric or SgrGeneric->isEmpty
�

Let us consider a very general definition of the security objectives elaboration process
that summarizes all activities expressed semiformally in this chapter:

Definition 6.2: TOE security objectives elaboration.

The TOE security objectives elaboration is the transformation of STOESecEnv to SSecObj, i.e.
transformation of STOESecEnvItems with their parameters STOESecEnvPars, to SSecObjItems with their
parameters SSecObjPars, according to the mapping rules represented by the SSecObjAssocs
associations.

Discussing the security environment specification (section 5.6) some examples of the
OCL expressions, mainly operations on collections, were presented. They can be used for
other IT security development stages too. For the security objectives elaboration stage the
new element has appeared, i.e. the set of associations concerning mapping the security issues.

Example 6.1: Searching for the similar items preliminarily assigned to the TOE and the
environment – the general checking before the trade-off activity (see Fig. 6.8).

At the beginning of the security objectives stage many security objectives items have both
flags dealingTOE, dealingEnviron set, i.e. inherited from threats, OSPs or assumptions items.

152 6. Security objectives elaboration

This inconsistency of the model ought to be corrected by the rearrangement of the security
objectives items, but firstly all these items should be identified.
The searching is restricted to the selected family of generics and the operation belongs to the
SecurityObjectives class.

SecurityObjectives::search4Unresolved(p:GenFamily)
pre:
post: result=self.TOE_IT_Objectives.p->
 select(dealingTOE=true and dealingEnviron=true)->union
 (self.Environment_IT_Objectives.p->
 select(dealingTOE=true and dealingEnviron=true)->union
 (self.EnvironmentAuxiliaryObjectives.p->
 select(dealingTOE=true and dealingEnviron=true)
)
)

Example 6.2: Finding the repeating security issues in two sets of items – the final checking
after the trade-off activity.

These operations search for identical items belonging to different sets of the security
objectives and can be applied to the final specification checking during or after the trade-off
activity.
As it was mentioned earlier, at the beginning of the security objectives specification workout
some items, usually derived from the “proposed”, are placed into both the TOE IT objectives
and Environment IT objectives sets, or into both the Environment IT objectives and
Environment Auxiliary objectives sets.
It was assumed that the discussed two operations belong to the SecurityObjectives class.

SecurityObjectives::commonITObjectives(p:GenFamily)
pre:
post: result=self.TOE_IT_Objectives.p->intersection
 (self.Environment_IT_Objectives.p)

SecurityObjectives::commonEnvironObjectives(p:GenFamily)
pre:
post: result=self.Environment_IT_Objectives.p->intersection
 (self.EnvironmentAuxiliaryObjectives.p)
�

7. PREPARING SECURITY REQUIREMENTS

7.1. Security requirements specification according to the standard

The standard says that the following three main types of IT security requirements should
be specified (Fig. 7.1):
• TOE security requirements – expressed with the use of CC components, evaluated and

consisting of:
− Security Functional Requirements (SFRs) for the TOE – expressed by functional

components [39],
− Security Assurance Requirements (SARs) for the TOE – expressed by assurance

components [40];
• IT environment security requirements, non evaluated and considered as dogmas during

the evaluation – expressed in two ways:
− using functional and/or assurance CC components (for a well defined TOE IT

environment);
− using generics, when more general statements are enough (REIT-family or REPH-

family generics);
• non-IT environment security requirements – supportive to the above mentioned, non

evaluated and considered as dogmas, generally optional and expressed by the RENIT-
family generics.

TOE_SecurityRequirements IT_EnvironmentSecurityRequirements Non-IT_EnvironmentSecurityRequirements

SecurityRequirements
1

* 1 *
1

*

Fig. 7.1. TOE security requirements – the CC defined basic elements
Rys. 7.1. Wymagania bezpieczeństwa dla przedmiotu oceny (TOE) – elementy określone

w standardzie Wspólne kryteria

Besides, there are two main types of SFRs [60] distinguished:
• principal SFRs, which directly satisfy given TOE security objectives;

154 7. Introduction and motivation

• supporting SFRs, which provide support to the principal SFRs, and hence indirectly help
satisfy the relevant security objectives for the TOE.
Any SFR (principal or supportive) may have [39] a dependent SFR and/or SAR assigned.

The security requirement elaboration process is rather well, but informally, described in the
standard, so the monograph is focused on its semiformal modelling and implementation,
assuring the consistency with other development stages encompassed by the IT Security
Development Framework. The specification means for this stage are semiformally defined as
the functional [39] and assurance [40] components.

7.2. Security requirements data model

The concept included in the standard (Fig. 7.1) will be the basis for further developed
models presented in this monograph. Among the above mentioned types of requirements,
implied directly or indirectly by the standard, additional groups of requirements are
introduced (Fig. 7.2).

The requirements represent different data structures participating in the development
process. Please note that some classes are abstract. The requirements grouping is specified in
the Fig. 7.2. Generally, any component can be predefined and placed in CC catalogues,
though some of them can be defined by developers (UserDefinedReqs class) to meet their
specific needs. By analogy to the SFR, the Security-objectives-derived SARs and Supporting
SARs are distinguished. To support developers’ actions some of the requirements (CC
components or RE-family generics) are proposed to solve a given security problem.
Additionally, CC defined components dependencies are considered.

The CC components (proposed or not), user’s defined components and the RE-group of
generics represent the specifications means, though “selected” express the requirements for
the given TOE.

7.2. Security requirements data model 155

TOE_SecurityRequirements IT_EnvironmentSecurityRequirements Non-IT_EnvironmentSecurityRequirements

ProposedRequirements

UserDefinedReqs
SelectedSecurityRequirements

SecurityRequirements

SecurityFunctionalReqs_SFR SecurityAssuranceReqs_SAR

PrincipalSFR SupportingSFR

DependentFunctionalSecReq

DependentAssuranceSecReq
EALpackage

SupportingSARSecObjDerivedSAR

Funct_IT_EnvironSecReq Assur_IT_EnvironSecReq

SupportingAssurSecReqForEnvSupportingFuncSecReqForEnv

Generic-type_ IT_EnvironSecReq

TOE_IT_ObjProposedReqs Env_IT_ObjProposedReqs EnvSpecificProposedReqs

AssComp

FunctionalProposed AssuranceProposed REgrGeneric

FunComp

FunComp
AssComp

"P
ro

po
se

d"
 e

nc
om

pa
ss

 m
ai

n
gr

ou
p

of
 s

ou
rc

e
re

qu
ire

m
en

ts
 to

 b
ui

ld
 th

e
sp

ec
ific

at
io

ns
, t

ho
ug

h
"s

el
ec

te
d"

re

pr
es

en
t t

he
ir

di
ffe

re
nt

 p
ar

ts
.

Fig. 7.2. Inherited classes expressing TOE security requirements
Rys. 7.2. Klasy dziedziczone, przedstawiające różne formy wymagań bezpieczeństwa

dla przedmiotu oceny (TOE)

156 7. Introduction and motivation

+createST()
+openExistingST()
+saveST()

+<<stateAttribute>>
+develstage : byte

ST_Elaboration

1

1

1

1

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

TOESecObjElaboration

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

TOEReqsElaboration

TOE_IT_Objectives

Environment_IT_Objectives

EnvironmentAuxiliaryObjectives

+dealingTOE : bool
+dealingEnviron : bool
+corrective : bool
+detective : bool
+preventive : bool
+threatDerived : bool
+ospDerived : bool
+assumptDerived : bool

SecurityObjectives

+relatedThreat
+relatedAssumption
+related OSP
+coverage : bool
+whyNeeded : string
+whatIsCovered : string
+coveringGaps : string
+coveredExtras : string

SecurityObjectiveJustification

1 1

Reprezent other than "proposed"
functional or assurance components
- predefined or users' defined

*

1

*

*

*
*

*

*

*
1

*

*

TOE_IT_ObjProposedReqs

Env_IT_ObjProposedReqs

EnvSpecificProposedReqs

UserDefinedReqs

TOE_SecurityRequirements

IT_EnvironmentSecurityRequirements

Non-IT_EnvironmentSecurityRequirements

11

+dealingTOE : bool
+dealingITEnviron : bool
+dealingNITEnviron : bool
+coverage : bool
+whyNeeded : string
+whatIsCovered : string
+coveringGaps : string
+coveredExtras : string

SecurityReqsJustification

SecurityRequirements
SOFclaims

0..1 1

SecurityFunctionalReqs_SFR

PrincipalSFRSupportingSFR

1

*

1*
1

*

SecurityAssuranceReqs_SAR

1

*

1

*

SecObjDerivedSAR SupportingSAR

1

*

EALpackage

*

1

*
*

Funct_IT_EnvironSecReq Assur_IT_EnvironSecReq

1

* 1

*

Fig. 7.3. The security requirements elaboration (the right side) on the basis of the TOE security

objectives (the left side) – the assumed static structure diagram
Rys. 7.3. Wypracowanie wymagań bezpieczeństwa TOE (strona prawa) na podstawie celów za-

bezpieczeń (strona lewa) – założona struktura statyczna

The Fig. 7.3 presents more details on the main classes participating in the elaboration of
the TOE and its environment security requirements.

In the previous chapter the behaviour of the TOESecObjElaboration class responsible
for the security objectives data structure workout was discussed. On this basis, the elements
of the security requirements specification are elaborated. The TOESecReqsElaboration class
is responsible for that. The proposed, objectives-driven requirements (functional, assurance,
environmental) concern the FunSec4Ogr, AssSec4Ogr, REgr4Ogr security association classes
respectively (Fig. 3.19) with assocstat = #PROPOSED (Fig. 3.17).

7.2. Security requirements data model 157

OPRVProposed

OCONProposed

1

*

1

*

1

*

1 *

1

*
1

*

1

*

1

*

1

*
FPRreqs

FDPreqsFCSreqs FMTreqs FPTreqs FTPreqs

1 *

TOE_IT_ObjProposedReqs

Env_IT_ObjProposedReqs

FunctionalProposed

1

1

1

1

Please note that entire
CC classes are proposed

1 *1 *1 *1 *

ODEXProposed FDPreqsFCOreqs FPTreqs FTPreqs

1 *1 *1 *1 *

OAVBProposed
FRUreqsFPTreqs FTAreqs

1 *1 *1 *

OACCProposed
FMTreqsFDPreqs FTPreqs

1 *1 *1 *

OINTProposed
FPTreqsFDPreqs

1 *1 *

OADTProposed
FMTreqsFAUreqs

1 *1 *

OIDAProposed FIAreqsFCSreqs FMTreqs FPTreqs FTAreqs

1 *1 *
1 *
1

*1 *

FTPreqs

1
*

Fig. 7.4. Functional security requirements proposed by “well defined” security objectives (IT-type)
Rys. 7.4. Funkcjonalne wymagania bezpieczeństwa sugerowane na podstawie w pełni określonych

celów zabezpieczeń (o charakterze informatycznym)

Attention should also be paid to security requirements justification structure, SOF claims
and the EAL package, which is the set of the well balanced assurance components. The key
issue of the computer-aided security development are requirements proposed to cover any
security problem specified by the security objectives, grouped by their families. Any generic
of a given family is transformed to a given subset of requirements represented by CC or user-
defined components/generics. The Fig. 7.4 presents proposed functional requirements by
“well defined” security objectives. They can be used for the TOE security requirements
specification (SFR) and for its IT environment, when possible, i.e. the IT environment can be
specified on a sufficiently detailed level (IT-type and “well defined”).

158 7. Introduction and motivation

OPRVProposed

OCONProposed

1

*

1

*

1

*

1

*

1
*

1

*

1

*

1

*

TOE_IT_ObjProposedReqs Env_IT_ObjProposedReqs

AssuranceProposed

11

Please note that entire
CC classes are proposed

ODEXProposed

OAVBProposed

OACCProposed

OADTProposed

OIDAProposed AGDreqs

1

*

AGDreqs

1

*

AGDreqs

1

*

ATEreqsAGDreqs AVAreqs AMAreqs
1

*
1

*
1

*

1
*

AGDreqs

1

*

AGDreqs

1

*

OINTProposed

ADOreqsACMreqs ALCreqs AVAreqs
1

*

1

*

1
*

1
*

1
1

Fig. 7.5. Assurance security requirements proposed by “well defined” security objectives (IT-type)
Rys. 7.5. Wymagania bezpieczeństwa na uzasadnienie zaufania, sugerowane na podstawie w pełni

określonych celów zabezpieczeń (o charakterze informatycznym)

The assurance security requirements, usually implied by the declared EAL level, can also
be derived directly from the security objectives (Fig. 7.5). They assurance security
requirements can be used for both the TOE and its environment, although for the TOE EALs
are usually enough. For the TOE IT environment, however, requirements are often specified
by the RE-family generics.

For the TOE environment requirements specification on a more general level,
environment specific objectives families are defined (Fig. 7.6).

7.2. Security requirements data model 159

OEPHProposed

OEITProposed

OSMNProposed
1

*

1

*

1

*

1 *

1
*

REITItem RENITItem

REPHItem RENITItem

RENITItem

1

*

1
*

1 *

1
*1 *

ACMreqs

ACMreqs AMAreqs

AMAreqs

AGDreqs ALCreqs

1 *

1 *1 *

EnvSpecificProposedReqs

1
*

Fig. 7.6. Environment specific security requirements proposed by general purpose security

objectives
Rys. 7.6. Środowiskowe wymagania bezpieczeństwa sugerowane na podstawie celów zabez-

pieczeń ogólnego przeznaczenia

OEIT deals with IT aspects while OEPH with physical/technical aspects. They are

associated with OSMN, representing all human concerns. They are transformed to IT or Non-
IT environment security requirements respectively. Please note that some assurance CC
components can also be derived from the general-purpose objectives.

7.3. Security requirements specification workout

This section presents the behaviour of the TOEReqsElaboration class. The general
elaboration scheme of the security requirements, as a UML activity diagram, was shown in
the Fig. 7.7 (seven steps – marked as “white” states).

The first six steps concerning the TOE security requirements are discussed in the section
7.3.1. The seventh step, dealing with the environment, is refined in the Fig. 7.14 and will be
presented in the section 7.3.2.

160 7. Introduction and motivation

:TOE_IT_Objectives

Merge Principal SFRs dependencies to SFR/SAR

Merge Principal SFRs supplements to SFR/SAR

Transform TOE security objectives to the security objectives driven SARs

Transform TOE security objectives to the TOE principal SFRs, starting from those that have proposed ones

Overall check of the stage

/ OK / not OK

/ develstage=#SEC_REQ

/ develstage≠#SEC_REQ

/ stagestatus=#ELABORATED

The developer
decides

/ stagestatus=#CHECKED or stagestatus=#CLOSED

/ ForwardCommand

/ BackwardCommand

G
ra

y
st

at
es

 c
on

ce
rn

 p
as

sin
g

be
tw

ee
n

st
ag

es
 in

te
rn

al
 c

on
tro

l

Merge SARs including declared EAL package

Prepare SOF claims

TOE_SecurityRequirements

:SOFclaims

TOE_SecurityRequirements

:TOE_IT_Objectives

Prepare IT/Non-IT environment sec. reqs. :IT_EnvironmentSecurityRequirements

:Non-IT_EnvironmentSecurityRequirements

See details
- Fig. 7-14

stagestatus=#ELABORATED

develstage=#TSS

develstage=#SEC_OBJ

stagestatus=#CHECKED

Choose the right development stage to solve the problem

Fig. 7.7. TOE security requirements elaboration – the main activity diagram
Rys. 7.7. Wypracowanie wymagań bezpieczeństwa dla przedmiotu oceny (TOE) – nadrzędny

diagram czynności

7.3.1. TOE security requirements

The six major activities of the TOE security requirements elaboration are the following:
• working out the functional principal security requirements derived directly from the

security objectives – starting from those that have the proposed requirements to speed up
the selection process,

• merging dependencies – due to CC components dependencies, all of them should be
analyzed and accepted as supportive requirements or deliberately excluded,

• merging supplementary requirements as supporting SFRs and their dependencies to
reinforce the principal SFRs,

7.3. Security requirements specification workout 161

• identifying assurance requirements derived directly from the security objectives,
• merging them with those which are implied by the declared EAL level,
• preparing SOF (Strength of Function) claims when permutation or probabilistic

mechanisms and EAL>1 are assumed.
TOE IT objectives analysis Principal SFRs selection on the basis of TOE IT objectives

/ Not all

/ All sec . concerns for given sec. objective analyzed

/ CC predefined is available

/ Adding user defined requirement necessary

/ Not all

/ All TOE IT objectives analyzed

:UserDefinedReqs

:SecurityReqsJustification

/ Proposed req. does not exist

/ Proposed req. exists

/ Merging/joining is enough

/ Proposed are not enough

:TOE IT objectives :FunctionalProposed

:PrincipalSFR

:PrincipalSFR

:DependentFunctionalSecReq

:DependentAssuranceSecReq

Try to merge or join the proposed funct. sec. reqs. into previously selected SFRs

Select the right CC func. requirem. and add it to the Principal SFRs

Define auxiliary (functional) sec. req. and add it to the Principal SFR

Refine and justify them, analyzing and expressing the coverage of the considered security objective

:PrincipalSFR

Review TOE IT objectives and select the next one to analyze

:FunComp

Fig. 7.8. TOE functional principal security requirements elaboration
Rys. 7.8. Wypracowanie podstawowych, funkcjonalnych wymagań bezpieczeństwa dla przedmiotu

oceny (TOE)

Each activity will be shown on a separate diagram. For the later, and successful, rationale
process the following goals should be achieved during this elaboration:
• the security objectives for the TOE should be suitably met by the identified IT security

requirements (functional and assurance),
• the requirements should be mutually supportive,

162 7. Introduction and motivation

• SOF claims ought to be consistent with the TOE objectives.
The first step – the Fig. 7.8 presents the TOE principal (functional) security requirements

elaboration straight from the TOE security objectives analysis. Some security objectives have
the proposed functional security requirements assigned (Fig. 7.4). First, each of them is
analyzed, trying to merge the item expressed by the suggested component with the previously
selected SFRs to obtain a more compact design. Usually, the merging takes place when the
proposed item overlaps the previously selected items. When the merging is impossible, the
proposed functional requirement can be attached to the set of previously selected principal
SFRs as a separate item (joining). When the proposed item does not exist, the developer can
freely choose CC functional components (expressed by the FunComp class object) or even
define new ones (using CC component style) to cover the considered security objective.

Supporting SFRs/SARs depending on Principal SFR - 1st group of supporting

/ Not all

/ All Principal SFRs analysed

/ Does not exist / Dependent CC component exists

:PrincipalSFR

:SecurityReqsJustification

:SupportingSFR

:TOE IT objectives

:SupportingSAR

Review Principal SFRs and select the next one

Consider automatically proposed dependencies and attach needed to the Supporting SFRs (and to the Supporting SARs when exist)

Justifiy - why given Supporting SFR/SAR is needed to achieve sec. obj.

Justifiy - why non selected Supporting SFR/SAR can be left unsatisfied

:DependentFunctionalSecReq
:DependentAssuranceSecReq

Fig. 7.9. TOE functional supporting security requirements elaboration – the principal depending

selection (CC-defined)
Rys. 7.9. Wypracowanie wspomagających, funkcjonalnych wymagań bezpieczeństwa dla przed-

miotu oceny (TOE) – selekcja wymagań zależnych od podstawowych (zdefiniowanych
przez standard)

Each of the components selected as principal is marked for future dependency analysis

which is shown in the Fig. 7.9 below. Most of the CC catalogued components have their
dependencies, in the form of a table defined by the standard. Depending components
(functional or assurance) reinforce main components.

Each of the previously selected principal (functional-type) components can have its
dependencies assigned by default, but not all of them are suitable in all circumstances. Some
must be included into the design, some can be left unsatisfied, but all such cases need

7.3. Security requirements specification workout 163

justification – a short comment why they are needed or can be rejected. The included
dependencies are the first group of supporting requirements. Please note that they can be
SFRs- or SARs-type.

Bypass/Tamper avoiding, Audit/Mngmt. and SF protection for Principal SFR - to reinforce the Principal SFRs

/ Not all

/ All Principal SFRs analysed

/ Not exist / Dependent CC component exists

:SecurityReqsJustification

:SupportingSFR

:SupportingSAR

:FunComp / CC component exists / CC component should be defined by the developer

:UserDefinedReqs

:SupportingSFR

For any Principal SFR consider adding Supporting SFRs

... to avoid baypass attacks ... to avoid tampering attacks ... to improve security management ... for security function protection .. for audit

Add functional security requirement to Supporting SFRs Define the functional security requirement and add it to Supporting SFRs

Consider to attach to new Supporting SFRs their dependencies

Justifiy - why given Supporting SFR/SAR is needed to achieve sec. obj.

Justifiy - why non selected Supporting SFR/SAR can be left unsatisfied

:PrincipalSFR

:TOE IT objectives
:DependentFunctionalSecReq

:DependentAssuranceSecReq

Fig. 7.10. TOE functional supporting security requirements elaboration – the principal reinforcing

selection
Rys. 7.10. Wypracowanie wspomagających, funkcjonalnych wymagań bezpieczeństwa dla przed-

miotu oceny (TOE) – selekcja wymagań wzmacniających

After analyzing the dependencies of the principal SFRs and selecting the first group of
supportive SFRs, the other selection process is recommended because the existing principal
and supporting SFRs may not be enough to satisfy given security objectives. The Fig. 7.10
presents the selection process of the second group of supporting functional requirements.

164 7. Introduction and motivation

TOE IT objectives analysis Security assurance reqs. derived directly from TOE IT objectives

/ Not all

/ All sec . concerns for given sec. objective analyzed

/ CC predefined is available/ Adding user defined requirement necessary
/ Not all

/ All TOE IT objectives analyzed

:UserDefinedReqs

:SecurityReqsJustification

/ Proposed req. does not exist

/ Proposed req. exists

/ Merging/joining is enough

/ Proposed are not enough

:TOE IT objectives

:AssuranceProposed

:SecObjDerivedSAR

:SecObjDerivedSAR

Try to merge or join the proposed assur. sec. reqs. into previously selected SARs

:SecObjDerivedSAR

Define the auxiliary (assurance) sec. req. add it to SAR

Refine and justify it , analyzing and expressing the coverage of the considered security objective

Review TOE IT objectives and select the next one to analyze

Select the right CC assur. req. and add it to the Sec. obj. derived SARs

:AssComp

Fig. 7.11. TOE assurance security requirements elaboration – requirements derived directly from

the security objectives
Rys. 7.11. Wypracowanie wymagań bezpieczeństwa uzasadniających zaufanie dla przedmiotu

oceny (TOE) – selekcja wymagań wynikających z celów zabezpieczeń

The functional supporting security requirements are very important to achieve mutual
support of requirements that should be demonstrated during the rationale process. Each of
them must reinforce the principal selected one to better meet security objectives. The analysis
is focused mainly on bypass or tampering attacks prevention, and reinforcement of the TOE
security functions implied by the requirements. At this stage, the audit capabilities and the
security management facilities are considered too. All needed, newly selected, supportive
requirements and their dependencies of both types can be added to the supporting SFRs.

The next stage is the assurance security requirements elaboration which is as complicated
as the functional security requirements elaboration process, discussed above. Please note that
some assurance requirements were identified during the functional security requirements

7.3. Security requirements specification workout 165

elaboration. These were SARs dependent on the principal SFRs. The next step is to identify
all assurance requirements derived directly from the security objectives (Fig. 7.11). The
process is very similar to the principal SFRs selection, presented in the Fig. 7.8, but the
assurance security requirements shown in the Fig. 7.5 are used as the proposed components.

Merging SARs of different origin

:EALpackage

:SecurityAssuranceReqs_SAR:SupportingSAR

:SecurityAssuranceReqs_SAR
:SecObjDerivedSAR

:SecurityAssuranceReqs_SAR

Considering value of the assets

Considering risk factors

Considering feasibility

Considering time constraints

Considering financial constraints

... declare adequate EAL level

Attach its assurance components to SARs

Merge Supporting SARs with SARs, modifying declared EAL level

Merge Sec. obj. derived SARs with SARs, modifying declared EAL level

:Threats:Assets :TOE IT objectives

Fig. 7.12. TOE assurance security requirements elaboration – merging different SARs with those

influenced by declared EAL
Rys. 7.12. Wypracowanie wymagań bezpieczeństwa uzasadniających zaufanie dla przedmiotu oceny

(TOE) – łączenie wymagań typu SAR, pochodzących z różnych źródeł, z wymaganiami
zadeklarowanego poziomu uzasadnionego zaufania (EAL)

The CC developers favour the EAL declaring and use ready-made sets of corresponding

assurance components. The Fig. 7.12 presents what factors can be considered while declaring
EAL and how to merge different SARs with those coming from EALs. Please note that the
risk value determined during the risk analysis has the key meaning. Please note that the
SARs elaboration method presented there is very general and encompasses all possible ways
of the assurance components specification.

The last step of the TOE security requirements elaboration is the preparation of the SOF
claims, which is shown in the Fig. 7.13. It is recommended for EAL>1 when probabilistic or
permutation mechanisms are assumed, like passwords, key generation, encryption, hash
function, etc. The SOF claims express resistance to attacks on these mechanisms using
a three-level predefined measure.

166 7. Introduction and motivation

SOF (Strength of Function) claims elaboration

/ Not all

/ All Principal SFRs analysed :SecurityReqsJustification

/ EAL>1 and probabilistic/permutational mechanisms assumed

/ Otherwise

:PrincipalSFR

:Threats

/ Adequate protection against casual breaches of TOE security by attackers having low attack potential

/ else

/ Adequate protection against streightforward or intentional breaches of TOE security by attackers having moderate attack potential

:SOFclaims

/ Adequate protection against deliberately planned or organised breaches of TOE security by attackers having high attack potential

Review Principal SFRs and select the next one

Considering elapsed time for attack

Considering needed expertise

Considering knowledge of the TOE

Considering access to the TOE

Considering needed equipment

Assign SOF=#Basic

Assign SOF=#Medium

Assign SOF=#High

:PrincipalSFR

:TOE IT objectives

:DependentFunctionalSecReq

:DependentAssuranceSecReq

:Assets

Fig. 7.13. SOF claims elaboration
Rys. 7.13. Wypracowanie deklaracji siły funkcji zabezpieczających (SOF)

The analysis is based mostly on the threats/risk analysis results and the factors taken into
consideration are specified in the Fig. 7.13. The SOF claims should be consistent with the
security objectives, based on the analysis of the attacker’s capability. These claims are the
supplement for the TOE security requirements.

7.3.2. TOE environment security requirements

The general elaboration scheme of the TOE environment security requirements, as a
UML activity diagram, was shown in the Fig. 7.14. This is a refinement of the seventh step of
the security requirements workout, shown above in the Fig. 7.7. Generally, the IT and non-IT
factors should be considered. There are four main steps to be distinguished:
• working out the IT environment functional security requirements derived directly from

the environment IT security objectives (the analogy to the principal SFRs for the TOE) –
if the nature of the objectives allows for this, e.g. they are “well defined”,

7.3. Security requirements specification workout 167

• joining their dependencies as supporting functional (or assurance) security requirements
for the environment (see Fig. 7.2) – due to CC components dependencies, all of them
should be analyzed, and then accepted or excluded,

:Environment_IT_Objectives

:EnvironmentAuxiliaryObjectives

:Funct_IT_EnvironSecReq:DependentFunctionalSecReq

:SupportingAssurSecReqForEnv:Environment_IT_Objectives

:Assur_IT_EnvironSecReq

:Assur_IT_EnvironSecReq

Transform environment IT objectives to the IT environment functional security requirements

Attach dependencies of the IT environment functional security requirements; merge them with supporting functional (or assurance)

Transform environment IT objectives to the IT environment assurance security requirements (obj. derived); merge with supporting

Transform environment auxiliary objectives to the IT and/or non-IT environment security requirements starting from those having proposed ones

:Non-IT_EnvironmentSecurityRequirements:Generic-type_ IT_EnvironSecReq

:Funct_IT_EnvironSecReq

Fig. 7.14. Environment security requirements elaboration – the main activity diagram
Rys. 7.14. Wypracowanie wymagań bezpieczeństwa dotyczących środowiska przedmiotu oceny

(TOE) – nadrzędny diagram czynności

• identifying IT environment assurance requirements derived directly from the environment
IT security objectives – if the nature of the objectives allows for this, e.g. they are “well
defined”,

• transforming the environment auxiliary objectives (see Fig. 6.12) to the IT and/or non-IT
environment security requirements (see Fig. 7.6) starting from those having the proposed
ones; usually, environment auxiliary objectives expressed on a more general detail level
can successfully describe environmental security needs; they will be finally transformed
to more general RE-family generics, sufficient to specify security requirements for the
environment, without using CC components; please note that it is possible to add some
components from the ACM (configuration management), AMA (assurance maintenance),
AGD (guidance documentation), and ALC (life cycle support) CC classes [40].
The approach presented there is general and encompasses all possible ways of

environment requirements specification. Each of the four specified stages will be shown on
a separate activity diagram.

168 7. Introduction and motivation

Environment IT objectives
analysis

Functional requirements selection on the basis of Environment IT objectives

/ Not all

/ All sec . concerns for given sec. objective analyzed

/ CC predefined is available

/ Adding user defined requirement necessary

/ Not all

/ All IT envir. objectives analyzed

:UserDefinedReqs

:SecurityReqsJustification

/ Proposed req. non exist

/ Proposed req. exists

/ Merging/joining is enough

/ Proposed are not enough

:Environment_IT_Objectives

:Funct_IT_EnvironSecReq

:Funct_IT_EnvironSecReq

:DependentFunctionalSecReq

:DependentAssuranceSecReq
Review Environment IT objectives and select the next one

Select the right CC func. req. and add it to the Func IT envir. Seq. req.

Define auxiliary (functional) sec. req. and add it to the selected

Refine and justify them, analyzing and expressing the coverage of the considered security objective

Try to merge or join the proposed funct. sec. reqs. into previously selected Funct . IT environ. sec. req

:Funct_IT_EnvironSecReq

:FunctionalProposed

:FunComp

Fig. 7.15. Functional IT environment security requirements derived from the environment IT secu-

rity objectives
Rys. 7.15. Wypracowanie funkcjonalnych wymagań bezpieczeństwa dla środowiska informatycz-

nego na podstawie celów zabezpieczeń o charakterze informatycznym

The Fig. 7.15 presents the elaboration of the functional IT environment security
requirements derived straight from the environment IT security objectives (Fig. 7.14 - 1st
step). This process is very similar to the TOE principal SFRs workout. The same types of the
security objectives and requirements are used. Now they concern IT environment and will not
be transformed to any security functions passed to the evaluation process. The functional
security requirements, as a set of the selected CC components, are used to describe precisely
the IT aspects of the environment when it is suitable and possible. Also in this case a
dependency analysis for the selected components should be necessary.

7.3. Security requirements specification workout 169

The Fig. 7.16 presents the analysis of the functional IT environment security
requirements (Fig. 7.14 – 2nd step) with respect to dependent components defined by the
standard (functional or assurance). All of them are analyzed, some are selected for use, some
are rejected. Any kind of decision needs justification.

Depending functional/assurance sec reqs. for IT environment

/ Not all

/ All functional IT environ. sec. req. analysed

/ Not exist / Dependent CC component exists

:SecurityReqsJustification

:SupportingFuncSecReqForEnv

:Environment_IT_Objectives

:SupportingAssurSecReqForEnv {OR}

:DependentFunctionalSecReq

:DependentAssuranceSecReq

:Funct_IT_EnvironSecReq

Review functional IT environ. sec. req. and select the next one

Consider automatically proposed dependencies and attach needed to the supporting

Justifiy - why given Supporting funct./assur. reqs. needed to achieve sec. obj.

Justifiy - why non selected Supporting funct./assur. reqs. can be left unsatisfied

Join the Supporting funct. sec. req. for env. to Funct. IT environ. sec. req.

:Funct_IT_EnvironSecReq

Fig. 7.16. Functional IT environment security requirements – identifying CC dependencies

(functional and assurance)
Rys. 7.16. Wypracowanie funkcjonalnych wymagań bezpieczeństwa dla środowiska indor-

matycznego – identyfikacja wymagań zależnych, określonych w standardzie (funk-
cjonalych i uzasadniających zaufanie)

By the analogy to the TOE supporting SFRs and SARs, two kinds of requirements were

introduced:
• Supporting functional security requirements for environment, joined/merged with the

previously selected functional requirements,
• Supporting assurance security requirements for environment, joined/merged later (see

Fig. 7.17), after identification of the assurance requirements derived directly from the
environment IT objectives.
The Fig. 7.17 presents the workout of the assurance IT environment security requirements

derived directly from the environment IT security objectives (Fig. 7.14 – 3rd step). This is
very similar to the functional requirements selection (Fig. 7.15). It may be needed, though
rarely.

170 7. Introduction and motivation

Environment IT objectives
analysis

Security assurance reqs. derived directly from Environment IT objectives

/ Not all

/ All sec. concerns for given sec. env. IT objective analyzed

/ CC predefined is available

/ Adding user defined requirement necessary

/ Not all

/ All IT environ. objectives analyzed

:UserDefinedReqs

:SecurityReqsJustification

/ Proposed req. does not exist

/ Proposed req. exists

/ Merging/joining is enough

/ Proposed are not enough

:Environment_IT_Objectives

:SupportingAssurSecReqForEnv

:Assur_IT_EnvironSecReq

Review Environment IT objectives and select the next one

Try to merge or join the proposed assur. sec. reqs. into previously selected assur . IT env. sec. req.

:Assur_IT_EnvironSecReq

:Assur_IT_EnvironSecReq

Define the auxiliary (assurance) sec. req. add it to selected

Select the right CC assur. req. and add it to the Assur. IT envir. seq. req.

:Assur_IT_EnvironSecReq

Refine and justify them, analyzing and expressing the coverage of the considered security objective

:Assur_IT_EnvironSecReq

Join the Supporting assur. sec. req. for env. to Assur. IT environ. sec. req.

:AssuranceProposed

:AssComp

Fig. 7.17. Assurance IT environment security requirements derived from the environment IT security

objectives – identifying and merging with others
Rys. 7.17. Wypracowanie wymagań bezpieczeństwa uzasadniających zaufanie dla środowiska infor-

matycznego – ich identyfikacja i połączenie z określonymi poprzednio wymaganiami

The proposed assurance components are shown in the Fig. 7.5. They are the same as
those used for TOE SARs, but they will not be evaluated and will be considered as dogmas
during the evaluation.

7.3. Security requirements specification workout 171

Environment auxiliary (IT/
Non-IT) objectives analysis

Environment (other-type) security requirements derived directly from
Environment auxiliary (IT/Non-IT) objectives

/ Not all

/ All sec . concerns for given sec. env. aux. IT/Non-IT obj. analyzed

/ Predefined RE-type are enough

/ Adding user defined RE-type necessary

/ Not all

/ All IT environ. aux. objectives analyzed

:EnvSpecificProposedReqs

:SecurityReqsJustification

/ Proposed req. does not exist

/ Proposed req. exists

/ Merging/joining is enough

/ Proposed are not enough

:EnvironmentAuxiliaryObjectives
:EnvSpecificProposedReqs

:Non-IT_EnvironmentSecurityRequirements

:Assur_IT_EnvironSecReq

:Non-IT_EnvironmentSecurityRequirements

:Generic-type_ IT_EnvironSecReq

:Generic-type_ IT_EnvironSecReq

:Non-IT_EnvironmentSecurityRequirements

:Generic-type_ IT_EnvironSecReq

Review Environment auxiliary IT/non-IT objectives and select the next on

Consider proposed assurance req. and join it to the existing assur . IT environ. sec.req.

Consider proposed REIT or REPH-type req. and join it to the existing

Consider proposed RENIT-type req. and join it to the existing

Add considered REIT/REPH-type to IT env. sec.req. - if adequate

Add considered RENIT-type to Non IT env. sec.req. - if adequate

Define the REIT/REPH-type and add it to the selected

Define the RENIT-type and add it to the selected

Refine and justify them, analyzing and expressing the coverage of the considered env. security objective

:REPHItem

:RENITItem

:REITItem

Fig. 7.18. Auxiliary, IT/non-IT environment security requirements finishing
Rys. 7.18. Dokończenie specyfikacji wymagań dla środowiska z użyciem wymagań pomocniczych,

informatycznych i poza informatycznych

Finally, the identified requirements derived from the security objectives are merged with
the supportive ones to the Assurance IT environment security requirements.

172 7. Introduction and motivation

The above mentioned IT environment requirements specification manners are suitable
when IT environment objectives are precise enough and can be transformed to CC
components (see Fig. 7.4 and Fig. 7.5). Very often a more general approach can be enough.
For this reason three families of generics were defined:
• OEIT-/REIT-families to express IT environment aspects,
• OEPH-/REPH-families to get a broader view of this environment and to consider its

technical (physical) aspects,
• OSMN-/RENIT-families to encompass all organizational and human aspects.

The Fig. 7.18 (Fig. 7.14 – 4th step) presents the elaboration process based on the
environment auxiliary security objectives (Fig. 7.6). The result was the issue of both
environment IT and/or non-IT requirements. Please note that some assurance components
cannot be excluded. All RE-family requirements are bound and the REIT- or REPH- families
are reinforced by the RENIT-family.

All assigned requirements should be justified to facilitate the future rationale process. The
completed set of requirements is the basis for implementing the security functions of the
TOE.

7.4. Formal approach to the security requirements specification

The security requirements (Fig. 7.2) are much more complicated than the previous stages.
They can be expressed in a simplified manner and the discussion concerns the final shape of
the specification only. During the elaboration process many temporary specifications are
created, which can be added later to the general model when needed.

Definition 7.1: Security requirements.

The security requirements are the triplet of sets:
 SSecReqs = <SSecReqsItems, SSecReqsPars, SSecReqsAssocs>.

1. The first element of the triplet, SSecReqsItems is the sum of three disjointed16 sets of generics:
 SSecReqsItems =
STOE_SecurityRequirements U SIT_EnvironmentSecurityRequirements SU Non-IT_EnvironmentSecurityRequirements and
STOE_SecurityRequirements ∩ SIT_EnvironmentSecurityRequirements ∩ SNon-IT_EnvironmentSecurityRequirements = ∅ ,
where:
 STOE_SecurityRequirements = SSecurityFunctionalReqs_SFR SU SecurityAssuranceReqs_SAR,
 SSecurityFunctionalReqs_SFR = {FunSecClass|FunSecClass.assignstat=#ASSIGNED},
 SSecurityAssuranceReqs_SAR = {AssSecClass|AssSecClass.assignstat=#ASSIGNED},
 SIT_EnvironmentSecurityRequirements =

 {FunSecClass | FunSecClass.assignstat=#ASSIGNED} U
 {AssSecClass | AssSecClass.assignstat=#ASSIGNED} U

16 It ought to be true when specification is finished.

7.4 Formal approach to the security requirements specification 173

 {REgrGeneric | REgrGeneric.assignstat=#ASSIGNED}.
SNon-IT_EnvironmentSecurityRequirements =

 {REgrGeneric | REgrGeneric.assignstat=#ASSIGNED}.
2. The second element of the triplet, SSecReqsPars is the sum of two sets of parameterization
associations:

SSecReqsPars ⊆ GenParAssoc and SSecReqsPars = {ParamDA4RE, ParamS4RE}.
3. The final element of the triplet, SSecReqsAssocs is the sum of three sets of associations dealing
with mapping the security requirements to the security objectives items:

SSecReqsAssocs SecAssoc and S⊆ SecReqsAssocs =

 {FunSec4Ogr, AssSec4Ogr, REgr4Ogr}.

The parameters concern the RE-group generic items only. Other component parameters –
textual, enumeration, selected from available lists – are considered during the component
refinement. Usually, generic-type parameters of the REgrGeneric class items are left
uncompleted, though, when used, they ought to be properly assigned as others:

ParamDA4RE
REgrGeneric.paramDAgr=DAgrGeneric or DAgrGeneric->isEmpty
ParamS4RE
REgrGeneric.paramSgr=SgrGeneric or SgrGeneric->isEmpty

The general definition of this stage can be formulated as follows:

Definition 7.2: Security requirements elaboration.

The security requirements elaboration is the transformation of SSecObj to SSecReqs, i.e.
transformation of SSecObjItems with their parameters SSecObjPars, to SSecReqsItems with their
parameters SSecReqsPars, according to the mapping rules represented by the SSecReqsAssocs
associations.

At this stage a very important element is the principal SFRs subset: SPrincipalSFRs
S

⊆

SecReqsItem. The security functions are constructed around any single principal SFR or small
group of principal SFRs.

8. WORKOUT OF THE TOE SUMMARY SPECIFICATION (TSS)

8.1. TOE summary specification defined by Common Criteria

The standard says that the aim of the development of the TOE Summary Specification
(TSS) is to specify the TOE solution and demonstrate how the TOE provides security
functions and assurance measures to satisfy the defined TOE security requirements [38]. The
TSS specification should include (Fig. 8.1):
• a definition of the IT security functions (SF), expressed by F-family generics, satisfying

SFRs and SARs;
• a definition of assurance measures which satisfy the identified SARs.

SecurityMechanisms&Techniques SOFclaimsRealization
AssuranceMeasures

SecurityFunctions_SF

TSS_TOESummarySpecification

1 *

1

*
1 *

1

*

Fig. 8.1. TOE summary specification (TSS) for the ST – the CC defined basic elements
Rys. 8.1. Specyfikacja końcowa przedmiotu oceny dla zadania zabezpieczeń (TSS) – elementy okreś-

lone w standardzie Wspólne kryteria

This description should:
• focus on what the TOE should provide to meet SFRs and SARs,
• be on “high level” – not providing implementation details,
• refer to the TOE design and testing documentation, administrators and user guides,
• be in conformance with the Common Criteria functional paradigm [39], [10],
• use TOE-specific terminology.

The TSS elaboration process is briefly and informally described in the standard. This
chapter shows its semiformal modelling and implementation, assuring the consistency with
other development stages encompassed by the IT Security Development Framework. The
specification means for this stage are F-family generics and informal text. The concept

8.1. TOE summary specification defined by Common Criteria 175

included in the standard, expressed on a UML diagram (Fig. 8.1), will be the basis for the
developed models.

8.2. TSS data model

The TSS is worked out on the basis of security requirements. The Fig. 8.2 presents more
details dealing with the main classes participating in the elaboration of the TSS.

1.
.*

1

1.
.*

+createST()
+openExistingST()
+saveST()

+<<stateAttribute>>
+develstage : byte

ST_Elaboration

1
1

1
1

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

TOEReqsElaboration

*

1

*

*

*
*

*
*

TOE_SecurityRequirements

IT_EnvironmentSecurityRequirements

Non-IT_EnvironmentSecurityRequirements

1
1

+dealingTOE : bool
+dealingITEnviron : bool
+dealingNITEnviron : bool
+coverage : bool
+whyNeeded : string
+whatIsCovered : string
+coveringGaps : string
+coveredExtras : string

SecurityReqsJustification

SecurityRequirements SOFclaims
0..11

SecurityFunctionalReqs_SFR

PrincipalSFRSupportingSFR

1

*

1* 1

*

SecurityAssuranceReqs_SAR

1

*

1

*

SecObjDerivedSAR SupportingSAR

1

*

EALpackage

*

1

*

*

Funct_IT_EnvironSecReq Assur_IT_EnvironSecReq

1

* 1

*

+forward()
+back()
+elaborate()
+check()

+<<stateAttribute>>
+stagestatus : byte

TSSElaboration

SecurityMechanisms&Techniques

SOFclaimsRealization

AssuranceMeasures

SecurityFunctions_SF

TSS_TOESummarySpecification

1

*

1

*

Fig. 8.2. The TSS elaboration (the right side) on the basis of the TOE security requirements (the

left side) – the assumed static structure diagram
Rys. 8.2. Wypracowanie końcowej specyfikacji przedmiotu oceny (TSS) (strona prawa) na podsta-

wie wymagań bezpieczeństwa TOE (strona lewa) – założona struktura statyczna

176 8. Workout of the TOE summary specification (TSS)

The left part of the figure deals with input data – showing all security requirements used
to build the TSS specification. The TSSElaboration class responsible for the TSS
elaboration is presented on the right.

The most important input data are Principal SFRs directly transferred to the SF. The
supportive SFRs are considered during SF refinement. Additionally, it should be checked
how the declared SOF claims will be satisfied by the SF. The proposed security functions
concern the Fgr4FunSec security association class (Fig. 3.20) with assocstat = #PROPOSED
(Fig. 3.17). In this case the proposed SFs are related to some functional requirements,
selected as the Principal SFRs, expressing common security issues (functionality), e.g. login,
encryption, hashing, digital signature verification, etc. Please note that F-family generics are
expressed on a very general level of abstraction. They are used rather for reference purposes
and as containers for high level specifications of security functions.

Assurance measures, usually represented by a reference list of documents, may be
considered as evidence material delivered to evaluators.

8.3. TSS elaboration

To elaborate the TOE Summary Specification (TSS) it is recommended to follow the
steps shown in the Fig. 8.3. This activity diagram presents the behaviour of the
TSSElaboration class.

First, the set of the principal SFRs is analyzed. The SFRs are grouped according to
security concerns. To each group or, if it is impossible, to a given requirement, a single
function is assigned.

A high level description for any of the functions meeting principal SFRs is prepared and
the reference list of related mechanisms and techniques implementing them is updated
(optionally). It should be noted that mechanisms and techniques are: cryptographic
algorithms, claims of conformance to standards, etc.

Then the supporting SFRs related to a given function are analyzed and, on this basis, the
security function specification is refined.

Please note that during the TOE security functional requirements elaboration some SOF
claims may be added (Fig. 7.13) and now they can be verified. It is considered whether
security functions will satisfy SOF claims.

Any security function can be carried out on a different level of rigour but every time it is
expressed by SARs. For every SAR the applied assurance measures are assigned in the form
of a reference. The list is the evidence material ensuring that all SARs are satisfied.

8.3. TSS elaboration 177

Overall check of the stage

/ OK / not OK

/ develstage=#TSS

/ develstage≠#TSS

/ stagestatus=#ELABORATED

The developer
decides

/ stagestatus=#CHECKED or stagestatus=#CLOSED

/ ForwardCommand

/ BackwardCommand

G
ra

y
st

at
es

 c
on

ce
rn

 p
as

si
ng

be
tw

ee
n

st
ag

es
 in

te
rn

al
 c

on
tro

l

:PrincipalSFR

:SecurityFunctions_SF

:SecurityMechanisms&Techniques

:SOFclaimsRealization

:SupportingSFR

:SOFclaims

:AssuranceMeasures

:SecurityFunctions_SF

:SecurityFunctions_SF

:SecurityAssuranceReqs_SAR

Transform principal SFRs to security functions

Prepare high level description of SF

Attach info dealing with applied mechanisms and techniques

Refine SF analyzing related supporting SFR

Analyze whether SOF-claims are satisfied

Analyze SARs and provide related evidence material

stagestatus=#ELABORATED

develstage=#PP_C

develstage=#SEC_REQ

stagestatus=#CHECKED

Choose the right development stage to solve the problem

Fig. 8.3. TOE summary specification for the ST elaboration – the main activity diagram
Rys. 8.3. Wypracowanie końcowej specyfikacji przedmiotu oceny (TSS) dla zadania zabez-

pieczeń – nadrzędny diagram czynności

The security requirements (both types) should be suitably met by the IT security

functions and assurance measures. Taking this goal into consideration during TSS workout
makes further TSS rationale easier.

8.4. Formal approach to the TOE summary specification

The TOE summary specification (Fig. 8.2) can also be expressed in a more formalized
way. In this case formal mechanisms can be helpful especially to transform the security
functional requirements, grouped around the principal SFRs, to the security functions (SF).
The TSS can be considered as a pair of sets (generic-type parameters do not exist).

Definition 8.1: TOE summary specification.

The TOE summary specification is the pair of sets:
 STSS = <STSS_SecFuns, STSS_SecAssocs>.

178 8. Workout of the TOE summary specification (TSS)

1. The first element of the pair, STSS_SecFun is represented by the F group items, expressing the
security functions:

STSS_SecFuns = {FgrGeneric | FgrGeneric.assignstat=#ASSIGNED}.
2. The second element of the pair, STSS_SecAssocs expresses associations dealing with mapping
the security functions to the security requirements, exactly to the principal SFRs:

STSS_SecAssocs SecAssoc and S⊆ TSS_SecAssocs = {Fgr4FunSec}.

Definition 8.2: TOE summary specification elaboration.

The TOE summary specification elaboration is the transformation of SSecReqs to STSS, i.e.
transformation of SPrincipalSFRs S⊆ SecReqsItem, to STSS_SecFuns, according to the mapping rules
represented by the STSS_SecAssocs associations.

9. PROTECTION PROFILE CLAIMS

Although the protection profile claims are rather trivial in comparison with the other
stages, they will be presented in a separate chapter to keep a unified approach to the
presentation of the IT security development process. In this case only the data structure is
shown. For ST specifications based on the existing Protection Profiles, PP claims should be
specified (Fig. 9.1). PP claims include [38]:
• a reference identifying the PP to which compliance is claimed,
• refinements applied to the PP (PP tailoring),
• TOE additions satisfied by the ST, dealing with the security objectives and/or the security

requirements.

PPtailoring

TOE_Additions2Objectives

TOE_Additions2RequirementsPPreference
1

*

PPclaims

1

*

1

*

1

*

PPadditions

1 *

Fig. 9.1. PP claims for security target (ST) – the CC defined basic elements
Rys. 9.1. Deklaracje profili zabezpieczeń (PP) dla zadania zabezpieczeń (ST) – elementy

określone w standardzie Wspólne kryteria

The PreparePPclaims class (Fig. 2.4) is responsible for this stage. Its behaviour will not
be discussed here. The PP claims elements should be considered during the rationale too.

10. RATIONALE PROCESS

The standard says that at the end of the development process it should be demonstrated
that the conformable TOE provided by its countermeasures will be secure in its environment
[38]. The rationale can be expressed by two classes diagrams (Fig. 10.1 and Fig. 10.2).

SecObjectiveRationale SecReqsRationale TSSRationale

STRationale

1 *

1

*
1

*

Fig. 10.1. ST rationale – the CC defined basic elements
Rys. 10.1. Uzasadnienie zadania zabezpieczeń (ST) – elementy określone w standardzie Wspólne

kryteria

Please note that the ST rationale has a specific element – the TSS rationale is more
complex than the PP rationale. For this reason, it will be discussed in details.

PPRationale

SecObjectiveRationale SecReqsRationale

1

*
1

*

Fig. 10.2. PP rationale – the CC defined basic elements
Rys. 10.2. Uzasadnienie profilu zabezpieczeń (PP) – elementy określone w standardzie Wspólne

kryteria

The standard also says that the IT security development stages rationales must be
performed, showing that:
• all aspects of the identified security needs expressed by the TOE security environment are

suitably addressed by the security objectives and the assumptions are upheld by them – it
is called the security objectives rationale;

10. Rationale process 181

• the security objectives for the TOE are suitably met by the identified IT security
requirements (SFR, SAR), the requirements are mutually supportive, and SOF claims are
consistent with the TOE objectives – it is called the security requirements rationale;

• security requirements (SFR, SAR) are suitably met by the IT security functions and
assurance measures (a list prepared by the developer); this rationale step deals with ST
only – it is called the TSS rationale.
Common Criteria assume to perform and document the rationale at the end of the

development process, and this may be difficult to carry out. The presented method offers
some flexibility, allowing to reveal any gaps in the design earlier, after each design stage, and
distinguishing two phases in each rationale stage:
• current short justification of any element when selected, putting “why it is needed to

cover a given security aspect” into words,
• rationale, summarizing partial justifications, may be considered as “Common Criteria

rationale”.
The added current justification phase ensures more consistency, due to the obligatory

designer’s declaration, but coverage status helps control if any specification item is necessary
and sufficient.

Most arguments used for the rationale process are sampled during previous stages of the
elaboration, dealing with matters as they come. For that reason, now they can only be refined
to be more consistent and adequate.

10.1. Security objectives rationale

The elaboration of the security objectives rationale (eight steps), i.e. the behaviour of the
SecObjectiveRationale class (Fig. 10.1), is presented in the Fig. 10.3. This class works on
the same data structures as the TOESecObjElaboration class does, providing the
optimization of its contents.

During the first step all redundant objectives should be revealed. Those unnecessary can
be removed. Some objectives can be merged with others or properly related to the security
environment elements (Fig. 10.4 is a refinement of the first activity shown in the Fig. 10.3). It
is checked if each security objective covers at least one threat, OSP or assumption
(redundancy checking – all left must be necessary). Also the security environment elements,
like threats, OSPs or assumptions should be checked if each of them is covered by at least
one security objective (Fig. 10.5 is a refinement of the second activity shown in the Fig.
10.3).

182 10. Rationale process

Overall check of the stage

/ OK / not OK

/ develstage=#SEC_OBJ_RAT

/ develstage≠#SEC_OBJ_RAT

/ stagestatus=#ELABORATED

The developer
decides

/ stagestatus=#CHECKED or stagestatus=#CLOSED

/ ForwardCommand

/ BackwardCommand

G
ra

y
st

at
es

 c
on

ce
rn

 p
as

si
ng

be
tw

ee
n

st
ag

es
 in

te
rn

al
 c

on
tro

l

:TOE_IT_Objectives

:Environment_IT_Objectives

:SecObjectiveRationale

TOE IT objectives redundancy checking and update

Checking if all TOE IT environment elements: threats, OSPs, assumptions are covered

Checking if the TOE IT objectives derived from the threats will provide efficient countermeasures

Checking if the TOE IT objectives derived from the OSPs cover them completely

Checking if the TOE IT objectives uphold the assumptions related to them

Checking if the TOE IT objectives addressing both threat and OSP are coherent

Checking if the TOE IT objectives are supported by the environmental objectives

Prepare security objective rationale summary

:TOESecurityEnvironment

:EnvironmentAuxiliaryObjectives Ba
se

d
on

 th
e

as
so

ci
at

io
n

be
tw

ee
n

th
e

se
cu

rit
y

en
vir

on
m

en
t a

nd
 th

e
se

cu
rit

y
ob

je
ct

iv
es

 e
le

m
en

ts

stagestatus=#ELABORATED

Fig. 10-4

Fig. 10-5

Choose the right development stage to solve the problem

develstage=#SEC_REQ_RAT

stagestatus=#CHECKED

develstage=#PP_C

Fig. 10.3. The security objectives rationale – the general activity diagram
Rys. 10.3. Uzasadnienie celów zabezpieczeń – nadrzędny diagram czynności

These two steps optimize the association between the security environment and the
objectives, allowing to complete this analysis. The security objectives must be sufficient.
Apart from the two refined activities, the following actions are performed:
• checking if any security objective addressed to the threat will provide efficient

countermeasures (detective, preventing, corrective) to it – a simple built-in risk analyzer
may be useful;

• considering if security objectives dealing with OSPs will provide their complete
coverage;

10.1. Security objectives rationale 183

• considering if security objectives will provide the upholding of the assumptions related to
them;

• considering the role of those objectives which address both the threat and OSP;
• considering the supportive role of any environmental objectives for the TOE objectives;

this activity, rather trivial and not refined there, looks like those shown in the Fig.10.3:
for each TOE IT objective it is necessary to review environment IT objectives and
auxiliary objectives related to them, modifying the existing or adding new ones to better
support the analyzed TOE IT objective.

Checking TOE IT objectives redundancy and updating their
associations

/ Merging with existing possible/ Updating assigned security concerns necessary

/ Not all

/ All TOE IT objectives analyzed

:SecurityObjectiveJustification

/ Any set
/ None of them set

/ Is not suitable / Is suitable

:TOE_IT_Objectives

Check flags: threatDerived, ospDerived, assumptDerived

Analyze meaning and origin of the objective

Remove security objective

Merge objective with other

Update refinement and justification (coverage)

Assign appropriate threat, OSP or assumption

:TOE_IT_Objectives :TOESecurityEnvironment

TOE IT objectives analysis

Review TOE IT objectives and select the next one

Fig. 10.4. The security objectives specification redundancy checking
Rys. 10.4. Wykazanie braku nadmiarowości specyfkacji celów zabezpieczeń

184 10. Rationale process

TOE security environment
analysis

Checking if each TOE IT environment element (threat, OSP, assumption) is
covered by at least one security objective - updating their associations

/ Merging with existing possible/ Updating assigned security concerns necessary

/ Not all

/ All sec. envir. elements analyzed

:SecurityObjectiveJustification

/ Any assigned

/ None of them assigned

/ Is not suitable / Is suitable

:TOE_IT_Objectives

:Assumptions

{OR}{OR}

Review TOE sec. environ elements and select the next one

Check if it has security objective assigned

Analyze meaning and origin of the sec. envir. element

Remove the sec. envir. element

Merge/join to the existing objectiveAssign new appropriate objective

Update refinement and justification (coverage)

:TOESecurityEnvironment

R
ec

om
m

en
de

d
or

de
r:

th
re

at
s

-O
SP

s
-a

ss
um

pt
io

ns

:TOE_IT_Objectives:TOESecurityEnvironment

:Threats :OSPs

Fig. 10.5. The security environment specification redundancy checking
Rys. 10.5. Wykazanie braku nadmiarowości specyfkacji otoczenia zabezpieczeń

10.2. Security requirements rationale

The successful completion of the security objectives rationale allows to go to the second,
more restricted stage – the security requirements rationale. The security requirements
rationale encompasses the activities presented in the Fig. 10.6. It expresses the behaviour of
the SecReqsRationale class (Fig. 10.1). Additionally, this class is based on the data
structures used by the TOEReqsElaboration class. The activities (Fig. 10.6), refined in a few
further figures, concern the following checkings:
• if SFRs are suitable (should be necessary and sufficient, each of the identified SFRs is

sufficient to satisfy a given security objective, how environmental objectives support
TOE objectives);

• if SARs are appropriate for the TOE (sufficient, not excessive to address security
objectives and technically feasible to the TOE);

• if SOF claims are appropriate (consistency with security objectives, based on the analysis
of the attacker’s capability);

10.2. Security requirements rationale 185

• if security requirements are mutually supportive (SFRs and SARs dependencies
satisfaction, internal consistency, avoidance of bypassing or tampering attacks).

Overall check of the stage

/ OK / not OK

/ develstage=#SEC_REQ_RAT

/ develstage≠#SEC_REQ_RAT

/ stagestatus=#ELABORATED

The developer
decides

/ stagestatus=#CHECKED or stagestatus=#CLOSED

/ ForwardCommand

/ BackwardCommand

G
ra

y
st

at
es

 c
on

ce
rn

 p
as

sin
g

be
tw

ee
n

st
ag

es
 in

te
rn

al
 c

on
tro

l

SFR checking

SARs and SOF claims checking

Checking if the security requirements are mutually supportive

Fig. 10-10

Fig. 10-11

Fig. 10-7

Choose the right development stage to solve the problem

stagestatus=#ELABORATED

stagestatus=#CHECKED

develstage=#TSS_RAT

develstage=#SEC_OBJ_RAT

Fig. 10.6. The security requirements rationale – the general activity diagram
Rys. 10.6. Uzasadnienie wymagań bezpieczeństwa przedmiotu oceny – nadrzędny diagram

czynności

The elaboration of the security requirements rationale begins from SFRs checking
presented in the Fig. 10.7.

During the rationale process it should be demonstrated that the IT security requirements
(particularly the SFRs) are necessary and sufficient. For this reason, the review of the
relationships between them and the security objectives is performed.

186 10. Rationale process

:SecurityFunctionalReqs_SFR:TOE_IT_Objectives

/ Not

/ SFR dealing with PP claims exists

:SecReqsRationale

:SecurityFunctionalReqs_SFR

:PPclaims

Check the SFR redundancy and update the SFR specification

Check if all TOE IT objectives are covered by SFRs

For any TOE IT objectives, check if the assigned SFRs are sufficient

Check correctness of the operations on SFRs

Check coherency between SFR and related requirements for the enviroment

Reveal any discrepancies between the SFRs specified and those included in the PP

Prepare SFR rationale summary

Additional refinement
- Fig. 10-8

Additional refinement
- Fig. 10-9

Fig. 10.7. The security requirements rationale – SFRs checking
Rys. 10.7. Uzasadnienie wymagań bezpieczeństwa przedmiotu oceny – sprawdzenie funkcjonalnych

wymagań bezpieczeństwa (SFR)

First, all redundant SFRs should be revealed and then removed or properly assigned
(Fig. 10.8 is a refinement of the first two activities shown in the Fig. 10.7).

Additionally, the security objectives that are not properly assigned are revealed (Fig. 10.9
is a refinement of the third activity shown in the Fig. 10.7).

10.2. Security requirements rationale 187

TOE security requirements
analysis (SFR)

Checking TOE security requirements (SFR) redundancy and
updating their associations

/ Merging with existing possible

/ Updating assigned security objectives necessary

/ Not all

/ All SFR analyzed

:SecurityReqsJustification

/ Convincing

/ Not convincing or not complete

/ Is not suitable / Is suitable

:SecurityFunctionalReqs_SFR

:SecurityFunctionalReqs_SFR

:TOE_IT_Objectives

Review SFR and select the next one

Why SFR is really needed - analyze its justification

Analyze meaning and origin of the SFR

Remove SFR Merge to the existing objective - SFR pairs

Assign new appropriate security objectives

Update refinement and justification (coverage

Fig. 10.8. The security requirements rationale – revealing redundant SFRs
Rys. 10.8. Uzasadnienie wymagań bezpieczeństwa przedmiotu oceny – identyfikacja nadmiarowych

funkcjonalnych wymagań bezpieczeństwa (SFR)

The association of security objectives and SFRs, including previously defined classes, is
updated, allowing to provide further analysis.

The next step of the functional security requirements rationale (Fig. 10.7) is checking the
correctness of operations on SFRs and the SFRs compliance with the environment objectives.
When some of the security requirements are specified within the claimed PP, they must be
checked for the compliance too. Finally, the rationale summary is prepared.

188 10. Rationale process

TOE IT objectives
analysis

Check if each TOE IT objective is covered by at least one SFR -
update their associations

/ Merging with existing possible

/ Updating assigned SFRs necessary

/ Not all

/ All TOE IT objectives analyzed

:SecurityReqsJustification

/ Any assigned

/ None of them assigned

/ Is not suitable / Is suitable

:SecurityFunctionalReqs_SFR

:TOE_IT_Objectives

:TOE_IT_Objectives

Review TOE IT objectives and select the next one

Check if it has SFR assigned

Analyze meaning and relationships of the TOE IT objective

Remove the TOE IT objective

Assign new appropriate SFR

Merge to the existing objective - SFR pair

Update refinement and justification (coverage)

Fig. 10.9. The security requirements rationale – revealing uncovered security objectives
Rys. 10.9. Uzasadnienie wymagań bezpieczeństwa przedmiotu oceny – identyfikacja celów na zabez-

pieczenia nie pokrywanych przez wymagania

Let us go back to the main activity diagram shown in the Fig. 10.6. After completing the
functional security requirements rationale, i.e. SFRs checkings, the next main step of the
whole rationale process is SARs checking, presented in the Fig. 10.10.

The SARs must meet security objectives too, must not be excessive (to minimize the
costs and time scale of solutions) and must be possible to satisfy during implementation.

The Fig. 10.10 also presents SOF claims checking. They must be appropriate, mainly
with respect to the presumed attackers’ potential. Please note that the SOF claims help to
qualify security functions built-in to the TOE.

10.2. Security requirements rationale 189

:SOFclaims

:SecurityAssuranceReqs_SAR
Check if SARs are appropriate

/ Not

/ SAR dealing with PP claims exists

:SecurityAssuranceReqs_SAR

:SecReqsRationale

:PPclaims

Check if SARs are sufficient to address the security objectives and meet the security concerns

Check if SARs are not excessive

Check if SARs are attainable (the technical, time and financial constraints)

Reveal any discrepancies between the SARs specified and those included in the PP

Prepare SAR rationale summary

Check if SOF claims are appropriate to the security objectives and the concerns (declared values vs . atacker's potential)

Prepare SOF claims summary

Fig. 10.10. The security requirements rationale – SARs and SOF claims checking
Rys. 10.10. Uzasadnienie wymagań bezpieczeństwa przedmiotu oceny – sprawdzenie wymagań

uzasadniających zaufanie (SAR) oraz deklaracji siły funkcji zabezpieczających (SOF)

These claims express the minimum efforts assumed necessary to defeat the TOE expected
security behaviour when a direct attack to its underlying security mechanisms is performed
by an intruder. Three predefined SOF levels, as “security functions resistance measures”, are
placed in the Appendix A.

The last step is to demonstrate that the specified set of requirements creates a kind of an
integrated whole. Mutual supportiveness demonstration is shown in the Fig. 10.11.

Mutual supportiveness guarantees consistency of the applied countermeasures.

190 10. Rationale process

:SecReqsRationale

:SecurityAssuranceReqs_SAR

:SecurityFunctionalReqs_SFR Check if security requirements are mutually supportive
and provide an integrated and effective whole

/ No guarantee that dependencies are satisfied (non-standard SARs, augmentation,...)

/ SARs based on standard packages, like EALs

/ Not

/ PP claims exists

:SecurityFunctionalReqs_SFR
:PPclaims

Demonstrate that SFRs dependencies are satisfied for each iteration of a functional component

Check if unsatisfied SFRs dependencies can be left

Check if SAR dependencies are satisfied by the TOE (or its IT/Non-IT environment)

Demonstrate that all SFRs are internally consistent (for any circumstances and input data)

Reveal any PP/ST discrepancies

Demonstrate that appropriate Supportive SFRs are added against bypassing/tampering/deactivation/misconfiguration attacks

Prepare conclusion concerning the mutual support of the requirements

Fig. 10.11. The security requirements rationale – checking if the security requirements are mutu-

ally supportive
Rys. 10.11. Uzasadnienie wymagań bezpieczeństwa przedmiotu oceny – wykazanie, że wymagania

bezpieczeństwa wspomagają się wzajemnie

Please note that due to the coherency (by definition) of defined assurance packages,
SARs from such packages are easier to use.

10.3. TOE summary specification rationale

The elaboration of the TOE summary specification rationale, i.e. the definition of the
behaviour of the TSSRationale class (Fig. 10.1) is presented in the Fig. 10.12. This class
works on the same data structures as the TSSElaboration class does, providing the
optimization their contents only. The activity diagram for the TOE summary specification
rationale, shown in the Fig. 10.12, refines the following steps of the TSS rationale:

10.3. TOE summary specification rationale 191

Overall check of the stage

/ OK / not OK

/ develstage=#TSS_RAT

/ develstage≠#TSS_RAT

/ stagestatus=#ELABORATED

The developer
decides

/ stagestatus=#CHECKED or stagestatus=#CLOSED

/ ForwardCommand

/ BackwardCommand

Gray states concern passing
between stages internal control

Ch
ec

k
if

IT
 s

ec
ur

ity
 fu

nc
tio

ns
ar

e
m

ut
ua

lly
 s

up
po

rti
ve

 a
nd

pr
ov

id
e

an
 in

te
gr

at
ed

 a
nd

ef
fe

ct
ive

 w
ho

le:SecurityFunctions_SF

:SecurityAssuranceReqs_SAR

:TSSRationale

:SecurityFunctionalReqs_SFR

:PPclaims

:AssuranceMeasures

/ Not
/ ST based on PP

C
he

ck
 o

f t
he

as

su
ra

nc
e

m
ea

su
re

s

:SecurityMechanisms&Techniques

:SOFclaims

:SOFclaimsRealization

Demonstrate how the IT Security functions satisfy SFRs

Demonstrate that IT security functions are complete

Demonstrate that IT security functions are internally consistent

Demonstrate how the assurance measures satisfy SARs

Check the compliance of the ST with the referred PP

Prepare TSS rationale summary

stagestatus=#ELABORATED

Exception service – send a message

develstage=#SEC_REQ_RAT

stagestatus=#CHECKED

Choose the right development stage to solve the problem

Fig. 10.12. The TSS rationale – the general activity diagram
Rys. 10.12. Uzasadnienie końcowej specyfikacji przedmiotu oceny (TSS) – nadrzędny diagram

czynności

• demonstration: how IT security functions satisfy the SFRs (should be necessary and
sufficient, explanation how particular SFRs are satisfied, with respect to SOF claims,
security mechanisms and techniques);

• consideration: how assurance measures satisfy SARs;
• for ST based on PP, checking compliance with the referred PP.

Please note that the demonstration how IT security functions satisfy SFRs is performed in
a similar way as it was shown in the Fig. 10.8 and 10.9.

192 10. Rationale process

10.4. Formal approach to the security target rationale

The rationale process concerns the entire security target (ST) and is based on the TOE
model elaborated during all IT security development stages. Let us introduce the security
target model definition, which extends earlier definitions: 5.1, 6.1, 7.1, 8.1.

Definition 10.1: Security target.

The security target specification (ST) is the triplet of sets:
 SST = <SST_Items, SST_Pars, SST_Assocs>.

1. The first element of the triplet, SST_Items is the sum of three disjointed sets of generics,
functional or assurance components:
SST_Items = STOESecEnvItems SU SecObjItems SU SecReqsItems SU TSS_SecFuns and
 STOESecEnvItems S∩ SecObjItems ∩ SSecReqsItems ∩ STSS_SecFuns = ∅ .
2. The second element of the triplet, SST_Pars is the sum of three sets of parameterization
associations (encompassing all of them):
SST_Pars GenParAssoc and S⊆ ST_Pars = STOESecEnvPars U SSecObjPars U SSecReqsPars.
3. The final element of the triplet, SST_Assocs is the sum of three sets of associations concerning
mapping (encompassing all of them):

SST_Assocs SecAssoc and S⊆ ST_Assocs = SSecObjAssocs U SSecReqsAssocs SU TSS_SecAssocs.

Definition 10.2: Security target elaboration.

The security target elaboration is the stepwise transformation of STOESecEnv to SSecObj, SSecObj to
SSecReqs, and finally SSecReqs to STSS, i.e. transformation of the corresponding items included in
SST_Items, with their parameters expressed by SST_Pars, and according to the mapping rules
represented by the SST_Assocs associations.

This definition extends earlier definitions: 6.2, 7.2 and 8.2. Now the modelled
specifications are refined, optimized and checked. In this case checkings are especially
important if one group of items covers properly other group of items and redundant items do
not exist. The introduced navigation facilities through all stages can also be helpful while the
coverage analyses are performed. These facilities were implemented into the computer-aided
tool that will be shown later.

The UML models of the TOE security target are rather complex structures, even if only
several threats/OSPs are identified. For this reason, the simplified models can be presented
with their key aspects only, which is allowed in the UML approach.

The Fig. 10.13 shows one of such examples. In the upper part of the figure there is the
main ST_Elaboration class with its subclasses responsible for particular stages. Below,
there are classes representing specification elements for four stages encompassed by the
security target rationale.

10.4. Formal approach to the security target rationale 193

Th
e

se
cu

ri
ty

 ta
rg

et
 ra

tio
na

le
 –

 a
 su

m
m

ar
y

ex
am

pl
e

U
za

sa
dn

ie
ni

e
za

da
ni

a
za

be
zp

ie
cz

eń
 –

 p
rz

yk
ła

d
po

ds
um

ow
uj
ąc

y
Fi

g.
 1

0.
13

.
Ry

s.
10

.1
3.

194 10. Rationale process

Three supporting chains consisting of the elements (light grey) of the specification are
presented on a very general level (i.e. the family level). The first chain starts from two
threats, one of the TAA family item, the other of the TUA family item. These threats are
covered by the common OACCItem objective item, for which the FunComp component is
proposed and implemented by the FItem security function. The second begins at the
PIDAItem policy rule, satisfied by the OIDAItem objective, which is covered, together with
the mentioned OIDAItem, by the FunComp. The third chain starts on the AX assumption,
satisfied by the organizational means represented by the OSMNItem, which leads to the
RENITItem requirement.

Please note some examples of the associations responsible for mapping the security
issues, forming these chains. All association classes are grouped by the main SecAssoc class.

Additionally, one, rather symbolic, assurance requirement is added. Let it be one of the
EAL2 package components, for example.

Only one item, i.e. the TUAItem, is parameterized while others are left intentionally
uncompleted. The parameterization associations are grouped by the GenParAssoc class.
Corresponding DADItem and SAUItem are marked with dark grey class symbols on the left
side.

This model is simplified because it operates on any items of the given family. Each of
these items should be a concrete and unique item or component (Fig. 3.21, Fig. 3.22).
Parameterization and mapping are shown on a very general level too. Each connection of
chain elements is carried out by a concrete association whose properties are represented by
those shown in the discussed figure. The role names, such as isCovered, covers, parameter,
parameterized, represent the sets of unique role names derived from the unique generic or
component item names.

Even on this general level different model properties can be identified or checked, and
different constraints can be set using the OCL approach.

Example 10.1: Identifying the threats that are opposed by the given security function,
represented by the FItem.

This is backwards navigation (horizontal) started on FItem through a supporting chain (i.e.:
TUAItem, TAAItem – OACCItem – FunComp – FItem). It is implemented by the visualisation
facility that will be shown later, i.e. when computer-aided tool is presented.

FItem
self.funComp.oACCItem.associationEnds
 ->select(c:TgrGeneric)

This expression can be used to define an operation returning the set of all threats. In this case
(Fig. 10.13) only some real TUAItem or TAAItem items will be identified.

Example 10.2: Identifying how and where the given OSP rule is implemented.

10.4. Formal approach to the security target rationale 195

This is forward navigation (horizontal) through a supporting chain started from the given
OSP rule represented by PIDAItem and ended on FItem. The chain can also be visualized by
the mentioned visualization facility.

PIDAItem
self.oIDAtem.funComp.associationEnds
 ->select(c:FgrGeneric)

This expression can be used to define an operation returning the set of all security functions
enforcing this policy rule. In this case it can be any object represented by the FItem class.

Example 10.3: Identifying items of the considered type used by the developer who prepares
the security target specification. Let us identify all REPH-family generics that can be used
only for the IT environment requirements specification.

This is navigation (vertical) through the given stage of the model starting from the “root” ,
i.e. the ST_Elaboration class.

ST_Elaboration
self.tOEReqsElaboration.securityRequirements.
 iT_EnvironmentSecurityRequirements
 ->select(c:REPHGen)

Please note that adding “->size” instead of the “->select” at end of the expression allows
to count these items.

More complicated operations can be carried out with the use of more advanced operations
on collections, e.g. iteration or intersection. Some of these possibilities were presented
earlier, during the discussion on particular development stages.

In some circumstances this level of abstraction seems to be superficial, especially for
discussing details of the computer-aided tool, which will be presented later. The Fig. 10.13
operates on the generic and or component families representatives, i.e. “items”. The OCL
expressions allow to look at the model on a more detailed level. This will be exemplified with
the reference to this figure which shows a part of the real model on a very general level. Let
us proceed to a more detailed level to identify the real specification items and relations
between them. We can obtain results as those shown in the following examples:

Example 10.4: Identifying specification items of the considered family used by the ST
developer.

Different operations can be defined in the context of the given family, e.g. for TAA family:

TAAItem
self->select(c:TAAGen).associationEnds
-- returns set of TAAItem generics represented
-- by the TAAItem, e.g. the set:

Set(TAAItem)=Set{ErrOmit_D0I0, ModifyData_D0I0, NeglComprAss_D1I0},
representing the following real generic items:
 TAA.ErrOmit_D0I0. Administrative errors of omission.
 TAA.ModifyData_D0I0. Hostile administrator's modification of user or system data.

196 10. Rationale process

 TAA.NeglComprAss_D1I0. Compromise of IT assets may occur as a result of actions
taken by careless, wilfully negligent or hostile administrators or other privileged users
[paramSAU].

This operation on other families returns respectively:
Set(TUAItem)=Set{DataRecDenied_D0I0, DataOwnsDenied_D0I0, ConsData_D0I0,
ErrSecurity_D0I0, KeyCorrupted_D0I0, VirusComprAss_D0I0}, representing the following
generics:
 TUA.DataRecDenied_D0I0. Recipient [paramSAU] denies receiving information
[paramDAD].
 TUA.DataOwnsDenied_D0I0. Data ownership of [paramDAD] is denied by an
authorized [paramSAU].
 TUA.ConsData_D0I0. An authorized user [paramSAU] of the TOE consumes global
resources [paramDAS], in a way which compromises the ability of other authorized users to
access or use those resources.
 TUA.ErrSecurity_D0I0. User errors undermine the system's security features.
 TUA.KeyCorrupted_D0I0. Private key was compromised, i.e. it was dropped by
another authorized system user.
 TUA.VirusComprAss_D0I0. Compromise of the integrity and/or availability of IT
assets may occur as a result of an authorized user [paramSAU] of the TOE unwittingly
introducing a virus into the system.

Set(OACCItem)=Set{MaintenanceAcc_D0I0, MaintenanceRec_D0I0, AdmLmtAcc_D0I0,
DAC_D0I0}, expressing the items:
 OACC.MaintenanceAcc_D0I0. Controlling access to the system by maintenance
personnel who troubleshoot the system and perform system updates.
 OACC.MaintenanceRec_D0I0. Automatic termination of the privilege of user access
to system maintenance, after the expiration of assigned timed interval.
 OACC.AdmLmtAcc_D0I0. Limitation of administrative access control.
 OACC.DAC_D0I0. The TOE will provide its users with the means of controlling and
limiting access to the objects and resources they own or are responsible for, on the basis of
individual users or identified groups of users, and in accordance with the set of rules defined
by the security policy.

Set(OIDAItem)=Set{UserAuthManage_D3I3, AdmLmtBind_D0I6, AdmAttMod _D0I0,
RestrUserEntry_D0I0, AuthDataSafe_D0I5}, representing the items:
 OIDA.UserAuthManage_D3I3. User authorization management.
 OIDA.AdmLmtBind_D0I6. Limiting an administrator's ability to modify user-subject
bindings.
 OIDA.AdmAttMod_D0I0. Limiting an administrator's modification of user attributes.
 OIDA.RestrUserEntry_D0I0. The TOE will have the capability of restricting user
entry to itself based on the time and entry of the device location.
 OIDA.AuthDataSafe_D0I5. Those responsible for the TOE must ensure that the
authentication data for each user account for the TOE is held securely and not disclosed to
persons not authorized to use that account.

Set(FunComp)=Set{FAU_ARP.1_I2, FAU_GEN.1_I0, FAU_SAA.1_I3, FMT_MSA.1_I0,
FIA_ATD.1_I0}, representing the examples of the functional components:

10.4. Formal approach to the security target rationale 197

 FAU_ARP.1_I2 Security alarms.
 FAU_GEN.1_I0 Audit data generation.
 FAU_SAA.1_I3 Potential violation analysis.
 FMT_MSA.1_I0 Management of security attributes
 FIA_ATD.1_I0 User attribute definition.

Set(FItem)= Set{CtrlConf_D7I0, DataConfid_D3I0}, representing the examples of the real
security functions:
 CtrlConf_D7I0. Control&Configuration module will provide work configuration,
certificates validity checking and CSP selection.
 DataConfid_D3I0. Data confidentiality module will provide confidentiality for
protected information by using cryptographic functions.

In the real designs there exist not only numerous generic or component items but also
complicated relationships between them. Please note that both kinds of the associations
(GenParAssoc, SecAssoc) are defined on the group level, catching common features of
both. In the real designs real associations between the specification items exist. These
associations inherit properties of GenParAssoc, SecAssoc, defined on a general level. Let
us focus on the SecAssoc examples.

For any of the SecAssoc group where SecAssoc = 〈Ogr4Tgr, Ogr4Pgr, Ogr4Agr,

FunSec4Ogr, AssSec4Ogr, REgr4Ogr, Fgr4FunSec 〉 there exist many of the associates

functions as (Definition 3.51). They express association properties on a more detailed level
which has not been discussed yet. The associates functions will be shown using only few
examples. The full list of these relationships is built in the design library
(SL_SecurityLibrary class) and they function there as “proposed”, but may change their
status to “mapped”. Please note that the function associates maps each association name
as ∈ ASSOC to a finite list of classes c1, ... , cn participating in the association:
 as ca 〈 1, ... , cn 〉 , with (n≥2).

Using the association names convention, we can define associations on the family level,
e.g.: asi

OACC4TAA, asi
OIDA4TAA Ogr4Tgr and others, mentioned below. Each of them is

numbered. The number i can be interpreted as the instance number.
∈

Example 10.5: Security associations concerning mapping.

Identifying specification items of the considered family used by the ST developer.
Let us consider the following relationships between the TAA- and OACC- families. Please
note the intentional inconsistency concerning names – the Common Criteria developers
convention is used to distinguish generic families.

as1
OACC4TAA

TAA.ErrOmit_D0I0, OACC.MaintenanceAcc_D0I0, OACC.MaintenanceRec_D0I0 〉 ,
a

〈
as2

OACC4TAA
TAA.ModifyData_D0I0, OACC.AdmLmtAcc_D0I0 〉 ,

a
〈

198 10. Rationale process

as3
OACC4TAA TAA.NeglComprAss_D0I0, OACC.DAC_D0I0 , a 〈 〉

and between TAA- and OIDA- families:
as1

OIDA4TAA TAA.ErrOmit_D0I0, OIDA.UserAuthManage_D0I0 , a 〈 〉
as2

OIDA4TAA
TAA.ModifyData_D0I0, OIDA.AdmLmtBind_D0I0, OIDA.AdmAttMod_D0I0 ,

a
〈 〉
as3

OIDA4TAA
TAA.NeglComprAss_D0I0, OIDA.RestrUserEntry_D0I0, OIDA.AuthDataSafe_D0I0 .

a
〈 〉

For the functional components relationships the as functions may concern both component
classes or families.
as1

FMT_MSA4OACC
OACC.MaintenanceAcc_D0I0, OACC.MaintenanceRec_D0I0, FMT_MSA.1_I0 〉 ,

a
〈
as1

FAU4OACC
OACC.AdmLmtAcc_D0I0, FAU_ARP.1_I2, FAU_GEN.1_I0, FAU_SAA.1_I3 ,

a
〈 〉
as2

FAU4OACC
OACC.DAC_D0I0, FAU_ARP.1_I2, FAU_GEN.1_I0, FAU_SAA.1_I3 ,

a
〈 〉
as1

FIA4OACC
OACC.DAC_D0I0, FIA_ATD.1_I0 ,

a
〈 〉

Additionally, detailed mapping associations may be defined between the functional
requirements and security functions (usually between the grouped principal requirements and
functions implementing them):
as1

F4SFR
FAU_ARP.1_I2, FAU_GEN.1_I0, FAU_SAA.1_I3, F.CtrlConf_D7I0 〉 ,

a
〈
as2

F4SFR
FMT_MSA.1_I0, FIA_ATD.1_I0, F.DataConfid_D3I0 〉 .

a
〈
Two associations were defined there, each for one function (components selection is rather
hypothetical).

For these associations their role names (Definition 3.52) can be identified in a simple
way, using generic or component names. All multiplicities must have value {1,1,....,1} due
to the uniqueness of the item names.

Example 10.6: Role names.

Let us consider the first and the last association from the above example:
as1

OACC4TAA
TAA.ErrOmit_D0I0, OACC.MaintenanceAcc_D0I0, OACC.MaintenanceRec_D0I0 〉 ,

a
〈
as2

F4SFR
FMT_MSA.1_I0, FIA_ATD.1_I0, F.DataConfid_D3I0 〉 .

a
〈
The role names can be defined using unique class names:
roles(as1

OACC4TAA) =
errOmit_D0I0, maintenanceAcc_D0I0, maintenanceRec_D0I0 〉 , 〈

10.4. Formal approach to the security target rationale 199

roles(as2
F4SFR) =

fMT_MSA.1_I0, fIA_ATD.1_I0, dataConfid_D3I0 〉 . 〈
The role names can be assigned to the isCovered/covers sets on the group level:
 {errOmit_D0I0} ∈ Set(isCovered), while
 {maintenanceAcc_D0I0, maintenanceRec_D0I0} ∈ Set(covers).
 {fMT_MSA.1_I0, fIA_ATD.1_I0} ∈ Set(isCovered), while
 {dataConfid_D3I0} ∈ Set(covers).

For the given specification item, all associations in which the item participates can be
found using the participating function (Definition 3.54).

Example 10.7: The coverage analyses with the use of the participating function.

For the given specification item, e.g. OACC.DAC_D0I0, all items covered by it and all items
that it covers can be found using this function:
 participating(OACC.DAC_D0I0) = {as3

OACC4TAA, as2
FAU4 OACC, as1

FIA4OACC}.
This allows to navigate starting from TAA.NeglComprAss_D0I0 ∈ as3

OACC4TAA, through
OACC.DAC_D0I0, to FIA_ATD.1_I0 ∈ as1

FIA4OACC. Finding association concerning the
FIA_ATD.1_I0 component allows to reach the security function used to the opposite
TAA.NeglComprAss_D0I0:
 participating(FIA_ATD.1_I0) = {as1

FIA4OACC, as2
F4SFR}.

Using more sophisticated functions, i.e. navends(OACC.DAC_D0I0), this result can be
obtained in one step. However, other associations (outside the considered supporting chain)
will be returned as the result too.

11. IT SECURITY SELF-EVALUATION FRAMEWORK

IT security products or systems, developed with the use of the framework presented there,
should pass to the evaluation process performed by independent bodies. Evaluators working
in these labs use their own evaluation frameworks based on the evaluation scheme and
related methodologies, for example presented in [45-46], [41].

The presented IT Security Development Framework, although intended to be used by
designers, has a simple self-evaluation framework built in, compliant with the above
mentioned standards. The developer has a possibility:
• to see how his/her product or system will be evaluated,
• to prepare a proper set of evidence material, to make corrections as soon as possible.

This self-evaluation framework may be adopted to security evaluation labs needs. The IT
security self-evaluation framework expressed by the SEM model is, together with the product
model (PM) and security model (SM), the third part of the presented Common Criteria
compliant IT Security Development Framework (Fig. 2.3). The SEM model is shown in the
Fig. 11.1 as a class diagram. The self-evaluation model must comply with the chosen
evaluation methodology (CEM) [45-46] and the evaluation scheme [41]. The CEM
recognizes three mutually exclusive verdict types:
• PASS verdict means the completion of the CC evaluator action element and determination

that the requirements for the PP, ST or TOE under evaluation are satisfied;
• FAIL verdict means that the CC evaluator action element is performed, but the

requirements for the PP, ST, or TOE under evaluation are not met;
• INCONCLUSIVE verdict is defined to indicate that evaluation is under work; all verdicts

have this value assigned at the beginning of the evaluation and remain so until either
a PASS or FAIL verdict is determined.
During the evaluation process three types of formalized reports may be created. The first

one, the Observation Report (OR), expresses partial results of work performed during the
evaluation. It contains a problem, an observation or decisions submitted to the developers or
received from them by the security lab. In this case, during evaluation performed by the
developer, the report can be used to document the problems and their solutions.

11. IT security self-evaluation framework 201

The Evaluation Discovery Report (EDR) contains more detailed information on groups of
security issues and results of work performed during the evaluation (a work package [46] in
which the problem was discovered, a brief summary of the problem, and their status).

ETRintroduction

EvaluationTechnicalReport_ETR

TOE_Architecture

Evaluation
EvalResults

Conclusions&Recommendations

GlossaryOfTerms

Reports

1

1

1
11

1

1

MethodsTechniquesStandards

ToolsUsed EvalAssumptions&Constraints EvalDeliverables APEresults

CEM
PredefinedVerdicts

SEM_SelfEvaluationModel

TOEresultsASEresults

ObservationReport_OR

EvalDiscoveryReport_EDR

EvalScheme

{OR}

Fig. 11.1. IT security self-evaluation framework model (SEM)
Rys. 11.1. Model podsystemu szkieletowego (SEM) do prowadzenia samodzielnej oceny

zabezpieczeń

The Evaluation Technical Report (ETR) is the main document summarizing the
evaluation process. It begins with an introduction containing all identifiers which
unambiguously identify the TOE and all references. Architectural description of the TOE
class provides a high level description of the IT product or system, its main components and
degree of architectural separation. This ETR section is based on the deliverables specified
according to the Common Criteria assurance family called Development High Level Design
(ADV_HLD).

The Evaluation class specifies the evaluator’s workshop, containing:
• methods, techniques and standards dealing with the evaluation criteria, methodology and

interpretations used to evaluate the TOE or devices used to perform the tests,
• evaluation tools comprising the software and hardware tools supporting the evaluation

process,
• assumptions and constraints, like: constraints on the evaluation, constraints on the

distribution of evaluation results and assumptions made during the evaluation that have
an impact on the evaluation results, information in relation to legal or statutory aspects,
organization, confidentiality, etc.,

202 11. IT security self-evaluation framework

• evaluation deliverables, encompassing a set of evaluation evidence and participating
bodies (e.g. the developer, the sponsor) and other identifiers.
The main part of the ETR is Evaluation results section (EvalResults class), which

contains the verdicts and their rationales for each of the evaluated assurance components. The
rationale justifies the verdict using the CC, CEM, any interpretations and the evaluation
evidence analyzed. It shows how the evaluation evidence does or does not meet each aspect
of the criteria and contains a description of the work performed, the method used, and any
derivation of results.

As it will be shown in the chapter 12 and in the Appendix E (Example E.6), every
assurance component has three types of elements, dealing with:
• developer’s delivered evidence material (D),
• contents and presentation of the evidence material (C),
• evaluator’s action performed to check if the evidence material is delivered, and if it has

right content and presentation (E).
Please note that the most granular CC structure to which a verdict (PASS, FAIL,

INCONCLUSIVE) can be assigned is the evaluator action element (E). The overall evaluation
verdict is PASS only if all the constituent verdicts are also PASS.

The framework encompasses all possible kinds of self-evaluation:
• ST self-evaluation according to the ASE (Security Target evaluation assurance class),

focused on the ST specification checking, or
• PP self-evaluation according to the APE (Protection Profile evaluation assurance class),

focused on the PP specification checking,
• TOE self-evaluation for the required EAL with its augmentation or substitution, deals

with product or system security features.
First, the ST or PP self-evaluation should be done, then the TOE self-evaluation is

performed. Conclusions and recommendations provide evaluation results summary, remarks
and suggestions that may be useful for the overseer, including the detected shortcomings of
the IT product or system or a mention of features which are particularly useful. The glossary
of terms section contains all acronyms, abbreviations and terms used in the ETR.

The main use of the built-in self-evaluation framework is to perform self-evaluation of
the developed product or system, particularly to check how the prepared evidence material
satisfies assurance components. As this work deals with security development, the TOE
evaluation process was presented in a very concise way. The part of the tool that supports
evaluators can work separately from the developers’ part. Designers who are more familiar
with the evaluation process have better understanding how their works will be independently
verified, and will be able to express their concepts within ST or PP documents more

11. IT security self-evaluation framework 203

adequately. The presented tool allows to support the whole evaluation process for Security
Targets, Protection Profiles, and the TOE vs. the claimed EAL.

12. IMPLEMENTATION AND EVALUATION OF THE FRAMEWORK

The research phase of the UML framework for IT security development encompassed:
studying best practices, standards, publications, research papers, and discussing the topic
with experts [13], [19], [28]. Then some case studies were performed, like: analyzing the
existing PP and ST, experiences with the computer-aided IT security development and
evaluation tools that were developed before or concurrently, and carrying out our own
projects of the discussed framework and tool.

There are two aspects of using the developed ITSDF framework. First, it can be used by
engineers manually (with the help of standard text editors) – all data models are design
patterns, and activity diagrams can be considered as design procedures. It forms some kind of
guidelines for CC developers. Their UML representation facilitates and makes more coherent
the whole IT security development process. Additional advantages can be achieved going one
step farther, and creating a computer-aided tool on this basis. It will make these activities
easier by managing the entire IT security development or evaluation processes, by models
reusability, by graphical support, providing statistical data, reporting wizards and
documentation management, etc. This real technology transfer phase deals not only with the
development of the ITSDF-tool, but also with presenting it to specialists and performing
validation in the IT security development and evaluation labs.

During the tool development the following assumptions are taken into consideration:
• Common Criteria and related standards compliance,
• development and evaluation processes support,
• flexibility (openness to the standards modification, new technologies and methodologies).

The UML framework for IT security development was validated mostly on the COTS-
type digital signature/encryption application, based on the Microsoft CryptoAPI®, called
SecOffice [95], [90] and on the existing security targets (like Philips smart card controller
[87-89]), and also on protection profiles examples. Please refer to the firewall example
presented in the Appendix E. Verification of compliance with [60] was provided too.

These works will be exemplified below using a few representative ITSDF-tool screen
shots.

12.1. Generics and components library 205

12.1. Generics and components library

The open set of parameterized generics was defined and implemented as a ITSDF-tool
library, allowing to specify different aspects of IT security for a large group of TOEs. The
parameterization of the generics and default relationships between them, allowing more
precise specifications on one hand and direct support for the developer on the other, seem to
be new ideas, still requiring verification and optimization.

Generics have parameters that can be left uncompleted, meaning “any of ”, or completed,
using other generic assignment to this parameter, similarly to the operations on the CC
components. Generics can be refined or derived from others to meet developers’ specific
needs. The generic domain concept is compliant with different security product types
described in informative annexes C to F in [60].

Fig. 12.1. ITSDF-tool – generic and component library window – example
Rys. 12.1. Przykład okienka aplikacji ITSDF-tool – biblioteka generyków i komponentów

All generics, including user-defined, and Common Criteria components – functional or
assurance, are placed in the same program library (Fig. 12.1) which can be used for both the
IT security development and its evaluation. All evaluation activities corresponding with the
above basic elements are included in this library too. Developers can use all available
generics and components existing in the library as building elements for their designs. They
can add newly defined generics or even components as well.

The left part of the Fig.12.1 contains the library resources tree (i.e. specification means
for the IT security development stages) while the right side presents some details concerning

206 12. Implementation and evaluation of the framework

threats, and security objectives generics proposed for them. For the highlighted
TDA.CryptoResMod threat its description field can be edited (in the Polish and English
language versions) and the selected security objectives can be assigned as those proposed to
cover this threat issue.

12.2. IT security development process support

The general scheme of the ST/PP development based on user requirements, PP
specifications, or both, is wizard-driven and supported by the XML documents generator.
The scheme was implemented, ensuring significant flexibility of:

Fig. 12.2. ITSDF-tool – assets specification elaboration for the security environment
Rys. 12.2. Tworzenie specyfikacji zasobów dla otoczenia zabezpieczeń za pomoca narzędzia

ITSDF-tool

• the security environment specification (Fig. 12.2), supporting trade-off between its
elements, mostly between threats and OSPs,

• the security objectives specification, supporting trade-off between objectives declared for
the TOE, for its environment or for both,

• the security requirements specification (Fig. 12.3), (including the requirements for the
TOE environment) using CC components or RE-type generics and also different ways of
assurance requirements selections.

12.2. IT security development process support 207

In the Fig. 12.2 the assets specification elaboration for the security environment is
presented. The upper window shows the specified assets with their values expressed with the
use of measures predefined for the project while the lower window – the library window with
library resources. The developer can move the selected item from the library to the to project,
assign the value to the item, and add the refinement. On the right side there is the wizard
window whose contents follows the designer’s activities.

Fig. 12.3. ITSDF-tool – security functional requirements for the TOE selection
Rys. 12.3. Wybór wymagań funkcjonalnych dla przedmiotu oceny za pomocą narzędzia

ITSDF-tool

The Fig. 12.3 shows the selection of the security functional requirements with the use of
the ITSDF-tool. For a given security objective generic (e.g. OCON.BlokCipher, shown in the
upper window) the security requirements (“proposed” or not) are assigned and justified. The
lower window presents all CC-defined dependencies for the considered SFR. These
dependencies are analyzed and added to the principal SFR by the developer, if needed. On
the right side, the previously mentioned wizard is shown.

A simple built-in risk analyzer supporting developers in countermeasures selection,
evaluation status/progress statistics and enhanced two-stage rationale (justification,
rationale), with graphical presentations of all relationships, can be also very useful in the
design and evaluation processes.

The ITSDF-tool has the simple risk analyzer built in. The part of the ST report generated
as a result of the analysis is shown in the Fig. 12.4. The following elements were presented:
assets, their values and risk calculation formula, and whether a given threat affects the TOE,

208 12. Implementation and evaluation of the framework

its environment, or both. Risk value is an important factor in the security objectives-, and
later the security functional requirements selection, as well as in defining the SOF claims (if
applied).

At the end of the development process it should be demonstrated that the conformable
TOE provided by its countermeasures will be secure in its environment. For these reasons, all
ICT security development stages must be justified. Lists of corresponding items or graphical
symbols (coloured rectangles and links), showing relations among model elements, are used
(Fig. 12.5). During the rationale process a part of or the entire design can be visualized in
a graphical or tabularized way. A developer, selecting a given item, can see all its
relationships, influenced by the parameterization or mapping associations. More examples of
the visualization can be found in the Appendix E.

Fig. 12.4. Simple risk analyzer – results presented in the ST report
Rys. 12.4. Prosty analizator ryzyka – wyniki analizy z raportu zadania zabezpieczeń

Finally, the developer will be able to create automatically ST or PP documents, using all
sampled and verified data. An example dealing with the mentioned SecOffice Security Target
was shown in the Fig. 12.6. The SecOffice is a cryptographic application (encryption and
digital signature). The figure presents its TOE boundaries on a picture attached by the
ITSDF-tool. Please note that graphical data (schemes) can be attached as well. The ITSDF-
tool allows to issue two kinds of such reports: standard (CC-defined PP or ST) or their
extended versions which contain additional data used for their elaboration.The whole IT

12.2. IT security development process support 209

security development process is wizard-driven, which was shown on the above Fig 12.2 and
Fig 12.3.

To sum up, the prototype of the tool meets basic needs of an IT security developer:
• precisely expresses security design needs, allowing to build a security model for the TOE,

Fig. 12.5. Graphically supported ST rationale
Rys. 12.5. Graficzne wspomaganie procesu uzasadnienia zadania zabezpieczeń

• supports the security model refinement process – starting from ideas and needs, through
risk assessment to security functions specification, and delivering and managing
assurance measures,

• supports obligatory rationale processes between each of the design stages (temporary
reports, graphical presentation of the relations),

• facilitates documentation creating and management,
• automatically generates the ST and PP documents,
• supports reusability of elaborated security models.

210 12. Implementation and evaluation of the framework

Fig. 12.6. Automatically generated ST report
Rys. 12.6. Automatyczne tworzenie specyfikacji zadania zabezpieczeń (ST)

12.3. IT security evaluation support

The presented tool allows to aid the whole self-evaluation process for Security Targets,
Protection Profiles, and the TOE vs. the claimed EAL. In short, the ICT security evaluation
process corresponds with elaborating the ETR. In the Fig. 12.7 the evaluator’s application
window was presented. On the left side the created ETR structure is shown. The evaluator
checks if the ST was properly elaborated (ASE class), particularly she/he checks if the ST
meets the ASE_ENV.1 component requirement concerning the security environment
workout. Please note the ASE_ENV.1-5 work unit (an elementary action of the evaluator)
concerning the ASE_ENV.1.3C content and presentation element, shown on the right side.
The evaluator assigns a verdict and issues its rationale. More details concerning the
evaluation process are included in the [45-46].

The ETR includes an introduction, the TOE description and different topics concerning
the evaluation process, including “evaluation deliverables” called evidence. Evidence
documentation influenced by the assurance requirements and attached by the developers to
the ST/PP are managed with the use of the ITSDF-tool.

12.3. IT security evaluation support 211

The main part of the ETR, called „Results of evaluation”, has APE or ASE class
components attached and all components contained in the declared EAL package with its
optional augmentation.

It is obvious that each assurance component has three basic elements implemented, used
in the evaluation process [45-46], i.e. D, C, E elements. The evaluator can review the
elements of each component and corresponding evaluation activities with work units. All
work units should be reviewed against the evidence material delivered by the developer, and
verdicts should be assigned with the evaluator’s obligatory justification. The verdicts are
accumulated, allowing to monitor the evaluation progress and current results (not shown
there).

The ETR and other reports could be automatically generated (all XML-based) at any
stage of the evaluation process. Built-in statistics show evaluation extent and progress.

Fig. 12.7. Evaluator's application window of the ITSDF-tool
Rys. 12.7. ITSDF-tool jako narzędzie do prowadzenia oceny zabezpieczeń

212 12. Implementation and evaluation of the framework

To sum up, the tool meets the IT security evaluator’s basic expectations:
• supporting step by step the arduous evaluation process,
• facilitating the creation and management of the documentation, including evidence

material,
• allowing on-line monitoring of the progress and the results of the evaluation,
• automatically generating the Evaluation Technical Reports (ETR), Observation Reports

(OR), and the Evaluation Discovery Report (EDR),
• allowing to master many details and relationships between assurance components and

evidence material during the self-evaluation process.

13. CONCLUSIONS

The monograph presents the concept of the UML framework for Common Criteria
developers and the computer-aided tool for the IT security products development, created on
this basis. By modelling the IT security development process with respect to the security-
related products or systems, the following objectives can be achieved:
• a simplified picture of such complex products is created, containing their structural and

behavioural specifications,
• these specifications can be analyzed to gain knowledge on these products, their

evaluation, usage and improvements,
• the sampled knowledge is reusable,
• the created models document developers’ decisions on-line.

The IT Security Development Framework and the related methodology are open to the
currently developed concepts, like:
• security engineering principles (e.g. separation of concerns),
• using the UML for IT security as the application domain (e.g. UMLsec),
and these approaches support each other.

The work presented in the monograph encompasses the following:
• identifications of gaps of the existing methodologies and tools – preliminary studies and

researches concerning the Common Criteria family of standards implementation, selected
Security Targets and Protection Profiles [87-88], case studies using one’s own developed
IT product [95], reviewing available tools, studying best practices, publications, research
papers, discussing the topic with experts [5-7], [10], [12-15], [19], [22], [24], [26-30],
[32-33];

• identification of the developers’ needs – analyzing development processes, identifying
points whose support for the developers is especially required for better preciseness and
lower cost, like:
− selection of the right security items to cover other items (e.g. security objectives to

cover threats, OSPs and assumptions, requirements to cover objectives, etc.);
− selection of the assurance requirements from different sources and merging them;

214 13. Conclusions

− enhanced SOF claims elaboration scheme;
− facilitating the rationale and risk analysis processes;

• elaborating the enhanced IT Security Development Framework, UML-based, and CC-
compliant;
− development of the IT security specification language as the set of enhanced generics,

allowing mapping, parameterization and operations;
− working out a design library on this basis, containing Common Criteria components

and a set of enhanced generics; defining a basic set of relations between the generics
to better support the developers in covering security items (threats by security
objectives, objectives by components, etc.), semiformally defined generics were
implemented as the library;

− elaborating general class diagrams for the Security Targets and Protection Profiles,
and their detailed sub-diagrams for every development stage, making reference to all
main and auxiliary data and activities of the development process;

− elaborating a set of detailed activity diagrams describing the IT security development
process; the diagrams are implemented as the wizard supporting the developers step-
by-step;

− satisfying the assumptions specified at end of the section 2.2, i.e.: compatibility with
the ISO/IEC TR 15446:2004 standard, enhanced 2-step rationale, a simple risk
analyzer built in the tool, (self-)evaluation facility, etc;

− supplementing the semiformal framework with the formal elements to reach better
modelling preciseness;

• the incremental development of the tool prototype based on feedbacks from case studies
and experimentation provided by the security lab and trainings (using the existing
security targets and protection profiles, and the developed ones – digital signature
application, smart card system); validation on the COTS-type digital signature/encryption
application and on the existing security targets and protection profiles examples.
The presented framework focuses on the use cases, specifying expected behaviour of the

security-related product or system, and the threats influencing them negatively. It is
architecture-centric and independent of the developed product, while the architecture is
defined by the Common Criteria standard, and ST and PP are the basic artefacts. It allows an
iterative, recursive and risk-driven CC development approach, based on the continuous
design improvement and rationale support.

The following features help to achieve the assurance for the IT product or system in
a more efficient way:

13. Conclusions 215

• issuing detailed activity diagrams, implemented as the tool wizard – step-by-step support
given to developers during the IT security development process; the trade-off between the
TOE and its environment facility is especially useful to issue the final specification of
security objectives;

• issuing specifications that are more precise and coherent than those in [60] by providing
the developers with specification means comparable with CC components at any
development stage; generics are semiformal and flexible means (due to their:
parameterization, iteration, refinement); developers are provided with a rich (about 400
items) but open library of generics for typical security issues; developers can define their
own generics on the condition that they use a predefined format; building generics and/or
components chains being solutions to elementary security problems;

• reaching design reusability in the same way as for other computer-aided systems;
• better decision support for developers (default relationships, i.e. “proposed”, easy

checking of variants, the trade-off between the TOE and its environment, the trade-off
between technical and organizational measures);

• supporting risk analysis; as the specified security objectives are formulated on the basis
of risk value, they are more adequate;

• enhanced SOF-claims management (defining and implementation checking);
• merging the assurance requirements of different origin;
• extending the OSPs allows to achieve better compliance with the information security

management standards; the generics library is provided by the set of many OSPs,
including those compatible with the information security management standards; it is
easier to incorporate the developed and evaluated TOE in the operational environment
and its security management system;

• improving documentation management, including the preparation of evidence, reporting,
statistics, etc;

• allowing preliminary self-evaluation of the work, similarly to the evaluation process
performed by the security labs;

• assisting the rationale process by means of the visualization tool;
• and, finally, automatically issuing different kind of reports, including ST or PP reports,

full-design reports, self-evaluation reports.
It can be seen that the tool makes the IT security development process easier, especially

the rationale between development stages, supported by the visualization facility. Generally,
the formalization of the IT security development process allows to issue more precise and
concise specifications. The “language of generics” is more precise and compact than the

216 13. Conclusions

description of informal security features and behaviours, and it is better understood by the
developers than some formal methods.

The main contribution of the monograph is:
• the concept and implementation of the CC-compliant and UML-based IT Security

Development Framework,
• enhanced language for elementary security issues specification,
• the scheme of the security-related product functionality capture (i.e. workout of the TOE

description), based on a UML use case diagram and collaborations, considering not only
legal but also illegal users and sources of undesirable events,

• security environment elaboration based on the risk analysis,
• 2-step enhanced rationale (any item justification, CC rationale for each development

stage),
• the concept of mapping the many-to-many relationships of the threats, policies, and

requirements for the system – supporting chains of the elementary security issues.
It was shown that:

• using the UML approach enables to express the IT security development process and the
IT security features of the designed products as well,

• using the UML specification method, especially use cases, makes it possible to describe
security-related products more precisely in TOE description (leading part of PP/ST
specification), allowing to better capture their security features and input on the
development process,

• using the UML security-related products specification and risk analysis makes the
developed security environment more coherent and more consistent with other parts of
the PP/ST specification,

• defining the use of UML domain-oriented subsets of generics makes it easier and more
effective to drive threats and policies to the security objectives and, later, the
requirements and security functions,

• introducing different views provides proper information on the design for different
Common Criteria consumers, like: IT security developers, evaluators, users,
administrators, and sponsors.
Please note that most of the diagrams presented there cannot be directly transferred to the

code. Many of them are activity diagrams performed by people (i.e. developers) not by the
computer software. There is a deep analogy between the modelling of IT security
development processes and enterprise process modelling, the latter being the basic domain of
the UML applications.

13. Conclusions 217

On the basis of the achieved results the following tasks are planned:
• educating the CC community to better understand the role of the UML-based modelling

in the IT security development process,
• disseminating the UML modelling knowledge and expertise in the CC community,
• supporting the deployment of the Common Criteria in Poland.

The results achieved up until now indicate that design and evaluation processes seem to
be considerably facilitated but the tool needs more verification in real operation and more
user feedbacks. The presented supporting ITSDF-tool prototype has been continuously
improved. Some useful features, like: packages management, composite and complex TOE
development, better reporting and better projects management are under development.

The correct ST/PP structure and content and all TOE specification elements are enforced
by the tool, helping to avoid most of the CC developers’ problems [2].

The methodology presented there was developed to meet the general hypothesis
concerning the basis of the assurance. This hypothesis says that the more rigorous the
developed IT product or system is, the more assurance it has. More rigorous means more
formal, going from informal approach for the lowest EALs, through semiformal for the
middle, and to the highest EALs allowing formal methods only.

The methodology presented there is generally semiformal, but it has some facilities or
options having formal character, such as:
• the possibility to adopt on entry the IT product or system models having formal character,

e.g. from [72],
• the use of the OCL which supports precise modelling,
• the possibility to create better formalized security models, based on the introduced

facilities (generics, semantics, ontology [106]).
There are some limitations to the formalizations, i.e. the cost and time of the development

process. The formal methods are rather hard to use, they are focused on chosen problems
only, and are not very popular among engineers. For these reasons, the cost/benefit analysis
is recommended, performed usually at the beginning of the development process by the IT
product or system sponsor. Only adequate methods and means can be used for products of
given features and applications. Thus the sets of different methods ant tools are needed. The
methodology presented there is one of them. It provides the set of distinguished means for
different applications and required assurance, and should be open to incorporate other
methods designed for specific applications.

Going towards the design for the securability idea, the main objective of this work is to
create a CC-compliant and UML-based IT Security Development Framework, supporting the
use of security engineering principles through the whole IT security development process.

218 13. Conclusions

Creating better frameworks and related tools means more effective projects and shortening
developers’ learning curves, which is especially important for COTS developers.

The issues presented in the monograph are very extensive and focused only on the
developed ITSDF framework and its implementation. For this reason the monograph cannot
be considered as a kind of guidelines to the Common Criteria methodology or a discussion of
its current problems or challenges. The monograph does not discuss the advantages or
disadvantages of this methodology and current problems to solve either.

One of the reviewers refers to the Common Criteria shortcomings, asking how they are
compensated by the developed framework and tool. Let us discuss some of them.
1. The time consuming IT security development and evaluation processes concern the given

version of the IT product or system. Moreover, when a new version is created,
recertification is needed.

The ITSDF framework (and especially the ITSDF-tool) provides solution to this issue by
improving the project reusability.
2. The assurance of the IT system composed from the evaluated IT product or system was

difficult to asses directly.
This concerns the older versions of the CC standard. Starting from the CC v3.x the
composability is supported and it is much more easier to solve this problem, still, the current
version of the ITSDF-tool has not implemented this feature so far. Currently, a new version
of the tool is developed and it does have this feature.
3. The CC methodology is focused on static aspects of the system behaviour.
This can be compensated by formal methods and the UML-based models expressing dynamic
aspects of systems, like UMLsec. The monograph shows how to integrate the ITSDF and
UMLsec approaches.
4. There is a need to integrate the CC methodology with the information security

management methodology, especially to harmonize security policy rules.
The ITSDF framework supports the solution of this issue by providing a basic set of policy
rules (and the possibility to define others), compliant with the ISO/IEC 27001 (see Appendix
E/Example E.7 and [12], [33]).

Each year the specialists (CC authors, practitioners, R&D performers, government
bodies, evaluators, sponsors, etc.) discuss the current state and new challenges of the CC
world, meeting together at the International Common Criteria Conference (ICCC) [42].
During the last one, the 8th ICCC held in Rome, the general concept of the ITSDF
framework was presented.

13. Conclusions 219

The Common Criteria methodology [42], recognized as a matured one, still has some
areas that need research and development to reach better effectiveness and friendliness, or
new areas of applications.

APPENDIX A. BASIC COMMON CRITERIA TERMINOLOGY

This appendix includes the basic Common Criteria terminology [38] to make the reading
of this work easier.

Table A.1
Basic terminology used in the monograph

Assets Information or resources to be protected by the countermeasures
of the TOE.

Assignment The specification of an identified parameter in a component.
Assurance Grounds for confidence that an entity meets its security

objectives.
Attack potential The perceived potential for success of an attack, should the attack

be launched, expressed in terms of an attacker’s expertise,
resources and motivation.

Augmentation The addition of one or more assurance component(s) from CC
Part 3 to an EAL or assurance package.

Authentication data Information used to verify the claimed identity of a user.
Authorized user A user who may, in accordance with the TSP, perform an

operation.
Class A grouping of families that share a common focus.
Component The smallest selectable set of elements that may be included in a

PP, an ST, or a package.
Connectivity The property of the TOE which allows interaction with IT

entities external to the TOE. This includes exchange of data by
wire or by wireless means over any distance in any environment
or configuration.

Dependency Relationship between requirements where the dependent
requirements must normally be satisfied for other requirements to
be able to meet their objectives.

Element An indivisible security requirement.
Evaluation Assessment of a PP, ST or TOE against defined criteria.
Evaluation Assurance
Level (EAL)

A package consisting of assurance components from Part 3 that
represents a point on the CC predefined assurance scale.

Evaluation authority A body that implements the CC for a specific community by
means of an evaluation scheme and thereby sets the standards
and monitors the quality of evaluations conducted by bodies
within that community.

Evaluation scheme The administrative and regulatory framework under which the

Appendix A. Basic terminology 221

CC is applied by an evaluation authority within a specific
community.

Extension The addition to an ST or PP of functional requirements not
contained in CC Part 2 and/or assurance requirements not
contained in Part 3 of the CC.

External IT entity Any IT product or system, distrusted or trusted, outside the TOE,
that interacts with the TOE.

Family (concerning
components)

A grouping of components that share security objectives but may
differ in emphasis or rigour.

Formal Expressed in a restricted-syntax language with defined semantics
based on well-established mathematical concepts.

Human user Any person who interacts with the TOE.
Identity A representation (e.g. a string) uniquely identifying an authorized

user, which can either be the full or abbreviated name of that user
or a pseudonym.

Informal Expressed in natural language.
Internal
communication
channel

A communication channel between separated parts of the TOE.

Internal TOE transfer Communicating data between separated parts of the TOE.
Inter-TSF transfers Communicating data between the TOE and the security functions

of other trusted IT products.
Iteration The use of a component more than once with varying operations.
Object An entity within the TSC that contains or receives information

and upon which subjects perform operations.
Organizational
security policies
(OSP)

One or more security rules, procedures, practices, or guidelines
imposed by an organization upon its operations.

Package A reusable set of either functional or assurance components (e.g.
an EAL), combined together to satisfy a set of identified security
objectives.

Product A package of IT software, firmware and/or hardware providing
functionality designed for use or incorporation within a
multiplicity of systems.

Protection Profile
(PP)

An implementation-independent set of security requirements for
a category of TOEs that meet specific consumer needs.

Reference monitor The concept of an abstract machine that enforces TOE access
control policies.

Reference validation
mechanism

An implementation of the reference monitor concept that
possesses the following properties: it is tamperproof, always
invoked, and simple enough to be subjected to thorough analysis
and testing.

Refinement The addition of details to a component.
Role A predefined set of rules establishing the allowed interactions

between a user and the TOE.
Secret Information that must be known only to authorized users and/or

the TSF in order to enforce a specific SFP.

222 Appendix A. Basic terminology

Security attribute Information associated with subjects, users and/or objects that is
used for the enforcement of the TSP.

Security Function
(SF)

A part or parts of the TOE that have to be relied upon for
enforcing a closely related subset of rules from the TSP.

Security Function
Policy (SFP)

The security policy enforced by an SF.

Security objective A statement of intent to counter identified threats and/or satisfy
identified organization security policies and assumptions.

Security Target (ST) A set of security requirements and specifications to be used as the
basis for evaluation of an identified TOE.

Selection The specification of one or more items from a list in a
component.

Semiformal Expressed in a restricted-syntax language with defined semantics.
Strength of Function
(SOF)

A qualification of the TOE security function expressing the
minimum efforts assumed necessary to defeat its expected
security behaviour by directly attacking its underlying security
mechanisms.

SOF-basic A level of the TOE strength of function where analysis shows
that the function provides adequate protection against a casual
breach of TOE security by attackers possessing low attack
potential.

SOF-medium A level of the TOE strength of function where analysis shows
that the function provides adequate protection against a
straightforward or intentional breach of TOE security by
attackers possessing moderate attack potential.

SOF-high A level of the TOE strength of function where analysis shows
that the function provides adequate protection against a
deliberately planned or organized breach of TOE security by
attackers possessing high attack potential.

Subject An entity within the TSC that causes operations to be performed.
System A specific IT installation, with a particular purpose and

operational environment.
Target of Evaluation
(TOE)

An IT product or system and its associated administrator and user
guidance documentation that is the subject of evaluation.

TOE resource Anything usable or consumable in the TOE.
TOE Security
Functions (TSF)

A set consisting of all hardware, software and firmware of the
TOE that must be relied upon for the correct enforcement of the
TSP.

TOE Security
Functions Interface
(TSFI)

A set of interfaces, whether interactive (man-machine interface)
or programmatic (application programming interface), through
which TOE resources are accessed, mediated by the TSF, or
information is obtained from the TSF.

TOE Security Policy
(TSP)

A set of rules that regulate how assets are managed, protected
and distributed within the TOE.

TOE security policy
model

A structured representation of the security policy to be enforced
by the TOE.

Appendix A. Basic terminology 223

Transfers outside TSF
control

Communicating data to entities not controlled by the TSF.

Trusted channel A means by which a TSF and a remote trusted IT product can
communicate with necessary confidence to support the TSP.

Trusted path A means by which a user and a TSF can communicate with
necessary confidence to support the TSP.

TSF data Data created by and for the TOE that might affect the operation
of the TOE.

TSF Scope of Control
(TSC)

The set of interactions that can occur with or within the TOE and
are subject to the rules of the TSP.

User Any entity (human user or external IT entity) outside the TOE
that interacts with the TOE.

User data Data created by and for the user that do not affect the operation
of the TSF.

APPENDIX B. OBJECT CONSTRAINT LANGUAGE (OCL) SYNTAX AND
SEMANTICS – THE USED DEFINITIONS AND TERMS

This appendix, including the basic definitions and terms, was elaborated on the basis of
the Appendix A of the OMG document [83]. Only those terms and definitions were selected
that are used for the well-formedness of security models specification.
A – represents an alphabet;
N – a set of finite, non-empty names N ⊆ A+ over the alphabet A;

N – a set of non-negative integers;
Nn – a set of non-negative integers up to n and including n, for any n ∈ N;
P(X) – a set of subsets of a set X;
∑ – a signature ∑=(T, Ω), where:

T – a set of type names,
Ω – a set of operations over types in T;

⊥ – undefined (unknown, null) value added to every type domain;
CLASS N – the set of classes is a finite set of names; a class represents a common

description for a set of objects having the same properties; each class induces an object type
t

⊆

c ∈ T, having the same name as the class;
ATTc – the attributes of a class c ∈ CLASS are defined as the set ATTc of signatures
a: tc → t, where t ∈ T is a type, tc ∈ T is a type of class c, and a ∈ N is the attribute name;
attributes are part of a class declaration; it is assumed that an attribute name may not be used
to define another attribute with a different type, i.e.:

∀ t, t’ ∈ T: ((a: tc → t ∈ ATTc) ∧ (a: tc → t’ ∈ ATTc)) ⇒ t=t’;
OPc – the operations of a class c ∈ CLASS are defined by a set OPc of signatures
ω: tc t× 1 ... × t× n → t, where t, t1, ... , tn ∈ T are types, tc ∈ T is a type of class c and
ω ∈ N is the operation symbol; an operation may have any number of parameters, but only
a single return type t ∈ T.
ASSOC – the set of associations is defined by:

i. a finite set of names ASSOC ∈ N, and

Appendix B. Object Constraint Language (OCL) syntax and semantics ... 225

ii. the function associates: ASSOC → CLASS+, as a 〈 c1, ... , cn 〉 , with (n≥2);

the function associates maps each association name as ∈ ASSOC to a finite list of classes
participating in the association; associations represent structural relationships between
classes;
roles – role names for an association are defined by the function roles:

ASSOC → N+, as ra 〈 1, ... , rn 〉 , with (n≥2), where

∀ i, j ∈ {1, ..., n}: i ≠ j ⇒ ri ≠ rj (role names distinction);
the function roles(as) = 〈 r1, ... , rn 〉 assigns a unique role name ri to each class ci for

i ∈ {1, ..., n} participating in the association; the role names may be omitted; in this case the
class name with its first letter changed to the lower case can be used as the role name;
participating – this function returns the set of associations the class participates in;
participating:

CLASS → P(ASSOC), c {as | as a ∈ ASSOC ∧ associates(as) = c〈 1, ... , cn 〉

∃ i ∈ {1, ..., n}: ci = c};
navends – this function returns the set of all role names reachable or navigable from a class
over a given association (the uniqueness of role names when a class is a part of many
associations should be ensured); the function navends:

CLASS × ASSOC → P(N),
(c, as) a {r | associates(as) = 〈 c1, ... , cn 〉 ∧ roles(as) = 〈 r1, ... , rn 〉 ∧

∃ i,j ∈ {1, ..., n}: (i ≠ j ∧ ci = c ∧ rj =r)};
navends(c) – this function returns the set of all role names reachable from a class c along all
associations the class participates in; navends(c):

CLASS → P(N),

c a navends(c, as); U
 ing(c)participat as∈

multiplicities; assuming that as ∈ ASSOC and associates(as) = 〈 c1, ..., cn 〉 , the function

multiplicities(as) = <M1, ..., Mn> assigns a non-empty set Mi N⊆ 0 with Mi ≠ {0} to

each class ci participating in the association; the Mi represents a number of links and an
object of the class ci can be part of each link;
generalization hierarchy is a partial order on the set of classes, marked CLASS, expressing
their taxonomy relationships;

p

 c2; child and parent classes; let us assume that the classes c1, c2∈ CLASS with c1 p

c1 is called a child class of c2, and c2 is called a parent class of c1;
parents(c):

226 Appendix B. Object Constraint Language (OCL) syntax and semantics ...

CLASS → P(CLASS),

pc a {c’ | c’ ∈ CLASS c ∧ c’};

collects all parents of a given class c;
full descriptor of a class c ∈ CLASS is a structure FDc = (ATT*c, OP*c, navends*(c)),
i. containing all attributes:

ATT*c = ATTc U ATTU
parents(c) c'∈

c’,

ii. user-defined operations:

OP*c = OPc U OPU
parents(c) c'∈

c’,

iii. and navigable role names:

navends*(c) = navends(c) navends(c’), U U
parents(c) c'∈

defined for the class c and all its parents;
properties of the full descriptor:
i. Attributes are defined in exactly one class:

∀ (a: tc → t , a’: tc’ → t’ ∈ ATT*c): (a=a’ t=t⇒ c’ ∧ t=t’),
ii. An operation may only be defined once:

∀ (ω: tc × t1 × ... × tn → t, ω: tc’ × t1 × ... × tn → t’ ∈ OP*c): (tc=tc’),
iii. Role names are defined in exactly one class:

∀ c1, c2∈ parents(c) U {c}: (c1 ≠ c2 ⇒ navends(c1) ∩ navends(c2) = ∅),

iv. Role names and attribute names must not conflict:
∀ (a: tc → t ∈ ATT*c) r∈∧ ∀ navends*(c): (a ≠ r);

syntax of object models is a structure of the above defined elements:
M = (CLASS, ATTc, OPc, ASSOC, associates, roles, multiplicities,); p

object identifiers (usually single letters combined with increasing indexes):
i. The set of object identifiers of a class c ∈ CLASS is defined by an infinite set
 oid(c) = {c1, c2,},
ii. The domain of a class c ∈ CLASS is defined as
 ICLASS(c) = {oid(c’) | c’ ∈ CLASS U ∧ (c’ c ∨ c’ = c)}; p

generalization hierarchy and object identifiers relationship:
∀ c1, c2 ∈ CLASS: c1 cp 2 ⇒ I(c1) ⊆ I(c2);

links – each association as ∈ ASSOC with associates(as) = 〈 c1, ... , cn 〉 is interpreted as the

Cartesian product of the set of object identifiers of the participating classes:

Appendix B. Object Constraint Language (OCL) syntax and semantics ... 227

IASSOC(as) = ICLASS(c1) × ... × ICLASS(cn),
where a link denoting a connection between objects is an element las ∈ IASSOC(as);
system state – (objects, links, and attribute values together constitute the state of a system at
a discrete point of time); a system state of a model M is a structure:
 σ(M) = (σCLASS, σATT, σASSOC), where:
i. The finite sets σCLASS(c) include all objects of a class c ∈ CLASS existing in the system

state: σCLASS(c) oid(c), ⊂

ii. Functions σATT assign attribute values to each object:
σATT(a): σCLASS(c) → I(t) for each a: tc → t ∈ ATT*c,

iii. The finite sets σAssoc contain links (satisfying multiplicities) connecting objects:
∀ as ∈ ASSOC, σASSOC (as) ⊂ IASSOC(as);

OCL types and operations – there are two groups of OCL types distinguished (see details
in [83]):
i. Non-collection types:
• Basic types: TB = {Integer, Real, Boolean, String}; their operations ΩB BB;
• Enumeration types (user-defined): TE, being sets of enumeration literals;

their operations: ΩE;
• Object types TC derived from the UML classes definitions; their operations ΩC;
• Special types: TS = {OclAny, OclState, OclVoid}, their operations ΩS, where:

− OclAny is a supertype of all other types except collection types,
− OclState, similar to TE, is used to refer to state names in a state machine,
− OclVoid is the subtype of all others types, representing the undefined

value ; ⊥

ii. Collection types (grouped by the Collection(t) supertype): Set(t), Sequence(t), Bag(t) to
describe collections of the value of a given type t and tuple type
Tuple(l1:t1, ..., ln:tn) to describe the combination of values of different types t1, ...tn; their
syntax and semantics were defined recursively; examples: a set (no duplicating elements)
{2,3,6,1} is expressed in the OCL as Set{2,3,6,1}, a list <2,4,6> (ordered) as
Sequence{2,4,6}, and a bag {{2,3,3,3,4,4,6}} as Bag{2,3,3,3,4,4,6}; a bag (i.e. a multi-
set) may contain multiple copies of an element.

syntax and semantics – the approach and selected examples
i. The syntax of types and operations is represented by the data signature ∑=(T, Ω);
ii. The semantics of types in T is defined by mapping (interpretation I) that assigns a domain

to each type,

228 Appendix B. Object Constraint Language (OCL) syntax and semantics ...

ii. The semantics of operations in Ω is defined by mapping (interpretation I) that assigns
a function to each operation;

Example of definition: Syntax of basic types is:
The set of basic types is TB = {Integer, Real, Boolean, String}; B

Example of definition: Semantics of basic types is:
 I(Integer) = Z U { ⊥ },

 I(Real) = R { }, U ⊥

 I(Boolean) = {true, false, ⊥ },
 I(String) = A* { }; U ⊥

Example of definition: Syntax of operations on the basic types
The syntax of an operation is defined by a signature ω: t1 × ... × tn → t, which contains the
operation symbol ω, a list of parameter types: t1, ... , tn ∈ T, and a result type t ∈ T;.
Example of definition: Semantics of operations on the basic types
The semantics of an operation with signature ω: t1 × ... × tn → t is a total function
 I(ω: t1 ... × t× n → t): I(t1)× ... × I(tn) → I (t);
e.g. (interpretation of the operation ω =’+’ for adding two integer numbers i1, i2 is:
 I(+)(i1, i2) = i1 + i2, (if i1 ≠ and i⊥ 2 ≠⊥), or ⊥ otherwise;
Example of definition: Syntax of enumeration types
An enumeration type t∈ TE is associated with a finite, non-empty set of enumeration literals
by a function: literals(t) = {e1,t, ..., en,t};
Example of definition: Semantics of enumeration types
The semantics of an enumeration type t ∈ TE is a function I(t) = literals(t) { }; U ⊥

Example of definition: Semantics of an OCL predefined operation allInstancest: → Set(t)
concerning enumeration type:
 t∈ T∀ E: I(allInstancest()) = literals(t);
the same operation may concern the objects of a type t ∈TC, and is called the predefined
operation for objects;
Example of definition: Syntax of object types
Let M be a model with a set CLASS of class names. The set TC of object types is defined in
such a way that ∀ c ∈ CLASS t ∈ T∃ C has the same name as the class c; there are two
functions defined for mapping a class to its type and vice versa:
 typeOf: CLASS → TC,
 classOf: TC → CLASS;
Example of definition: Semantics of object types

Appendix B. Object Constraint Language (OCL) syntax and semantics ... 229

The semantics of object type t ∈ TC with classOf(t) = c is defined as
 I(t) = ICLASS(c) U { ⊥ };

Example of definition: Semantics of attribute operations
An attribute signature a: tc → t in ΩC is interpreted by an attribute value function
IAtt(a: tc → t): I (tc) → I(t) mapping objects of class c to a value of type t:
 IAtt(a: tc → t)(c) = σAtt (a)(c) (if c ∈ σCLASS(c)), or ⊥ otherwise;
Example of definition: Syntax of navigation operations along association
Let M be an object model syntax:

M = (CLASS, ATTc, OPc, ASSOC, associates, roles, multiplicities,). p

The set Ωnav(c) ∈ ΩC of navigation operations for a class c ∈ CLASS is defined in such
a way that for each association as ∈ participating(c) with associates(as) = c〈 1, ... , cn 〉 ,

roles(as) = r〈 1, ... , rn 〉 , and multiplicities(as) = <M1, ..., Mn> the following signatures

are in Ωnav(c):
 i, j ∈ {1, ..., n} with i ≠ j,
 c

∀

i = c, classOf(t)= c, tci=typeOf(tci), and tcj=typeOf(tcj):
i. if n=2 and Mj-{0,1}= then r∅ j(as,ri): tci → tcj ∈ Ωnav(c); (the result type of the navigation
over binary associations is the type of the target class if the multiplicity of target is 0..1 or 1);
ii. if n>2 or Mj-{0,1} ≠ then r∅ j(as,ri): tci → Set(tcj) ∈ Ωnav(c); (all non-binary associations
and binary associations with all multiplicities other than those mentioned above induce the
object of the source class links with multiple objects of the target class);
Example of definition: Semantics of navigation operations along association
Assuming that the set of objects of class cj linked to an object cj via association as is defined
as:

L(as)(ci) = { ci | (c1 ,..., ci ,..., cj ,..., cn) ∈ σASSOC (as)};
the semantics of operations in Ωnav(c) is defined as follows:

i. I(rj(as,ri): tci → tcj) (ci) = cj (if cj ∈ L(as)(ci)), or ⊥ otherwise,
ii. I(rj(as,ri): tci → Set(tcj)) (ci) = L(as)(ci);

APPENDIX C. BASIC TERMS AND DEFINITIONS CONCERNING THE
UMLSEC APPROACH TO MODELLING CRYPTOGRAPHY

This appendix includes the selected definitions and terms used in the IT product or
system modelling, especially their cryptographic elements, according to the UMLsec [72].
Such products or systems are often based on cryptographic protocols. For that reason, this
methodology adopts commonly used cryptographic terms and definitions that are also
preferred in this monograph. A very exhaustive discussion concerning cryptography is
contained in [80].

The UMLsec uses the algebra of cryptographic expressions Exp which is generated by
the set Keys Var U Data, where: U

• Keys – cryptographic keys (symmetric, when K-1=K, asymmetric otherwise;
K ∈Keys);

• Var – variables;
• Data – data values, including Secrets; cryptographic protocols often use random values

that ought to be used only once, called a nonce, which also belong to the set of secrets.
This algebra is based on the following operations, where “_” denotes a place for the

argument:
:: – concatenation head(_) and tail(_) – head and tail of concatenation
{_}_ – encryption Dec_(_) – decryption
Sign_(_) – signing Ext_(_) – extracting from signature
Hash(_) – hashing

Please note the following properties:
i. DecK

-1({E}K)=E; ∀ E ∈ Exp ∧ ∀ K ∈ Keys;
ii. ExtK(Sign K

-1(E))=E; ∀ E ∈ Exp ∧ ∀ K ∈ Keys;
iii. (E1::E2)::E3=E1::(E2::E3); ∀ E1, E2, E3 ∈ Exp;
iv. head(E1::E2)=E1, (E∀ 1, E2 ∈ Exp) and tail(E1::E2)=E2, (∀ E1, E2 ∈ Exp such that

there exist no such E, E’ with E1= E::E’); for other cases head()= ⊥ and tail()= . ⊥

Appendix C. Basic terms and definitions concerning ... cryptography 231

For extracting the first, second, third, etc., element from the sequence, the following
operations can be used:

i. fst(E) = head(E),
ii. snd(E) = head(tail(E)),
iii. thd(E) = head(tail(tail(E))), etc.

APPENDIX D. BASIC PRINCIPLES OF NAMING THE TERMS

Table D.1
Basic principles of naming the terms

Monograph text OCL code Meaning
Generic Generic An abstract UML class
GenItem GenItem A non abstract UML class
attribute attribute
operation() operation()
isCovered, parameter The role names derived

from class names
IsCovered and Parameter

OACC.DAC_D0I0 The generic name issued by
the develsname() operation

Roles, as, GenParAssoc,
...

 A calligraphic font is used
for mathematical symbols
(formal basis of the OCL)

SGeneric, Set(tGeneric), where
tGeneric is a type derived
from class Generic

Set(Generic) The set of classes of the
given kind

“4” within names, e.g.
Ogr4Pgr

 An abbreviated word “for”

APPENDIX E. ELEMENTS OF THE SECURITY TARGET FOR A FIREWALL
SYSTEM

The Appendix E exemplifies selected aspects of the presented there methodology, based
on the IT Security Development Framework (ITSDF). The example deals with a simple
firewall, called the FW system, developed on the basis of guidelines placed in “Annex D
Worked Example: Firewall PP and ST” [60]. The presented example shows how these rough
project ideas can be expressed with the use of facilities built in the ITSDF framework and its
software implementation. As it was mentioned earlier, the elaboration process of the IT
product or systems consists of:
• the IT security development process (expressed there by the ITSDF framework), leading

to the creation of the Security Target (ST),
• TOE development process, where the given IT product or system is created, documented

and prepared for the evaluation on the ST basis, with the rigor implied by the EAL level
and with the use of the given technology.
The ITSDF framework contains two main groups of models:

• models of IT security development processes (SM_SecurityModel), expressing the
elaboration of the security specifications, like ST, PP,

• models of the specification means (SL_SecurityLibrary), used to create these
specifications.
Generally, the ITSDF uses three levels of description: informal (textual) level,

semiformal (UML or developer’s style) level, formal (OCL or mathematics-based) level.
Moreover, the elements of the FW system will be exemplified with the use of the ITSDF-tool
software tool which is an implementation of the ITSDF models. All above kinds of
specification will be exemplified by the FW system example, though the developer’s style
will be used as the main specification method and will embrace all elements. Some of the
description styles (levels) have practical meaning and can be met in the ST/PP specifications,
and some have theoretical meaning and are used for internal model representation.

The following sections present activities and their results leading to the elaboration of the
FW security target. The example concerns CC v.2.x which is compliant with the [60]

234 Appendix E. Elements of the security target for a firewall system

standard. Some differences existing between the above version and the current one, i.e. CC
v.3.1., can be ignored in this case.

The IT security development process is defined by the state machine (Fig. 2.6) and the
related data models presented in the Fig. 2.4, refined in the chapters 4-10. They express the
ST/PP general structure and all activities leading to filling this structure with the right data on
the specific security project, like the FW system. Some of these data have informal and some
semiformal character, like the predefined generics, functional and assurances components,
taken from the specification means library – discussed in the chapter 3.

E.1. Elaboration of the ST introduction

Prior to the ST introduction model (Fig. 4.4), the ITSDF framework recommends the
elaboration of the BCL model of the firewall system (Fig. 4.3). Going step by step, different
project identifiers are assigned and different features are precisely, though informally,
expressed. This stage, rather simple in comparison with others, is supported by the set of the
electronic forms and simple project database implemented in the ITSDF tool.

Example E.1: ST instruction contents – informal description.

Apart from the FW and its ST identifiers and a short presentation of the functionality and
connectivity, some additional information is needed on: security functionality (the FW is
“security” product) and the FW environment, i.e. underlying hardware/software platform, the
need for physical protection, different roles of the administrator and users, protected assets
which are outside the FW, etc.

E.2. Security environment (“Security problem definition” in the latest CC version)

The security environment data model is shown in the Fig. 5.2 and 5.3, while the
elaboration process in the Fig. 5.4 and its refinements. To fulfil the data model, the generics
expressed assets, subjects, threats, OSPs and assumptions are used (see Chapter 3).

Example E.2: Security environment specification – selected issues expressed by generics.

The firewall intermediates between the protected private network and the hostile public ones.
The protected assets, which are data and services, are outside the FW, i.e. they are in the
protected network. To simplify this issue, all assets are expressed with the use of only one
generic, which can be used as the paramDA value for other generics, e.g. threats:

DAE.ProtNet. Hosts, workstations, its data and services on the private network protected
by the firewall.

Subjects represent active entities, used as paramS values. For the considered firewall two
authorized individuals are identified, representing administrators and users:

SAU.FullAccAdmin. TOE administrator, having full access rights.

Appendix E. Elements of the security target for a firewall system 235

SAU.NetUser.D1. Distinguished user of the protected network or external, potentially
hostile network.

and one unauthorized, representing threat agents (please not an example of the generic
derivation):

SNA.HighPotenIntrud.D1. Attacker having high level skills, enough resources and deep
motivation to perform a deliberate attack.

To avoid bypassing the FW system, two assumptions of connectivity aspects were assigned:
AC.DualHomed. The firewall has separate network adapters for every network
connection.
AC.FirewallConn.D1. The firewall is assumed to be configured as the only network
connection between the private network and the hostile network.

Moreover, three assumptions (note an example of the parameterization of generics) of
personal aspects should be satisfied:

AP.OnlyAdminAccess. Only administrators [paramS <= SAU.FullAccAdmin] can access
the firewall.
AP.TrustAdmin. It is assumed that one or more authorized administrators [paramS <=
SAU.FullAccAdmin] are assigned who are competent to manage the TOE and the
security of the information it contains, and who can be trusted not to deliberately abuse
their privileges so as to undermine security.
AP.NoDistUsers. Users [paramS <= SAU.NetUser.D1] are considered in the same way
as the sources of security breaches.

The most important issue is the threats specification (simplified there). Three kinds of direct
attacks are considered:

TDA.IllegAcc. An attacker [paramS <= SNA.HighPotenIntrud.D1] on the hostile
network may exploit flaws in service implementations (e.g. using a ‘well known’ port
number for a protocol other than the one defined to use that port) to gain access to hosts
or services [paramDA <= DAE.ProtNet].
TDA.FwlAdminImpers. An attacker [paramS1 <= SNA.HighPotenIntrud.D1] may gain
access to the firewall by impersonating an administrator [paramS2 <=
SAU.FullAccAdmin].
TDA.NewAttMeth. Attackers [paramS <= SNA.HighPotenIntrud.D1] on the hostile
network exploiting new, previously unknown attack methods, e.g. using previously
trustworthy services.

Please note that TDA.FwlAdminImpers has 2 paramS parameters (not serviced by the ITSDF-
tool yet). For the FW system the security problem is expressed by threats, and no OSPs
generics were used.

Example E.3: Security environment – generics from the Example E.2 within the ITSDF-tool.

The Fig. E.1 presents the security environment specification in the ITSDF-tool, as “the
design tree”. Please note the above mentioned (Example E.2) subjects, assumptions and
threats, including a few derived ones, and three threat generics, among which one is
expanded. It contains refinement, the attribute saying that the threat concerns both the TOE
and its environment, two assigned parameters, exploited vulnerability and the risk attributes.
The asset generic with the assetValue attribute is assigned as the parameter of the threat
generic. With respect to the threat character and the threat agent (expressed by the paramS)

236 Appendix E. Elements of the security target for a firewall system

the eventLikelihood17 and assetValLoss18 abilities are assessed by the developer, using
predefined scales for the given project.
See the Definitions 3.11 and 3.17 introducing these parameters and the example of the OCL
definition of the riskValueAssess() operation placed in the Section 5.6.
Note that:

riskValueAsses = assetValue* eventLikelihood* assetValLoss. (1)

Fig. E.1. The ITSDF-tool – the part of the design three dealing with the FW firewall security
environment

Rys. E.1. Narzędzie ITSDF – fragment drzewka projektu systemu zaporowego FW

17 “Occurrence Frequency” in the ITSDF-tool.
18 “Percentage of the Asset Value Loss” in the ITSDF-tool.

Appendix E. Elements of the security target for a firewall system 237

Fig. E.2. Visualization of the security environment in the software tool based on the ITSDF
framework

Rys. E.2. Wizualizacja otoczenia zabezpieczeń w narzędziu będącym implementacją systemu
ITSDF

Due to the substitution of parameters values concerning generics: DAE.ProtNet and
TDA.FwlAdminImpers respectively, the obtained riskValueAssess19 is 4 (in the predefined
scale):

riskValueAssess = 4*2*0.5 = 4. (2)
In this example no generic refinements were made. Please note that for any threats the
developer can add more info on the exploited vulnerabilities. The presented generics are
introduced by the developer from the generics/components library, where hundreds of
predefined generics and all Common Criteria components are placed.
The Fig. E.2 shows how the elements of the security environment specification are visualized
by the ITSDF-tool.
Please note generics and relations concerning the assigned parameters. For the highlighted
TDA.IllegAcc20 two relations exist:
 (TDA.IllegAcc, SNA.HighPotenIntrud.D1) and (TDA.IllegAcc, DAE.ProtNet).

E.3. Security objectives

The main security objectives data model is shown in the Fig. 6.3. The elaboration process
is presented in the Fig. 6.8 and its refinements. To fulfil the data model, different kinds of
security objectives generics are used (Fig. 3.8, Definition 3.27). The security objectives
provide the solution to the security problem definition. The security objectives elaboration
has two steps. In the first step all security objectives are placed in the common set, then the
security objectives belonging to this set are analyzed and moved to one of two other sets
embracing the TOE security objectives or the TOE environment security objectives. This

19 “Risk Value” in the ITSDF-tool.
20 In the ITSDF-tool the instance number is placed in brackets.

238 Appendix E. Elements of the security target for a firewall system

process, called “trade-off”, supported by the ITSDF-tool, partitions the “security
responsibility” between the TOE and its environment and decides about the TOE shape,
degree of automation, maintenance cost, evaluation cost, etc. Please note that only the TOE
security requirements will be transformed to functional requirements, the latter to the security
functions (TSFs), evaluated against the declared EAL and implemented within the IT product
or system. As for the firewall, more TOE security objectives mean better automation and
easier administration but higher cost of evaluation influencing the overall product cost. On
the other hand, more security environment objectives declared mean cheaper products which,
however, create more difficult conditions for the exploitation environment and
administration.

Example E.4: Security objectives specification – selected issues expressed by generics.

The main security objectives for the FW system, related to the TDA.IllegAcc threat, concern
the access restrictions and control between the protected private network and the hostile
public ones. Because this access control can be performed on different levels, there are three
main TOE security objectives assigned to cover this issue:

OACC.LmtIPAddr. The firewall enforces access control by limiting the valid range of
addresses expected on each of the private and hostile networks (i.e. an external host
cannot spoof an internal host).
OACC.LmtPortHost. The firewall enforces access control by limiting the hosts and
service ports that can be accessed from, respectively, the hostile and private networks.
OACC.OnProxyAuth. The firewall must, for certain specified services [paramDA <=
*21] of proxy application, be capable of requiring authentication of the end user [paramS
<= SAU.NetUser.D1] prior to establishing a through connection.

and three others, concerning the FW audit and management facilities, and data sanitizing:
OADT.RecSecEvents. The TOE will provide the means of recording any security relevant
events, so as to assist an administrator in the detection of potential attacks or
misconfiguration of the TOE security features that would leave the TOE susceptible to
attack, as well as to hold users accountable for any security-relevant actions.
OSMN.SecManAdmin. The TOE will provide facilities to enable an authorized
administrator [paramS <= SAU.FullAccAdmin] to effectively manage the TOE and its
security functions, and will ensure that only authorized administrators are able to access
such functionality.
ODEX.SanitData. Sanitizing data objects containing hidden or unused data. Sanitize
data objects that may contain hidden data when they are exported from the TOE in order
to inhibit steganographic smuggling.

The above mentioned TOE security objectives should be supported by procedural or
technical solutions expressed by the applied security objectives dealing with the environment
(the first has procedural, the second technical character):

OSMN.SecConfManag. Security-relevant configuration management. Managing and
updating system security policy data and enforcement functions, and other security-
relevant configuration data, in accordance with organizational security policies.

21 „*” (the value not assigned); for the FW means: „Any proxy service”.

Appendix E. Elements of the security target for a firewall system 239

OADT.AuditManage. Administrators of the TOE [paramS <= SAU.FullAccAdmin] must
ensure that audit facilities are used and managed effectively. In particular: action must
be taken to ensure continued audit logging, e.g. by regular archiving of logs before audit
trail exhaustion to ensure sufficient free space. Audit logs should be inspected on
a regular basis, and appropriate action should be taken to detect breaches of security or
events that are likely to lead to a breach in the future.

The second problem for the FW system concerns the administrator being impersonated by the
intruder – the problem expressed by the TDA.FwlAdminImpers threat. By means of the
above mentioned audit and management facilities, the following solution is proposed:

OACC.AdminAuth. Authentication of the firewall administrator [paramS <=
SAU.FullAccAdmin].

The third FW security problem (TDA.NewAttMeth), concerning continuously occurring new
methods of attacks, discovered vulnerabilities, etc. can be solved by organizational means:

OSMN.AuthNotif. Appropriate authorities shall be immediately notified of any new
threats or vulnerabilities impacting systems that process their data.
OSMN.Awareness. The organization implements users’ awareness programme. �

Example E.5: The security problem of the FW system and its solution – a kind of
specification which is alternative to the Example E.4 and uses the UML object diagram.

All generics presented in the Examples E.2 and E.4 have their internal representations as the
security UML objects, i.e. different kinds of GenItem: ACItem, TDAItem, OACCItem, etc.
Please note two name conventions: the developer’s style (Definition 3.2, Definition 3.35) and
the UML style object_name:Object_type (Definition 3.35 – the operation develsname()).
For example, the SNA.HighPotenIntrud.D1 generic (developer’s style) can be expressed as
a UML object HighPotenIntrud_D1:SNAItem. Please note (Fig. 3.13) that when a generic
(or component) is taken from the library to the security specification, it changes its
stateAttribute from DEFINED to ASSIGNED. The UML object diagram (Fig. E.3) can be
considered as a picture of the general class diagrams expressing a concrete situation dealing
with the FW system security environment and objectives.
For example, the parameterization association classes ParamDA4T, ParamS4T (Fig.3.15) have
some instances represented by the link parameter, and covering association classes (such as
Ogr4Tgr shown in the Fig. 3.18) have some instances represented by the link covers.
Justification is required for the security associations concerning mapping security issues of
the neighbouring IT security development stages, i.e. the “covering associations”. Please note
the attributes of the association classes, e.g. in the Fig. 3.18. Justification is needed for any
covering decision made by the developer. For example, the justification of any security
objectives covering the given threat is provided as the last action in the Fig. 6.9.

240 Appendix E. Elements of the security target for a firewall system

FullAccAdmin:SAUItem

ProtNet:DAEItem

LmtIPAddr:OACCItem LmtPortHost:OACCItem OnProxyAuth:OACCItem

Assumptions, assets, subjects,
threats, (no OSPs)
- the FW security environment

NoDistUsers:APItem

Security objectives for TOE

DualHomed:ACItem

IllegAcc :TDAItem

HighPotenIntrud_D1:SNAItem*

+parameter*
*

+parameter

* FwlAdminImpers:TDAItemNewAttMeth:TDAItem

*
+parameter*

*

+parameter

*

* +parameter*

TrustAdmin:APItem OnlyAdminAccess :APItemFirewallConn_D1:ACItem

*

+parameter *
*

+parameter

*

* +parameter*

NetUser_D1:SAUItem

*

+covers*

*

+covers*

*

+covers*

RecSecEvents:OADTItem SecManAdmin:OSMNItem

SanitData:ODEXItem

SecConfManag:OSMNItem

AdminAuth:OACCItem

AuditManage:OADTItem

*

+covers*

AuthNotif:OSMNItem

Awareness:OSMNItem

*

+covers

*

*

+covers

*

*

+covers

*

*

+covers

*

*

+covers

*

*

+covers

*

*

+covers

*
Security objectives for TOE
environment (gray colour)

Security problem (above) and its solution (below)

*

+parameter

*

*

+parameter

*

*

+parameter *

*

+parameter

*

Fig. E.3. Security problem (environment) and its solution (objectives) for the FW system on the

UML object diagram
Rys. E.3. Sformułowany dla systemu FW problem bezpieczeństwa (otoczenie zabezpieczeń) oraz

jego rozwiązanie w postaci celów zabezpieczeń, pokazane jako diagram obiektów UML

The justifications of any item makes the security objectives rationale process (Section 10.1)
easier, providing an optimized set of security objectives necessary and sufficient to cover the
security problem expressed by the security environment. The selection of the security
objectives is supported by simple risk analyzing facilities discussed in the Example E.3.
Please note risk values displayed for any threat in the Fig. E.1, e.g.: TDA.IllegAcc(R=10).
The risk rank is the basis to map a security objective of given properties, to support it by
other objectives, or to refine it.

Example E.6: The security problem of the FW system and its solution – a kind of
specification which is alternative to the Example E.4 and E.5 and uses the model
mathematical representation.

The example shows the mathematical representation of the security problem definition and
security objectives specifications, as parts of the FW security target (Definitions: 5.1, 6.1).
The security environment specification includes all “assigned” Sgr, DAgr, Tgr, Pgr, Agr
generics (Definition 3.9), i.e. STOESecEnvItems. It also includes the set of pairs expressing
parameterization relation, representing Sgr or DAgr generics assigned to the specified Tgr,
Pgr, Agr generics, i.e. the STOESecEnvPars. For the considered firewall system the security
environment specification contains the items listed below. In this case the generics are
represented as UML objects of the given type. Please compare this notation with the
alternative one, i.e. the developer’s style notation used in the Example 10.4.

STOESecEnv = <STOESecEnvItems, STOESecEnvPars>
STOESecEnvItems = SSubjects U SAssets U SThreats SU OSPs SU Assumpt, where:
SSubjects = Set{FullAccAdmin:SAUItem, NetUser_D1:SAUItem,

HighPotenIntrud_D1:SNAItem},
SAssets = Set{ProtNet:DAEItem},

Appendix E. Elements of the security target for a firewall system 241

SThreats = Set{IllegAcc:TDAItem, FwlAdminImpers:TDAItem, NewAttMeth:TDAItem},
SOSPs = ∅ ,
SAssumpt = Set{DualHomed:ACItem, FirewallConn_D1:ACItem,

OnlyAdminAccess:APItem, TrustAdmin:APItem, NoDistUsers:APItem}.
STOESecEnvPars
= {ParamDA4T, ParamS4T, ParamDA4P, ParamS4P, ParamDA4A, ParamS4A},
ParamDA4T = Set{(ProtNet:DAEItem, IllegAcc:TDAItem)},
ParamS4T = Set{(HighPotenIntrud_D1:SNAItem, IllegAcc:TDAItem),

(HighPotenIntrud_D1:SNAItem, FwlAdminImpers:TDAItem),
(FullAccAdmin:SAUItem, FwlAdminImpers:TDAItem),
(HighPotenIntrud_D1:SNAItem, NewAttMeth:TDAItem)},

ParamS4A = Set{(FullAccAdmin:SAUItem, OnlyAdminAccess:APItem),
(FullAccAdmin:SAUItem, TrustAdmin:APItem),
(NetUser_D1:SAUItem, NoDistUsers:APItem)},

ParamDA4P = ParamS4P = ParamDA4A = ∅ ,
The security objectives specification includes three elements. The first represents all
“assigned” Ogr generics (Definition 6.1), i.e. SSecObjItems. The second is the set of pairs
expressing parameterization relation, representing Sgr or DAgr generics assigned to the
specified Ogr generics, i.e. the SSecObjPars. The third element is the set of pairs expressing how
the security environment elements are covered by the assigned security objectives, i.e.
SSecObjAssocs.

SSecObj = <SSecObjItems, SSecObjPars, SSecObjAssocs>.
The security objectives may concern the TOE (STOE_ITObjectives) or the technical (SEnvirITObjectives)
or procedural (SEnvirAuxObjectives) aspects of its environment:

SSecObjItems = STOE_ITObjectives U SEnvirITObjectives SU EnvirAuxObjectives.
For the FW system the following security objectives were specified:

STOE_ITObjectives = Set{LmtIPAddr:OACCItem, LmtPortHost:OACCItem,
OnProxyAuth:OACCItem, RecSecEvents:OADTItem, SecManAdmin:OSMNItem,
SanitData:ODEXItem, AdminAuth:OACCItem},

SEnvirITObjectives = Set{AuditManage:OADTItem},
SEnvirAuxObjectives = Set{SecConfManag:OSMNItem, AuthNotif:OSMNItem,

Awareness:OSMNItem}.
The parameterization association contains the following pairs:

SSecObjPars = {ParamDA4O, ParamS4O}, where:
ParamDA4O = Set{(paramDA22, OnProxyAuth:OACCItem)},
ParamS4O = Set{(NetUser_D1:SAUItem, OnProxyAuth:OACCItem),

(FullAccAdmin:SAUItem, SecManAdmin:OSMNItem),
(FullAccAdmin:SAUItem, AuditManage:OADTItem),
(FullAccAdmin:SAUItem, AdminAuth:OACCItem)},
The association concerning mapping (covering) contains the following pairs:

SSecObjAssocs = {Ogr4Tgr, Ogr4Pgr, Ogr4Agr}, where:
Ogr4Tgr = Set{(LmtIPAddr:OACCItem, IllegAcc:TDAItem),

(LmtPortHost:OACCItem, IllegAcc:TDAItem),

22 not assigned; for the FW means: „Any proxy service”.

242 Appendix E. Elements of the security target for a firewall system

(OnProxyAuth:OACCItem, IllegAcc:TDAItem),
(RecSecEvents:OADTItem, IllegAcc:TDAItem),
(SecManAdmin:OSMNItem, IllegAcc:TDAItem),
(SanitData:ODEXItem, IllegAcc:TDAItem),
(SecConfManag:OSMNItem, IllegAcc:TDAItem),
(AuditManage:OADTItem, IllegAcc:TDAItem),
(AdminAuth:OACCItem, FwlAdminImpers:TDAItem),
(AuthNotif:OSMNItem, NewAttMeth:TDAItem),
(Awareness:OSMNItem, NewAttMeth:TDAItem)},

Ogr4Pgr = Ogr4Agr = ∅ .
The mathematical model is used as the internal data representation within the ITSDF

framework.

E.4. Security requirements

The security requirements data model was shown in the Fig. 7.3, and the related
specification workout in the Fig. 7.7 and its refinements. Please note different kinds of
security requirements. The specification means for this stage are predefined in the Common
Criteria catalogues. CC Part 2 contains functional components, while Part 3 assurance
components and EALs definitions. For both kinds of CC components the UML/OCL models
were created and implemented in the ITSDF-tool library, compatible with the generics
models (Section 3.2). Security requirements for the environment can be expressed by CC
components for a well defined IT environment or by the predefined RE-group of generics
(Definitions: 3.29 and 3.30) in other case.

The selection of security assurance requirements (SARs) is based on the predefined
assurance packages corresponding to particular EAL levels. The ITSDF framework allows to
merge these predefined sets of requirements with the requirements from other sources, such
as those deliberately selected by the developer or influenced by the specific security
objectives. Merging the selected SAR and its depending SARs (defined by the CC) with the
well composed assurance package is not easy and should be done carefully (Fig. 7.12). It
leads to the EALn+ assurance level. For the considered firewall system the EAL4 was
chosen. Please note that for an ST project the ASE class requirements are automatically
attached (APE class for the PP).

The preparation of the SOF-claims for any functional requirement related to the
permutational or probabilistic mechanism (for EAL>1) is supported by the ITSDF framework
and its software implementation. In the latest CC version the SOF claims are withdrawn
(replaced by the extended vulnerability analyses).

Example E.7: Security functional requirements (SFRs) for the FW system – selected issues
expressed by the CC functional components or REgr generics.

Appendix E. Elements of the security target for a firewall system 243

For any main TOE security objective the right functional components (principal ones) are
assigned, supplemented by dependent components and assigned intentionally by the
developer. This set of requirements is supplemented by the requirements influenced by the
supporting objectives – for the TOE and its environment. Please note that the ITSDF
framework has predefined security associations (“proposing”), covering the given security
objectives by the right components, called the supporting chains. The FW firewall will not
provide the full security functionality and it will be based on the functionality provided by its
IT environment, i.e. operating system (logging, audit). To sum up, the principal security
requirements for the considered firewall example are selected as follows:
The TOE security objective OACC.LmtIPAddr is covered by:

FDP_ACF.1 (Security attribute based access control),
FDP_ACC.2 (Complete access control),

supported by the following component (assigned by the developer to avoid bypassability of
this access control):

FPT_RVM.1 (Non-bypassability of the TSP) ensures that these functions are always
invoked when required.

The TOE security objective OACC.LmtPortHost is covered by:
FDP_IFF.1 (Simple Security Attributes),
FDP_IFC.2 (Complete Information Flow Control).

The TOE security objective OACC.OnProxyAuth is covered by:
FIA_UAU.2 (User Authentication Before Any Action),
FIA_UID.2 (User Identification Before Any Action).

The TOE security objective OADT.RecSecEvents is covered by:
FAU_GEN.1 (Audit Data Generation),
FAU_ARP.1 (Security Alarms),

supported by the requirement addressed to the environment (implied by the objective
OADT.AuditManage):

RENIT.AuditManage. Administrators of the TOE [paramS <= SAU.FullAccAdmin]
must ensure that audit facilities are used and managed effectively. In particular: action
must be taken to ensure continued audit logging, e.g. by regular archiving of logs before
audit trail exhaustion to ensure sufficient free space. Audit logs should be inspected on a
regular basis, and appropriate action should be taken to detect breaches of security or
events that are likely to lead to a breach in the future.

The TOE security objective OSMN.SecManAdmin is covered by:
FMT_SMR.1 (Security Management Roles),
FMT_MSA.1 (Management of Security Attributes),
supported by the requirement addressed to the environment (implied by the objective

OSMN.SecConfManage):
RENIT.SecConfManage. Security-relevant configuration management. Managing and
updating system security policy data and enforcement functions as well as other security-
relevant configuration data, in accordance with organizational security policies.

The TOE security objective ODEX.SanitData is covered by:
FDP_RIP.1 (Subset residual information protection).

The TOE security objective OACC.AdminAuth is covered by (Note the iteration; these two
components concern the authentication of the administrator, not the users as it was specified
above for the objective OACC.OnProxyAuth):

FIA_UAU.2 (User Authentication Before Any Action),
FIA_UID.2 (User Identification Before Any Action),

244 Appendix E. Elements of the security target for a firewall system

supported by the requirement ensuring non-bypassibility of authentication and generating
alarms in such cases:

FPT_RVM.1 (Non-bypassability of the TSP),
FIA_AFL.1 (Authentication Failure Handling).

The TOE environment security objective OSMN.AuthNotif is covered by the requirement
derived from the commonly used ISO/IEC 27001 standard:

RENIT.A12_6_1_ISO/IEC27001. Control of technical vulnerabilities.
The TOE environment security objective OSMN.Awareness is covered by the requirement
derived from the commonly used ISO/IEC 27001 standard:

RENIT.UserAwarn.User awareness and proper operation regulations. �
This example is simplified and does not consider the security audit and security

management issues, as well as component dependency analyses.

Example E.8: Security functional requirements (SFRs) for the FW system – the visualization
of the components and generics from the Example E.7 within the ITSDF-tool (Fig. E.4).

The figure shows how the elements of the security functional requirements (the right side),
elaborated on the security objectives basis (the left side), are visualized by the ITSDF-tool.
The rectangles express the specification items (generics, components), while the lines express
the associations (pairs) concerning mapping (Definition 7.1):

SSecReqsAssocs = {FunSec4Ogr, AssSec4Ogr, REgr4Ogr}.
For example, thick lines going out of the highlighted OADT.RecSecEvents objective, point at
the requirements FAU_ARP.1 and FAU_GEN.1 (implying 2 FunSec4Ogr pairs) and
RENIT.AuditManage (implying 1 REgr4Ogr pair), all together covering this objective. For the
FW system no SARs were derived directly from security objectives (AssSec4Ogr = ∅).

Fig. E.4. Visualization of the security functional requirements in the software tool based on the
ITSDF framework

Rys. E.4. Wizualizacja funkcjonalnych wymagań bezpieczeństwa w narzędziu będącym imple-

Appendix E. Elements of the security target for a firewall system 245

mentacją systemu ITSDF

These SARs will be assigned on the declared EAL level basis which can be seen in the
Example 9. Please note that by highlighting the FDP_IFC.2 component the developer can see
which objective is covered by this component, here: OACC.LmtPortHost (another example of
the FunSec4Ogr pair). Please note that the FW example is simplified and for this reason no
dependent components were assigned there.

Example E.9: Security assurance requirements (SARs) for the FW system.

As it was mentioned earlier the selection of the assurance requirements for the TOE is very
easy with a predefined EAL package. For the considered firewall the EAL4 was chosen,
without augmentation or additions. It implies the set of SARs presented in the Table E.1.
Please see the comments concerning the ADV class decomposition near the Fig. 3.11. Some
problems may occur when the developer tries to add extra components or to replace some of
them by more rigorous ones (EAL4+). In this case an extra analysis is required [40].

Table E.1
Assurance components of EAL4 declared for the FW system [40]

Assurance component Description
ACM – Configuration management

ACM_AUT.1 Partial CM automation
ACM_CAP.4 Generation support and acceptance procedures
ACM_SCP.2 Problem tracking CM coverage

ADO – Delivery and operation
ADO_DEL.2 Detection of modification
ADO_IGS.1 Installation, generation, and start-up procedures

ADV – Development
ADV_FSP.2 Fully defined external interfaces
ADV_HLD.2 Security enforcing high-level design
ADV_IMP.1 Subset of the implementation of the TSF
ADV_LLD.1 Descriptive low-level design
ADV_RCR.1 Informal correspondence demonstration
ADV_SPM.1 Informal TOE security policy model

AGD – Guidance documents
AGD_ADM.1 Administrator guidance
AGD_USR.1 User guidance

ALC – Life cycle support
ALC_DVS.1 Identification of security measures
ALC_LCD.1 Developer-defined life-cycle model
ALC_TAT.1 Well defined development tools

ATE – Tests
ATE_COV.2 Analysis of coverage
ATE_DPT.1 Testing: high-level design
ATE_FUN.1 Functional testing
ATE_IND.2 Independent testing – sample

AVA –Vulnerability assessment
AVA_MSU.2 Validation of analysis

246 Appendix E. Elements of the security target for a firewall system

AVA_SOF.1 Strength of TOE security function evaluation
AVA_VLA.2 Independent vulnerability analysis

E.5. Security functions of the TOE summary specification (TSS)

The data model of the TOE summary specification was shown in the Fig. 8.2, while the
related specification workout was presented in the Fig. 8.3. To specify the security functions,
to say more precisely – the Trusted Security Functions (TSFs), the F-group of generics was
created (Definitions: 3.32 and 3.33). The functional security requirements are grouped (1 or
more principal SFRs with the supporting ones) and to each group the security function is
assigned representing a small set of closely related functionalities.

Each TSF can be considered as an elementary TOE module. These modules, created with
the use of the assumed technology, can be implemented with the different rigour applied,
depending on the EAL level. The level of rigour depends directly on the used ADV class
components. The ITSDF system supports the justification of the SOF claims implementation
within the security functions (for CC v. 2.x).

Example E.10: Security functions (TSFs) for the FW system expressed by generics.

The considered FW system includes 6 TSFs. They were defined around the main TOE
security objectives (in this example security functions are labelled):

TSF1: F.LmtIPAddr. Function responsible for IP address control between hostile and
protected networks, using: apparent source IP address or host name and destination IP
address or host name.

This function is related to the TOE security objective OACC.LmtIPAddr and the
following group of the SFRs:
FDP_ACF.1 (Security attribute based access control),
FDP_ACC.2 (Complete access control),
FPT_RVM.1 (Non-bypassability of the TSP).

TSF2: F.LmtPortHost. Function responsible for port number control between hostile
and protected networks, using apparent source port number and destination port number.

This function is related to the TOE security objective OACC.LmtPortHost and the
following group of the SFRs:
FDP_IFF.1 (Simple Security Attributes),
FDP_IFC.2 (Complete Information Flow Control)
FPT_RVM.1 (Non-bypassability of the TSP).

TSF3: F.OnProxyAuth. Function responsible for authentication of the end user [paramS
<= SAU.NetUser.D1] prior to establishing a through connection for specified services
[paramDA<= *].

This function is related to the TOE security objective OACC.OnProxyAuth and the
following group of the SFRs:
FIA_UAU.2 (User Authentication Before Any Action),
FIA_UID.2 (User Identification Before Any Action).
FPT_RVM.1 (Non-bypassability of the TSP),

Appendix E. Elements of the security target for a firewall system 247

FIA_AFL.1 (Authentication Failure Handling).
TSF4: F.AdminAuth. Function responsible for the firewall administrator access control,
ensuring that only authorized [paramS <= SAU.FullAccAdmin] are able to access the
firewall functionality. The detailed functionality: system login (identification,
authentication), administrator accountability, logout.

This function is related to the TOE security objective OACC.AdminAuth and the
following group of the SFRs:
FIA_UAU.2 (User Authentication Before Any Action),
FIA_UID.2 (User Identification Before Any Action).
FPT_RVM.1 (Non-bypassability of the TSP),
FIA_AFL.1 (Authentication Failure Handling).

TSF5: F.AuditFacilities. Function responsible for recording security related events and
their management for audit purposes. These events may concern: IP addresses limitation,
port number limitation, users’ authentication on proxy for the selected network services,
administrator’s login, operations, and logout.

This function is related to the TOE security objective OADT.RecSecEvents and the
following group of the SFRs:
FAU_GEN.1 (Audit Data Generation),
FAU_ARP.1 (Security Alarms).

TSF6: F.FirewallManagement. Function responsible for effective management of the
TOE and its security functions. The firewall administrator [paramS <=
SAU.FullAccAdmin], and only the firewall administrator, can perform the following
functions: display and modify the firewall access control parameters, initialize and
modify user authentication data, display and modify user attributes, select events to be
audited, identify the subset of auditable events deemed to indicate a possible or imminent
security violation, associate separate authentication mechanisms with specific
authentication events, verify the integrity of the firewall.

This function is related to the TOE security objectives OACC.SecManAdmin,
ODEX.SanitData and the following group of the SFRs:
FMT_SMR.1 (Security Management Roles),
FMT_MSA.1 (Management of security attributes),
FDP_RIP.1 (Subset residual information protection). �

Example E.11: Security functions (TSFs) for the FW system – the visualization of the
components and generics from the Example E.10 within the ITSDF-tool.

The Fig. E.5 shows how the security functions (the right side), elaborated on the basis of
security functional requirements (the left side), are visualized by the ITSDF-tool. The
visualization is related to the mathematical model as well.
The rectangles express the specification items (Fgr generics, functional components), while
the lines express the associations (pairs) concerning mapping (Definition 8.1):

STSS_SecAssocs = {Fgr4FunSec}.

248 Appendix E. Elements of the security target for a firewall system

Fig. E.5. Visualization of the security functions in the software tool based on the ITSDF framework
Rys. E.5. Wizualizacja funkcji zabezpieczających za pomocą narzędzia ITSDF-tool

For example, thick lines going out of the highlighted F.AdminAuth function, point at the
requirements FIA_UID.2 and FIA_UAU.2 (implying 2 Fgr4FunSec pairs), concerning the
identification and authentication of the firewall administrator.

The ITSDF-tool allows to highlight any number of relations at any time. The
visualization may concern all IT security development stages, e.g. from the given threat,
through covering its objectives, assigned requirements, to the security function which is a
countermeasure against this threat. The basic model for the visualization was shown in the
Fig. 10.13, though the applied generics and components are specific for particular designs.

The Section 10.4 includes some examples of the security model operations allowing to
investigate the model features. This is important for the model optimization during its
iterative and recursive elaboration process, leading to the complete ST rationale. The same
kind of operations can be done on the FW security model. Let us see some examples.

Example E.12: Operations on the firewall security target model supporting the security
target rationale process.

Appendix E. Elements of the security target for a firewall system 249

The first issue concerns the identification of threats countered by the security function, e.g.
F.AdminAuth, related to the administrator authentication activities.
The backwards navigation (horizontal) starts on AdminAuth:FItem, goes through the
supporting chain (i.e.: FItem –> FunComp –> OADTItem –> TgrItem) and ends at threats,
which are associationEnds:

AdminAuth:FItem
self.funComp.ogrGeneric.associationEnds
 ->select(c:TgrGeneric)

In the first step – all functional components covered by this FItem are identified, in the next
step – all security objectives concerning the administrator authentication related to these
components, and finally – all threat items covered by these security objectives, though in this
case there is only one: FwlAdminImpers:TDAItem.
The next issue concerns the answer to the following question: Is there any security function
derived from the OSPs? Please note the isEmpty() operation applied within the OCL
expression, returning the value TRUE, because no Pgr generics exist at the association ends of
any security objectives in the FW project.

AuditFacilities:FItem
isEmpty(self.funComp.ogrGeneric.associationEnds
 ->select(c:PgrGeneric))

E.6. Remarks on the next step – the TOE development

The main result of the IT security development process is the elaboration of the ST (PP)
specification and the related documents implied by the assurance requirements statements.
Please note that the defined security functions express the security functionality of the IT
product or system. Generally, they can be implemented by applying different rigour
expressed by the EAL level. As it was mentioned earlier, the EAL4 level is usually selected
for the firewall systems. Very often the given EAL set is augmented by adding any flaw
remediation family (ADV_FLR) component, responsible for tracking and correcting flaws
made by the developer. Please note the assurance components listed in the Table E.1. To
demonstrate that they are satisfied, the developer should provide the right evidence material
(see Chapter 11).

The defined security functions represent a particular modules of the FW system
(separation of concerns), shown in the Fig. E.6. Please note the information flow passing
through the firewall administrated by an authorized person.

250 Appendix E. Elements of the security target for a firewall system

F.LmtIPAddr

F.LmtPortHost

F.OnProxyAuth F.
A

ud
itF

ac
ilit

ie
s

F.FirewallManagement

F.AdminAuth

Info flow
between
networks

Protected
private
network

Hostile
network

Administrator

Fig. E.6. Block scheme of the FW system
Rys. E.6. Poglądowy schemat systemu zaporowego FW

The developer ought to satisfy all assurance components by properly arranging and

documenting the TOE configuration management, delivery and operation, development,
guidance documents, life cycle support, tests and vulnerability assessment. All these issues
require a significant effort of the developer. The Example E.13 explains only one of the
above issues, i.e. how the considered FW system should be developed.

Example E.13: The FW system (TOE) development requirements.

These requirements are specified by the D-, and C-elements of the chosen components of the
ADV class, shown in the Table E.2 (refinement of the Table E.1 with respect to the ADV
class components).

Table E.2
Requirements dealing with the FW system development [40]

Element (D or C) Description
ADV_FSP.2 – Fully defined external interfaces

ADV_FSP.2.1D The developer shall provide a functional specification.
ADV_FSP.2.1C The functional specification shall describe the TSF and its external

interfaces using an informal style.
ADV_FSP.2.2C The functional specification shall be internally consistent.
ADV_FSP.2.3C The functional specification shall describe the purpose and method

to use all external TSF interfaces, providing complete details of all
effects, exceptions and error messages.

ADV_FSP.2.4C The functional specification shall completely represent the TSF.

Appendix E. Elements of the security target for a firewall system 251

ADV_FSP.2.5C The functional specification shall include a rationale that the TSF is
completely represented.

ADV_HLD.2 – Security enforcing high-level design
ADV_HLD.2.1D The developer shall provide the high-level design of the TSF.
ADV_HLD.2.1C The presentation of the high-level design shall be informal.
ADV_HLD.2.2C The high-level design shall be internally consistent.
ADV_HLD.2.3C The high-level design shall describe the structure of the TSF in

terms of subsystems.
ADV_HLD.2.4C The high-level design shall describe the security functionality

provided by each subsystem of the TSF.
ADV_HLD.2.5C The high-level design shall identify any underlying hardware,

firmware, and/or software required by the TSF with the presentation
of functions provided by the supporting protection mechanisms
implemented in that hardware, firmware, or software.

ADV_HLD.2.6C The high-level design shall identify all interfaces to the subsystems
of the TSF.

ADV_HLD.2.7C The high-level design shall identify which interfaces to the
subsystems of the TSF are externally visible.

ADV_HLD.2.8C The high-level design shall describe the purpose and method to use
all interfaces to the subsystems of the TSF, providing details of
effects, exceptions and error messages, as appropriate.

ADV_HLD.2.9C The high-level design shall describe the separation of the TOE into
TSP-enforcing and other subsystems.

ADV_IMP.1 – Subset of the implementation of the TSF
ADV_IMP.1.1D The developer shall provide the implementation representation for a

selected subset of the TSF.
ADV_IMP.1.1C The implementation representation shall unambiguously define the

TSF to a level of detail such that the TSF can be generated without
further design decisions.

ADV_IMP.1.2C The implementation representation shall be internally consistent.
ADV_LLD.1 – Descriptive low-level design

ADV_LLD.1.1D The developer shall provide the low-level design of the TSF.
ADV_LLD.1.1C The presentation of the low-level design shall be informal.
ADV_LLD.1.2C The low-level design shall be internally consistent.
ADV_LLD.1.3C The low-level design shall describe the TSF in terms of modules.
ADV_LLD.1.4C The low-level design shall describe the purpose of each module.
ADV_LLD.1.5C The low-level design shall define the interrelationships between the

modules in terms of provided security functionality and
dependencies on other modules.

ADV_LLD.1.6C The low-level design shall describe how each TSP-enforcing
function is provided.

ADV_LLD.1.7C The low-level design shall identify all interfaces to the modules of
the TSF.

ADV_LLD.1.8C The low-level design shall identify which interfaces to the modules
of the TSF are externally visible.

ADV_LLD.1.9C The low-level design shall describe the purpose and method to use

252 Appendix E. Elements of the security target for a firewall system

all interfaces to the modules of the TSF, providing details of effects,
exceptions and error messages, as appropriate.

ADV_LLD.1.10C The low-level design shall describe the separation of the TOE into
TSP-enforcing and other modules.

ADV_RCR.1 – Informal correspondence demonstration
ADV_RCR.1.1D The developer shall provide an analysis of correspondence between

all adjacent pairs of TSF representations that are provided.
ADV_RCR.1.1C For each adjacent pair of provided TSF representations, the analysis

shall demonstrate that all relevant security functionalities of the
more abstract TSF representation are correctly and completely
refined in the less abstract TSF representation.

ADV_SPM.1 – Informal TOE security policy model
ADV_SPM.1.1D The developer shall provide a TSP model.
ADV_SPM.1.2D The developer shall demonstrate correspondence between the

functional specification and the TSP model.
ADV_SPM.1.1C The TSP model shall be informal.
ADV_SPM.1.2C The TSP model shall describe the rules and characteristics of all

policies of the TSP that can be modelled.
ADV_SPM.1.3C The TSP model shall include a rationale that demonstrates that it is

consistent and complete with respect to all policies of the TSP that
can be modelled.

ADV_SPM.1.4C The demonstration of correspondence between the TSP model and
the functional specification shall show that all security functions in
the functional specification are consistent and complete with respect
to the TSP model.

REFERENCES

1. ACSA: http://www.acsac.org/waepssd.
2. Apted A.J., Carthigaser M., Lowe Ch.: Common Problems with the Common Criteria,

Proceedings of the 3rd International Common Criteria Conference, May 2002.
3. AUTOFOCUS: http://autofocus.informatik.tu-muenchen.de.
4. AOSD: http://www.aosd.net/.
5. Białas A.: Wprowadzenie do problematyki projektowania i oceny zabezpieczeń teleinfor-

matycznych, Studia Informatica vol. 22, Number 1(43), Silesian University of Technology
Press, Gliwice 2001, pp. 263÷287 („Introduction to IT security development and
evaluation”, in Polish).

6. Białas A.: Modelowanie i ocena zabezpieczeń teleinformatycznych, Studia Informatica
vol. 23, Number 2B(49), Silesian University of Technology Press, Gliwice 2002,
pp. 219÷232 („Security modelling and evaluation”, in Polish).

7. Białas A.: Sposób formalnego wyrażania własności bezpieczeństwa teleinformatycznego,
Studia Informatica vol. 24, Number 2B(54), Silesian University of Technology Press,
Gliwice 2003, pp. 265÷278 („Formal description of the security features”, in Polish).

8. Białas A.: Hierarchy of the Assets Model for the Information Technology Security
Management, Archiwum Informatyki Teoretycznej i Stosowanej, Polska Akademia Nauk,
vol. 15 (2003), z. 2, 2003, pp. 109÷120.

9. Białas A.: The automated support for the information and communications technology
security management, Elektronnoje Modelirovanije, vol. 25, No. 4, Ukrainian National
Academy of Sciences, 2003, pp. 39÷50.

10. Białas A.: Modelowanie zasobów teleinformatycznych oraz funkcji zabezpieczających
według Wspólnych Kryteriów, Rozdział w: Grzywak A., Kwiecień A. (redakcja): Współ-
czesne problemy sieci komputerowych – zastosowanie i bezpieczeństwo, Wydawnictwa
Naukowo-Techniczne, 2004, pp. 351÷368. (”ICT Assets and security functions modelling
– Common Criteria approach”, in Polish).

254 References

11. Białas A.: The Assets Inventory for the Information and Communication Technologies
Security Management, Archiwum Informatyki Teoretycznej i Stosowanej, Polska Akade-
mia Nauk, vol.16 (2004), z. 2, 2004, pp. 93÷108.

12. Białas A.: Bezpieczeństwo teleinformatyki – wzorcowa praktyka czy miara gwaranto-
wana, Rozdział w: Marecki F., Grabara J.K., Nowak J.S. (red.): Systemy informatyczne –
bankowość i finanse, Wydawnictwa Naukowo-Techniczne, 2004, pp. 323÷364, („Infor-
mation security management and IT security evaluation”, in Polish).

13. Białas A.: IT security development – computer-aided tool supporting design and eval-
uation, In: Kowalik J, Górski J., Sachenko A. (editors): Cyberspace Security and Defense:
Research Issues, NATO reference: ARW 980492, NATO Science Series II, vol. 196,
Springer, Dordrecht, 2005, pp. 3÷23.

14. Białas A.: Identifying the features of the IT security-related products for the IT
development process according to Common Criteria, Archiwum Informatyki Teoretycznej
i Stosowanej, Polska Akademia Nauk, vol. 17 (2005), z. 1, 2005, pp. 3÷18.

15. Białas A.: IT security modelling, In: Arabnia, H. R., Editor; Liwen He & Youngsong Mun,
Associate Co Editors, Proceedings of the 2005 International Conference on Security and
Management (The World Congress In Applied Computing – SAM'05: June, Las Vegas,
USA), ISBN# 1 932415 82 3, Publisher: CSREA Press, 2005, pp. 502÷505.

16. Białas.: Critical information infrastructure protection – research issues and activities, In:
Stepnowski A (Editor), Ruciński A.& Kosmowski K. (Co-Editors), Proceedings of the
IEEE International Conference on Technologies for Homeland Security and Safety –
TEHOSS’2005, Gdansk, September 28-30, 2005, ISBN 83-917681-9-8, pp. 369÷374.

17. Białas A.: The ISMS Business Environment Elaboration Using a UML Approach, In:
Zieliński K., Szmuc T. (editors): Software Engineering: Evolution and Emerging
Technologies, IOS Press, Amsterdam, 2005, ISBN: 1 58603-559-2, pp. 99÷110.

18. Białas A.: A UML approach in the ISMS implementation, In: Dowland P., Furnell S.,
Thuraisingham B., Wang X.S. (eds): Security management, integrity, and internal control
in information systems, IFIP TC-11 WG 11.1 & WG 11.5 Joint Working Conf., Springer
Science + Business Media, New York 2005, ISBN-10:0-387-29826-6, pp. 285÷297.

19. Białas A.: Wspólne kryteria do projektowania i oceny zabezpieczeń, Szkolenie dla
Centrum Analiz Kryptograficznych i Bezpieczeństwa Teleinformatycznego MON, War-
szawa, 29-30 listopada 2005 (”Common Criteria for IT security development and
evaluation – Training handbook for IT security labs”, in Polish).

20. Białas A.: Information security systems vs. critical information infrastructure protection
systems similarities and differences. In: Zamojski W., Mazurkiewicz J., Sugier J.,
Walkowiak T.: Proceedings of the International Conference on Dependability of Computer

References 255

Systems DepCoS-RELCOMEX, May 2006, IEEE Computer Society Los Alamitos,
Washington, Tokyo, 2006, ISBN 0-7695-2565-2, pp. 60÷67.

21. Białas A.: Using ISMS concept for critical information infrastructure protection. In:
Balducelli A., Bologna S. (eds), Proceedings of the International Workshop on “Complex
Network and Infrastructure Protection – CNIP’06”, Italian National Agency for New
Technologies, Energy and the Environment (ENEA), Rome, March 28-29, 2006, pp.
415÷426, http://ciip.casaccia.enea.it/cnip06

22. Białas A.: A semiformal approach to the security problem of the target of evaluation
(TOE) modeling, In: Arabnia, H. R., Aissi S. (Editors), Vert G. L., Williams P.A.H.
(Associate Co Editors), Proceedings of the 2006 International Conference on Security and
Management (The World Congress In Applied Computing – SAM'06: June, Las Vegas,
USA), ISBN# 1-60132-001-9, Publisher: CSREA Press, 2006, pp. 19÷25.

23. Białas A.: Bezpieczeństwo informacji i usług w nowoczesnej instytucji i firmie, Wydaw-
nictwa Naukowo-Techniczne, Warszawa 2006, 2007, ISBN 83-204-3155-7 („Information
security within modern organizations and companies”, in Polish).

24. Białas A.: Półformalna reprezentacja procesu projektowania zabezpieczeń tele-infor-
matycznych, Rozdział w: Pochopień B., Kwiecień A., Grzywak A., Klamka J. (redakcja):
Nowe technologie sieci komputerowych, Wydawnictwa Komunikacji i Łączności, 2006,
pp. 329÷336 („Semiformal approach to the IT security development process”, in Polish).

25. Białas A.: Development of an Integrated, Risk-based Platform for Information and
E-services Security, In: Górski J.: Computer Safety, Reliability, and Security, 25th
International Conference SAFECOMP2006, Lecture Notes in Computer Science
(LNCS4166), Springer Verlag Berlin Heidelberg New York 2006, pp. 316÷329.

26. Białas A.: Specification of security environment of IT security-related products according
to Common Criteria, Theoretical and Applied Informatics, ISSN 1896-5334, vol. 18
(2006) z. 2. pp. 141÷157.

27. Białas A.: Konstruowanie zabezpieczeń teleinformatycznych zgodnie ze standardem
ISO/IEC 15408 – Common Criteria, „II Functional Safety Management Conference”,
Jurata, October 2007. („CC-compliant IT security development process”, in Polish).

28. Bialas A.: Semiformal framework for ICT security development, The 8th International
Common Criteria Conference, Rome, 25-27 September 2007.

29. Białas A.: Modeling the Security Objectives According to the Common Criteria Methodo-
logy, In: Aissi S., Arabnia H. R. (Editors), Daimi K., Gligoroski D., Markowsky G., Solo
A.M.G. (Associate Co Editors), Proc. of the 2007 International Conference on Security
and Management (The World Congress In Applied Computing – SAM'07: June, Las
Vegas, USA), ISBN# 1-60132-048-5, 2007, Publisher: CSREA Press, pp. 223÷229.

256 References

30. Białas A.: Semiformal Approach to the IT Security Development In: Zamojski W.,
Mazurkiewicz J., Sugier J., Walkowiak T.: Proceedings of the International Conference on
Dependability of Computer Systems DepCoS-RELCOMEX 2007, IEEE Computer
Society, Los Alamitos, Washington, Tokyo, ISBN 0-7695-2850-3, pp. 3÷11.

31. Białas A., Lisek K.: Integrated, Business-Oriented, Two-Stage Risk Analysis, Journal of
Information Assurance and Security (JIAS), vol. 2, issue 3, September 2007, www.dyna-
micpublishers.com/JIAS

32. Białas A.: Szkieletowy system konstruowania zabezpieczeń teleinformatycznych – prze-
gląd i wyniki prac, Rozdział w: Kwiecień A., Ober J., Pochopień B., Gaj P. (redakcja):
Sieci Komputerowe, Tom2 Aplikacje i Zastosowania, Wydawnictwa Komunikacji i Łącz-
ności, 2007, pp. 311÷320 (IT security development framework – a project overview and
results, in Polish).

33. Białas A.: Advanced IT Security Development Process – through Enhancement of IT
Security Development Process to Better Assurance, Chapter 13 in monograph: Kosmowski
K.T. (Ed): Functional Safety Management In Critical Systems, Politechnika Gdańska,
Fundacja Rozwoju Uniwersytetu Gdańskiego, Gdańsk 2007 (ISBN 978-83-7531-006-1).

34. B-Method/Tools: http://www.b-core.com
35. den Braber F, Lund S., Stølen K.: Using the CORAS Threat Modelling Language to

Document Threat Scenarios for several Microsoft relevant Technologies, Report STF90
A04057, Sintef, 2004.

36. Booch G., Rumbaugh J., Jacobson I.: UML- Przewodnik użytkownika, Wyd. II, Wydaw-
nictwa Naukowo-Techniczne, Warszawa 2002, (“The Unified Modeling Language – User
Guide”).

37. Cakir M.: Evaluation of organizational information systems according to CC and ISO
17799, 5th International CC Conference, Berlin, September 2004.

38. ISO/IEC 15408-1, Information technology – Security techniques – Evaluation criteria for
IT security – Introduction and general model (Common Criteria Part 1).

39. ISO/IEC 15408-2, Information technology – Security techniques – Evaluation criteria for
IT security – Security functional requirements (Common Criteria Part 2).

40. ISO/IEC 15408-3, Information technology – Security techniques – Evaluation criteria for
IT security – Security assurance requirements (Common Criteria Part 3).

41. Common Criteria Evaluation and Validation Scheme for Information Technology Security,
Organization Management and Concept of Operation, v.2.0., NIST – NSA.

42. Common Criteria portal: http://www.commoncriteriaportal.org/
43. CCToolbox: http://cc-control.sparta.com/

References 257

44. Cheesman J., Daniels J.: Komponenty w UML, Wydawnictwa Naukowo-Techniczne,
Warszawa 2004, (“UML Components – A Simple Process for Specifying Component-
Based Software”).

45. Common Evaluation Methodology for Information Technology Security, Part 1: Intro-
duction and General Model.

46. Common Evaluation Methodology for Information Technology Security, Part 2: Evalu-
ation Methodology.

47. Chapman R.: SPARK – a state-of-the-practice approach to the Common Criteria imple-
mentation requirements, 2nd International CC Conference, Brighton, July 2001.

48. CI2RCO: www.ci2rco.org
49. Cockburn A.: Jak pisać efektywne przypadki użycia?, Wydawnictwa Naukowo-Technicz-

ne, Warszawa 2004, (“Writing Effective Use Cases”).
50. Ekelhart A., Fenz, S., Goluch, G., and Weippl, E.: Ontological Mapping of Common

Criteria’s Security Assurance Requirements, 2007 IFIP, Volume 232, New Approaches for
Security, Privacy and Trust in Complex Environments, eds. Venter, H-, Eloff, M-,
Labuschagne, L., Eloff, J., von Solms, R., (Boston: Springer), pp. 85÷95.

51. Galitzer S.: Introducing Engineered Composition (EC): An Approach for Extending the
Common Criteria to Better Support Composing Systems, Published in the Workshop for
Application of Engineering Principles to System Security Design (WAEPSSD)
Proceedings, September 2003.

52. Górski J.: Trust case – A case for trustworthiness of IT infrastructures, In: Kowalik J,
Górski J., Sachenko A. (editors): Cyberspace Security and Defense: Research Issues,
NATO reference: ARW 980492, NATO Science Series II, vol. 196, Springer, Dordrecht,
2005, pp. 125÷141.

53. Hays D.: Security Engineering: Science or Art?, Published in the Workshop for
Application of Engineering Principles to System Security Design (WAEPSSD) Proceed-
ings, September 2003.

54. Hunstad A., Hallberg J.: Design for securability – Applying engineering principles to the
design of security architecture, Published in the Workshop for Application of Engineering
Principles to System Security Design (WAEPSSD) Proceedings, September 2003.

55. Hall-May M., Kelly T.: Using Agent-Based Modelling Approaches to Support the Devel-
opment of Safety Policy for System of Systems, In: Górski J.: Computer Safety,
Reliability, and Security, 25th International Conference SAFECOMP2006, Springer
Lecture Notes in Computer Science (LNCS4166), Springer Verlag Berlin Heidelberg New
York 2006, ISBN 3-540-45762-3, pp. 330÷343.

56. Hwa-Jong S.: Development and utilization of automatic generation tool for evaluation
report, 5th International CC Conference, Berlin, September 2004.

258 References

57. ICCC: http://www.expotrack.com/iccc/english/proceedings.asp
58. ISO 27001:2005 Information security management systems – Specification with guidance

for use.
59. ISO/IEC TR 15443, Information technology – Security techniques – A framework for IT

security assurance.
60. ISO/IEC TR 15446:2004, Information technology – Security techniques – Guide for the

production of protection profiles and security targets.
61. Information Technology Security Evaluation Criteria (ITSEC), EGKS-EWG-EAG,

Bruessel, Juni 1991.
62. Jürjens J., Houmb S.H.: Risk-driven development of security-critical systems using

UMLsec, LADC 2003, São Paulo, Oct. 21-24, 2003.
63. Jung-Shian Li: Development of CC in Taiwan, 5th International CC Conference, Berlin,

September 2004.
64. Jürjens J.: Developing Secure Systems with UMLsec – From Business Processes to

Implementation, VIS 2001, Kiel (Germany), 12-14 Sept. 2001, Vieweg-Verlag, 2001.
65. Jürjens J., Secure Systems Development with UML - Applications to Telemedicine,

CORAS workshop, Int. Conf. on Telemedicine (ICT2002), Regensburg, September, 2002.
66. Jürjens J.: UMLsec: Extending UML for Secure Systems Development, UML 2002,

Dresden, LNCS, Springer-Verlag, 2002.
67. Jürjens J.: A UML statecharts semantics with message-passing, Symposium of Applied

Computing (SAC 2002), Madrid, March 10-14, ACM, 2002.
68. Jürjens J.: Using UMLsec and Goal-Trees for Secure Systems Development, Symposium

of Applied Computing (SAC 2002), Madrid, March 10-14, ACM, 2002.
69. Jürjens J.: Formal Semantics for Interacting UML subsystems, IFIP TC6/WG6.1 Fifth

International Conference on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2002), Twente, March 20-22, Kluwer, 2002.

70. Jürjens J., Model-based Security with UMLsec, UML Forum, Tokyo, Apr. 17, 2003.
71. Jürjens J.: Formal Development of Critical Systems with UML, ETAPS 03, European joint

conferences on Theory And Practice of Software 2003, Warschau, April 2003.
72. Jürjens J.: Secure Systems Development with UML, Springer-Verlag, 2005.
73. Krueger B.: Application of the Common Criteria to Information Security Management

Systems – A study, 5th International CC Conference, Berlin, September 2004.
74. Lavatelli C.: EDEN: A formal framework for high level security CC evaluations,

e-Smart’ 2004, Sophia Antipolis 2004.

References 259

75. Ling R., Latapie H., Tran V.: Expressing Common Criteria Security Requirements in
Domain Models in Model-based Architecture, 6th Annual Workshop on Distributed
Objects and Component Security 2002.

76. Leffingwell D., Widrig D.: Zarządzanie wymaganiami, Wydawnictwa Naukowo-
Techniczne, Warszawa 2003, (Managing Software Requirements – A Unified Approach).

77. Melton R.: Integration of risk management with the Common Criteria (ISO/IEC
15408:1999), 5th International CC Conference, Berlin, September 2004.

78. Motre S., Teri C.: Using Formal and Semiformal Methods for a Common Criteria
Evaluation, In: Marting L (Ed): EuroSmart Security Conference, Marseille, slide version,
pp. 337÷349, 2000.

79. Murray W.H.: Position paper for the Workshop for Application of Engineering Principles
to System Security Design, Published in the Workshop for Application of Engineering
Principles to System Security Design (WAEPSSD) Proc., September 2003.

80. Menezes A., van Oorschot P., Vanstone S.: Handbook of Applied Cryptography, CRC
Press, 1996, ver. downloaded in 2002 from: http://www.cacr.math.uwaterloo.ca/hac

81. Naaman N.: A unified framework for information assurance, 5th International CC
Conference, Berlin, September 2004.

82. Nash M.: Simpler security targets, 5th International CC Conference, Berlin, Sept. 2004.
83. UML 2.0 OCL Specification, OMG, 2003.
84. Oltra M.A.: Security Framework (draft 0.1.2), ITEA – Osmose, 2006 (WP2-031023-1),

available at: http://www.itea-osmose.org.
85. Object Modelling Group portal: http://www.omg.org.
86. Pattinson F.: BS 7799-2 and Common Criteria – Supporting the business of software

development, 5th International CC Conference, Berlin, September 2004.
87. Security Target BSI-DSZ-CC-0153: First Evaluation of Philips P8WE5032 Secure 8-bit

Smart Card Controller, Philips Semiconductors Hamburg, September 1999.
88. Certification Report BSI-DSZ-CC-0153-1999 for Philips Smart Card Controller

P8WE5032V0B from Philips Semiconductors Hamburg, BSI, November 1999.
89. Short form specification – Philips P8WE5032 Secure 8-bit Smart Card Controller, Philips

Semiconductors, rev.1.0, July 2000.
90. POZIT: Białas A. Praca zbiorowa pod red.: Metodyka prowadzenia badań i oceny środ-

ków teleinformatycznych, Projekt celowy KBN pt. System wspomagania projektowania
i oceny zabezpieczeń teleinformatycznych, Instytut Systemów Sterowania, 2004 (target
project reports: „IT security development and evaluation” – in Polish).

91. UML 2.0 OCL Specification, Appendix A: Semantics, 2003, available at: www.omg.org,
developed on the basis of: Richters M.: A precise approach to validating UML models and

260 References

OCL constraints. Ph.D thesis, Universitaet Bremen, Logos Verlag, Berlin, BISS
Monographs, No.14, 2002.

92. Robinson K.: An Introduction to the B Method – An Overview, School of Computer
Science & Engineering, 2003.

93. SecCert: http://www.cbst.iss.pl .
94. SecCert Users Guide, Instytut Systemów Sterowania, 2006.
95. SecOffice: http://www.cbst.iss.pl .
96. SECOQC: http://www.secoqc.net/.
97. Spafford E.H.: Exploring Common Criteria: Can it Ensure that the Federal Government

Gets Needed Security in Software, Published in the Workshop for Application of
Engineering Principles to System Security Design (WAEPSSD) Proceedings, Sept. 2003.

98. SPARK: http://praxis-cs.co.uk/sparkada/publications.asp.
99. Stoneburner G.: Underlying Technical Models for Information Technology Security, NIST

Special Publication, Gaithersburgh 2001.
100. TL FIT: http://trusted-logic.fr.
101. TL SET: http://trusted-logic.fr.
102. UML: http://www.omg.org/uml/.
103. Warmer J., Kleppe A.: OCL – Precyzyjne modelowanie w UML, Wydawnictwa Nauko-

wo-Techniczne, Warszawa 2003, (The Object Constraint Language – Precise Modeling
with UML).

104. Win De B., Piessens F., Joosen W.: On the importance of the separation-of-concerns
principle in secure software engineering, Published in the Workshop for Application of
Engineering Principles to System Security Design (WAEPSSD) Proc., September 2003.

105. Yavagal D.S., Lee S.W., Ahn G-J., Gandhi R.A.: Common Criteria Requirements
Modeling and its Uses for Quality of Information Assurance (QoIA), In: Proc. of the 43rd
Annual ACM Southeast Conference (ACMSE ‘05), Vol. 2, pp. 130÷135, March 18-20,
Kennesaw State Univ. Kennesaw, Georgia. 2005.

106. Białas A.: Ontology-based Approach to the Common Criteria Compliant IT Security
Development, In: Proceedings of the 2008 International Conference on Security and
Management (The World Congress In Applied Computing – SAM'08), July 2008, Las
Vegas, USA (accepted).

SEMIFORMAL COMMON CRITERIA COMPLIANT
IT SECURITY DEVELOPMENT FRAMEWORK

Keywords: assurance, Common Criteria, computer-aided, design, development,

evaluation, formal method, framework, IT security, UML, OCL, modelling, security
engineering, semiformal method

Abstract

The monograph presents an IT Security Development Framework (ITSDF) based on the
Common Criteria (ISO/IEC 15408) family of standards for the product designers and
evaluators. The system, compliant with ISO/IEC TR 15446, is based on the enhanced concept
of generics, advanced functionality, recent information security management standards, and
risk analysis.

A computer-aided tool was developed with the use of the UML-based (Unified Modelling
Language) framework presented there. Due to the semiformal character of the Common
Criteria and the UML methodologies, the framework has a semiformal character too. The
formal, OCL-based (Object Constraint Language) method elements were introduced for the
selected areas of the framework, where they can bring real advantages, especially to improve
the specification means.

The introductory part of the monograph presents the key term, i.e. the assurance, and
general Common Criteria approach to provide the assurance of the IT product or systems.
Rigorous IT product or system development to reach assurance is very complicated due to
many details, feedbacks, auxiliary analysis and step-by-step rationale. The development is
laborious and requires expert knowledge. These difficulties are seen as a barrier to the
dissemination of IT solutions of the higher assurance. The motivation of the work presented
in the monograph is how to improve the IT security development process, i.e. how to perform
it more precisely, formally, consistently, and more effectively, i.e. more quickly and cheaply.
The proposed solution to the problem is based on the UML/OCL approach, hence selected
issues dealing with the application of this methodology in the information security domain
are provided. At the end of the introductory chapter the general concept of the UML/OCL

262 Abstract

framework for IT security development is summarized together with the means and ways to
develop this framework.

The second chapter presents general background of the elaborated IT Security
Development Framework and its software implementation. At the beginning, the current state
of technology was reviewed, with focus on the gaps identification. The review includes the
most relevant publications on: IT security development process, general modelling aspects,
UML and OCL implementation, semiformal and security engineering methods, particularly
concerning Common Criteria, and computer-aided tools. The relationships between IT
product or system development process and their IT security development process is
discussed. Additionally, this chapter gives a summary of the Common Criteria development
process, identifying points whose support for the developers is especially required (i.e.
developers’ needs) and, generally, presents the concept of the developed framework (main
structural model and the state machine representing its elaboration). Short discussion of the
available specification means is added, that is the motivation to improve them. The concept
presented in the monograph, dealing with the elaboration of the IT Security Development
Framework, encompasses two basic issues:
• creating the means to build the security specifications, i.e. “a security property language”,
• workout of the semiformal (UML/OCL-based) model of this development process.

The first issue is discussed in the chapter 3, the second in chapters 4-10, each related to
one section of the CC-defined Security Target (ST) presenting the IT product/system security
requirements.

Common Criteria include semiformal specification means, i.e. components only to
specify the functional and assurance security requirements. Due to the absence of adequate
specification means for other IT security development stages (the TOE security environment,
TOE security objectives, security requirements for the environment, security functions), the
monograph provides the set of enhanced generics which, together with the above mentioned
components, constitutes a coherent set of the means, i.e. a language to carry out security
specifications (ST). The common, UML/OCL-based model for these means is assumed. This
creates quite new possibilities for developers, making the development process easier and
more precise, e.g. operation on specification elements, decision support, coverage analysis,
risk analysis, better compliance with the information security management, etc.

Chapters 4 to 10 encompass the whole IT security development process compliant with
the Security Target structure. Instead of commonly used informal textual descriptors, the
UML models, supported by the OCL, were applied to specify this framework. The initial
stage of the development methodology focuses on capturing the basic features of an IT
product or system as “input data”. The ST introduction is elaborated, presenting general

Abstract 263

features of the IT product or system, called there Target of Evaluation (TOE). On this basis
the TOE security environment, presenting threats, security policy rules and assumptions, is
worked out. The security objectives covering the identified security problems are elaborated
with the use of the TOE security environment specification. The security objectives are used
to specify the security requirements – functional and assurance. The functional security
requirements allow to define the security functions which are implemented at the EAL-
described (EAL1-EAL7) rigour level. A very important issue is the rationale processes which
is obligatory between development stages.

The monograph concerns development, hence the TOE evaluation against the declared
EAL is presented there in a concise way in the chapter 11. The evaluation model compliant
with the Common Criteria methodology is presented.

Although the monograph is focused on the theoretical aspects of the ITSDF framework,
please note that this framework was implemented as the computer-aided tool both for the
development and evaluation. The author, referring for details to technical documentation and
the demo version of the software tool, shows basic implemented issues, like the design
library containing hundreds of specification means, wizard providing step-by-step assistance
to developers, design support by the predefined supporting chains, visualization facilities,
automatically generated ST, design evaluation, etc.

The final chapter, 13, summarizes the objectives, range and results of the whole work.
The five appendices of the monograph include: the basic Common Criteria terminology,
selected OCL syntax and semantics used for the UML model representation in the
monograph, selected cryptographic terms concerning the use of the UMLsec approach, basic
principles of naming the terms, and an example illustrating the developed methodology with
the use of a firewall design.

PÓŁFORMALNY SYSTEM SZKIELETOWY DO KONSTRUOWANIA
ZABEZPIECZEŃ INFORMATYCZNYCH ZGODNY Z METODYKĄ
WSPÓLNE KRYTERIA

Słowa kluczowe: uzasadnione zaufanie, Common Criteria, Wspólne kryteria,

wspomaganie komputerowe, konstruowanie, prace rozwojowe, ocena zabezpieczeń,
metody formalne, zrąb, system szkieletowy, bezpieczeństwo informacji, UML, OCL,
modelowanie, inżynieria zabezpieczeń, metody półformalne

Streszczenie

Monografia dotyczy zagadnienia konstruowania zabezpieczeń wbudowywanych w pro-
dukty lub systemy informatyczne (IT) z zamiarem poddania niezależnej ocenie tych zabez-
pieczeń, zgodnie ze standardem ISO/IEC 15408 „Wspólne kryteria oceny zabezpieczeń tele-
informatycznych” (Common Criteria). Dzięki specjalnej, rygorystycznej metodzie konstruo-
wania, a potem niezależnej ocenie zabezpieczeń, poświadczanej certyfikatem, można dysku-
tować o uzasadnionym zaufaniu do zabezpieczeń (assurance). Jest ono mierzalne z wyko-
rzystaniem tak zwanych poziomów uzasadnionego zaufania (Evaluation Assurance Levels),
w zakresie od EAL1 do EAL7. Przypomnijmy, że pierwsza cześć wspomnianej normy
prezentuje informacje ogólne – „filozofię” kreowania uzasadnionego zaufania do zabezpie-
czeń, druga zawiera katalog komponentów (elementarnych wymagań) funkcjonalnych, służą-
cych do modelowania zachowania zabezpieczeń, trzecia zaś – katalog komponentów opisują-
cych uzasadnione zaufanie. Przedstawiana problematyka dotyczy bardzo szerokiego
spektrum produktów informatycznych (sprzętu, oprogramowania, w tym układowego) oraz
zbudowanych z nich systemów – określanych wspólnym mianem przedmiotów oceny (TOE –
Target of Evaluation).

Na tym tle niniejsza monografia prezentuje półformalny system szkieletowy do konstru-
owania zabezpieczeń informatycznych według ISO/IEC 15408, przeznaczony dla konstrukto-
rów informatyków i elektroników oraz specjalistów oceniających zabezpieczenia. System
szkieletowy zawiera model procesów konstruowania (struktury danych i działania) oraz mo-
dele środków do specyfikowania tworzonych projektów. Oferuje rozbudowane możliwości

Streszczenie 265

dla konstruktorów w zakresie wspomagania projektowania, w tym prowadzenia analizy roz-
wiązań, wspomagania decyzji oraz analizy ryzyka. Zachowana została zgodność ze standar-
dami zarządzania bezpieczeństwem informacji w zakresie definiowania reguł polityki bezpie-
czeństwa. System opiera się również na wprowadzonej koncepcji tak zwanych zaawansowa-
nych (rozszerzonych) generyków, wykorzystywanych obok komponentów funkcjonalnych
i uzasadniających zaufanie do specyfikowania projektów zabezpieczeń.

System szkieletowy opracowano, stosując szeroko język UML (Unified Modelling LAN-
guage), co w rezultacie pozwoliło dokonać implementacji tych modeli i opracować kompute-
rowe narzędzie wspomagające pracę konstruktorów. Zarówno Wspólne kryteria, jak i UML
zaliczane są do metod półformalnych, stąd opracowany system szkieletowy posiada również
taki charakter, aczkolwiek w sposób rozważny i z uwzględnieniem potencjalnych korzyści
pewne jego elementy przedstawiono w sposób formalny, opierając się głównie na języku
OCL (Object Constraint Language) oraz prostych operacjach na zbiorach.

Rozdział 1., wprowadzający do monografii, wyjaśnia kluczowe pojęcie, jakim jest uza-
sadnione zaufanie oraz przedstawia, w świetle standardu Wspólne kryteria, w jaki sposób
uzyskuje się uzasadnione zaufanie dla produktu lub systemu informatycznego podczas jego
konstruowania, oceny i eksploatacji. Jest to trudne zadanie ze względu na konieczność
zapanowania nad wieloma detalami, wzajemnymi zależnościami i sprzężeniami zwrotnymi
w toku rygorystycznego procesu konstruowania. Pamiętajmy bowiem, że im większy stosuje
się rygoryzm konstruowania, dokumentowania, testowania, analiz zachowania itp., tym wyż-
sze może być uzasadnione zaufanie. Opracowywanie tego typu produktów lub systemów jest
pracochłonne i wymaga specjalistycznej wiedzy, a trudności z tym związane są ciągle
uznawane za barierę w ich upowszechnieniu. Motywacją do podjęcia pracy, której wyniki
przedstawia niniejsza monografia, był zamiar udoskonalenia procesu konstruowania
zabezpieczeń, tak by przez głębszą formalizację tego procesu poprawić dokładność i
spójność projektów oraz obniżyć koszt i czas ich realizacji. W tym celu wykorzystano
możliwości, jakie stwarza metodyka UML/OCL.

Rozdział 2. przedstawia szeroko podstawy prowadzonych prac rozwojowych nad sys-
temem szkieletowym, w tym jego implementacją w postaci oprogramowania wspomagające-
go działania konstruktorów. Dokonano przeglądu publikacji oraz istniejących rozwiązań
technologicznych w tym zakresie (inżynieria zabezpieczeń, metody oparte na UML i ich
rozszerzenia, metody i narzędzia wspomagające konstruowanie zabezpieczeń według Wspól-
nych kryteriów). Przedstawiono związki między procesem konstruowania produktu lub syste-
mu a procesem konstruowania dla nich zabezpieczeń. Niniejsza praca dotyczy drugiego za-
gadnienia, aczkolwiek wymagało to również krótkiego wprowadzenia do pierwszego z nich,
a także zwięzłego przedstawienia oceny zabezpieczeń, gdyż każda z tych kwestii decyduje
o osiągnięciu uzasadnionego zaufania. Rozdział opisuje krótko proces konstruowania zabez-

266 Streszczenie

pieczeń, potrzeby konstruktorów w zakresie wspomagania oraz ogólną koncepcję systemu
szkieletowego w postaci struktury i maszyny stanowej. Koncepcja ta została rozwinięta w
kolejnych rozdziałach pracy. Przedstawiona w monografii myśl dotyka dwóch
podstawowych zagadnień:
• opracowania środków (języka) do specyfikowania własności bezpieczeństwa produktów

lub systemów informatycznych, zwanych przedmiotami oceny (TOE),
• opracowania modelu procesu konstruowania zabezpieczeń z wykorzystaniem UML/OCL.

Pierwsze zagadnienie zostało przedstawione obszernie w rozdziale 3, w rozdziałach od 4.
do 10. pokazano zaś proces konstruowania zabezpieczeń informatycznych wyrażony w
języku UML/OCL. Rozdziały od 4. do 10. odpowiadają strukturze dokumentu pt. „Zadanie
zabezpieczeń” (ST – Security Target), określonego w standardzie, stąd są one różnej
długości.

Jak już wspomniano, Wspólne kryteria dostarczają półformalnych środków specyfikowa-
nia w postaci komponentów reprezentujących elementarne wymagania funkcjonalne albo
uzasadniające zaufanie. Ze względu na brak odpowiednich środków specyfikowania dla po-
zostałych (innych niż wymagania bezpieczeństwa) etapów konstruowania (otoczenie zabez-
pieczeń, cele zabezpieczeń, wymagania otoczenia, funkcje zabezpieczające), w monografii
wypełniono tę lukę oraz zdefiniowano zbiór tak zwanych zaawansowanych generyków i w
ten sposób uzyskano kompletny oraz jednolity zestaw elementów półformalnych do
tworzenia specyfikacji. Wykorzystano do tego celu właściwości języków UML i OCL.
Stworzyło to całkiem nowe możliwości dla konstruktorów (elementy wspomagania decyzji
podczas projektowania, analiza pokrycia elementów specyfikacji, analiza ryzyka, poprawa
zgodności ze standardami zarządzania bezpieczeństwem informacji w zakresie reguł polityki
bezpieczeństwa itp.) oraz umożliwiło późniejszą implementację programową modeli
generyków i komponentów w postaci biblioteki projektowej.

Rozdziały od 4. do 10. opisują całościowo proces konstruowania zabezpieczeń informa-
tycznych, sprowadzający się do wypełnienia treścią struktury zadania zabezpieczeń (ST).
Zamiast nieformalnych, mniej precyzyjnych określeń słownych, do budowy specyfikacji
zastosowano elementy zamodelowane w UML ze wsparciem OCL. W pierwszym kroku
metodyki konstruowania uwagę skupiono na zidentyfikowaniu podstawowych cech produktu
lub systemu informatycznego, jako danych wejściowych dla kolejnych kroków
postępowania. W rezultacie powstała specyfikacja wprowadzenia do ST, określająca
podstawowe cechy przedmiotu oceny (TOE). Na tej podstawie, przy pewnych założeniach
dotyczących TOE i jego środowiska, analizowane są zagrożenia oraz ustalane są reguły
polityki bezpieczeństwa TOE, co prowadzi do wypracowania specyfikacji otoczenia
zabezpieczeń przedmiotu oceny (w nowszej wersji standardu zwanej określeniem problemu

Streszczenie 267

bezpieczeństwa) jako kolejnej sekcji ST. Zidentyfikowane problemy (zagrożenia, reguły
polityki, założenia) należy teraz pokryć ich rozwiązaniami, czyli celami zabezpieczeń dla
TOE i jego środowiska eksploatacyjnego, w wyniku czego powstanie specyfikacja celów
zabezpieczeń. Z kolei te cele należy przetransformować w bardziej sformalizowaną postać, to
znaczy w wymagania bezpieczeństwa (funkcjonalne i uzasadnienia zaufania) dla TOE i jego
środowiska. Wymagania co do uzasadnienia zaufania do TOE wynikają głównie z poziomu
uzasadnionego zaufania (EAL) zadeklarowanego dla przedmiotu oceny. Wymagania
funkcjonalne dla TOE są transformowane na funkcje zabezpieczające, wymagania
uzasadniające zaufanie decydują zaś o stopniu rygoryzmu stosowanego przy
implementowaniu tych funkcji w konkretnym produkcie lub systemie informatycznym.
Niezwykle istotnymi, a zarazem trudnymi dla konstruktorrów, są procesy uzasadniania
transformacji jednej specyfikacji w drugą, to znaczy uzasadniania: celów zabezpieczeń
opracowanych na podstawie otoczenia, wymagań bezpieczeństwa wyprowadzonych z tych
celów oraz funkcji zabezpieczających, wynikających z wymagań funkcjonalnych.

Monografia dotyczy konstruowania zabezpieczeń, stąd zagadnienie ich oceny z uwzględ-
nieniem deklarowanego poziomu EAL przedstawiono w rozdziale 11. dość skrótowo, ogra-
niczając się tylko do modeli ogólnych, aczkolwiek i one zostały zaimplementowane w kom-
puterowym narzędziu wspomagającym.

Należy zwrócić uwagę, że chociaż praca dotyczy zagadnień teoretycznych związanych
z modelowaniem w dziedzinie inżynierii zabezpieczeń, to również posiada ona duży wymiar
praktyczny, gdyż opracowane modele zostały zaimplementowane w postaci narzędzia do
wspomagania pracy konstruktorów zabezpieczeń informatycznych, a także oceniających te
zabezpieczenia. Zagadnienia implementacji przedstawiono skrótowo w rozdziale 12., odwo-
łując się do dokumentacji technicznej narzędzia i jego wersji demonstracyjnej.
Przedstawiono więc m.in. przykłady dotyczące: biblioteki projektowej, zawierającej setki
uporządkowanych generyków i komponentów, kreatora projektów implementującego
prezentowane w monografii diagramy czynności, wizualizacji wybranego łańcucha
generyków i komponentów oraz automatycznego tworzenia zadania zabezpieczeń, a potem
jego oceny.

Rozdział 13. stanowi podsumowanie (osiągnięte rezultaty, uzyskane doświadczenia,
plany dotyczące rozwoju) pracy, przedstawionej w monografii oraz w innych publikacjach
autora z nią związanych. Monografia zawiera załączniki dotyczące kolejno: podstawowej
terminologii związanej z metodyką Wspólne kryteria, składni i semantyki OCL
wykorzystywanych dla bardziej precyzyjnego opisu opracowanych modeli UML, zasad
notacji wyrażeń kryptograficznych związanych z zapewnieniem zgodności z możliwą do
pomocniczego zastosowania formalną metodyką UMLsec, objaśnienia konwencji
stosowanych nazw oraz przykład dotyczący zadania zabezpieczeń dla systemu zaporowego.

 INFORMATION FOR AUTHORS

 The journal STUDIA INFORMATICA publishes both fundamental and applied Memoirs and Notes in the field
of informatics. The Editors' aim is to provide an active forum for disseminating the original results of theoretical
research and applications practice of informatics understood as a discipline focused on the investigations of laws
that rule processes of coding, storing, processing, and transferring of information or data.
 Papers are welcome from fields of informatics inclusive of, but not restricted to Computer Science,
Engineering, and Life and Physical Sciences.
 All manuscripts submitted for publication will be subject to critical review. Acceptability will be judged
according to the paper's contribution to the art and science of informatics.
 In the first instance, all text should be submitted as hardcopy, conventionally mailed, and for accepted paper
accompanying with the electronically readable manuscript to:

 Dr. Marcin SKOWRONEK
 Institute of Informatics
 Silesian University of Technology
 ul. Akademicka 16
 44-100 Gliwice, Poland
 Tel.: +48 32 237-12-15
 Fax: +48 32 237-27-33
 e-mail: marcins@polsl.pl

 MANUSCRIPT REQUIREMENTS

 All manuscripts should be written in Polish or in English. Manuscript should be typed on one side paper only,
and submitted in duplicate. The name and affiliation of each author should be followed by the title of the paper (as
brief as possible). An abstract of not more than 50 words is required. The text should be logically divided under
numbered headings and subheadings (up to four levels). Each table must have a title and should be cited in the text.
Each figure should have a caption and have to be cited in the text. References should be cited with a number in
square brackets that corresponds to a proper number in the reference list. The accuracy of the references is the
author's responsibility. Abbreviations should be used sparingly and given in full at first mention (e.g. "Central
Processing Unit (CPU)"). In case when the manuscript is provided in Polish (English) language, the summary and
additional abstract (up to 300 words with reference to the equations, tables and figures) in English (Polish) should
be added.
 After the paper has been reviewed and accepted for publication, the author has to submit to the Editor a
hardcopy and electronic version of the manuscript.
 It is strongly recommended to submit the manuscript in a form downloadable from web site
http://zti.iinf.polsl.gliwice.pl/makiety/.

 To subscribe: STUDIA INFORMATICA (PL ISSN 0208-7286) is published by Silesian University of
Technology Press (Wydawnictwo Politechniki Śląskiej) ul. Akademicka 5, 44-100 Gliwice, Poland, Tel./Fax +48
32 237-13-81. 2008 annual subscription rate: US$40. Single number price approx. US$8-15 according to the issue
volume.

	Studia Informatica
	Contents
	Spis treści
	1. Introduction and motivation
	1.1. Assurance from the Common Criteria point of view
	1.2. Selected aspects of the semiformal, UML-based modelling
	1.3. Objectives of the work and the monograph contents
	1.4. Permission and acknowledgement
	2. Concept of the IT Security Development Framework
	2.1. Current state of technology
	2.1.1. Security engineering – the selected issues
	2.1.2. UMLsec concept
	2.1.3. Engineered Composition (EC) based on the UML
	2.1.4. UML with the B-method
	2.1.5. UML method supported by the EDEN formal language
	2.1.6. UML method supported by the OCL formal language
	2.1.7. Using AutoFOCUS within the security domain
	2.1.8. SPARK – a programming language for high integrity systems
	2.1.9. Emerging Common Criteria implementations
	2.1.10. Computer-aided tools
	2.1.11. Security engineering environment – around the performed overview
	2.1.12. Technology overview summary

	2.2. Developers’ needs with respect to the IT security development support
	2.3. General model of the IT security development framework
	2.4. IT security development process as a state machine

	3. Generics, functional and assurance components – internal data representation
	3.1. Generics as semiformal, UML-based specification means
	3.2. UML representation of the functional and assurance components
	3.3. Generics and components as security specification elements
	3.4. Generics association dealing with generics parameterization
	3.5. Formal approach to the generics parameterization
	3.6. Iteration and refinement of generics
	3.7. Security association – creating the developer’s supporting chains
	3.8. Formal approach to the security issues mapping
	3.9. Formal approach to the library and security models specification

	4. Capturing the features of an IT security-related product or system
	4.1. General product or system presentation according to the standard
	4.2. Modelling the basic features of the product or system (BCL)
	4.3. Security Target introductory part elaboration
	4.4. Modelling structural and behavioural aspects (UAL)
	4.5. Compatibility with the UMLsec

	5. Elaboration of the TOE security environment
	5.1. TOE security environment specification defined by the standard
	5.2. TOE security environment data model
	5.3. TOE security environment elaboration process
	5.4. Use cases for threat scenarios analysis
	5.5. Selected UMLsec issues concerning the TOE security environment
	5.6. Formal approach to the TOE security environment specification

	6. Security objectives elaboration
	6.1. Security objectives section of the Security Target defined by the standard
	6.2. Security objectives data model
	6.3. Security objectives specification workout
	6.4. Formal approach to the security objectives specification

	7. Preparing security requirements
	7.1. Security requirements specification according to the standard
	7.2. Security requirements data model
	7.3. Security requirements specification workout
	7.3.1. TOE security requirements
	7.3.2. TOE environment security requirements

	7.4. Formal approach to the security requirements specification

	8. Workout of the TOE summary specification (TSS)
	8.1. TOE summary specification defined by Common Criteria
	8.2. TSS data model
	8.3. TSS elaboration
	8.4. Formal approach to the TOE summary specification

	9. Protection Profile claims
	10. Rationale process
	10.1. Security objectives rationale
	10.2. Security requirements rationale
	10.3. TOE summary specification rationale
	10.4. Formal approach to the security target rationale

	11. IT security self-evaluation framework
	12. Implementation and evaluation of the framework
	12.1. Generics and components library
	12.2. IT security development process support
	12.3. IT security evaluation support

	13. Conclusions
	Appendix A. Basic Common Criteria terminology
	Appendix B. Object Constraint Language (OCL) syntax and semantics – the used definitions and terms
	Appendix C. Basic terms and definitions concerning the UMLsec approach to modelling cryptography
	Appendix D. Basic principles of naming the terms
	Appendix E. Elements of the security target for a firewall system
	References
	Abstract
	Streszczenie

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002000d>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002000d>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002000d>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e000d>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

