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Chapter S. METHODS FOR REDUCTION OF BLUR EFFECT IN THE
DENOISING AUTOENCODER MODEL FOR RIB
SUPPRESSION IN CXR IMAGES

5.1. Introduction

The development of bioinformatics tools related to image analysis is of high interest
to researchers, medical doctors, and engineers since selected technologies could
improve clinical performance and efficiency and influence the development
of personalized medicine [1]. One of the most widely used medical imaging methods
is X-ray imaging, which is characterized by low cost, short processing time, low
radiation dose, and high availability [1, 2]. The chest X-ray (CXR) is frequently the
first imaging study obtained during a broad range of conditions and remains central to
the screening, diagnosis, and management of the disease [2, 3]. Chest radiography
provides images of soft tissues such as the heart, airways, blood vessels, and lungs,
and additionally the bones of the spine and chest. Overlapping of structures present in
the image can complicate the visual interpretation of the detection of abnormalities in
radiographs by medical doctors leading to false negative results [4]. A major reason is
the presence of bone structures on the radiograph during soft-tissue diagnosis. There
exists a technique that enables the separation of soft tissue from bone called dual-
-energy subtraction (DES) radiography. Some studies showed that suppressing rib
shadows on soft-tissue images by using the DES technique has improved the speed
and accuracy of radiologists in diagnosing pulmonary nodules [5]. However,
compared to traditional imaging, DES requires a higher radiation dose and could

result in noisy images with visual abnormalities due to the patient moving [6]. These
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problems, together with lower availability compared to traditional CXR, have
interested researchers in the field of image processing to search for solutions allowing
the reduction of the presence of bone structures on X-ray images resulting in soft-

-tissue reconstruction.

Deep learning has become the technique of choice for image analysis tasks in recent
years and has had a huge impact on the field of medical imaging [3, 7]. A common
method for suppressing ribs from CXR images is based on autoencoder architecture.
In literature, three [8] or four [9] layer convolutional denoising autoencoder
architectures can be found. Models based on autoencoder architecture are often
characterized by a blurring effect on decoded images, which is mostly caused by the
occurrence of distance metrics in the loss function [25]. Additionally, several
modifications of convolutional neural networks were tested [10, 11], also in the
wavelet domain [12]. There are also approaches based on conditional generative
adversarial networks minimizing the pairwise image difference and adding Haar 2D

wavelet decomposition to improve model convergence [13].

This work aims to review and evaluate methods to improve image quality after the
suppression of bone structures by reducing the blurring effect on the example
of convolutional denoising autoencoder, composed of 4 layers, and introduced earlier
[15]. First, we checked the modification of the image resizing scheme through layers
of the autoencoder. Next, we introduce bridge connections between the coder and
encoder layers. Finally, we modified the a parameter of the loss function, which was
responsible for establishing the weights between the mean square error index and the
multi-scale structural similarity index. Also, we have tested the combination of these

methods.

5.2. Materials and methods

5.2.1. Data

The Bone Suppression dataset contains 35 pairs of standard CXR images and
corresponding soft-tissue images created using DES technology. These data were
gathered from a variety of online sources and made available by Innopolis University

researchers [8]. There are 11 female pairs and 24 male pairs, each with a different
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resolution (the largest being 660 x 775 pixels and the smallest being 424 x 465 pixels).
JPEG images had a quality compression ratio ranging from 85 to 100 (high-quality
images). Several image pairs have arrows or captions superimposed on the CXR
image as artifacts. It can be noted that the images are characterized by varying

brightness.

5.2.2. Image preprocessing

Considering the different sizes of the images in the dataset all images were cropped to
a square to maintain the correct proportion of the structures. The images were then
resized to 512 x 512 pixels resolution. Next, the contrast of each image has been
enhanced by using Contrast Limited Adaptive Histogram Equalization with a clip
limit equal to 2 and grid size equal to 8 x 8 pixels, which specifies the area within
which the contrast is increased so that the input and output histograms for the region
are almost identical. This operation allows an increase of details in the biological

structures shown in medical images [15].

Data augmentation operations were applied to increase the robustness of the model
and to increase the size of training data. The resulting images allow reflection of
patients' behavior (affine transformations) and image property differences between
X-ray scanners (color transformations). In this work, the following operations were
used [16]: (1) translation (£ 10 pixels); (ii) rotation (+ 5 degrees); (ii1) scaling (= 10%);
brightness change (£ 20%); contrast change (= 20%). The parameters of each

operation were chosen based on the recent literature [17, 18].

5.2.3. Model architecture

Convolutional denoising autoencoder is the unsupervised learning algorithm that
learns to map corrupted data to uncorrupted data by minimizing the loss function
between pairs of images [19]. The ribs in the images are treated as noise (corrupted
data) which we want to obtain for the soft-tissue image (uncorrupted data). The
architecture used is symmetric and consists of 4 layers with several filters (32, 32, 48,
48) and a window size equal to 4 x 4 pixels on the encoder and decoder part. The
input image should be grayscale, characterized by dimensions of 512 x 512 pixels, and

be normalized to a floating point value in the range <0;1>. Rectified Linear Unit
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(ReLU) in each layer was used as an activation function. The padding property of the
convolutional block has been set to 'same' for all layers.

The loss function minimizes Mean Square Error (MSE) and maximizes Multi-Scale
Structural Similarity Index Measure (MS-SSIM) [20]. MS-SSIM can be defined by
the equation:
M
MS — SSIM(1,G) = [l (1, G)]*™ - H[cj(l, G)]Bj [s;(1, )] (1)
j=1
where /, ¢, and s are the luminance, contrast and structure terms at scale M and j. The
exponents o, P, and y are used to adjust the relative importance of different
components. Two discrete non-negative signals are represented by / and G. [ is
a model output and G is a ground truth image (soft-tissue image).

The mathematical description of the loss function is given by the following equations:

L=q- [MS—SSIM 4 (1 — q) - [MSE (2)
[MS=SSIM([) = %Z 1—MS —SSIM(I(i),G(i)) (3)
iel
1
PP =2 (@) = 6(D)’ (4)
iel

where N is several pixels in /, i is the index of pixels in / and a is a parameter. The
value of parameter o was set to 0.84 in the base model, which was empirically
determined as the best value for image analysis in [21]. The training was run for
300 epochs in all cases. The initial learning rate was 0.001 for the first 100 epochs.
Then it decreased twice every 50 epochs. The model was implemented in Python
3.9.12 using Tensorflow 2.5.0 with CUDA 11.2 and cuDNN 8.2.1 libraries. Figure 1
presents the architecture of the base model. Parameters ABCD in convolutional layers
specifying the strides of the convolution along the height and width of the input

image.
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Fig. 1. The base architecture of convolutional denoising autoencoder for bone suppression in CXR
images

Rys. 1. Podstawowa architektura konwolucyjnego autoenkodera odszumiajacego do thumienia kosci
w obrazach rentgenowskich klatki piersiowej

5.2.4. Image resizing

The stride parameter defines the step size for sampling when scanning the input layer
to run convolutional operations [22]. In this study, we tested the effect of changing the
strides parameter in individual layers, which also changed the compressed images.
The compressed image at the input to the decoder is 64 x 64 pixels or 128 x 128 pixels,
where it is then increased to its original size by increasing the size of the stride. Table
1 shows the verified configurations. The name Base refers to the configuration used in
previously published work.

Table 1
Experimental stride parameters
Conlf\ililrﬁ:tion A B C D Corllsrll);zzsed
Base 1 2 2 2 64 x 64

Strides 1122 1 1 2 2 128 x 128
Strides 1212 1 2 1 2 128 x 128
Strides 1221 1 2 2 1 128 x 128
Strides 2121 2 1 2 1 128 x 128
Strides 2112 2 1 1 2 128 x 128
Strides 2211 2 2 1 1 128 x 128
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5.2.5. Bridge Connections

Each convolutional layer learns image features which are called feature maps, which
are passed forward using bridge connections (shortcut connections, skip connections)
to layers that are not directly adjacent. Compared to the ResNet architecture, the
connections are symmetrical between the encoder and decoder. The element-wise
addition of the feature maps from a shortcut connection and the connected
deconvolutional layer follows [23]. The introduction of symmetric skip connections
between the encoder and decoder exhibits two main advantages: (i) improving the
results, in deep networks, composed of many layers, where many details are lost
during image resizing, (ii) solving the optimization challenge posed by gradient
vanishing, resulting in increased performance as the network grows deeper [24]. In
this work, the effect of bridging connections between the extreme layers of the
autoencoder was examined using different configurations shown in Fig. 2.

i 32 filters A 32 filters 435 filters 48 filters |

: RelU N RelU N RelU N RelU !

Coder || window =4 "1 window=4 71 window =4 71 window=4 |

| strides=1 strides =2 strides =2 strides=2 | |

v | |
Compressed image

(64, 64)

! 42 filters 43 filters 32 filters 32 filters |

' RelU L RelU - RelU Y o RelU !

Decoder 1| window=4 7| window =4 7| window =4 7| window=4 |}

| strides=2 strides =2 strides =2 strides =1 !

i i

Fig. 2. The base architecture of convolutional denoising autonecoder extended with bridge connections
Rys. 2. Podstawowa architektura konwolucyjnego autonekodera denoisingowego z uwzglednieniem
potaczen mostkowych

5.3. Experiments and results

The Bone Suppression dataset was divided into a training set containing 25 pairs
of images, a validation set, and a test set containing 5 pairs each. New images were
generated for the training and validation set by applying an augmentation technique
with the same operations for each image in the pair. After this operation, the training
set consists of 1025 images, while the validation set consists of 205 images which is
20% of the training set size. The batch size was set to 16. Adam was chosen as the
optimizer in the model training. The models were trained for 300 epochs. Each model

was trained using the same initial parameters previously generated at random. The
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model with the best validation loss was selected for each run. Calculations were
performed on a desktop computer with an Intel Core 15-10500 CPU, 64 GB Ram, and
RTX 3060 12GB graphics card. A single training took approximately 2 hours.

The value of the loss function, Peak signal-to-noise ratio (PSNR), and Structural
Similarity Index Measure (SSIM) were used as quality indicators to evaluate the
model outcome in comparison to the ground truth image (soft-tissue image measured
using the DES method) on 5 pairs of an independent test set data. The values obtained
are presented in % and refer to the base architecture introduced earlier [14].

5.3.1. Image resizing

The basic architecture resizes the input image three times by half of the current size, and
the compressed image is 64 x 64 pixels. The effect of changing the compressed image
size to 128 x 128 pixels in various configurations was tested. The greatest improvement
for loss function and image quality metrics was obtained for the following configuration:
Strides 2121. Detailed results for all configurations are shown in Fig. 3.
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Fig. 3. Heatmaps with values of the loss function and two measures of image quality, calculated
between model output and soft-tissue image: Peak signal-to-noise ratio (middle) and
Structural Similarity Index Measure (right) for different strides configuration

Rys. 3. Mapy ciepta przedstawiajace wartosci funkcji straty oraz dwoch wskaznikow jakosci obrazu:
PSNR oraz SSIM dla réznych konfiguracji parametru ,,strides”

5.3.2. Loss Function

Parameter o in the loss function is responsible for establishing the weights between the
mean square error index and the multi-scale structural similarity index. The parameter value
was changed from 0 to 1 with a step of 0.1 using the Base configuration shown in Table 1.
The best results were obtained for a parameter o« equal to 0.5. The value of the loss
function for test images presented in the heatmap was calculated for a baseline parameter
o. equal to 0.84 for each of the trained models. Figure 4 shows the results obtained.
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Fig. 4. Heatmaps with values of the loss function and two measures of image quality, calculated
between model output and soft-tissue image: Peak signal-to-noise ratio (middle) and
Structural Similarity Index Measure (bottom) for various a values in range <0;1>

Rys. 4. Mapy ciepta przedstawiajgce wartosci funkcji straty oraz dwoch wskaznikéw jakosci obrazu:
PSNR oraz SSIM dla zmian parametru o w przedziale <0;1>



70

5.3.3. Bridge Connections

Bridge connections between the symmetrical encoder and decoder layers were
introduced into the basic architecture. In this work three configurations were tested: (i)
the connection between the outermost layers (connection A in Fig. 2), (ii) the
connection between innermost layers (connection B in Fig. 2), (ii1) the connection
between the outermost layers and the innermost layers (A+B). The best image quality
results were obtained for the variant characterized by 2 skipped connections. The
detailed results are shown in Fig. 5.

LOSS PSNR SSIM Better

-8.64 % -9.23 % -9.82 %

-0.27 % 1.35 % 3.54 % 0.73 % 1.01 % 1.10 %

Image 1
Image 1

-
L]
o
©

E

-0.52 % 0.57 % 0.40 %

Image 2
Image 2

0.87 % 2.07 %

Image 3
Image 3

<+ <+ <+
@ @ o
o -7.36% -8.79 % -8.77 % o 228% 2.29% 1.24 % 2 101% 1.31 % 1.31 %
E E E
wn wn
@ @ S smem 5
= 0.14 % =) -0.54 % -0.27 % -0.15 %
E E
Bridge Bridge Bridge Bridge Bridge Bridge Bridge Bridge Bridge Worse
connection connection connection connection connection connection connection connection connection
B A A+B B A A+B B A A+B

Fig. 5. Heatmaps with values of the loss function and two measures of image quality, calculated
between model output and soft-tissue image: Peak signal-to-noise ratio (middle) and
Structural Similarity Index Measure (right) for different bridge connection configurations

Rys. 5. Mapy ciepta przedstawiajace wartosci funkcji straty oraz dwoch wskaznikow jakosci obrazu:
PSNR oraz SSIM dla réznych konfiguracji potaczen mostkowych

5.3.4. Combination of Multiple Methods

The configurations with the best results were selected from the previously described
methods. An architecture was created with o = 0.5, a strides 2121 configuration, and
the use of the bridge connections shown in Fig. 2 (A+B). The applied operations
allowed for a significant improvement of the used indices. The values of the obtained
results are shown in Fig. 6, while the comparison of the sample images obtained is
shown in Fig. 7.
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Fig. 6. Heatmaps with values of the loss function and two measures of image quality, calculated
between model output and soft-tissue image: Peak signal-to-noise ratio (middle) and
Structural Similarity Index Measure (right) for models characterized by the best parameters
described in 1.3.1-1.3.4

Rys. 6. Mapy ciepta przedstawiajace wartosci funkcji straty oraz dwoch wskaznikow jakosci obrazu:
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Fig. 7. Comparison of each model based on the output image. Top row: The preprocessed CXR
image no. 4 from a testing set (left), soft-tissue ground truth image (middle left), the output of
base architecture (middle-right), and the output of the model with strides 2121 configuration
(right). Bottom row: output of architecture with a equals 0.5 (left), the output of architecture
with two skipped connections (middle), the output of architecture with all presented
modifications (right)

Rys. 7. Porownanie obrazow wyjsciowych dla kazdego z opisanych modeli. Gorny rzad: Obraz
wejsciowy nr. 4 (pierwszy z lewej), obraz tkanek migkkich DES (drugi z lewej), obraz
architektury bazowej (drugi z prawej), obraz architektury o konfiguracji strides 2121
(pierwszy z prawej). Dolny rzad: obraz architektury o parametrze o rownym 0.5 (z lewe;j),
obraz architektury ztozonej z dwoch polaczen mostkowych (srodkowy), obraz architektury
ztozdnej ze przedstawionych modyfikacji (z prawej)
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5.4. Conclusions

The proposed convolutional denoising autoencoder architecture was updated to
eliminate the blur effect, that occurs frequently. A change in the configuration of the
'strides' parameter increases the image size on the input of the decoder, which
decreases the overall image compression rate, keeping more important details of the
image that are necessary for proper image reconstruction. Adding the bridge
connections improves the quality of output images by transferring feature maps
between symmetrical encoder and decoder layers. Changing the alpha parameter is
needed to tune the loss function for the task-specific images; CXR images in our case.
We have tested these methods separately, however, the combination of them brought
the highest increase in the quality of the rib-suppressed image in comparison to the
base model. An additional advantage of the described methods is the non-impact
number of network parameters. The final designed architecture consists of only
4 convolutional layers on the encoder and decoder side. It is a rather simple structure
with a small number of parameters, which distinguishes it from existing deep-learning
models [9].

The rib-suppressed images presented in Fig. 7 confirm the improved quality of the
output image, for each of the methods presented and the final model. In our opinion,
these results are sufficient enough to be used as a medical diagnostic support system
in a medical facility. An example of the use of the final images obtained with
suppressed ribs may be a classification of different lung diseases or tracking disease

progression over time.

Future work on the proposed algorithm will focus on separating the region of interest,
which in the case of CXRs is the lung region. An architecture consisting of two
independent neural networks is planned to be applied. The first network should be
responsible for the segmentation of the lung region and could be based on a U-net
architecture [26]. The second model will be based on an architecture presented here

but trained on segmented lung images.
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METHODS FOR REDUCTION OF BLUR EFFECT IN THE
DENOISING AUTOENCODER MODEL FOR RIB SUPPRESSION IN
CXR IMAGES

Abstract

The most widespread, low-cost, and highly available diagnostic method for detecting
abnormalities in the cardiopulmonary system is chest radiography. In many cases, the
presence of bone structures on the image makes the correct diagnosis much more
difficult. There exist few computational tools for rib suppression on x-ray images of
the lungs and the denoising autoencoder model seems to be perfect for this task.
However, mostly due to the considerable compression of image size in the model, the
blurring effect of pathological structures occurs. This work aims to improve the
quality of the lung images obtained from a rib bone suppression algorithm based on
a denoising autoencoder. The Bone Suppression dataset, consisting of 35 pairs of
chest x-ray images and corresponding soft-tissue images, was used to develop the
model. Three methods were proposed to reduce the blurring effect: (i) modification of
the image resizing scheme through layers of the autoencoder; (i1) modification of
a parameter of the loss function, which was responsible for establishing the weights
between the mean square error index and the multi-scale structural similarity index;
(i11) introduction of bridge connections between the coder and encoder layers.
Different scenarios of proposed corrections were examined, but in general, all tested
methods showed increased performance in comparison to the baseline model in terms
of peak signal-to-noise ratio and structural similarity. Our results show that these
methods significantly reduce the denoising autoencoder blurring effect, improving the
quality of output image with suppressed ribs, which could potentially influence the

medical diagnosis of the patients.

Keywords: x-ray imaging, blurring effect reduction, bone suppression, autoencoders,
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