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Chapter 6. nUMAP: NEURAL NETWORK BASED UMAP SOLUTION
FOR THE MULTI DATASET VISUALISATION

6.1. Introduction

High-dimensional data is common in the field of biomedicine. It is difficult to
analyze, therefore it is hard to find its flaws and hidden relations. Dimensionality
reduction techniques help researchers to overcome this problem by embedding high
dimensional information into the lower-dimensional space. Such embeddings can be

visualised and then analysed properly.

One of such embedding techniques is Uniform Manifold Approximation and
Projection (UMAP) [1]. Besides embedding it can also be used for clustering and data
pre-processing. This method thrives when used with tabular data as an input and
despite that it can be used with image data [3-5], it has limited use cases. The common
factor of referenced papers is the usage of homogenous image datasets with neutral

backgrounds. It is very rare to stumble upon such data in biomedicine.

In the paper [2], a solution to the problem of image data heterogeneity was proposed
by introducing a novel method capable of robust transformation of X-ray radiogram
into a set of features and UMAP based pipeline capable of embedding features into
low-dimensional space. While the method is valid for X-ray images, it requires
a definition of a region of interest (ROI). For other biomedical datasets, this may not

be possible. In the study, some modifications are introduced to unify the previously
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proposed method. The proposed pipeline consists of neural network (NN) guided
features extraction and UMAP embedding followed by NN universal embedding

learning.

Guided feature extraction relies on the information obtained from the latent vector of
a pre-last layer of a neural network train specifically for this task [6] (latent space with
UMAP in the context of fashion recommendation system), [7] (using latent space
vector for UMAP in clustering of genes). UMAP procedure embeds latent space
features into the two-dimensional space allowing visualisation and relation analysis.
To achieve robust features dependence a regression neural network was trained which
learnt the embedding. The pipeline results in a method capable of dealing with
numerical, image and mixed data types. The goal of the study was to present different
use cases of the proposed method, like discovering the batch effect, analysing the
dataset’s quality, and explaining the neural network prediction, in order to prove its

wide applicability.

6.2. Datasets

6.2.1. Mass cytometry dataset

In the study, a mass cytometry dataset was used that comprised two healthy control
samples with the number of bronchoalveolar lavage cells (BALC) equal to 329,228
and 341,007, respectively. The samples come from studies on drug-resistant
tuberculosis. Bronchoscopies were performed in the bronchoscopy theatre, ward AS,
Tygerberg Hospital (TBH) in Cape Town, South Africa. The cells’ signal was
measured with the CyTOF2 instrument, at the South African Tuberculosis Vaccine
Initiative at the University of Cape Town. For each cell, a set of 32 markers was
collected. The dataset was preprocessed (pre-gated) and arcsinh transformed with

a co-factor of 5.

6.2.2. Chest X-Ray dataset

The chest X-Ray image dataset was composed of POLCOVID database [2] and
COVIDx database [8]. The data from POLCOVID database were collected from 24
Polish hospitals (see POLCOVID Study Group section) during a CIRCA project and
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consists of 2426 healthy patients, 1147 patients with pneumonia and 1236 patients
with COVID-19 (with positive RT-PCR test results). The COVIDx database consists
of 8066 healthy patients, 5573 patients with pneumonia and 1763 patients with
COVID-19. The images were resized to 512x512 pixels resolution, had their lungs

segmented from an images and were scaled.

6.3. nUMAP

The proposed nUMAP method is a modification of the standard UMAP approach
(Fig. 1). Since UMAP only accepts numerical data as input, the limitation can be
solved with a neural network that can take different types of data as input. The final
fully-connected layer provides feature vectors that are combinations of the input data
in a numerical form that can be further analysed by the standard UMAP model.
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Fig. 1. nUMAP pipeline. A) Standard UMAP model trained on numerical data to generate its
embedding that can be visualized in 2D space. B) nUMAP accepts data of mixed types that
are processed into numerical representation by the first neural network (nUMAP feature
extractor). Then the second neural network transforms the numerical data into embedding,
giving identical results to the standard UMAP approach

Rys. 1. Schemat dziatania nUMAP: A) Standardowa metoda UMAP trenowany na danych
numerycznych w celu zwizualizowania ich zredukowanej reprezentacji w przestrzeni 2D.
B) nUMAP akceptuje dane o mieszanych typach dzigki zastosowaniu sieci neuronowej
(ekstraktor cech nUMAP), ktora przetwarza je na dane numeryczne. Nastgpnie druga sie¢
neuronowa transformuje dane numeryczne do reprezentacji o nizszej wymiarowosci, ktora jest
identyczna do rezultatu otrzymanego ze standardowej metody UMAP
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The first neural network is called the nUMAP feature extractor which enables
simultaneous processing of different types of data. The nUMAP feature extractor can
be any model that can process desired input data into numerical features that can be
further analysed. For example, like in the study, it can be a convolutional neural
network that accepts images and numerical features as inputs to combine them into

new numerical features.

The second part of the nUMAP approach is another neural network, the nUMAP
transformer, that learns how to map numerical features into UMAP embeddings. The
network is a multilayer perceptron for regression problems, that accepts numerical
data as input and UMAP embedding as output. The transformer’s architecture used in
the study was a simple neural network with two hidden layers consisting of 100 and
50 neurons, respectively. The number of input neurons was equal to the number of
numeric features and the number of the output neurons was two (for the reduction into

2D space embedding). The learning rate was set to 0.001.

6.4. nUMAP application examples

6.4.1. Use case 1: visualization of a batch effect in mass cytometry data

Mass cytometry datasets are numerical, therefore the standard UMAP approach can be
applied as presented in Fig. 2. The embedding is created and can be visualized in 2D
space. The pink area represents the region with the highest density of cells (50% of

data) from the sample in reference to all cells (grey points).
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Fig. 2. Standard UMAP approach for mass cytometry data. One sample is transformed into
embedding that allows visualizing the dataset in 2D space. Visualization: grey points — all
cells; pink area — region with the highest density of cells

Rys. 2. Standardowa metoda UMAP dla danych z cytometrii masowej. Jedna probka jest
przetworzona do dwuwymiarowej reprezentacji, ktéra mozna zwizualizowa¢ na wykresie.
Wizualizacja: szare punkty — wszystkie komorki; ré6zowy region — obszar z najwigkszym
zageszczeniem komorek probki
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The problem appears when adding another sample from the same experiment to the
first one to represent new data in the learned UMAP embedding. The existing UMAP
method that transforms new data with the learned model is very time-consuming for
big data. Since mass cytometry datasets may have tens of millions of records (cells),
the standard UMAP transformer is inefficient. Therefore, the second part of the
nUMAP system applies here as presented in Fig. 3. The trained nUMAP transformer

generates embedding quickly and accurately.
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Fig. 3. nUMAP transformer allows fast embedding creation and projection for mass cytometry (big
data). Visualization: grey points — all cells; pink area — a region with the highest density of
cells from the first sample; yellow area — a region with the highest density of cells from the
second sample that was transformed into the same UMAP space as the first sample

Rys. 3. Transformer nUMAP pozwala na szybkie wygenerowanie dwuwymiarowej reprezentacji
danych z cytometrii masowej (duze dane). Wizualizacja: szare punkty — wszystkie komorki;
rézowy region — obszar z najwigkszym zageszczeniem komorek probki pierwszej; zotty
region — obszar z najwigkszym zageszczeniem komorek probki drugiej transformowanej do tej
samej przestrzeni UMAP co probka pierwsza

Adding the second sample reveals the presence of a batch effect in the dataset. The
batch effect is a technical variation in the data that makes it difficult to reveal
biological relationships and should be removed or decreased. Many solutions have

been proposed for batch effect removal for mass cytometry. nUMAP makes it possible

to visualize the effect of such a batch correction algorithm (Fig. 4).



LIM#’«F‘2

UMAP,,

Fig. 4.

Rys. 4.

81

.J
UMAPZ

Batch effect
correction

:
+ - - o - 4+ -
UMAF’1 UMAF"
> )
= e i1
i U

()
UMAP,
(
C

UMAP, UMAP,

Visualization of the mass cytometry dataset comprised of two samples before and after batch
effect correction (pink and yellow areas representing the regions of their highest cell
concentration — for better visualization). After batch effect correction a new UMAP
embedding and nUMAP transformer are learned based on the corrected feature values. Since
the samples overlap after the batch correction, it is visible that the batch effect was
significantly reduced

Wizualizacja danych z cytometrii masowej ztozonych z dwoch probek, przed i po korekcie
efektu paczki (rozowe i zoOlte obszary reprezentuja regiony o najwiekszym zageszczeniu
komoérek — dla lepszej wizualizacji). Wykorzystujac wartosci po korekcji efektu paczki
wytrenowano nowy model nUMAP do stworzenia nowej reprezentacji UMAP. Poniewaz po
korekcie probki nakladajg si¢ na siebie, mozna wywnioskowac¢ ze efekt paczki zostal znaczaco
zredukowany

6.4.2. Use case 2: RTG quality assessment

The X-Ray chest dataset consists of image data (radiograms) and clinical data. The

goal was to validate whether the dataset contains hidden biases and flaws which are

not related to the lung disease. Therefore a neural network was created to classify the

data into three classes: normal (healthy), pneumonia and COVID-19. To verify data

robustness, the nUMAP was employed as in Fig. 5. The neural network was used as
the nUMAP feature extractor.
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Fig. 5. Image information is merged with clinical data through the nUMAP feature extractor, and the
standard UMAP method (with cosine distance metric) is used to project received numerical
features on the 2D plane

Rys. 5. Informacja obrazowa jest potaczona z danymi klinicznymi z wykorzystaniem ekstraktora cech
nUMAP, nastepnie standardowa metoda UMAP (z metryka odleglosci cosine) transformuje
otrzymane cechy numeryczne do przestrzeni o nizszej wymiarowosci

Ideally, UMAP embedding would be of compact shape with three fuzzy borders

splitting the data into the three classes. While most of the data points follow

mentioned behaviour, there is a group of COVID-19 data points which are visibly
distinct from the other representatives of the category, forming a separate aggregate of
points. Further analysis revealed that data within this ‘island’ consist of radiograms

with relatively low original resolution (Fig. 6).
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Fig. 6. Example radiograms representing embedded data points on the UMAP 2D plot. The
radiograms were scaled following their original proportions to each other. The two smallest
images of COVID-19 patients come from a separate aggregate of points

Rys. 6. Przyktady obrazow reprezentujacych wartosci UMAP po redukcji wymiarowosci na wykresie
dwuwymiarowym. Radiogramy zostaty wyskalowane wzgledem siebie zachowujac oryginalne
proporcje. Dwa najmniejsze obrazy pacjentow z COVID-19 pochodza z osobnego skupiska
punktow
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A resolution of a radiogram has a big impact on its quality. Lower radiogram
resolution results in a lower number of pixels which represents lung abnormal
changes. Since the neural network input image resolution was 512 x 512 pixels,
it was assumed that the island of points is mainly composed of images below the
512 x 512 resolution. To verify the thesis, points on the UMAP visualization were

coloured according to the calculated radiogram resolutions (Fig. 7).
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Fig. 7. UMAP embedding representation of X-ray dataset with colour scale pointing to radiogram
resolution ranging from about 100x100 to nearly 4000x4000 pixels. Shown on a logarithmic
scale

Rys. 7. Reprezentacja przestrzeni UMAP zdje¢ rentgenowskich ptuc z kolorowa skalg wskazujaca na
rozdzielczo$¢ obrazoéw od okoto 100x100 do prawie 4000x4000 pikseli. Skala logarytmiczna

The radiograms contained within the smaller aggregate of points are of much lower

resolution than radiograms in the compact part of UMAP embedding. This indicates

that the neural network converged on the resolution rather than the disease entity.

Showing that the problem is hidden in the dataset and calls for data curation.

6.4.3. Use case 3: Explainability of a classifier’s prediction

nUMAP can work like an Explainability Al method to clarify the model’s prediction.
This behaviour is used in the CIRCA classification system [9]. CIRCA nUMAP
allows for the projection of new data points, that are analysed through the CIRCA
portal, on the learned UMAP visualization. The learned UMAP was created with the
use of X-Ray chest images consisting of three patient categories: normal, pneumonia
and COVID-19. The nUMAP training process is presented in Fig. 8.
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Fig. 8. Training of the CIRCA nUMAP system. A) Training dataset of X-Ray chest images is used to
train the feature extractor. Then numerical features are transformed with the standard UMAP
into embedding to create a 2D visualization. B) Numerical data extracted from the nUMAP
feature extractor are used to train the nUMAP transformer to generate the same UMAP

embedding as the standardapproach

Rys. 8. Trening metody nUMAP systemu CIRCA. A) Zbior treningowy ztozony z obrazéw RTG
klatki piersiowej jest wykorzystany do treningu ekstraktora cech nUMAP. Nastepnie cechy
numeryczne s3 poddane transformacji standardowa metoda UMAP do dwuwymiarowe;j
reprezentacji. B) Dane numeryczne otrzymane z nUMAP ekstraktora cech sa wykorzystane do
treningu nUMAP transformatora w celu wygenerowania takiej samej reprezentacji UMAP jak

z metody standardowej

When a new chest X-Ray image is loaded into the CIRCA portal, it undergoes a series
of preprocessing and classification steps. The goal is to classify the image into the
three mentioned categories based on the visual markers. Since the task is difficult due
to the heterogeneous nature of COVID-19 changes, displaying the resulting category
may not be sufficient. nUMAP tries to explain the prediction by projecting the image
into the UMAP visualization that is comprised of three different areas indicating the
categories. Moreover, nUMAP revealed subcategories within each category that

differentiate the patients based on their degree of advancement of pulmonary changes.

The projection process is visualized in Fig. 9.
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A new image is processed by CIRCA system that consists of an nUMAP part responsible for
projecting the analysis result into learned UMAP representation to visualize it in relation to
the training samples. The image is classified as COVID-19 therefore the embedding is placed
in the red area (regions indicating normal and pneumonia patients are shaded for better
visualization). It can be seen that the result is placed in Subtype 1 of the COVID-19 category,
which is the farthest from normal and pneumonia areas — therefore this is the subtype that
contains patients with typical COVID-19 changes in the lungs

Nowe zdjecie RTG jest przetwarzane przez system CIRCA, ktory zawiera czes¢ nUMAP
odpowiedzialng za projekcje do reprezentacji UMAP wyniku analizy w celu jego wizualizacji
wzgledem zdje¢ ze zbioru treningowego. Obraz zostat zaklasyfikowany do kategorii COVID-19,
dlatego jego dwuwymiarowa reprezentacja zostata umieszczona w rejonie czerwonym
(regiony dla kategorii zdrowe ptuca oraz zapalenie pluc zostaly zacienione dla lepszej
wizualizacji). Wynik zostat umieszczony w rejonie Podtypu nr. 1 kategorii COVID-19, ktory
lezy najdalej od obszaréw kategorii zdrowe ptuca i zapalenie ptuc — w zwigzku z tym jest to
podtyp ktory zawiera obrazy pacjentow z typowymi zmianami COVID-19 w ptucach
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Fig. 10. Examples from CIRCA portal projection of the RTG analysis result in UMAP representation.

A) Chest X-Ray image of normal (healthy) lungs is classified and projected with nUMAP
into the healthy region of the embedding visualization. B) Chest X-Ray image of lungs with
pneumonia changes is classified and projected with nUMAP into the pneumonia region of
the embedding visualization

Rys. 10. Inny przyktad z systemu CIRCA pokazuje projekcje Przyktady z portalu CIRCA, projekcja

wyniku analizy RTG w reprezentacji UMAP. A) Obraz rentgenowski klatki piersiowej
prawidlowych (zdrowych) ptuc jest klasyfikowany i rzutowany za pomoca nUMAP do
rejonu osadzenia kategorii zdrowych. B) Obraz rentgenowski pluc ze zmianami zapalenia
ptuc jest klasyfikowany i rzutowany za pomocag nUMAP do rejonu osadzenia kategorii
zapalenia ptuc
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6.5. Discussion

Big data analysis is a demanding task that requires appropriate and efficient
techniques to gain meaningful insights and results. This often requires presenting data
in a lower-dimensional feature space. Methods like UMAP allow for dimension
reduction preserving hidden structures in the data, however, they have some

limitations.

In the study, a modification of the standard UMAP approach was proposed, that
overcomes its limitations. The nUMAP parts can be linked with the standard UMAP

approach or customized to a specific problem, as needed.

Firstly, the proposed nUMAP transformer can be trained on numerical features and
embedding values from the standard UMAP approach to generate identical embedding
but more effectively, especially in the case of big data, like mass cytometry. It solves
the problem of the standard UMAP projection of new points into the existing low-

-dimensional representation which is time-consuming.

Secondly, nUMAP accepts mixed types of data as input due to the use of a neural
network that works as a feature extractor. Therefore, different data types can be
combined together into a numerical representation that can be used either with the
standard UMAP approach or the nUMAP transformer to generate data embeddings.

The shown examples of X-Ray data projection prove the usefulness of the approach.

The presented use cases of the nUMAP allowed for deeper insight into the data,
revealing problems like batch effect in mass cytometry data or low-quality images of
X-Ray dataset that have a great impact on further analysis results. Moreover, the
method can be used to explain the classifier’s prediction and therefore the usefulness

of the trained classifier.

However, the nUMAP approach also has limitations. Since the feature extractor is
a classification network, the method is no longer fully unsupervised and requires some
knowledge about the labels (categories) of observations. Future work could focus on
the use of a different feature extraction method that accepts mixed types of data as

inputs.
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6.6. Conclusion

nUMAP is a fast and effective method for embedding generation that can help
visualize modifications of big data of mixed types. nUMAP overcomes the standard

UMAP limitations and can be used for various purposes.

POLCOVID Study Group

Department of Infectious Diseases and Hepatology, as coordinator: Jerzy Jaroszewicz
(Medical University of Silesia in Katowice, Infectious Diseases Hospital No. 1 in
Bytom), Jan Baron, Katarzyna Gruszczynska (Department of Nuclear Medicine and
Image Diagnostics, Medical University of Silesia in Katowice), Magdalena Sliwinska,
Mateusz Rataj, Przemyslaw Chmielarz (Voivodship Specialist Hospital in Wroclaw),
Edyta Szurowska (II Department of Radiology, Medical University of Gdansk), Jerzy
Walecki, Samuel Mazur, Piotr Wasilewski (Central Clinical Hospital of the Ministry
of Internal Affairs and Administration in Warsaw), Tadeusz Popiela, Justyna Kozub
(Collegium Medicum of the Jagiellonian University in Krakéw), Grzegorz Przybylski,
Anna Kozanecka (Kujawsko-Pomorskie Pulmonology Center in Bydgoszcz), Andrzej
Cieszanowski, Agnieszka Oronowicz-Jaskowiak, Bogumil Golebiewski (National
Institute of Oncology in Warsaw, Department of Imaging Diagnostics), Complex of
Health Care Centres, Mateusz Nowak (Silesian Hospital in Cieszyn), Barbara Gizycka
(Single Infectious Diseases Hospital Megrez Ltd. in Tychy: Department of Imaging
Diagnostics), Piotr Blewaska (District Hospital in Raciborz), Department of Infectious
Diseases and Hepatology, University of M. Kopernika w Toruniu, Malgorzata
Pawlowska, Piotr Rabiko, Pawel Rajewski (Collegium Medicum in Bydgoszcz),
Department of Radiological and Imaging Diagnostics, Jerzy Walecki (Medical Center
for Postgraduate Education, Warsaw), Clinical Department of Imaging Diagnostics,
Katarzyna Sznajder (University Clinical Hospital in Opole), Department of Infectious
Diseases University of Rzeszow, Robert Plesniak (Medical Center in Lancut),
Department of Allergology and Internal Medicine, Marcin Moniuszko (Medical
University of Bialystok), Department of Infectious Diseases and Hepatology, Robert
Flisiak (Medical University of Bialystok), Andrzej Cieszanowski (Medical University
of Warsaw: II Department of Clinical Radiology), Przemyslaw Bombinski
(Department of Pediatric Radiology), Agata Majos (Medical University of Lodz:
Department of Radiological and Isotopic Diagnostics and Therapy), Michal Mik
(Department of General and Colorectal Surgery), Medical University of Wroclaw,



88

Krzysztof Simon (Department of Infectious Diseases and Hepatology), Bartosz
Markiewicz (Voivodship Comprehensive Hospital in Kielce: Department of Imaging
Diagnostics), Gabriela Zapolska, Krzysztof Klaude, Katarzyna Rataj (Czerniakowski
Hospital in Warsaw), Sebastian Hildebrandt, Katarzyna Krutul-Walenciej (Central
Clinical Hospital of the Medical University of Gdansk), Adrianna Tur, Grzegorz
Drabik (Prognostic Specialist Clinic in Knurow), Damian Piotrowski (Specialist
Hospital No. 1 in Bytom).

Acknowledgement

The research leading to these results was partially funded by the National Science
Centre, Poland, grant MNiSW/2/WFSN/2020 project name CIRCA — COVID-19 online
image diagnostic support service. MM was financed by grant no. 02/070/BK_22/0033.
WP and JP were financed by OPUS grant no. 2017/27/B/NZ7/01833. Additionally,
AS and WP are holders of a European Union scholarship through the European Social
Fund, grant POWR.03.05.00-00-Z305 and JT is a holder of scholarship grant
POWR.03.02.00-00-1029. Calculations were carried out using GeCONIl infrastructure
funded by NCBIR project no. POI1G.02.03.01-24-099/13).

Bibliography

1. L. Mclnnes, J. Healy, J. Melville: Umap: Unifold manifold approximation and
projection for dimension reduction, arxiv preprint (2018).

2. M. Socha, A. Suwalska, W. Prazuch, M. Marczyk, J. Polanska: UMAP-based
graphic representation of POLCOVID chest X-Ray data set heterogeneity, Recent
Advances in Computational Oncology and Personalised Medicine (2021) 1:100-114.

3. H. Xiao, K. Rasul, R. Vollgraf: Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, arxiv preprint (2017).

4. Y. Wang, H. Huang, C. Rudin, Y. Shaposhnik: Understanding how dimension
reduction tools work: An empirical approach to deciphering t-sne, umap, Atrimap,
and pacmap for data visualization, arxiv preprint (2020).

5. M. Allaoui, M.L. Kherfi, A. Cheriet: Considerably improving -clustering
algorithms using UMAP dimensionality reduction technique: a comparative study.
In International Conference on Image and Signal Processing, Springer, Cham
(2020) 317-325.



89

6. A.R. Sulthana, M. Gupta, S. Subramanian, S. Mirza: Improvising the performance
of image-based recommendation system using convolution neural networks and
deep learning. Soft Computing (2020) 24(19):14531-14544.

7. J. Ding, A. Regev: Deep generative model embedding of single-cell RNA-Seq
profiles on hyperspheres and hyperbolic spaces, Nature Communications (2021)
12:2554.

8. L. Wang, Z.Q. Lin, A. Wong: COVID-Net: a tailored deep convolutional neural
network design for detection of COVID-19 cases from chest X-ray images. Sci
Rep (2020) 10:19549.

9. WWW: https://circa.aei.polsl.pl/, access: 16.05.2022.

nUMAP: NEURAL NETWORK BASED UMAP SOLUTION FOR
THE MULTI DATASET VISUALISATION

Abstract

High-dimensional data is associated with complex analysis and interpretation of the
results. The problem is particularly relevant to biomedical problems like the analysis
of cell expression profiles or medical imaging data. Big data contains potential noise
that can cause the lack of optimal solutions. One way to deal with the problem is
dimensionality reduction and feature selection. However, most of the methods are
designed to process numerical data and for images, the methods require vectorization
that amplifies the artefacts. Moreover, the techniques accept only one type of data at
a time which could be insufficient to discover the real relationships. In the study,
a novel method is proposed that is based on the UMAP dimension reduction
technique. nUMAP combines the UMAP transformation with neural networks (NN)
allowing for the processing of big data of mixed types. The method is based on
a sequence of NN-UMAP-NN operations that extract features and create an
embedding for effective visualization and inspection of the results. Moreover, the
method can be applied to new data without the need for retraining. In the study, three
real-world use cases of the nUMAP are presented: detection and correction of a batch
effect in mass cytometry data, an inspection of the quality of chest X-Ray images and
an explanation of a classifier’s prediction. The work proves the effectiveness and wide
application of the nUMAP.

Keywords: visualization, UMAP, neural network, embedding, big data
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