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Chapter 11. IMPROVING GILLESPIE SIMULATION ALGORITHM
FOR FITNESS IN CLONAL EVOLUTION

11.1. Introduction

Neoplastic transformations in human tissues are consequences of accumulating
somatic, clonal mutations. In the ongoing research on cancers, observations on
occurrences of somatic mutations are collected and then their roles in neoplasm are
explained in biological and physiological terms. A strong impulse in studies on
somatic mutations in cancers are provided by large, experimental projects of DNA and
RNA sequencing of cancer tissues leading to creation of large databases of cancer
mutations, such as TCGA project, TCGA database [1] and COSMIC database [2].
These researches led to significant advance in understanding cancer development as

well as improving tools for diagnosis and therapy.

Large volumes of data and its detailedness encourages elaborating mathematical
models, which would correspond to scenarios of cancer initiation and development.
Mathematical modelling of tumor growth is based on probabilistic description of
events seen in the neoplastic processes, cellular replications and deaths and
occurrences of somatic mutations. Mathematical models most often used are Markov

birth - death processes, branching processes or multitype branching processes [3—5].

Variety of possible, potentially complicated laws for probability distributions of
events in mathematical models of neoplastic transformations motivate for developing
stochastic simulations algorithms. Numerous papers devoted to simulation systems of
evolution of cancer cell populations already appeared in the literature, e.g., [6—8]. The

basic approach for simulation of events occurring in neoplastic processes is by using
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Gillespie algorithm [9], i.e., the algorithm of successive updates of processes state
vector and reactions / events propensities on the basis of simulated times of reactions /
events. Application of Gillespie’s algorithm to clonal evolution of populations was
described e.g., in [4] and [10]. In [4] a very simple version of Gillespie’s algorithm for
simulating clonal evolution of cancer cells was used, with the state vector containing
two components. However, it enabled simulating evolutionary effects of mildly
deleterious passenger mutations leading to shrinking population size versus strongly
advantageous driver mutations causing selective sweeps. In [10] a high-resolution
simulation tool was presented with high dimensional state vector and mutations with
different effects on fitness was presented. It enabled observing various scenarios of

cancer clonal evolution but required substantial amount of computational power.

In this study we present Gillespie simulation algorithm for generating evolutionary
events in developing cancer cells populations, with ability of simulating growth of
cancer cells population detailed enough for observing moving wave of fitness of
cancer cells. Mutations in our model have equal, mildly advantageous fitness effects.
We pay attention to efficiency of simulation, aiming to achieving populations of sizes
of millions of cells on desktop computer. We compare efficiency of two algorithms,
one with the state vector containing components corresponding to each of the cells of
the population, and another with smaller state vector built of bins corresponding to

groups of cells with equal number of mutations.

11.2. Model description

The idea of the Gillespie algorithm provides methodology to simulate population
evolution analyzing it cell by cell. For small population sizes that algorithm is very
good but for large cell number it causes long simulation time. Improvement can make

simulation faster with keeping results of calculations the same or similar.

11.2.1. Possible events in clonal evolution

Genetic forces behind clonal evolution are replications, mutations, selection and
genetic drift. Mainly can be highlighted cell death, division and mutation. In Fig. 1

were presented phenomena simulated by Gillespie algorithm.
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Fig. 1. Events analyzed in model

Rys. 1. Zdarzenia analizowane w modelu

Cell death is dependent on population capacity. If number of cells is greater than
population capacity death probability coefficient should be larger. Equation for

intensity of cell death process has the following form:

N

Up =E (1)

where N denotes population size and K stands for environment capacity.

Cell mutation can occur while cell is dividing. Cell division is dependent on fitness
coefficient which increase while cell is mutating. Mutation can cast positive, neutral
or negative effect on fitness coefficient. In clonal evolution process cell fitness should
be mostly increasing to provide fast population growth. For simulation purposes
mutation effect is assumed as positive value. Intensity of cellular divisions/births is

different for each cell and is given by
up(D) = (1 +)! (2)

where s is the fitness effect of a single mutation and [ is the number of mutations
accumulated in the cell. Probability of occurrence of a mutation is denoted by p so the

intensity of mutations process is

wp (D =pA+ 9" 3)
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11.2.2. Gillespie algorithm

The first approach involves simulating evolution process cell by cell treating cell
division or death as two reactions and using first reaction or next reaction version of
Gillespie’s algorithm [11]. After analysis, the time value is subtracted from all other
cells and for updated cell new death or division time is generated as random variable
with exponential distribution. Event kind depends on which time variable is the
smallest. For death cell is simply erased from population but while division cell
mutation probability is checked. If cell mutates clone with one more mutation is added

to population. Fig. 2 contains block diagram of that algorithm.

Finding the smallest time variable in population needs to compare all cells to each
other. In worst case computational complexity of algorithm is equal to O((2n)!). In
every loop one variable is compared to every other time variable in whole population
composed of n cells. For small population this complexity is not a problem but for

large initial size simulation time will be very long.

Yes

Delete cell if DhT is smallest
get initial parameters
add cell clone with Yes
one more mutation to if cell mutates
population

generate death time
(DhT) and divide time
(DwWT)

add cell clone to
l population

find smallest time %

value Mo

'

N

Fig. 2. Original Gillespie algorithm block diagram
Rys. 2. Schemat blokowy podstawowego algorytmu Gillespiego

If end of simulation

End
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11.2.3. Tau leap algorithm

To simplify algorithm complexity in one simulation cycle can be analyzed more cells.
Specifying tau value — time step, limits number of iterations to population size. Fig. 3
contains block schema for tau loop algorithm. After time generation for all cells two
comparisons are made — if death time or divide time is smaller than tau. First
phenomena kind is determined by smaller number for one cell. Algorithm idea is the

same as that of the original approach.

To update all cells analyzed in one cycle it is needed to compare both times to tau. For
one cell two comparisons are done so the algorithm complexity can be described as
O(2n). That mean simulation time is linear dependent on population size and one

cycle time is smaller than in original approach.
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Delete cells with End

OhT smaller

1
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Fig. 3. “Tau loop” algorithm block diagram
Rys. 3. Schemat blokowy algorytmu ,,tau loop”
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11.2.4. Binned Gillespie algorithm

Still lowering original Gillespie algorithm cause loss of data accuracy. More
assumptions are needed to take which can provide false simulation data. To simplify
Gillespie algorithm, we propose its binned version. For large initial population basic
algorithm is very slow cause of iteration through whole population. Every cell can be
characterized by mutation number which can provide method for cell grouping. In one

cycle than would be much less groups than cells in population.

Bin Algonthm

Start

hJ

pet initia! paramsiers

o
h

generate number of
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cells and mutating
cells for one mutate
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populstion(i+1) = population{+1})

+ mutates

l

Mo

if end of simulation

End

Fig. 4. Binned algorithm block diagram
Rys. 4. Schemat blokowy grupowanego algorytmu
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Fig. 4 contains block schema for binned Gillespie algorithm. In each simulation cycle
all mutation groups are updated by generating random probabilities based on
population parameters. Death probability depends on population size and population
capacity, division probability depends on fitness factor of each group. For cell

mutation constant probability is assumed — part of dividing cells is mutating.

The complexity of that approach is equal to O(n) where n is interpreted as number of
bins. For large population size number of mutation groups is much smaller then

number of cells so simulation time is also smaller than cell-based algorithm.

11.2.5. Simulation parameters

To properly simulate population evolution few parameters are taken in consideration.
Fig. 5 contains model initial parameters which are base for calculating events

probability.

% Imitial population
pop = 1*%10"6;
cap = 1*10™6;

% Simmlation time
steps = 1000;

% Tau time step — mini step in one time step
tau = 0.005;
skip = 20;

% mutation ratio
mutRatioc = 0.2;

% new divide probability
diwProk = 1%10"(-3);

Fig. 5. Model initial parameters

Rys. 5. Poczatkowe parametry modelu

Death probability is calculated based on population size and population capacity.
Divide probability depends on bin fitness. Mutation probability is assumed as constant
value describing mutation-division ratio. In each simulation cycle only, events for
cells with death/division time smaller than tau are occurring. In large population tau
value can be interpreted as probability that event for cell will occurs. In simulation
every calculated parameter is multiplied by tau. That describes how many cells should
be updated.
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11.3. Results and discussion

Introduced algorithm modification reduce algorithm complexity and simulation time.
To analyze impact on data accuracy few experiments were made.

11.3.1. Algorithms comparison

To prove that binned version of Gillespie algorithm result accuracy does not differ
from original and tau loop version comparison of results after 10 cycles is presented.
Experiment was performed multiple times, for all attempts results were as described.
Fig. 6 shows result of “tau loop” algorithm and binned algorithm. Simulation
parameters assumed in that experiment are shown on Fig. 5.

Simulation time for one cycle is eight times greater for the “tau loop” approach. The
complexity of binned version is better. Distribution of mutated cells are very similar.
Can be assumed the differences between both results are neglectable and could occurs
because of randomness in coefficient generation.

« 104 tau loop vs binned

I tau loop: 393.74 s
[ binned: 45.26 s

cell count

1 20 25 30 35 40 45 50 55 60 65
mutations

Fig. 6. “Tau loop” and binned algorithm comparison after 10 cycles of simulation
Rys. 6. Porownanie wynikow algorytmoéw “tau loop” i zbinowanego po 10 cyklach symulacji
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11.3.2. Mutation wave

Accumulation of somatic mutations in cancer clone can be seen a traveling wave of
increasing numbers of mutations in cancer cells [12]. The mutation wave obtained in
our simulations is presented on Fig. 6 for “tau loop™ algorithm and binned algorithm.
Clonal evolution can be described as chaotic process with causes very fast population
growth and cell mutations. To analyze that phenomena experiments with simulation
parameters were made. Fig. 7, Fig. 9 and Fig. 11 shows mutation wave speed while

capacity, mutation/division ratio and fitness modifier were change.
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Fig. 7. Mutation wave speed versus population capacity
Rys. 7. Predkos¢ fali mutacji wzgledem pojemnosci populacji
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Fig. 8. Population statistics across 50 generations for capacity equal 2000000
Rys. 8. Statystyka populacji przez 50 generacji dla pojemnosci 2000000

Population capacity seems to have no impact on mutation wave. Independently on its

value mutation wave velocity rise with number of generations. When cells population

mutates, fitness factor changes in positive way. The cells are mutating and dividing

more spontaneously providing wave velocity rise and population growth. Fig. 8 shows

population statistics for capacity two times larger than initial population. The number

of cells at the very beginning doubles and still rises. Mutation number also rises — at

simulation beginning slowly then faster.
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Fig. 9. Mutation wave velocity versus mutation/division ratio
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Fig. 10. Population statistics across 50 generations for mutation/division ratio equal 0.4
Rys. 10. Statystyka populacji przez 50 generacji dla wspotczynnika mutacji 0.4

Mutation-division ratio can be interpreted as chance for cell to mutate while dividing.

Its value has the highest impact on mutation probability what is shown on Fig. 9. For

small ratio values wave velocity rise slowly. Small rose of ratio causes enormous

change in wave speed and population growth. High velocity of mutation wave causes

many mutations in cells what is shown on Fig. 10. Also, population size is growing

rapidly.
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Fig. 11. Mutation wave velocity versus fitness factor modifier

Rys. 11. Predkos¢ fali mutacji wzgledem modyfikatora wspotczynnika dopasowania
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Fig. 12. Population statistics across 50 generations for fitness modifier equals 0.0005

Rys. 12. Statystyka populacji przez 50 generacji dla modyfikatora dopasowania 0.0005

In Fig. 11 is presented mutation wave velocity while changing division probability
modifier — fitness factor modifier. Every mutation has impact on cell division
probability. In experiment was assumed only positive effect. When its value rise,
wave velocity also rises. For small values wave velocity seems to stay constant.
Population size, as have been shown on Fig. 12, rises slowly for small modifier value.

Mutation number changes nearly linear.

11.3.3. Fitness wave

The moving mutation wave can also be interpreted as the wave of fitness moving in
the population of cancer cells. Fitness factor provide information about population
adaptation. If its value is higher cell division probability also is higher. Fig. 13, Fig. 14
and Fig. 15 contains fitness waves of few generations dependent on capacity,
mutation/division ratio and fitness factor modifier. Data present on these figures

complements information from O.
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Fig. 13. Fitness wave for population capacity 2000000
Rys. 13. Fala dopasowania dla pojemnosci populacji 2000000
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Fig. 14. Fitness wave for mutation/division ratio 0.4
Rys. 14. Fala dopasowania dla wspotczynnika mutacji 0.4
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Fig. 15. Fitness wave for fitness modifier 0.0005

Rys. 15. Fala dopasowania dla modyfikatora dopasowania 0.0005

Moving fitness wave provide information about population adaptation so also about
population growth. If fitness wave is steady, population evolution should be slow and
random. For positive movement of fitness wave can be observed growing cell number

and also mutation number.

11.4. Conclusions

Studying clonal evolution of tumor cells reveals changing dynamics of the size of
tumor as well as of numbers of somatic mutations in cancer cells. These dynamics is
a derivative of acquisition of somatic mutations in the cells and is related with
mutations wave moving forward. In principle, the occurring mutations may alter cell
fitness/adaptation in different ways: if the point mutation occurs at a gene causing the
cell to divide or survive more likely, this mutation gives an advantage for the cell and
the underlaying gene. Likewise, the mutation can occur at gene with little to none
effect on cell fitness/adaptation or it can cause deterioration of evolutionary fitness of

the cancer cell carrying it.

In this study we analyzed simulation scenarios of evolution of cancer clones with each
somatic mutation causing small increase of fitness of cancer cells. We have elaborated
and implemented two versions of Gillespie’s algorithm and we have pursued several

computational/simulation experiments.
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We have observed phenomena in genomic clonal evolution of cellular populations

described in the literature, population growth in response to increasing adaptation of

cells and traveling wave of advantageous mutations and fitness in the cancer cells

population.
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IMPROVING GILLESPIE SIMULATION ALGORITHM FOR FITNESS
IN CLONAL EVOLUTION

Abstract

Haploidal clonal evolution governs adaptation dynamics of many populations to
environmental conditions. Importantly, clonal evolution stands behind growth of
cancer cells populations in human tumors. Genetical forces behind haploidal evolution
are replications, mutations, selection and genetic drift. Due to the lack of
recombination in the process of haploidal evolution of a population one observes
formation of population clones, i.e., subpopulations of identical/similar genetic
profiles.

Important area of studying evolution of clones in haploid evolution is mathematical
modelling. Due to nonlinearity, interference of several forces and large scale of
models mathematical modelling is often supported by computer simulations. In this
study we present a simulation system for modelling clonal evolution of haploidal
populations based on Gillespie scenario of generating evolutionary events. Due to
large cellular/bacterial population we propose modifications of the algorithm based on
binning subgroups of cells with equal number of mutations and generating
distributions of times of cellular divisions, deaths and mutations in subgroups. We
demonstrate results of simulations and improvements in efficiency of modelling due
to introduced mutations.

Keywords: clonal evolution, mutation waves, numerical model, stochastic simulation,
Gillespie algorithm
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