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Chapter 13. UNSUPERVISED CLUSTERING FOR DETECTION
OF GENE EXPRESSION PATTERNS IN HUMAN
CANCERS

13.1. Introduction

Cancer evolution is a complex dynamical process of uncontrolled growth of
tissues/cells with dysregulated signalling, metabolism, and replication mechanisms. It
is caused by somatic alterations/mutations of DNA, which can cumulate during
mitotic replication of cells. Some studies report that somatic mutation might influence
gene expression levels. Our study provides reliable, highly statistically significant
support for gene expression pattern occurrence in human cancer. Our analysis is based
on the Cancer Genome Atlas (TCGA) (Genomic Data Commons) database.

Our data is focused on gene expression levels in cancer since the matter of gene
expression itself is still an extensively researched topic. We are studying the
hypothesis that gene expression profiles would allow us to distinguish between
different types of cancer. Another goal is to decide which unsupervised clustering
algorithms will perform the best in the given task. The criterion performance in

various metrics is calculated using clustering results and the ground truth.

13.2. Methods

For the experiment, we used the data from cBioportal, a portal for cancer genomics
data. It is related to TCGA (The Cancer Genomic Atlas) being an interactive resource

for the exploration of multivariate cancer genomic data. Moreover, cBioPortal
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provides open access to molecular profiles and clinical attributes of different cancer
genomic studies.

The resources of cBioPortal contain but are not limited to DNA methylation data,
mRNA and microRNA expression or phosphoprotein level data (RPPA). We have
used mRNA (messenger RNA) expression data for our analysis. mRNAs are the
product of DNA transcription. The central role of messenger RNA is to function as
a template for translation. During this process, mRNA sequences are first translated to
amino acids, which then build functional proteins. Increased or decreased mRNA
levels might be related to various diseases, including cancer. We wanted to determine
if this kind of data contains enough information to distinguish between different types
of cancer. The data we have used consisted of the median expression level of RNA
sequencing data. We parsed the data to the format presented in Table 2. In rows, we
gathered different cancer types mentioned in Table 1.

Table 1
Types of cancers

Cancer type

Stomach adenocarcinoma

Glioblastoma multiforme

Lung squamous cell carcinoma

Lung adenocarcinoma

Breast invasive carcinoma

Ovarian serous cystadenocarcinoma

Brain lower grade glioma

Thyroid carcinoma

Prostate adenocarcinoma

Pancreatic adenocarcinoma

Each row contains a subject, and each column describes the case using gene
expression information. Next, we mixed gene expression information from all selected
cancer types in possible combinations without repetitions. We created 50 mixtures of
2, 3,4, 5 and 6 components. Each mixture was created ten times, containing different
types of cancer. In addition, each set consisted of almost 20 000 features, and the
number of observations ranged between 500-4000. Since the data is categorical and
data points belong to real numbers, we assumed that this type of data might be

described by a mixture of gaussian distributions.
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Table 2
Input data — simplified example
Gene 1 Gene 1 Gene 2
Cancer 1 15.4 15.4 5.2
Cancer 1 11.67 10.6 2.57
Cancer 2 18.67 12.64 1.8
13.2.1. Pipeline

The very first step in the analysis was data preprocessing. The data was parsed to
fixed matrix format N x M where N indicates the number of patients and M number of
genes, our variables of interest. Since we had to analyze more than 20 000 features,
we used the decomposition method based on a Gaussian mixture of variances.
According to the model, the features with the highest variance were left in the dataset,
and the rest was treated as noise. In our comparison, we used four unsupervised
algorithms: k-means, hierarchical agglomerative clustering, fuzzy c-means, and
Gaussian EM. The listed algorithms are based on distance metrics, while the last uses
a mixture of Gaussian distributions. To measure algorithms efficiency, we combined
a few approaches. One was to prepare a binomial test for each algorithm. The other
one was calculating Adjusted Rand Index, Simple Matching Coefficient, its weighted
version and Averaged Jaccard Index. We applied the Hungarian algorithm, for the
SMC index, which allowed us to assign classification results to their respective

clusters.

13.2.2. Hierarchical clustering

Hierarchical clustering (HC) is called such because of the way it creates the clusters.
HC results are a series of partitions with a visible hierarchy resembling tree branches.
In the analogy, each branch is a cluster. The bigger branch consists of many smaller
branches; at the end, it becomes a trunk, that incorporates all the data. However, there
are two ways to cluster the data. We can start from a single point up to the whole data
set or the complete data and successively build clusters up to one point. It is called
agglomerative and divisive clustering. In our analysis, we are using the agglomerative
method [3].
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Hierarchical Agglomerative Clustering (HAC) is the most popular way to cluster the
data. We first must decide upon the distance and linkage methods we will use during
the analysis. The distance method explains how the distance or similarity between
points will be measured. Some commonly known measures are Euclidean, Manhattan,
Minkowski and others. The second choice is the linkage method. It determines how
data points will be grouped in consecutive clusters. The few examples here will be
single, complete or average linkage. The hierarchical clustering model allows us to
choose any number of clusters without the need to repeat the calculations. It is
a unique attribute of HC, not present in other unsupervised algorithms. Initially, we
need to determine the metric that describes a relation between the data points. To do
that, we can use similarity (e.g., Jaccard index) or distance (e.g., Euclidean) measure.
The choice depends on scientific questions and the data itself. Next is the choice of
linkage method. It will determine the way of how the data will be clustered together. It
has a heavy impact on the results.

Last but not least thing to do is choose the number of clusters. We can do it in two
different ways. The first one is to choose the number of groups exactly. Another way
is to cut the branches at a specific tree height. The tree's height depends on the largest
distance or similarity between two clusters in the data. We can also base our choice of

clusters on this metric [2].

de(X,Y) = (1 —y1)2 + (g = y2)2 + - (xp —y)* =

dp(X,Y) =dg(X,Y)
where:
dg — Euclidean distance
X, Y — probability distributions
Xi, yi — realizations of X and Y
As for the linkage method, we used Ward's method that is based on minimizing error

sum of squares (ESS).

Nx 2

ESS (X) = Z

i=1

Nx

)
Xi—— ) Xj
TN LY

]=

d(X,Y) = ESS(XY) — [ESS(X) + ESS(V)]
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13.2.3. k-means

K-means algorithm is an iterative, distance-based algorithm. It is easy on resources,
quick and computationally effective. Because of the low usage of memory, k-means is
suitable for clustering huge data sets. It is a significant advantage over hierarchical
clustering methods. Apart from their informative tree structure, they are

computationally heavy.

Moreover, a k-means algorithm might be used to initialize other algorithms, for
example, those based on Expectation-Maximization. From the mathematical
perspective, k-means is similar to the normal mixture model. Estimation of parameters
is done by the maximum likelithood method. The primary idea behind the k-means is
that observations are gathered around artificially introduced centres, called centroids.
Centroid can be treated as a mean generalization, a geometric centre of a convex
object. In general, the distance between centres and observations should be minimal.
Data points closest to the particular centre are part of its cluster [3]. The initial number
of centroids is equivalent to the number of clusters k in the data. The number of initial
groups is required to start the algorithm. There are different ways to choose the
number of clusters beforehand, but we can also use expert knowledge or assumptions.
The algorithm stops in a few cases. The most desirable one is the occurrence of
convergence. For example, the creation of clusters with the highest similarity of points
within a given cluster and the lowest between different ones. In the commonly used
Hartigan-Wang algorithm, the stop criterion is based on minimizing the total sum of

variance within clusters (WCSS). It is given by the formula [5].

kK
1l II2
1X;; — Cill
=1 1

WCSS = Z

l

]:
There are a few k-means algorithms: Lloyd, Forgy, MacQueen and the one already
mentioned, Hartigan-Wong. The last one is the default k-means algorithm in the

R software, used in the study.

13.2.4. Multivariable Gaussian mixture clustering (GaussEM)

Fitting the multivariable Gaussian mixture model to data can be done using the
Expectation-Maximization algorithm was (Dempster, Laird and Rubin [1]). It is

commonly used in a situation when the observations can be viewed as incomplete.
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Some examples of cases when it is used are: missing data, truncated distributions,
censored or grouped data [7]. The usual requirement to start EM for Gaussian mixture
is to provide a k number of clusters. Knowing the number of subgroups in the data, we
can initialize parameters in the next step. Initialization During initialization, we need
to create a first guess of the parameters. In the case of Gaussian mixture, we need to
initialize mixing proportions (o), mean (p), and variance ¢ 2 for each mixture
component k € {1..K}. Mixing proportions indicates how much of the mixture space

belongs to K. Depending on the number of K, we need to provide equal number of ox.
0!1 az Ol3 oo (XK

Assume that we have a mixture where k = 3. In that case, we need to create three
o parameters. We can use uniform distribution ax ~ U(0.1, 1) to obtain initial alphas.
We advise to keeping the interval within [0.1, 1] because shallow values might cause
over dominance of larger o during the estimation step. After choosing values from

a uniform distribution, they should be standardized.

K

~ a1+a2+”°+ak ~

ag = andZak=1
k=1

Zf:l ak
The Gaussian probability density function is expressed as:

_ (X - #k,m)2
207 m

fiem(x) =

exp

V2T o m

The E-step utilizes Bayes Theorem. Likelihood of data, given model is multiplied by

prior value, alpha. Alpha is treated as a mixing proportion value.

a =1 fim Ot p°)

1 M ,,old) —
p(k | xTU ""xn ’p ) - K 1d M 1d
K=1 CZ,% Hm:l fK,m(x;Lnl po )
p is equal to the vector of required parameters, p = [Wi,1, . . ., WM, -+« » UK 15 « - MK M
wOlly--esOIlMy.verOK,1y...,O0KM |

The M-step is used to update parameters o, p and o?, according to the presented

equations.

new _ Zrl\{:l P(k | x3, ...,x%’pold)

ay N
N 1 M Id
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n=1 Pl | xp, ., 2y, po)



196

w2 _ Zaes (o= ) p(k 1, bl po4)

o k=12,..,.Km=1,...M
(o5 n=1 Pk | X3, ., xp, po)

The algorithm finishes its iterations when the absolute difference between old and new

parameters is less than 1e-6.

13.2.5. Adjusted Rand Index

To determine efficiency of algorithms, we compared them using the Adjusted Rand
Index (ARI) index. We have implemented the version that was proposed in [13].

_ n ()G Q6
3= )+ ()]-= ()= (2)/6)

ARI

where:
where: | ¥; Y, e Y sums
Xy N1 Niz Nis az
X N1 N2z Nas a
XT' nTl nTZ nTS aT
sums by b, by

13.2.6. Simple Matching Coefficient and its weighted version

To calculate Simple Matching Coefficient (SMC) and Weighted Simple Matching
Coefficient (WSMC), we have used the Hungarian algorithm. However, instead of
finding a minimal value for each row/column, we were looking for a maximal value.
In this way, the maximal value was considered a true positive. The Simple Matching
Coefficient is a straightforward metric. We divide the sum of true positives by the
number of all values. The downside of this solution is that it does not impose any

weights [10]. The green colour in Fig. 1 indicates matching groups.
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Fig. 1. Cross-table of clustering results
Rys. 1. Tabela krzyzowa wynikoéw grupowania
Simple Matching Coefficient equation:

Noo + N1y

SMC =

Noo + Ni1 + No1 + Nyg

To mitigate the problem with unequal groups, we can use the WSMC metric that

addresses this issue:

Nog N
WSMC = —2 11
aq a;

13.2.7. Averaged Jaccard index

The Jaccard index is a popular metric [4]. Here we are using its simple variation to

take two and more clusters.

_ Noo Niq
= + /2
Ni; + No1 + Nig - Noo + No1 + Ny

With the increased number of clusters, we have more terms in brackets and the

denominator changes accordingly.

13.2.8. Binomial test

We used a binomial test to test hypotheses about correctly classifying cancer. It was
possible since the classification result might have two outcomes: success or failure.

The probability p was scaled accordingly to the number of clusters with p = 1/k.
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13.3. Results and discussion

To show the efficacy of algorithms from diverse perspectives, we present results using

various index values.

We start with the classical one, the Adjusted Rand Index.

Boxplots of ARI value across clusters
In four unsupervised learning algorithms

Tl

Algorithm BE Fuzzy c-means EBE GaussEM BB Hierarchical Clustering BB k-means

ARl value
o
(9]
o

" Clusters

Fig. 2. Performance of four algorithms in various number of clusters

Rys. 2. Wydajnos¢ czterech algorytméw przy zmiennej ilosci grup

In Fig. 2, in the case of HC, k-means and fuzzy c-means, we observe that the
ARI index decreases with the increased number of groups. This trend is barely
observed in the case of the GaussEM algorithm. Here, the median value oscillates
between 0.74 and 0.60.

We can use violin plots to make the results more compact (Fig. 3). In addition to the
values, violin plots show their density. The first three algorithms are denser. In the
case of Gauss EM, the values are more concentrated in the upper parts of value

indexes.
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Various index values in different algorithms
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Fig. 3. Violin plots showing different quality measures

Rys. 3. Wykresy skrzypcowe pokazujace rozne miary jakosSci

Fig. 4 shows results from the binomial test. The p-values are scaled to the power of
1/60 to make the results visible. We can see that majority of the values are below the
p = 0.05. What is worth noticing is that even after raising results to the power of 1/60,

the median value of GaussEM remains close to zero.

We compared the performance of four different unsupervised clustering methods that
were based on distance metrics and maximum likelihood. For the comparison, we
used the gene expression data from the TCGA portal. To assess the efficacy of the
algorithms, we used various metrics, like Adjusted Rand Index, Jaccard, Simple
Matching Coefficient, Weighted Simple Matching Coefficient, and binomial test. All
of the compared algorithms showed statistically significant results. HAC performed as
second best. Although computationally heavy, it is not very useful for big data in its

original form.
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Binomial test p-values of different algorithms
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Fig. 4. Scores from the binomial test, raised to the power of 1/60

Rys. 4. Wyniki testu dwumianowego, podniesione do potegi 1/60

Fuzzy c-means, a bridge between distance and maximum likelihood-based methods,
performed better than k-means. Perhaps results might be improved using different
parameters, e.g. fuzzyfied value. K-means scored the lowest both in the binomial test
and other metrics. Although its simplicity, and low computational power, the
requirement makes it still valuable, whether it is data exploration or starting point for
the Expectation-Maximization methods. Finally, the multivariable Gaussian mixture
with Expectation-Maximization algorithm obtained the highest score in all the
presented metrics. It indicates that GaussEM is a good approach to finding gene

expression patterns in human cancers.
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UNSUPERVISED CLUSTERING FOR DETECTION OF GENE
EXPRESSION PATTERNS IN HUMAN CANCERS

Abstract

In this study, we compare four unsupervised algorithms in the gene expression data of
different human cancers. We based our analysis on openly available data from Cancer
Genome Atlas (TCGA) (Genomic Data Commons) database. We tested two
properties. The first is if there is a clear pattern in the gene expression data. The other
was to select the algorithm which performs the best. Our results suggest that an
expression pattern exists in different types of human cancer. As for the algorithm, the
EM algorithm based on multivariate Gaussian mixtures showed the most promising

performance.

Keywords: unsupervised clustering, GMM, k-means, HC, cancer, gene expression, EM
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