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Chapter 14. NUMERICAL ANALYSIS OF SKIN TUMOR FREEZING
USING DUAL-PHASE LAG MODEL

14.1. Introduction

Low temperature can lead to cell necrosis. When the temperature is low enough to
freeze water, ice crystals appear in extracellular spaces. Hence, a hyperosmotic
extracellular environment is created, which draws water from cells, leading to the
shrinkage of cells and destruction of their membranes [1]. As the temperature
decreases, ice crystals appear within the cells. During thawing recrystallisation occurs,
that is, ice crystals fuse and form larger crystals. When the ice melts, a hypotonic
extracellular environment is created, and water flows back into cells. Their volume
increases, leading to additional cell damage. Cryobiological research proved that any
part of the freeze-thaw cycle may be injurious. Skin tumor (e.g. melanoma) is treated

with cylindrical cryoprobe, which is applied directly to its surface (Fig. 1).

Rapid cooling is more destructive, so the cooling rate should be as high as possible
[1]. Experimental data vary from 22°C / min to 50°C / min to even 220°C / min [1, 2].
However, in vitro research reports significant cell damage in a cooling ratio of as low
as 1°C / min [3]. It should be noted that rapid cooling appears only near the cryoprobe,
and the cooling rate is reduced as the distance from the probe increases. Taking these

variances into account, the cooling rate has a low impact on injury production [1].

In cancer treatment, there is a difference between lethal and surely lethal tissue
temperature. The lethal tissue temperature can be achieved in the range of —15°C to

—20°C [1, 4, 5]. The cell survival rate should be minimalised; therefore, the surely
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lethal tissue temperature can be established below —40°C [1, 4, 5]. In some
experiments, the lethal dose is defined as low as —60°C with the requirement of
repetitive freeze-thaw cycles [6]. However, the temperature —40°C nowadays is
defined as a lethal dose in a variety of research, connecting this temperature with the

physics of water (the crystal growth is highest in the range from 0°C to —40°C [1]).

cylindrical cryoprobe

cancerous tumor, e.g. melanoma
subdomain where cell necrosis will occur
frozen subdomain (tissue remains viable)

tissue in a normal state

Fig. 1. Considered domain
Rys. 1. Rozwazany obszar
The thawing rate is a key destructive factor. Cell damage increases greatly with
prolonged thawing and the thawing rate should be as low as 1°C / min [7]. Rapid
thawing increases cell survival ratio very highly. In fact, slow thawing is more

important in cell destruction than rapid cooling [1, 7, 8].

Repetition of the freeze-thaw cycle increases previously frozen volume and intensifies
cell necrosis. For example, in the treatment of facial basal cell carcinomas, the cure
rate for the double freeze-thaw cycle is 95.3% compared to only 79.4% for the single
freeze-thaw cycle [9]. The effect of repeated freeze-thaw cycles has a greater impact

on cure rates when the freeze temperature is relatively warm, e.g. —20°C.

Mathematical modelling methods are extremely helpful in planning cryosurgical
procedures. They allow for the analysis of many variants of freezing with different
cooling rates, number of freeze-thaw cycles, and different durations of the process. In
this paper, the freezing process is described by the dual-phase lag equation

supplemented with appropriate boundary and initial conditions. The problem is solved
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using the finite difference method both in the explicit and implicit schemes. Using an
in-house computer program, the temperature distribution in the domain analysed is
calculated, the subdomain of the frozen region is determined, and the effectiveness of

freezing the tumor is estimated.

14.2. Mathematical model

In 1995 Tzou [10] proposed the introduction of two time lags in Fourier law,
representing a macroscopic lag (delayed response) between the temperature gradient
and the heat flux as a result of microstructural effects, governing the following

formula

q(x,t +15) = —AVT(x,t +17) (1)

where q is the heat flux vector, x = {r, z} denotes geometrical coordinates, t is the
time, A is thermal conductivity, 1, and 7 are the phase lags (called relaxation and

thermalization time respectively).

The following first-order (linear) approximation can be obtained with the use of

Taylor series expansions

aq(x,t) _ aVT(x,t)

qx,t) + 14

Both phase lags are assumed to be small, so nonlinear orders are negligible [10].
Introducing formula (2) to the well known macroscopic energy equation one obtains

[10, 11]

T (x, t 0°T(x,t
gt )+rq 652 ) =V[WT(x,t)]+rTv[x

oVT(x,t)
= 3

d
where c is the volumetric specific heat.

In biological tissue, internal heat sources should also be considered, which gives the

following dual-phase lag equation (DPLE) [11]
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c

6T(x,t)+ 0°T(x,t)
ot K rre

— VAV (x, )] + 1,V [x aVTa(:’ t)] Q& D) + 1 aqg:, Droxt ()
aQF (X, t)
K rr

Internal heat source Q (X, t), related to blood perfusion and metabolism, is defined as

the following sum

Q(x, ) = wep [Ty — T(% )] + Qe (T) (5)

where w 1s the blood perfusion rate, c;, is the specific heat of the blood, T, is the

arterial blood temperature, Q,,.; is the metabolic heat source.

The internal volumetric heat source Qr (X, t), related to the phase change, is defined as

aS(xt)  dS(T)aT(x0)
& t) =L——=L—r—75; (6)

where L is the volumetric latent heat of freezing and S(x, t) is the frozen state fraction.

After determining the derivatives and some transformations, one can obtain

00(x,t) 00r(x,t)
T-l‘QF(X,t) + 14 Fat

dw(T d T)10T
=14 [% ¢ (T, —T) —w(T)c, + Q";;( ) ETA +w(T)c, (T, — T) (7)
ds(T) aT [dZS(T) <6T)2 dS(T) 02T
. L)

+ Qmee (D + L= Fr + 1ol | =502 \57) * a7 32

Q(x,t) + 14

and by denoting the derivative of the blood perfusion rate and the derivative of the

metabolic heat as

v =20 ) = HneD) (8)

the dual-phase lag equation (4) can be written as follows

oT 92T dC(T) /9T\?
[C(T) + T4w(Tcp — v(T)cp (T, = T) — Pree(T}] ot 1,C(T) 5z T g (E) o)
oT
— VO(T)VT) + 1,V [A(T)v (E)] +W(T)ey(Ty —T) + Qppoe (T)



207

where C is a substitute thermal capacity of the intermediate region [11]

_ ds(T)
C(T)—C(T)—Ld—T (10)

In this paper, the following functions have been assumed that describe the dependence

of the blood perfusion rate and the metabolic heat source on the temperature

Wy T>T;
_ — 12
W(T) = WOTl—TZ Tz STSTl (11)
0 T<T,
Qmeto T > T1
_TZ
Qme:(T) =10 —F T,<T<T 12
0 T <T,

where T; is the beginning temperature of freezing and T, is the ending temperature of
freezing. If part of the tissue is frozen and thawed, then the blood perfusion rate and
the metabolic heat source are permanently equal to zero due to the destruction of

blood vessels in that region [11]. The derivatives of these two parameters are given as

follows
0 T>T,
v(T)=<WOT1_T2 T2 STSTl (13)
\ 0 T<T,
0 T>T,
Pt (T) =<0 —— T,<T<T 14
met( ) l met0 Tl_TZ 2 1 ( )
0 T<T,

where w, and Q,,,.+o are the values determined for the tissue in its natural state.

In the temperature range [T,, T;] a linear function was assumed to describe the frozen

state fraction

T —
S =7 (15)

Therefore, the substitute thermal capacity can be written as
Cy T>T,

C = CP+

n-r, ='=h (16)

Cr T<T,
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where ¢y, cp, and ¢y denote the thermal capacity of tissue in its natural, intermediate,
and frozen state, respectively. Substitute thermal capacity (eq. (16)) in this article is
a step function, thus eq. (9) can be written in the following form
aT 0%T
[T+t w(Dey = v(Dey (Ta = T) = Pree (M} 51 + 7€M 57

o (17)
= VOT)VT) + 1,V [x(T)v (E)] + W(T)ey(Ty —T) + Qe (T)

Also, the thermal conductivity is a step function given as

w  T>T,
e | T<T,

where Ay, Ap, Ap denote the thermal conductivity of the tissue, in its natural,

intermediate and frozen state, respectively.

On the contact surface between the tip of the cryoprobe and the skin tissue, the

Dirichlet condition is assumed

T =Tp(t) (19)

and on the other surfaces the adiabatic boundary condition is assumed

- [n VT (x,t) + 17 W =0 (20)

where n - VT (x, t) is the normal derivative.

The initial conditions are given as follows

t=0: T=T ot
o P atl—

=u (21)
where T, is the initial temperature and u is the initial cooling rate.

As mentioned earlier, the phase lags 1, and 1 are small constant values [10]. DPLM
can be reduced to thermal wave equations (hyperbolic model) for 1 = 0 s [10, 12].
The classic Fourier equation (parabolic model) can be obtained by substituting

T, = Tr = 0 s. It should be noted that the dual-phase effect in biological tissue is

important even for 1, = 17 [13].
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14.3. Numerical model

In a cylindrical coordinate system eq. (17) can be written as

2
[C(T) + tgw(T)e, — (T (T, — T) — Pmet(T)}] +qu(T)

- lk(T) [a—T +1rs ( ] MT)[ TT%(Z_D]

2% /0T
D) a ot (2) |+ W (T =) + Qe (D)

(22)

Numerical computations are carried out using the finite difference method (FDM)

[14]. The time grid with the constant time step At is introduced. The quadratic mesh

with the constant grid step / is applied.

Using the explicit FDM scheme eq. (22) can be written as

f-1 f-1 f-1 f-1 f—l
M P RY: s/ .
f L _pf-1 ij f-1 i,j f-1 ij f-1 f-1 i,j
T/ = T /71 4 /7 4 (T. +T )
i f-1"14j f-171j+1 f-1°14j-1 f-1\"i-1,j i+1,j f-1
ij Ki,j ki, ki, ki,
where
[Cf_1+r {Wf_lc Y (T —Tf_l) P }]At+rC
Kf_1 _ i,j q i,j b i,j b\‘a i,j m€t1] q
ij (At)2
f-1 f-1 f-1 f-1 f-1
Mf_l_[ci,j t+tg (Wl ey = vl ep(Ta = T/7) = Preed 2} At + 21,C
i,j - (At)z
Mt
n2ar u b
it _ Mitae+ ) W+ )
Lj N hZAt Zhri']‘At
= Mitac+) Ao+ )
Lj N hZAt Zhri,jAt
o1 Mt + 1)
LT R2At
f-1 f-1 f-1 f-1
wlt = My tr Tqli; 2 | hj tr My Tr /-2
L h2at (AD)? | 2hryjAt  h2At | W

Wl AT S
J TR T nf-2 Mg T f-2 f-2 f-1
[ZhrijAt h2At Ti,j—l + h2At (Tz 1,j +Tl+1]) Wi,j CbTa

-1
+ Qmet{:j

and using the FDM implicit scheme eq. (22) can be written as

(23)

(24)



210

g/t f-1 1 ¢/t
f _u f L] f 129) f f L]
Tij _Af— Tij 1+ f-1 Ti,j+1 f-1 (T +TL+1])+Af—1 (25)
ij ij ij ij

where

[C[j_1 +14 {w{j_lcb — vif_j_lcb(Ta - Ti{;._l) Pmet” }] At + C.’fj_qu o1

f-1_
Ai,j =

02 +WL-J- Cp
AN+
h2At
e Mt@ac+t) NNt + )
W h2At 2hr; jAt
i1 _ Mtac+t) MMt + )
o h2At 2hr; At
. (26)
Fo1 _ki_j (At +17)
By == e
f-1 -1 f-1 f-1 f- 1

e el g {wl ey = vl e (Ta = T7) = Prneel Y] At + 2601, e
i,j (At)Z i,j

AVt

Tr
, f-1 f-1 f—1 f-1 f-1
h2At (Ti,j 1 Tl}+1 T‘ T1+1] _4T )

A1 cf 1c

f-1 f-1 ij ta,.f-2 f 1 Fo1
- Zth]At (Ti,j+1 - Ti,j—l) (At)z Ti, + W CbTa + Qmeti,j

The system of linear equations in the implicit scheme is solved iteratively.

Both schemes presented must be supplemented by boundary conditions. In an explicit
scheme, stability condition must be fulfilled [15]. The implicit scheme of the finite
difference method for the DPLE is always stable [16].

14.4. Results of computations

The cylindrical tissue domain of dimensions R = 0.04 m, Z = 0.04 m at initial
temperature T, = 37°C is considered. The tip of the cryoprobe of diameter D = 0.025 m
is subjected to the skin. Thermophysical parameters are as follows: thermal
conductivities Ay = 0.52 W/(m K), A, = 1.26 W/(m K), Az =2 W/(m K), volumetric
specific heats ¢y = 3.6 MJ/(m? K), ¢, = 2.78 MJ/(m? K), ¢z = 1.93 MJ/(m* K), blood
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perfusion rate in natural state w, = 0.5 kg/(m? s), metabolic heat source in natural state
Qmeto = 245 W/m?, specific heat of blood ¢, = 3770 J/(kgK), arterial blood
temperature T, = 37°C, volumetric latent heat of freezing L = 330 MJ/m?, intermediate
zone [-8°C, —1°C], that is T, =—-8°C and T; =—1°C [11].

Stage III malignant melanoma is considered. The diameter of tumor infiltration is
30 mm (approximately 20 mm of the main tumor accompanied by satellite tumors)
and its depth is 5 mm [17, 18]. The initial cryoprobe temperature is 37°C. The final
temperature of the cryoprobe is —160°C and four freeze-thaw cycles are considered
[19]. The cooling rate is set at 120°C / min and the thawing rate is set at 5°C / min.
After the cooling stage, the constant temperature is maintained for 5 min. The

dependence of the cryoprobe temperature on time is shown in Fig. 2.

Four cases of phase lags values were considered. Case 1 in which 1, = 0 s and
1r = 0 s represents the Pennes model. Case 2 in which 7, = 0.48 s and 17 = 0.48 s is
based on the results published in [13]. Case 3 in which 1, =3 s and 17 = 0.1 s is
discussed in more detail in [11, 12]. Case 4 in which 1, = 15 s and 17 = 10 s is taken

from [20].

40 T T T

20 .

Fig. 2. Temperature of the cryoprobe
Rys. 2. Temperatura kriosondy
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The influence of delay times on the obtained results was tested on the first freezing
(Fig. 3). Explicit (solid line) and implicit (dashed line) schemes were compared. The
results were obtained for: the number of nodes 51 x 51, grid step h = 0.0008 m, time
step At = 0.05 s. The results are similar for both schemes for all cases. The differences
between the Pennes model and the DPLM are most notable near the axis of symmetry
and near the cryoprobe.

The next calculations were performed using the implicit scheme of the finite
difference method under the assumption that the time step is equal to At = 1 s and
phase lags are equal to T, = 3 s, 17 = 0.1 s, respectively (case 3). As shown in Fig. 4,
this time step gives results similar to those for At = 0.1 s and At = 0.05 s, but the

computation time is much shorter.

In Fig. 5-7 the temperature distributions after first, second, and fourth freezing are
shown. The red dashed line marks the area of tumor infiltration.

Fig. 8 presents a temperature history at the selected points. Two points along the axis
were chosen, r = 0 m, z = 0.004 m (blue line), r = 0 m, z = 0.008 m (red line), and
one point near the necrosis temperature border, r = 0.008 m, z = 0.008 m (orange
line). The temperature history is similar for each freezing.

40

30
20
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0
-10

-20

T °C

-30

-40

-50

-60

T =087 =10s
T, =048 s, 77 = 0.48 8
0 —3s =0l
—_—Ty =158 17 =10s
80 I I i
50 75 100 125 150 175 200

ts

Fig. 3. Temperature history at the points 1 (0, 0.004 m), 2 (0.012 m, 0.004 m), 3 (0.008 m, 0.008 m)
from 50 s to 200 s

Rys. 3. Historia temperatury w punktach 1 (0, 0.004 m), 2 (0.012 m, 0.004 m), 3 (0.008 m, 0.008 m)
od 50 s do 200 s
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Fig. 4. Temperature history points 1 (0, 0.004 m), 2 (0.012 m, 0.004 m), 3 (0.008 m, 0.008 m)
depending on the time step in the implicit scheme for case 3, from 50 s to 200 s

Rys. 4. Krzywe stygniecia w punktach 1 (0, 0.004 m), 2 (0.012 m, 0.004 m), 3 (0.008 m, 0.008 m)
w zaleznosci od kroku czasowego w schemacie niejawnym dla przypadku 3, od 50 s do 200 s

0 0.008 0.016 0.024 0.032 0.04
r,m

Fig. 5. Temperature distribution after first freezing (t = 6 min 40 s)
Rys. 5. Rozktad temperatur po pierwszym zamrazaniu (¢ = 6 min 40 s)
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Fig. 6. Temperature distribution after second freezing (t = 52 min 42 s)
Rys. 6. Rozktad temperatur po drugim zamrazaniu (t = 52 min 42 s)
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Fig. 7. Temperature distribution after fourth freezing (¢ = 2 h 24 min 46 s)
Rys. 7. Rozktad temperatur po czwartym zamrazaniu (t = 2 h 24 min 46 s)
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After the third and fourth freezing, a slight increase in the frozen subdomain and the

necrosis subdomain is observed (Tab. 1).

The numerical analysis carried out shows that for the considered malignant melanoma,

a fourth (and possibly a third) freezing during the cryosurgical procedure is not

necessary.
Table 1
Frozen and necrosis volume after each freezing
After Frozen volume | Necrosis volume tgﬁxéizltlun:e Is the entire
. (below —8°C) (below 40°C) | . . P tumor below the
freezing 3 3 inside the tumor,
cm cm oC lethal dose?
1 6.17 3.45 -32.1 N
2 8.46 4.29 —42.5 Y
3 9.32 4.59 453 Y
4 9.66 4.71 —46.4 Y
40 I I I I I
/ / /
20 1
O "
-20 H |
O
°. -40 1
]_
-60 1
-80 _
-100 | 1
_1 20 1 | 1 | 1 |
0 0.5 1 15 2 28 3
t, h

Fig. 8. Temperature history at selected points
Rys. 8. Krzywe stygni¢cia/nagrzewania w wybranych punktach
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14.5. Conclusions

Numerical modeling of biological tissue freezing can be used as a supporting tool in
planning the cryosurgery treatment procedure. Using numerical modeling, one can
select the appropriate cryoprobe diameter, tip temperature, freezing and thawing time,
cooling rates, number of freezes, predict the size of the necrosis area and determine
whether the lethal temperature can reach the entire tumor. The frozen subdomain can
also be determined, allowing one to estimate the risk of freezing surrounding healthy

tissue.
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NUMERICAL ANALYSIS OF SKIN TUMOR FREEZING USING
DUAL-PHASE LAG MODEL

Abstract

In the paper, the freezing of skin tumors (e.g. malignant melanoma) is considered. The
tissue damage mechanism and the freeze-thaw cycle are presented. The thermal
interaction between the cryoprobe and tissue is described using a dual-phase lag
model (DPLM) in which two phase lags are defined: the relaxation time (associated
with the heat flux) and the thermalization time (the temperature gradient lag).
Numerical calculations were carried out with the finite difference method (FDM).
Implicit and explicit schemes are derived and compared. Finally, numerical modeling

of an exemplary cryosurgical procedure is described and analyzed.

Keywords: bioheat transfer, dual phase lag equation, freezing of biological tissue,

finite difference method
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