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Abstract 

 

 

The expansion of high throughput experimental techniques leads to collecting a massive 

amount of data that must be processed. These data's characteristics are the huge number 

of features and the nontypical statistical distribution of the obtained signal. Hence, there 

is a need to develop new algorithms and pipelines to process them. One of phenomena 

measured with high throughput techniques is DNA methylation - epigenetic modification 

crucial for gene expression control and cancer development. Aberrations of DNA 

methylation in Acute Myeloid Leukaemia (AML) might be a reason for differences in 

treatment response and survival time between patients with de novo and therapy-related 

AML (AML being a side effect of previous malignancy treatment). Therefore, this thesis 

aims to develop pipelines for processing the DNA methylation data and investigate the 

DNA methylation profile in AML patients. The greatest approaches were developed, 

selected, and described from data preprocessing, statistical analysis, mathematical 

modelling, and functional analysis of detected features to validate the results with 

different experimental platforms. 

Initially, the original algorithm for finding DNA methylation profile of AML is presented 

and implemented for data obtained with methylation microarrays. It is a composition 

of mathematical modelling and statistical approaches to conclude about low, medium, 

high and extremely high hyper- or hypomethylation of genome sites or regions. 

Subsequently, the detection of differences between genders in DNA methylation levels 

and survival factors in specific genomic regions in AML patients is investigated. It uses 

the integration of results obtained in a comparative and survival analyses. Moreover, 

the pipeline for detecting aberrations in DNA methylation in de novo and chemo- or 

radiotherapy-related AML is described. It is drawn upon supervised and unsupervised 

feature selection in epigenetics and functional analysis domains. The result is the 

detection of several biomarkers of therapy-related AML, confirmed in an independent, 

pyrosequencing experiment.  



10 

 

 

Streszczenie 
 

 

Rozwój wysokoprzepustowych technik eksperymentalnych prowadzi do wytwarzania 

ogromnej ilości danych. Charakteryzuje je duża liczba mierzonych cech oraz nietypowy 

rozkład statystyczny otrzymywanego sygnału. Stąd potrzeba opracowania nowych 

algorytmów i sekwencji metod do ich przetwarzania. Jednym ze zjawisk mierzonych 

za pomocą technik wysokoprzepustowych jest metylacja DNA - modyfikacja 

epigenetyczna, kluczowa dla kontroli ekspresji genów i rozwoju raka. Zmiany metylacji 

DNA w ostrej białaczce szpikowej (AML) mogą być przyczyną różnic w odpowiedzi 

na leczenie i czasie przeżycia między pacjentami z samoistną białaczką i z białaczką 

będącą skutkiem ubocznym terapii innego nowotworu. Dlatego celem niniejszej pracy 

jest opracowanie schematów do przetwarzania danych dotyczących metylacji DNA 

i zbadanie profilu metylacji DNA u pacjentów z AML. Opracowano, wybrano i opisano 

najlepsze podejścia od wstępnego przetwarzania danych, poprzez analizę statystyczną, 

modelowanie matematyczne, do analizy funkcjonalnej wykrytych cech i walidacji 

wyników uzyskanych z wykorzystaniem różnych platform eksperymentalnych. 

Na początku pracy przedstawiono i zaimplementowano oryginalny algorytm 

poszukiwania profilu metylacji DNA w AML, dla danych uzyskanych za pomocą 

mikromacierzy metylacyjnych. To połączenie modelowania matematycznego i metod 

statystycznych, pozwala na wnioskowanie o niskiej, średniej, wysokiej i bardzo wysokiej 

hiper- lub hipometylacji miejsc i regionów genomu. Następnie badano wykrywanie 

różnic między płciami w poziomach metylacji DNA i czynnikach przeżycia u pacjentów 

z ostrą białaczką szpikową. W tym podejściu wykorzystano integrację wyników 

uzyskanych w analizie porównawczej i analizie przeżycia. Ponadto opisano metodę 

wykrywania aberracji metylacji DNA u pacjentów z białaczką samoistną lub związaną 

z chemio- lub radioterapią. Wykorzystuje ona nadzorowaną i nienadzorowaną selekcję 

cech w przestrzeni epigenetycznej i analizy funkcjonalnej. Wykryto kilka biomarkerów 

ostrej białaczki szpikowej związanej z terapią, potwierdzonych w niezależnym 

eksperymencie, za pomocą pirosekwencjonowania. 
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1. Introduction 

 

 

1.1. Motivation 

The development of high throughput experimental techniques has progressed in the last 

years. The possibility to measure thousands of features in the same experiment leads 

to the collection of a massive amount of data that must be processed. However, huge 

number of features often do not correspond to similar number of observations. This 

difficulty and also nontypical distributions of measured data are challenges when seeking 

the algorithms for these data analysis. Hence, there is a demand for new data analysis 

and processing methods dedicated to a specific experimental platform.  

Cancer diseases are commonly examined with the use of high throughput techniques. 

In such malignancies, aberrations occur in each stage of gene expression. They can 

be caused by mutations and epigenetic modifications, which impact gene expression level 

and, indirectly, cell proteome's qualitative and quantitative composition. All of these 

modifications influence cell functionality. One of the crucial phenomena is DNA 

methylation. It is one of the most important epigenetic processes. Methylation of gene 

promoters, especially those rich in CpG sites, is essential for gene expression control. 

The development of proper statistical methods would lead to detecting alterations in DNA 

methylation level during cancer. Such information is crucial for understanding 

the mechanism of malignancy and impacts the way of treatment. 

One of the cancer diseases in which DNA plays an essential role is acute myeloid 

leukaemia (AML). It can initiate and develop by itself, and it is called de novo AML 

in this case. It can also be a long-term side effect of the previous malignancy treatment 

and then it is called therapy-related AML (t-AML). It can be distinguished into 

radiotherapy-related AML and chemotherapy-related AML. Patients with t-AML are 

characterised by worse treatment response and survival rate than de novo AML patients. 
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The epigenetic mechanism behind these differences needs to be investigated. A proper 

composition of different statistical approaches and mathematical modelling methods will 

enable the detection and selection of the most critical disparities. In the future, it can 

result in the development of a therapy, considering the specificity of DNA methylation 

aberrations in t-AML and being dedicated to radio- and chemotherapy-related AML 

patients. Until now, no study of the epigenome-wide DNA methylation profile of t-AML 

has been conducted. 

This dissertation describes the research of DNA methylation in AML of various 

aetiology. The greatest approaches were developed, selected, and described from data 

preprocessing techniques, statistical analysis, mathematical modelling, and functional 

analysis of detected features to validation the results with different platforms.  

 

1.2. Aim of the work 

The objective of this work was to develop and select proper methods dedicated to analysis 

the DNA methylation data, which enables the detection of features differentiating 

examined patient groups. The research methodology includes an overview of biological 

mechanisms in acute myeloid leukaemia and epigenetic processes, existing approaches 

for DNA methylation data collection and analysis, and the invention and implementation 

of new pipelines for differential features detection. The expected results of this work 

comprise the development of new procedures for analysing DNA methylation data, 

especially coming from small samples, and their application. 

Based on the motivation and aim of this thesis, the following statements were formulated: 

1. The composition of methods based on mathematical modelling, comparative statistical 

analysis and their results integration, used for DNA methylation data analysis, enable 

the detection of differences in DNA methylation levels in genomic regions among 

examined patient groups.  

2. Integration of results acquired using different experimental platforms leads to obtaining 

validated findings that are less susceptible to errors. 
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1.3. Chapter contents 

The Background chapter introduces epigenetic processes and their functions in the living 

organism. Furthermore, the genesis, epidemiology, classification, therapy, prognosis, 

and DNA methylation aberrations in acute myeloid leukaemia are described. Then, 

therapy-related AML and literature findings regarding epigenetic alteration in this type 

of AML are presented. In the end, techniques for measuring DNA methylation 

and methods for analysing DNA methylation data are investigated. 

The Materials and Methods chapter presents the description of the analysed datasets 

and methods used for their analysis. In each case, the methodology consists of DNA 

methylation level distribution analysis, detection of differentiating probes among 

examined patient groups, integration of related outcomes to find genomic regions 

characteristic for specific cases, and functional analysis. Additionally, the research 

investigating differences between genders in AML includes survival analysis, while 

different AML types research is extended into markers detection and validation 

and unsupervised feature selection. 

The Results chapter presents the most important findings obtained in the presented 

analyses. First, an acute myeloid leukaemia profile examination based on the differences 

between AML and healthy sample distribution is presented. Next, methylation level 

differences between genders in specific genomic regions are investigated and compared 

with healthy control. Furthermore, the detection of genomic regions that can impact 

survival is described. Then, methylation profiles of various patient groups are 

characterised, as well as detection and validation of differentially methylated genomic 

regions in de novo AML, chemotherapy-related AML, and radiotherapy-related AML are 

presented. Finally, the integration of results from all of the analyses is reported. 

The Conclusion chapter summarises the obtained outcomes and expands them with 

the biological interpretation. 
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2. Background 

 

 

2.1. Epigenetics and its role 

The term "epigenetics" refers to molecular processes impacting the changes in genes' 

functionality - e.g., their expression level, which leads to different phenotypes with 

persistent DNA sequence. 

The term "epigenetics" was used for the first time in 1942 by Conrad Waddington [1]. 

He proposed the definition as "the branch of biology which studies the causal interactions 

between genes and their products which bring the phenotype into being [2]." 

In the original meaning, epigenetics refers to all molecular processes that regulate 

genotype expression, which become apparent as phenotype variants. Nowadays, the sense 

of this term has evolved into "the study of changes in gene function that are mitotically 

and/or meiotically heritable and that do not entail a change in the DNA sequence" [3]. 

However, epigenetic modifications of the genome impact not only gene expression 

and silencing but also non-coding regions [4].  

The most important epigenetic mechanisms include DNA methylation, histone 

modifications, and pre- and post-transcriptional gene regulation by small non-coding 

RNAs. 

2.1.1. DNA methylation 

In mammals, DNA methylation is a modification of cytosine into 5-methylcytosine 

in CpG sites of the genome. CpG sites are symmetrical dinucleotides where cytosine 

is followed by guanine. "p" represents the phosphate group between nucleosides. "5" 

refers to the fifth position of methylated carbon in the cytosine ring. De novo DNA 

methylation is catalysed by two methyltransferases, Dnmt3a and Dnmt3b [5]. The process 

is the addition of a methyl group onto unmethylated DNA, which determines 
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the methylation pattern. After cell division, methylation patterns are maintained 

by Dnmt1 methyltransferase. The scheme of the abovementioned enzymes activity 

is presented in Figure 2.1. 

DNA methylation plays a crucial role in establishing parental imprinting during 

gametogenesis and also repressing retrotransposons and silencing genes on an inactivated 

X chromosome.  

 

Figure 2.1 Scheme of activity of Dnmt3a and Dnmt3b in de novo methylation and Dnmt1 in maintenance 

methylation. 

CpG dinucleotides occur with a frequency lower than expected across almost the whole 

genome. However, in some areas, their incidence is higher than expected - these areas are 

called CpG islands [6]. CpG islands are not equally distributed in the genome. They are 

mainly concentrated in gene promoter regions [7]. However, a lot of them are localised 

inside genes or intergenic areas. Intergenically located CpG sites can be transcription start 

sites for non-coding RNA [8].  

2.1.2. Histone modifications 

The best-examined histone modification process is histone acetylation. The histone 

acetylation process is binding an acetyl group onto lysine on the N-termini of histones.  

Histone modifications are widespread changes in histone status. Modifications 

in the N-termini of H3 and H4 histones are well examined. H3 histone has lysine amino 

acid in several positions. Lysine can be mono-, di- or tri-methylated. The trimethylation 

of lysine 4 (in the fourth position) and acetylation of lysine 9 is an activation process. 
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It weakens histone-DNA affinity and leads to a lack of chromatin compaction. 

Methylation of lysine 9 enables the binding of heterochromatin protein 1 (HP1), which 

leads to inactivation. Genes in heterochromatin are usually inactivated. Heterochromatin 

structure prevents polymerase accession (Figure 2.2).  

DNA methylation also has an impact on chromatin structure. A hydrogen bond between 

5-methylcytosine and guanine is 1.8 times stronger than that between cytosine 

and guanine. Proteins that bind to methyl-CpG sequences (MECPs - methyl-CpG binding 

proteins) cooperate with methylated DNA. MECP2 directly blocks IIB transcription 

factor or forms a complex with histone deacetylases to modulate and condense chromatin 

structure [9].  

 

 

Figure 2.2 A scheme of histone modifications during gene activation and repression. 

2.1.3. Pre- and post-transcriptional gene regulation by small non-coding RNAs. 

The study on Schizosaccharomyces pombe yeast proves that interference-RNA also 

participates in chromatin modification [10]. Double-stranded RNA prevents 

the accumulation of transcripts. Deletion of these mechanism elements can lead 

to impairment of centromere function and loss of histone H3 methylation. The siRNA 

(small interfering RNA) coming from centromere-homologous repeat initiates 

methylation of lysine 9 in histone 3. The next step of this process is the binding 

of HP1homolog (Swi6), which is essential for heterochromatin maintenance [11]. 

Another epigenetic process involving RNA is controlling gene expression by miRNA. 

One-stranded miRNA binds to specific mRNA thanks to sequence complementarity. 
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Complementarity in this situation is very high but not complete. Bounded mRNA cannot 

be translated, which decreases the expression of a particular gene [12].  

Endogenous, small non-coding RNAs can also induce chromatin inactivation nearby 

targeted sequences of the genome [13]. 

2.1.4. Role of epigenetic processes 

Stem cell differentiation 

Two features are the most specific for stem cells: self-renewal and the ability 

of differentiation into cells, specific for the tissue type. Pluripotent stem cells can develop 

into every type of cell in the organism. Multipotent or unipotent stem cells are maintained 

in all tissues for their whole life. They can develop only into specific cells. During 

the process of cell differentiation, morphological and functional changes occur in cells. 

They are determined by gene expression patterns. Genes responsible for self-renewal are 

silenced, while genes specific for cell type are activated. The epigenetic status of stem 

cells and differentiated cells is relatively stable because of the mechanisms of inheritance. 

Initiation and maintenance of gene expression changes are connected to a unique 

epigenetic program, including covalent DNA and chromatin modifications. Small non-

coding RNAs are also involved in pre- and post-transcriptional gene regulations [14].  

Gene expression control 

Genetic information is expressed through transcription, translation, and protein 

modifications. Every cell contains the same DNA sequence. However, cells differ 

according to types, functions, and, consequently, gene expression. Gene expression 

patterns are determined during cell differentiation and maintained during mitotic cell 

divisions. Hence, cells inherit genetic and epigenetic information. Inherited epigenetic 

information consists of cytosine methylation, post-translational histone modifications, 

chromatin remodelling, and RNA-based mechanisms. Epigenetic processes mainly impact 

transcription, but they can also regulate splicing and translation.  

DNA methylation leads to two processes - inhibition of DNA recognition by some 

proteins as well as simplification of binding other proteins with DNA.  

In vertebrates, over 80% of CpG sites are located outside CpG islands, while most CpG 

sites inside CpG islands are more often unmethylated [15].  
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The impact of cytosine methylation on gene expression involves multiple mechanisms. 

One of them is DNMTs and transcription factor interactions. This site-specific 

methylation in the gene promoter region leads to binding proteins which recognise 

methylated DNA [16]. Consequently, these protein clusters directly impact 

the transcription process or lead to chromatin structure changes. 

Other proteins, i.e., methyl-binding proteins (MBPs), bind methylated cytosine with their 

MBD domain and repress the transcription process across hundreds of base pairs with 

the transcription repressive domain [17]. Alternatively, the MBP changes the chromatin 

condensation through binding with linker DNA and nucleosomes, which is a physical 

block for transcription factors. MBPs cooperate with additional enzymes, such as histone 

deacetylases, which also are crucial for gene expression control. 

Histone protein post-translational modifications are another epigenetic processes that 

control transcription. These modifications impact chromatin structure, changing its 

conformation and cooperating with other proteins: attract effector proteins 

to the chromatin or repress binding of associating with chromatin proteins. In general, 

histone acetylation has a positive effect on transcription, while for deacetylation, 

it is the opposite. The effect of methylation depends on modified aminoacid. Deamination 

is part of the repression process. 

The following gene expression control epigenetic factors are small non-coding RNAs. 

Several types of them can be distinguished: miRNA (microRNA), siRNA (short 

interfering RNA), and piRNA (piwi-interacting RNA). They develop from bigger RNA 

precursors. Mature miRNAs bind to target mRNA to inhibit transcription or direct mRNA 

degradation. Mature siRNAs behave similarly to miRNA - they can inhibit transcription 

or lead to mRNA degradation, depending on the complementarity level. siRNAs are also 

involved in the silencing of transcriptional genes, especially transposable elements. 

In animals, transcriptional gene silencing consists of the involvement of histone 

methyltransferases and heterochromatin forming. piRNA binds to piwi-family proteins 

in spermatozoa and oocytes. Maternal piRNA in oocytes changes descendants' phenotype. 

Hence they are part of the epigenetic inheritance mechanism [18]. 

The last type of transcription controlling particles is long non-coding RNAs (lncRNAs). 

lncRNA transcription impacts the transcription level of a downstream promoter 

by changing the recruitment of polymerase II or chromatin configuration. Alternatively, 
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antisense and sense transcripts hybridisation can lead to alternative splicing of sense 

transcripts or siRNA generation. lncRNA can also interact with proteins, regulating their 

localisation in cells or activity. Some lncRNAs interact with modifying chromatin 

complexes [15]. 

Genome stability maintenance 

Genome stability is an organism feature that maintains and transmits genetic material 

during cell division. It consists of DNA and RNA replication and replication mistakes 

repair as well as reconstruction of damaged DNA or RNA. Genome instability leads 

to DNA damages and mutations [19]. The parts of the genome that are most vulnerable 

to genome instability processes are repeated DNAs. Their recombination causes 

chromosome rearrangements. Chromatin condensation plays a crucial role in DNA 

damage recognition and repair. Demethylation of lysine 9 histone H3 leads to an increase 

in spontaneous DNA damages occurrence and activation of DNA repair processes [20]. 

2.1.5. Epigenetic modification factors 

Some external processes impacting epigenetic modification can be distinguished among 

internal organism mechanisms. Some of them are physical environment factors. 

An example can be seasonal changes in DNA methylation pattern in women from 

Gambia [21]. The immediate factor was diet changes across the whole year. The presence 

of some compounds such as folic acid, vitamin B-12, choline, and betaine impact DNA 

methylation in women and, consequently, their children's phenotype.  

The other factors are psychological experiences. In examined males, psychological 

anxiety, measured as the feeling of fear, depression, and hostility, was positively 

correlated. At the same time, happiness and life satisfaction were negatively correlated 

to the average methylation level of Intercellular Adhesion Molecule-1 (ICAM-1) 

and coagulation factor III (F3) promoter. These psychological factors were also 

associated with average methylation of the glucocorticoid receptor (NR3C1), interferon-γ 

(IFN-γ), and interleukin 6 (IL-6) promoters. Mentioned genes are involved 

in inflammatory processes, which are connected to coronary heart disease (CHD) [22]. 

Oppositely to chronic effects, DNA methylation level can change dynamically in a stress 

reaction. The DNA methylation level of OXTR (oxytocin receptor) was examined just 

before stress as well as 10 minutes and 90 minutes after stress. Directly after stress, 

methylation level increases and then decreases to a level lower than in the beginning [23].  
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2.1.6. Aberrant DNA Methylation and Cancer 

Two epigenetic processes are common in cancer diseases: hypomethylation 

and hypermethylation. However, they occur in different DNA sequences. Most 

of the genome becomes hypomethylated, while hypermethylation occurs in CpG islands 

in gene promoters [24]. Global hypomethylation brings genome instability. Gene 

promoter hypermethylation leads to tumour suppressor genes inactivation. Additionally, 

hypermethylation regulates ncRNA (e.g., miRNA) expression, which plays a role 

in tumour suppression. Hypermethylated gene promoters can be considered cancer 

biomarkers.  

DNA methylation changing factors can be considered in cancer therapies because of their 

reversibility [25]. Epigenetic-oriented therapy can be used in hematological malignancies 

treatment [26]. 

 

2.2. Acute myeloid leukaemia 

2.2.1. AML genesis 

Acute myeloid leukaemia (AML) is a cancer of the myeloid cell line in the bone marrow. 

In this malignancy, abnormal hematopoietic cells are produced and accumulated [27]. 

At the same time, the production of other blood cells is defective [28]. That is why most 

AML symptoms are associated with the dysfunctionality of blood cells [29]. A low level 

of erythrocytes leads to anemia with weakness, suffocation, tachycardia, and pallor 

of skin and mucosae. As a result of thrombocyte deficit, bleeding from the nose, gums, 

digestive system, vagina, central nervous system, and disseminated intravascular 

coagulation can occur. The lack of normal leucocytes causes immune disorders 

and increases the number of severe infections. Sometimes splenomegaly and adenopathy 

occur [30].  

Anomalies can appear on different levels of cell maturation. Usually, two types of genetic 

mutations occur. The first concerns the genes responsible for the proliferation, 

and the second concerns the genes responsible for cell differentiation and self-renewal. 

After a cascade of genetic disorders, clones of abnormal, immature progenitor cells 

proliferate. The apoptosis process in these clones is disturbed, so cancer cells accumulate 

[29].  
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2.2.2. AML epidemiology 

Acute myeloid leukaemia is the most common acute leukaemia in adults, however its 

percentage depends on population (80% in Poland [31]). It is rather rare in children - 

18% of all leukaemias [32]. It occurs more often in men than in women [33]. 

Risk factors for AML include radiation exposure (e.g., radiotherapy) [34], exposure 

to certain chemical substances such as benzene [35], agricultural chemicals 

or chemotherapy [36], blood disorders such as myelodysplastic syndrome (MDS) [37] 

or myeloproliferative neoplasms (MPN) and genetic factors, e.g., Down syndrome [38]. 

2.2.3. AML types 

In 1976 French-American-British classification of AMLs (FAB) was proposed [39]. Six 

types of AML were distinguished, and two types were added later: 

● M0 - acute myeloblastic leukaemia, minimally differentiated, 

● M1 - acute myeloblastic leukaemia, without maturation, 

● M2 - acute myeloblastic leukaemia, with granulocytic maturation, 

● M3 - promyelocytic or acute promyelocytic leukaemia (APL), 

● M4 - acute myelomonocytic leukaemia or myelomonocytic together with bone 

marrow eosinophilia (M4eo), 

● M5 - acute monoblastic leukaemia (M5a) or acute monocytic leukaemia (M5b), 

● M6 - acute erythroid leukaemias, including erythroleukaemia (M6a) and very rare 

pure erythroid leukaemia (M6b), 

● M7 - acute megakaryoblastic leukaemia. 

The currently used classification is the one proposed by World Health Organization 

(WHO) in 2008 [40]. It considers morphological, immunophenotypic features as well 

as molecular and cytogenetic abnormalities. It distinguishes seven types of AML: 

● Acute myeloid leukaemia with recurrent genetic abnormalities with nine subtypes, 

● Acute myeloid leukaemia with myelodysplasia-related changes with 18 subtypes, 

● Therapy-related myeloid neoplasms, 

● Myeloid sarcoma, 

● Myeloid proliferations related to Down syndrome, 

● Blastic plasmacytoid dendritic cell neoplasm, 

● AMLs not otherwise categorised with nine subtypes, which do not suit the above 

types and are similar to FAB categories.  
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Molecular AML typing has influenced diagnosis and risk assessment but cannot be used 

to predict specific treatment. The only type of AML with specially designed therapy 

is APL [41]. 

2.3.4. AML therapy 

Treatment of AML contains three phases: induction, consolidation, and optional 

maintenance [42]. Induction chemotherapy is provided with anthracycline and cytarabine 

[28]. Consolidation therapy follows clinical and hematological remission. Allogeneic 

stem cell transplantation is recommended for patients with a high risk of relapse. In other 

cases, chemotherapy is continued. Maintenance therapy consists of observation 

of the malignancy followed by allogeneic stem cell transplantation if needed [43]. 

In APL, treatment begins with all-trans retinoic acid oral application [44]. Then, 

it is continued with chemotherapy. 

2.2.5. Prognosis in AML 

Overall survival of AML is age-dependent. Prognosis is poor for patients older than 60 

years. The 5-year survival rate for them is 17%, while for younger patients, it is 32% [45]. 

For the youngest patients (below 20 years) 5-year survival rate is 69% [46]. 

2.2.6. DNA methylation in AML 

Changes in DNA methylation patterns are specific for cancer, and so for acute myeloid 

leukaemia. Several mechanisms induce aberrant methylation in AML. The methylation 

pattern in young and healthy hematopoietic stem cells changes with age, similarly 

to cancer. The acquired methylation pattern is inhomogeneous and diversified. Genetic 

mutations of transcription factors disable binding them to their binding sites. They induce 

hypermethylation of these binding sites. This situation occurs in the mutated CEPBα 

transcription factor, which leads to hypermethylation of its binding sites. Another 

mechanism - downregulation of transcription factors by oncogenes also can result 

in hypermethylation of their binding sites. An exemplary transcription factor is PU.1, 

downregulated by PML-RARα. The last processes impacting DNA methylation are 

changes in chromatin conformation [47]. Some of the described processes are shown 

in Figure 2.3. 

DNA methylation is a feature that can be used to distinguish patients with different AML 

types. Differentially methylated gene sets can be used as biomarkers as well 

as therapeutic decision and prognosis indicators [48]. 
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Figure 2.3 Mechanism of inducing aberrant DNA methylation in AML in comparison to healthy 

hematopoietic stem cell (A): mutation of transcription factor 1 (TF) induces hypermethylation of its binding 

site (TF1-BS) (B). Downregulation of transcription factor 2 (TF2) also induces hypermethylation of its 

binding site (TS2-BS) (C). In both (B and C) cases, epigenetic drift - various changes in methylation 

pattern, can be observed. 

 

2.3. Therapy-related AML 

Therapy-related acute myeloid leukaemia (t-AML) is AML occurring as a side effect 

of molecular changes (i.e., mutations, DNA methylation aberrations) developed after 

radiotherapy, chemotherapy, immunosuppressive therapy, or their combinations, given 

for pre-existing malignancy. Approximately 10% of AML cases are therapy-related 

AML.  

The first reports about t-AML came in 1970 and were published in Lancet [50] [51]. Both 

described cases concerning ovarian cancer and its therapy with a drug called thiotepa. 

t-AML occurred about a dozen months after the therapy.  

According to WHO classification, we can distinguish two types of t-AML: alkylating 

agent/radiation-related t-AML and t-MDS and topoisomerase II inhibitor-related AML 

(The WHO classification of the myeloid neoplasms). The first type usually occurs 

4 - 7 years after exposure to therapy. One-third of patients have AML with 

myelodysplastic features, and the rest have MDS. Deletion or loss of chromosomes 5 or 7 

is characteristic for this AML subtype [51]. Other hallmarks are complex karyotype 

and worse clinical outcomes within two t-AML types. The second type usually occurs 

between six months and five years (median two-three years) after initiation of therapy. 

Most patients with this type do not manifest preceding myelodysplastic phase but 
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immediate acute leukaemia. This subtype of t-AML is connected to chromosome 

translocations i.e. 11q23 or 21q22.27,28,42-44 and other translocations: inv(16)(p13q22) 

or t(15;17)(q22;q12) and 11q23 and 21q22 abnormalities. The primary response 

to treatment and overall survival is similar to de novo AML with the same genetic 

abnormalities. 

According to FAB AML classification, all AML types are represented within t-AML 

cases. In one study describing 37 cases of t-AML, 19 of them could be classified with 

FAB criteria: M2 - nine cases, M3 - one case, M4 - three cases, M5 - two cases, and M6 - 

four cases [53]. In this study, the time between the beginning of therapy and t-AML 

occurrence was 11-192 months, with a median equal to 58 (1-16 years). The median 

survival time was four months, regardless of getting the treatment. 

t-AML characterises poor prognosis compared to de novo AML. A study of 200 patients 

with t-AML and 2,653 patients with de novo AML shows that four years overall survival 

rate for t-AML is 25.5%, while for de novo AML - 37.9%. Neither type of previous 

therapy nor latency time have an impact on survival [49]. 

t-AML can appear after treatment of different malignancies. In abovementioned study 

37% of patients had breast cancer, 6% - thyroid cancer, 5% - gastrointestinal cancer, 

4.5% - prostate cancer, 4.5% - testicular cancer. 27.5% had hematologic malignancies: 

12.5% - non-Hodgkin lymphoma, 10% Hodgkin lymphoma, 3% - MDS. 1.5% of patients 

received cytotoxic therapy for autoimmune diseases. 

The latency period between primary diagnosis and occurrence of t-AML was 0.33 - 44.14 

years (median 4.04 years). 

Another study of 306 patients [52] with t-AML consists of 10.5% patients with breast 

cancer, 5% with ovary cancer, 4% with prostate cancer, 25% with Hodgkin lymphoma, 

23% with non-Hodgkin lymphoma and 7.4% with myeloma. It is also described that some 

individual features such as single-nucleotide polymorphisms variants can increase the risk 

of developing t-AML. 

Some DNA methylation aberrations were observed in t-AML. In one study [54] 13 gene 

promoters for 11 patients were examined. Methylation level was measured with 

methylation-specific polymerase chain reaction (MSP). In five patients, at least one gene 

promoter was hypermethylated. Hypermethylated gene promoters were: CDKN2B (p15), 
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RB1, MLH1, MGMT, PRDM2, SOCS1. CDKN2B gene is almost always 

hypermethylated in de novo AML, while RB1, MLH1, MGMT, PRDM2, and SOCS1 

genes are not methylated. Latency time between the therapy of primary malignancy 

and developing t-AML was shorter for patients with hypermethylation than for patients 

without hypermethylation (49.3 months and 133.2 months, respectively). t-AML patients 

were classified according to FAB criteria: M0 - one patient, M1 - two patients, M2 - one 

patient, M4 - four patients, and M5 - two patients. One patient had chronic myeloid 

leukaemia in the chronic phase. There was no significant association between methylation 

and FAB AML type, age, gender, therapy, and survival time. It was suggested that 

hypermethylation of specific gene promoters could accelerate the development of t-AML. 

Another study [55] confirms very frequent hypermethylation of the CDKN2B (p15) gene 

in t-MDS and t-AML. It was less common in the M5 subtype according to FAB criteria. 

Hypermethylation of the CDKN2B gene can cooperate with deletions on chromosome 

arm 7q in developing t-AML. Hypermethylation of this gene can be observed even two 

years before t-MDS/AML diagnosis [56]. 

Another gene that is methylated more often in t-MDS/AML than in de novo AML 

is DAPK1 [57]. Inactivation of DAPK1 by its hypermethylation leads to inhibition 

of the apoptosis process and metastasis probability enhancement.  

None of the mentioned research was an epigenome-wide association study - in each case, 

only a few genes were investigated for DNA methylation level. 

 

2.4. DNA Methylation measurement techniques 

There are a lot of DNA methylation measurement techniques that facilitate 

the examination of methylation level genome-wide or in particular regions.  

2.4.1. Genome-wide methylation level  

The ratio of 5-methylcytosine and cytosine must be computed to find the whole-genome 

methylation level. One of the methods used for that purpose is high-performance liquid 

chromatography (HPLC) [58]. In this procedure, whole genomic DNA is hydrolyzed 

to deoxyribonucleotides, which are transformed into deoxyribonucleosides. They are 

separated by standard reverse-phase HPLC. Quantification of cytosine 
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and 5-methylcytosine is provided by UV absorbance. High-performance capillary 

electrophoresis (HPCE) can also be used to separate deoxyribonucleosides [59]. Better 

sensitivity provides a combination of HPLC with mass spectrometry detection [60], 

which can also be used with HPCE. An alternative method can be thin-layer 

chromatography (TLC) [61], which uses radioactively labelled cytosine monophosphate 

and 5-methylcytosine monophosphate.  

Another method is the SssI acceptance assay. It uses bacterial methyltransferase, which 

methylates unmethylated cytosines in CpG sites by the tritium-labelled donor. Then, 

methylated DNA is immobilised on nitrocellulose paper [62]. The amount of radioactive 

label can be measured with a scintillation counter. To measure the whole-genome 

methylation level, a chloroacetaldehyde assay can be used [63]. DNA is processed with 

bisulfite conversion, which changes unmethylated cytosine into uracil (Figure 2.4). After 

incubation of a sample with chloroacetaldehyde, fluorescent ethenocytosine from 

5-methylcytosine can be quantified to find a level of methylated cytosine in the genome. 

Another factor that can be used to determine methylation level is monoclonal antibodies 

raised against 5-methylcytosine [64]. Before incubation with antibodies, DNA must 

be denatured and immobilised on a nitrocellulose membrane. Subsequently, the whole 

sample is incubated with a fluorescein-conjugated secondary antibody and scanned. 

2.4.2. Gene-specific methylation analysis 

To find gene-specific methylation level, DNA must be firstly amplified. To distinguish 

cytosine and 5-methylcytosine, DNA must be modified by methylation-sensitive 

restriction endonucleases (MSREs), bisulfite, hydrazine, or permanganate [65].  

MSREs methods 

In MSREs-based methods, two nucleases are used, where one of them is cytosine 

methylation insensitive (cuts methylated CpG sites) and the other is not. Products 

of digestion can be analysed by Southern-blotting, i.e., fractioned in electrophoresis 

and hybridised with a radioactive probe of the examined gene. The fraction of methylated 

DNA can be quantified by image processing. The second method of digested DNA 

processing is PCR. With primers designed for the gene of interest, it will flow only 

for not cut DNA. Real-time qPCR should be applied to quantify the fraction 

of methylated DNA in the sample. 
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Restriction landmark genomic scanning (RLGS) [66] is a method that enables 

the measurement of thousands of CpG sites methylation levels using one electrophoresis 

gel. After DNA digestion, it is labelled with radioactive molecules in not methylated sites 

and then digested a second time and put into electrophoresis in two dimensions. Resulted 

gel with DNA spots can be analysed with software tools. 

Bisulfite conversion methods 

To prepare a sample for the bisulfite reaction, DNA is digested with restriction enzymes 

and denatured with sodium hydroxide [67]. Then, it is treated with bisulfite at pH 5. 

During bisulfite conversion, each methylated cytosine remains unchanged, and each 

unmethylated cytosine is converted into uracil. Then, in PCR amplification, uracil 

is replaced by thymine. The scheme of this reaction is presented in the Figure 2.4. 

 

Figure 2.4 DNA sequence modifications in bisulfite conversion and PCR amplification 

DNA modified by bisulfite can be analysed by methylation-specific PCR. Two types 

of primers are included in reactions to amplify separately methylated and not methylated 

molecules. After that, the products of PCR are processed with electrophoresis 

and ethidium bromide. Methylation-specific PCR is only a qualitative method and should 

be verified with one of the quantitative methods. A quantitative method is methylation-

sensitive single-nucleotide primer extension (Ms-SnuPE) [68]. It allows quantification 

of methylation level in any CpG site. This technique was originally designed for single-

nucleotide mutation detection. It uses a primer, hybridising with a DNA matrix 

at an interesting CpG site. The amount of hybridised labelled deoxyribonucleotide 

is proportional to the amount of this base on the DNA matrix. Oligonucleotides used 

in this reaction should contain only one CpG site, which is difficult in CpG-rich regions. 
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The product of amplification can be quantified with electrophoresis and phosphorimager 

analysis or with transfer to nylon membranes. 

The product of bisulfite conversion can also be sequenced. Sequence analysis provides 

information about methylation level in every CpG site in an interesting sequence. 

One of the sequencing methods is pyrosequencing. 

Pyrosequencing 

Pyrosequencing is a sequencing-by-synthesis system [69]. Usually, it is used to quantify 

single-nucleotide-polymorphisms (SNPs) [70]. In methylation level quantification, SNPs 

are artificially created by bisulfite conversion.  

Independent primers for PCR amplification and sequencing must be designed. 

The amplified DNA sequence is a matrix with which primers are bounded. Particular 

nucleotides are added to the reaction. The synthesis of the proper nucleotide leads 

to a release of pyrophosphate and light emission. Light is detected by a camera in real-

time. Light intensity is proportional to the number of bounded nucleotides. Each 

potentially methylated site is examined for the percentage of cytosine and thymine 

in the whole sample. The length of the analysed sequence should be no more than 200 bp. 

96 samples can be tested at the same time. Pyrosequencing is a relatively fast, precise, 

low-cost DNA methylation quantification method. 

Another sequencing method that combines both MSREs methods and bisulfite conversion 

is reduced representation bisulfite sequencing (RRBS). It allows for quantifying genome-

wide methylation profile for each CpG site [71]. It uses restriction enzymes to perform 

DNA fragmentation and then bisulfite sequencing. It covers CpG sites across the whole 

genome, but only 10-15% of them. It does not work for CpG sites in regions without 

the enzyme restriction site - long DNA fragments are excluded from the analysis. 

A high-sensitivity and high-throughput method of DNA methylation quantification 

is MethyLight [72]. It uses fluorescent probes and PCR, performed after bisulfite 

conversion. The number of PCR cycles with fluorescence detection is proportional 

to the methylation level in the CpG site. It quantifies the methylation level with 

high-throughput capability and high sensitivity but the low resolution (not with single 

CpG precision).  
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Another method that uses bisulfite conversion is methylation-specific single-strand 

conformation analysis (MS-SSCA) [73]. The bisulfite-treated DNA fragment is amplified 

in PCR. The products of amplification are separated with electrophoresis 

in a polyacrylamide gel. Differences between methylated and unmethylated DNA 

secondary structures lead to the formation of separated bands. They can be visualised 

with fluorescent gel stains. The specificity of this method is lower than 70%. 

In MS-DGGE (methylation-specific denaturing gradient gel electrophoresis) method, 

differentially methylated DNA molecules are divided based on different melting 

temperatures after bisulfite conversion [74]. Different methylation level sequences will 

stay at different positions in the electrophoresis gel. 

The last of these types of methods is MS-DHPLC (methylation-specific denaturing high-

performance liquid chromatography) [75]. This mutation detection method was modified 

for DNA methylation detection. Differences are detected with different retention of DNA 

molecules at high temperatures. 

2.4.3. DNA methylation arrays 

The last but the most popular technique nowadays is the methylation array (bead-chip) 

assay. This high-throughput epigenome-wide method can be used for biomarkers 

identification [76]. It enables for evaluation of over 27 thousand (Illumina Infinium 

Human Methylation 27K) [77], over 450 thousand (Illumina Infinium Human 

Methylation 450K) or even 850 thousand (Illumina Infinium Human Methylation EPIC) 

[78] methylation sites of the genome. In sample preparation, DNA is digested with 

proteinase K and treated with sodium bisulfite. Then, DNA is amplified and hybridised 

onto a bead-chip. Two bead types, dedicated for each CpG site, are used on the array 

to detect methylation level. The beads are bounded to the one-strand DNA 

oligonucleotides (Figure 2.5). 

Then, the chip is stained with antibodies in an immunohistochemical assay and scanned 

to measure the fluorescence intensity. The methylation value is calculated, considering 

both beads' values. 
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Figure 2.5 Methylated beads match the methylated CpG site, while unmethylated beads - are 

the unmethylated sites. In the case of a match, single-base extension occurs. The red label is biotin, 

and the green label is 2,4-dinitrophenol [79]. 

The CpG sites examined on the matrix are spread genome-wide. They cover all genomic 

regions, such as promoter, gene body, and intergenic regions, as well as CpG density 

areas: island, shore, shelf, and the open sea. Moreover, Illumina provides an annotation 

system where each probe is described with genome region, density area, and genome 

location (chromosome number and locus). The contribution of each type of probe 

annotation is presented in Figure 2.6. 

 

Figure 2.6 Percentage of probes belonging to genomic regions (A) and CpG density areas (B). TSS200, 

TSS1500, and 5'UTR form a promoter region of a gene [80].  

Array methods are the compromise among costs, time, and genome coverage. 
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2.5. Analysis of DNA Methylation arrays data 

The purpose of DNA methylation data analysis is to detect differentially methylated 

positions (DMP) and differentially methylated regions (DMR) [81]. 

2.5.1. Normalisation 

The first step of data processing is normalisation. It is aimed to minimise technical 

variance and bias while keeping biological differences between samples and probes [80]. 

Regarding DNA methylation array data, two types of normalisation can be distinguished: 

based on β-value and based on M-value [83]. β-value represents the contribution 

of methylated probes, while M-value is a ratio between methylated and unmethylated 

probes signal. 

  
 

   
 

  
 

 
 

Where: 

● m is methylated probes signal; 

● u is unmethylated probes signal. 

The relationship between β-value and M-value is a logit transformation. Thus, 

the M-value can also be defined in relation to the β-value: 

  
 

   
  

The distribution of β-value ranges from 0 to 1, while M-value distribution ranges from 

- to + infinity, with a mean equal to 0. β-value is easier to interpret biologically and, 

thanks to this, is more often chosen to represent the methylation level. 

One of the normalisation methods that is based on β-value is Beta MIxture Quantile 

dilation (BMIQ) [84]. Type II beads have a lower dynamic range, so their signal must 

be adjusted to type I beads. This procedure uses a model of β distribution mixture of three 

states: U - unmethylated, H - hemimethylated, and M - fully methylated. For U and M 

states, probabilities are transformed into quantiles. For the H state, methylation-dependent 

dilation transformation is performed to adjust data to the gap between U and M 
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components. BMIQ reduces technical variability and bias of type II beads signal and cuts 

out the bias of type I beads. 

The following method is Subset-quantile Within Array Normalization (SWAN) [85]. This 

method contains two stages. The first one is the determination of average quantile 

distribution using the subset of probes described as "biologically similar" based on their 

CpG site content. The second step is the adjustment of the intensity of the remaining 

probes using linear interpolation to define new intensities. SWAN also reduces technical 

variability and makes type I beads' and type II beads' signal distributions more similar. 

SWAN also leads to better detection of differential methylation than raw data analysis.  

Functional normalisation is an alternative to quantile normalisation algorithms [86]. 

It does not force the equal distribution of all samples. It removes only the variability 

explained by a set of covariates, independent of biological diversity. Covariates are 

calculated with the use of two main components of PCA. Information about technical 

variability comes from control probes. It can also be used for batch effect removal, but 

it is suggested to perform it anyway, after normalisation. 

2.5.2. DMR detection 

The next step of DNA methylation array data analysis is the detection of differentially 

methylated regions (DMR). The first method of DMR detection is IMA [87]. In this 

procedure, the representative methylation value for the whole region is calculated. It can 

be mean, median, or Tukey's biweight robust average. To detect DMR, a statistical 

examination is conducted - Wilcoxon test, t-Student test, or empirical Bayes statistics. 

General linear models can also be used to detect the impact of a continuous variable (e.g., 

age) on methylation level. The recognition of differential methylation in the region 

is obtained with the p-value of a test.  

Another method of DMR detection is BumpHunter [88]. It is based on seeking spatial 

compartments characterised by the difference between an estimated function and 0. 

The estimated function can be the average difference between methylation levels in two 

groups. For continuous variables, it can be a slope of the regression curve for each probe. 

Spatial compartments are searched across the genome location. 

In the Probe Lasso method [89], the probes are divided into 28 categories - based 

on genomic region and CpG density from Illumina annotations. For each probe, 
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the dynamic window - a lasso is created. If enough probes are inside the lasso, a region 

is created - overlapping windows are joined. Each region is examined for its differential 

methylation, based on Stouffer's [90] p-value integration. P-values come from 

the statistical test for comparison, e.g., two conditions. 

The last popular method, DMRcate [91], is based on M-value and does not use regions 

proposed in Illumina annotations. It compares two stages or groups with limma for each 

CpG site. Then, p-values are corrected with Benjamini-Hochberg procedure [92]. 

The minimal corrected value is representative of the examined region. According 

to the authors, this method characterises with higher precision than BumpHunter 

and Probe Lasso. 

 

 

  



34 

 

 

3. Materials and Methods 
 

 

3.1. Acute myeloid leukaemia methylation profile 

3.1.1. Data description 

The first dataset used in this study was downloaded from the GEO database [93]. 

GEO database is a public data repository containing functional genomic data such 

as coming from arrays or sequencing experiments. The study regarding described dataset 

(GSE63409) was published before by Namyoung Jung et al. [94] and proved 

the existence of AML subgroups that are epigenetically various. The data consist 

of 19 samples: 5 samples of hematopoietic stem cells (HSC) from healthy donors 

(control) and 14 samples of CD34+38- cells from AML patients. The data were collected 

with Illumina Infinium Human Methylation 450K microarray. Data were normalised 

using the Illumina preprocessing method implemented in the minfi package [95] 

in Bioconductor. Normalisation procedure resulted in estimation of methylation level 

as β-value in 485 512 probes. The distribution of β-value consists of two "peaks" at low 

methylation and high methylation values. The number of sites with medium methylation 

values is the lowest. 

 

Figure 3.1 Histogram of β-value in HSC and AML samples. 

According to annotations provided by Illumina, each probe is described with gene name 

(if it lies inside a gene), genome region (intergenic, TSS1500, TSS200, 5′UTR, 1stExon, 
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Body, and 3′UTR), CpG density area (island, shelf, shore, and open sea) and genome 

location: chromosome number and locus. We decided to combine genome regions into 

three groups: TSS (consisting of TSS1500, TSS200, and 5′UTR sites), gene body 

(consisting of 1stExon, Body, and 3′UTR), and intergenic. The numerosity of each group 

is presented in Table 3.1. 

Table 3.1 Number of probes annotated to each region group. 

Region TSS regions Gene body regions Intergenic regions 

Number of probes 189,524 227,032 93,520 

 

3.1.2. Methylation level distribution and profiles 

Empirical cumulative distribution function (CDF) was calculated for pooled samples: 

control HSC and AML for the whole genome (all probes), TSS regions, gene body 

regions, and intergenic regions using Kaplan-Meier estimate [96].  

To compare whole genome methylation profiles between AML and healthy donors with 

effect size, Cohen's d statistics [97] was used in pooled samples. Cohen's d statistic can 

be calculated according to the following formula: 

  
       

 
 

Where: 

             are averages for sample 1 and sample 2, respectively 

 s is pooled standard deviation, defined as: 

   
        

          
 

       
 

Where: 

 n1 and n2 are numbers of elements in sample 1 and sample 2, respectively 

 s1 and s2 are standard deviations for sample 1 and sample 2, respectively 
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To verify the hypothesis about the consistency in methylation profiles, Cramer's 

V coefficient [98] and its p-value were calculated. Cramer's V coefficient can 

be calculated as: 

   
  

 
            

 

Where: 

 n is a sample size 

 k and r are numbers of subgroups for which samples are divided: 

in this case: low, medium, and high methylated subgroups for healthy control (k) 

and AML (r) samples 

    is the value of the statistic, calculated according to the formula: 

    
     

    
  

 

    
    

 

Where: 

 ni, NJ are numbers of samples element belonging to a particular subgroup 

 nij is the number of samples element belonging to i-th as well as to j-th group  

 i and j are subgroups indices; i ranges from 1 to r, j ranges from 1 to k 

It was performed for probe subgroups, created according to their methylation level. Each 

sample was divided into low, medium, and high methylated groups. Healthy control 

and AML samples were compared. This procedure was performed for the whole genome 

and genome region groups. 

3.1.3. Estimation of shift between β-value distributions 

To estimate the shift between β-value distributions of healthy control and AML samples, 

Hodges-Lehmann (HL) statistics [99] was calculated. This robust and nonparametric 

estimator is based on the median of differences between each pair of elements from two 

samples.  
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It can be calculated according to the following formula: 

          

             

Where: 

 d is a set of distances between each pair of sample 1 and sample 2 

 xi is the i-th element of sample 1 (i ranges from 1 to N1, which is sample 1 size) 

 yj is the j-th element of sample 2 (j ranges from 1 to N2, which is sample 2 size) 

Hodges-Lehmann statistics value was calculated for each probe from the microarray. 

Positive values of HL statistics were obtained for hypermethylated probes, while negative 

for hypomethylated. 

3.1.4. Gaussian Mixture Modelling 

The distribution of Hodges-Lehman distance values was decomposed into Gaussian 

components to detect subpopulations or subgroups of probes [100]. For each subgroup, 

three parameters of Gaussian distribution are estimated: μ - mean, σ - standard deviation, 

and α - weight. Their sum composes the whole HL distribution. Let f(x) denote 

the probability density function corresponding to the analysed signal x. The Gaussian 

mixture model (GMM) of f(x) can be calculated as below: 

                   

 

   

 

Where: 

 K is the number of Gaussian components, 

 αk are non-negative component weights; their sum equals 1, 

 fk is the probability density function of a normal distribution of the k-th 

component, 

 μk and σk are k-th Gaussian component mean and standard deviation, respectively. 
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For fitting Gaussian mixture to HL values distribution, maximisation of log-likelihood 

function is used. The log-likelihood function can be calculated as: 

                      

 

   

 

   

 

Where: 

 N is the total number of elements in a modelled vector. 

Expectation-maximisation (EM) algorithm was applied to maximise the log-likelihood 

function. The initial values of GMM components were set according to the algorithm 

by Polanski et al. [101]. 

To find the best number of Gaussian components, Bayesian Information Criterion (BIC) 

[102] was used. BIC value was calculated for different mixture models with K ranging 

from 2 to 12. The minimal value of BIC indicates the best model: 

                       

Thanks to GMM of HL distance values, some subgroups of probed were distinguished. 

Probes can be differentiated into hypomethylated, low hypermethylated, medium 

hypermethylated, high or extremely high hypermethylated, and no changed. 

The classification of individual probes to the proper component is based on the maximum 

probability rule. The cut-off levels between each subgroup were determined 

by intersection points of probability density functions of components. 

3.1.5. Defining methylation level and detection of differentially methylated probes. 

To check if the individual site is low, medium, or high methylated, its methylation value 

was compared with β = 0.5 (null hypothesis) with one-tailed Wilcoxon tests [103]. Probes 

whose methylation level was significantly lower than 0.5 were considered low 

methylated. Probes whose methylation level was significantly higher than 0.5 were 

considered high methylated. Probes whose methylation level was not significantly 

different from 0.5 were considered medium methylated. This procedure was performed 

for healthy control samples and AML samples separately. 

To detect differentially methylated probes in AML compared to healthy control, one-

tailed Mann–Whitney tests were used [104]. Null hypotheses for these tests were: 
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no difference between AML and control (HL = 0) or difference is lower or greater than 

cut-off levels values from GMM modelling. For positive cut-off levels, right-tailed tests 

were performed, while for the negative - left-tailed test. Both tailed tests were performed 

for the null hypothesis that HL equals 0. The procedure was repeated for each probe, so 

multiple testing correction needed to be applied. It was done with Storey's method [105]. 

3.1.6. Detection of differentially methylated genomic regions 

To check if the individual genomic region is differentially methylated in AML compared 

to healthy control, all p-values of probes belonging to this region were considered. 

For finding one global p-value for each region, Stouffer's method of p-value integration 

was applied [90]. Integrated p-value based on Z-value (from a standard normal 

distribution), which can be calculated as follows: 

  
   

 
   

  
 

Where: 

              

 pi is the p-value for the i-th hypothesis test, 

 Φ is the standard normal cumulative distribution function, 

 k is the number of integrated p-values. 

The procedure was applied for each genomic TSS and gene body region. Additionally, 

for each set of integrated p-values, the adjusted significance level (α) was calculated. 

The basic α (equals 0.025 for one-tailed tests) was transformed according to Stouffer's 

formula, with k equals the number of integrated p-values. Regions with integrated p-value 

lower or equal to adjusted α were considered differentially methylated. 

3.1.7. Functional analysis 

A functional analysis procedure was performed for hypo- and extremely high 

hypermethylated genomic regions. It was done based on Gene Ontology Terms [106]. 

The Gene Ontology database consists of three directed graphs of GO Terms: Biological 

Process, Cellular Component, and Molecular Function. The graph structure allows 

for the interpretation of dependencies between terms (processes or functions) 

in parent-child relationships. Overrepresented GO Terms for examined genomic region 

set were found with the topGO package [107] in Bioconductor. 
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3.2. Gender differences in DNA methylation in AML 

3.2.1. Data description 

The second dataset considered in this work was downloaded from the TCGA-LAML 

project database. The data were obtained with the same Illumina Infinium Human 

Methylation 450K microarray as previously. The number of all probes on the array was 

485,577. However, after filtering out probes that were not significantly different from 

the background, repeat regions, common SNPs, and probes lying on sex chromosomes, 

there remained only 396,065 probes (regarding CpG sites). 2,627 (0.66%) probes had 

missing values, which would be difficult for imputation, so they were removed from 

further analysis. As the result of data preprocessing, the β-value for 393,438 probes was 

obtained. 

The control dataset - healthy donors, was downloaded from the GEO database 

(GSE73103). It regards the study about changes in DNA methylation in obesity. Data 

were obtained with the same array and consisted of β-values for 397,615 probes. 

To compose genomic region groups, Illumina's annotations were also used. However, this 

time probes were divided into three groups: CpG-rich regulatory sequence (RS) regions 

(consisting of sites annotated to TSS1500, TSS200, or 5’UTR genomic regions and island 

or shore CpG density areas), body regions (consisting of sites annotated to 1stExon, 

ExonBnd, and Body regions) and 3’UTR regions. We also have taken into account sites 

annotated to intergenic regions. The number of probes belonging to particular genomic 

regions is presented in Figure 3.2. 

AML data were collected for 140 patients. In addition to DNA methylation level, 

the dataset also contains information about patients' gender, age at diagnosis, vital status, 

the number of days to death (for dead patients), or the number of days to last follow up 

since diagnosis (for alive patients) and information about receiving prior treatment. 

Information about the distribution of selected clinical features is presented in Table 3.2. 
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Figure 3.2 Number of probes among genomic regions groups in healthy and AML datasets 

 

Table 3.2 Clinical factors collected for AML patients. 

 

39 females and 45 males, healthy and normal-weighted, were selected from the control 

dataset. All of the healthy control patients were of similar ages.  

3.2.2. Comparison of clinical features values between male and female AML patients 

Values of clinical features were compared between genders to ensure that none of them 

differentiates males and females. Vital status proportions and receiving of prior treatment 

proportions were examined with the χ
2
 test [108], age at diagnosis with t-test and days 

to death with Mann-Whitney test (after checking normality of distributions). Genders 

were not compared according to race because of huge disproportions of this clinical 

feature counts. 

3.2.3. Detection of differentially methylated probes and genomic regions. 

Principal Component Analysis (PCA) [109] was conducted on β-values, firstly from 

the whole genome and then for particular genomic region groups separately. It was 

performed for the healthy control sample and AML sample.  

Feature Values  Counts 

Gender 
Male 73 

Female 67 

Vital status 
Alive 64 

Dead 76 

Race 

White 127 

Black or African-American 10 

Not reported 3 

Prior treatment 
Yes 38 

No 102 
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The next step was outlier detection - all elements spaced more than three scaled MAD 

[110] from the median were detected as the outliers and replaced with median value. 

Then, the normality of DNA methylation level distribution was examined with 

the Lilliefors test [111]. Followingly, the methylation level was compared between males 

and females using the Mann-Whitney test. The whole procedure was performed for each 

probe. At the end, Benjamini-Hochberg FDR correction [92] was performed for Mann-

Whitney test p-values. Additionally, effect size as rank biserial correlation was calculated 

[112].  

Functional analysis of genes characterised by differentially methylated CpG-rich RS 

region was held in the STRING tool [113]. It provides Gene Ontology Terms, KEGG 

pathways, UniProt Keywords, Pfam Protein Domains, SMART Protein Domains, 

Reactome Pathways, InterPro Protein Domains and Features, STRING Clusters, 

and Reference publications. Items with a p-value ≤ 0.05 were considered significantly 

enriched. 

3.2.4. Survival analysis 

The methylation level for each genomic region was calculated as a median of β-values 

of probes, of which the regions consist. Survival curves for both genders were created 

and compared with a log-rank test [114]. 

The survival analysis was also done for each probe separately for all patients and genders. 

Cox proportional hazard [115] model p-value was found for each probe. All of the sites 

for which this p-value was lower than 0.05 were examined deeper. To check the impact 

of methylation level in individual probes on the survival time, patients were divided into 

two groups, depending on whether the methylation level in this site was lower or higher 

than the median. Survival curves for these groups were compared with the log-rank test. 

To identify impacting survival genomic regions, p-values from the log-rank test were 

integrated with Stouffer's method. 
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3.3. DNA methylation aberrations in de novo and therapy-related AML 

3.3.1. Data description 

Data were collected in two experiments: the primary experiment conducted with 

methylation array and the validation experiment conducted with pyrosequencing. 

The primary experiment was first done using Illumina Infinium Human Methylation 

450K Array for 12 patients: five de novo AML, four chemotherapy-induced AML, 

and three radiotherapy-induced AML. 

Secondly, the experiment was repeated on Illumina Infinium Human Methylation EPIC 

Array with over 850K probes for the part of the abovementioned patients and, 

additionally, healthy persons. Data were collected in two batches: three de novo AML 

patients, three chemotherapy-induced AML patients, and two radiotherapy-induced AML 

patients in the first batch, as well as five healthy donors, two de novo AML patients, 

and one combined radio- and chemotherapy patient in the second batch. The scheme 

of the experiment design is shown in Table 3.3. 

Table 3.3 The scheme of EPIC array experiment design. 

Patient group 1st batch 2nd batch Sum 

Normal BM 5 - 5 

De novo AML 2 3 5 

Chemo-AML - 3 3 

Radio-AML - 2 2 

t-AML 1 - 1 

 

The validation experiment - pyrosequencing was performed for the same patients and five 

additional de novo AML patients. This experiment measured methylation level for several 

genomic regions of interest in four or five methylation sites for each region. Primers 

for PCR and sequencing were designed in UK Health Security Agency or bought from 

the Qiagen company. The pyrosequencing experiment was conducted with PyroMark 

Q48 Autoprep. It results in a methylation level as a value between 0 and 1 for each 

examined probe. 

The scheme of patients participating in the experiments labelled with their numbers 

is presented in the Figure 3.3. 
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Figure 3.3 The scheme of patient groups examined in the experiments. 

3.3.2. Data preprocessing 

Methylation microarray data were preprocessed using methods suggested in the ChAMP 

library in Bioconductor [116] and considered optimal for this type of data. All 

preprocessing procedures were performed using the ChAMP package [117] [118] . 

Loading and filtering were done using the ChAMP method. Non-CG probes, probes from 

X and Y chromosomes, and probes with detection p-value above 0.01 were filtered out. 

The data was loaded as β values from 0 (no methylation) to 1 (total methylation). 

Normalisation was performed with the Beta Mixture Quantile method (BMIQ). 

The ComBat procedure [119] was applied to remove the batch effect in data (collected 

in two batches). In this method, additive and multiplicative batch bias parameters are 

estimated and used for modification of DNA methylation level values. 

3.3.3. Global DNA methylation profile analysis 

The whole genome DNA methylation profile was analysed for data generated with 

an EPIC array. Firstly, the distribution of β-value was decomposed into Gaussian Mixture 

components. It was done to detect cut-off levels for defining probes as low, medium, 

and high methylated. Probes with methylation level lower than the first cut-off were 

considered low methylated, and those with methylation level higher than the second one 

were considered high methylated. The rest of the probes were considered medium 

methylated. 



45 

 

To compare global methylation profiles among patient groups and genomic regions, 

empirical cumulative distribution functions were plotted. It was done for pooled samples 

(among patient groups) and individual patients for the whole genome. The procedure was 

also repeated for each of the genomic region groups described below. 

3.3.4. Detection of differentially methylated probes. 

Many statistical methods can be used to detect differentially methylated probes. 

Jeanmougin et al. [120] compared them for gene expression array data. The most popular 

methods: limma [121] and ANOVA have very similar power, in a slight favor for limma 

(the difference in power of the methods equal to 0.02). Both of these methods were used, 

and their results were compared. 

First, healthy control vs. de novo AML vs. chemo AML vs. radio AML comparison was 

performed with ANOVA. FDR was estimated from obtained p-value using 

the Benjamini-Hochberg procedure [92]. Tukey-Kramer pairwise comparisons for probes 

with FDR ≤ 0.05 [122] were conducted (both left and right-tailed tests). Next, probes with 

p-value ≤ 0.025 were considered differentially methylated (distinguished 

as hypomethylated or hypermethylated in pairwise comparisons.) 

Secondly, the limma procedure was performed with the champ.DMP function in ChAMP 

package, which uses limma package. Pairwise comparisons for each pair of patient groups 

were performed, distinguishing probes into hyper- or hypomethylated (not only 

differentially methylated). Next, probes with a p-value ≤ 0.025 were considered 

significantly different. 

Additionally, to examine the "inside group" diversity, each AML sample separately was 

compared with the control group using a t-test for one observation, according 

to the formula: 

  
   

  
   
 

 

Where: 

 x is the observation value 

 μ and σ are mean and standard deviation estimated from the control sample 

 N is the control sample size. 
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After comparisons, features that were not differentiating in any case were removed from 

further analysis. No change, hyper- and hypomethylation frequency was calculated 

among the rest features. Also, the average frequency of no change, hypo- 

and hypermethylation for AML types was computed. Pielou index [123] was calculated 

for individual patient frequencies. It is defined as: 

   
       

 
   

   
 

Where: 

 S is the number of classes 

 pi is the frequency for individual class 

Values of the Pielou index were compared among AML types with ANOVA and then 

pairwise with Tukey-Kramer tests. 

3.3.5. Detection of differentially methylated genomic regions 

As described before, the composition of genomic regions is based on Illumina 

annotations. Three groups of genomic regions were constructed: gene regulatory 

sequence (RS) regions (related to the transcription start site (TSS1500, TSS200) 

and 5'UTR annotation) lying on CpG islands or shores, gene body regions (related 

to 1stExon, ExonBnd, and Body annotation) and 3'UTR regions. The scheme of genomic 

region groups is presented in Figure 3.4. 

 

Figure 3.4 The scheme of genomic region groups based on Illumina's annotation system. 

P-values of probes belonging to the same genomic region were integrated with Stouffer's 

method. In the first approach, p-values from Tukey-Kramer tests performed for each 

probe were integrated. In the second approach, it was p-values from limma pairwise 

comparisons. 
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The CpG-rich RS regions, which differentiated one of the AML types and control and did 

not differentiate other AML types and control, were considered epigenomic biomarkers. 

3.3.6. Unsupervised feature selection 

To examine the informativeness of data, unsupervised methods were applied. Methylation 

levels from the EPIC array for each CpG-rich RS region and patient were calculated 

as the mean methylation level of probes belonging to this region. Then, the variance 

of methylation level across healthy control and de novo AML samples for each CpG-rich 

Regulatory Sequence region was computed. The distribution of log2 of variance was 

decomposed to Gaussian Mixture Model [100]. The number of Gaussian components was 

selected according to BIC [102]. The most diverse RS regions were selected based 

on the maximum probability rule. The cut-off level was an intersection point between two 

probability density functions of components with the highest means. Mean values 

of selected regions [124] were used to create a hierarchical tree and a heatmap. Row 

standardisation was applied; the assumed distance metric was Spearman correlation. 

The strength of correlation of RS regions methylation level among patient groups was 

measured with Cramer's V effect size [98]. 

3.3.7. Functional analysis 

Functional analysis was conducted with the hiPathia [125]. The hiPathia tool calculates 

activation scores for subpathways based on gene expression level and performs 

the statistical test to find deregulated pathways. Thus, the potential expression level was 

calculated for each CpG-rich RS region as the reverse of the mean methylation level 

because both processes are inversely proportional (RS region hypermethylation inhibits 

gene expression). The computed value was used to find pathways activation scores 

in hiPathia. Activation score was calculated for each patient and hiPatia subpathway. 

The unsupervised selection was performed based on the variance of activation scores, 

similarly to regulatory sequence regions. Most diverse subpathways were selected 

to construct a hierarchical tree and a heatmap. 

3.3.8. Validation of selected biomarkers 

The methylation level was measured in the pyrosequencing experiment for several 

identified biomarkers. Obtained methylation level values were compared among patient 

groups. For the one gene that was considered all AMLs biomarkers, a t-test 

for comparison between all AMLs and healthy control was used. ANOVA and Tukey-
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Kramer post-hoc tests were applied to compare all patient groups for other potential 

biomarkers. In the end, p-values for the same gene were integrated with Stouffer's 

method. Additionally, Cohen's d [126] as an effect size measure was calculated for each 

performed comparison for each CpG site. Obtained p-values and effect size values were 

compared with methylation array experiment results. 
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4. Results 
 

 

4.1. Acute myeloid leukaemia methylation profile 

4.1.1. Methylation level distribution and profiles 

For comparison of global methylation profiles between acute myeloid leukaemia patients 

(AML) and healthy donors (HSC) as well as among genomic region types, empirical 

cumulative distribution functions (CDF) of pooled samples were plotted. The result 

is presented in Figure 4.1. 

 

Figure 4.1 Empirical CDF of β-value in AML and HSC pooled samples in the whole genome (A), TSS 

regions (B), gene body regions (C), and intergenic regions (D). In all cases, CDF for the whole genome 

is presented for comparison. 
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The differences in methylation profiles between leukaemia and healthy donors can 

be observed in the whole genome and every region type. The effect size between healthy 

and AML samples is small - Cohen's d statistic value equals 0.2183. In each case, AML 

samples are higher methylated than HSC samples. Differences are slim for small β-values 

and increases in higher. 

The differences among various regions are much higher. In TSS regions, methylation 

level is lower than in the whole genome and in the other regions. The methylation level 

in gene body regions is slightly higher than in the whole genome. In intergenic regions, 

methylation level is the highest among all regions. 

For a deeper examination of methylation profiles, the contributions of a low, medium, 

and high methylated samples were calculated for the whole genome and all regions. 

It was done by statistically comparing the β-value with 0.5. The results for the whole 

genome are presented in Table 4.1 

Table 4.1 The numbers of a low, medium, and high methylated probes in AML and HSC samples. 

Methylation 

level 

AML 

Low Medium High Total 

H
S

C
 

Low 191,043 14,739 2,985 208,767 

Medium 5,668 11,286 33,931 50,885 

High 2,297 10,093 213,470 225,860 

Total 199,008 36,118 250,386 485,512 

 

In HSC, almost 43% of probes are low methylated, while 46.5% are high methylated. 

In AML, almost 41% of probes are low methylated, and almost 52% are high methylated. 

More probes are medium methylated in HSC (10.5%) than in AML (7%). 

The methylation profiles are generally consistent in both groups - the biggest numbers lie 

on the diagonal of the table. Most probes classified as low methylated in HSC were also 

classified as low methylated in AML (191,043 probes), the same with high methylation 

status (213,470 probes). Cramer's V association coefficient for obtained contingency table 

was equal to 0.6667 (p-value < 10
–6

 [108]). The detailed inspection of the table confirms 

global higher methylation in AML compared to HSC. 

The same procedure was conducted for all genomic region types. Probes were classified 

as low, medium, or high methylated in each case. Results are presented in Table 4.2. 
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Table 4.2 The numbers of low, medium, and high methylated probes in AML and HSC for different 

genomic regions. 

Methylation 

level 

AML 

TSS region Gene body region Intergenic region 

Low Medium High Total Low Medium High Total Low Medium High Total 

H
S

C
 

Low 121,393 5,693 1,059 128,145 73,494 5,874 1,300 80,668 13,548 3,295 711 17,554 

Medium 2,101 3,578 8,643 14,322 2,417 4,639 16,438 23,494 1,154 3,065 9,893 14,112 

High 614 2,741 43,702 47,057 1,087 4,661 117,122 122,870 559 2,722 58,573 61,854 

Total 124,108 12,012 53,404 189,524 76,998 15,174 134,860 227,032 15,261 9,082 69,177 93,520 

 

In TSS regions, almost 68% of probes are low methylated, and 25% are high methylated 

in HSC, while 65.5% are low methylated and 28% are high methylated in AML. In gene 

body regions, almost 35.5% of probes are low methylated, and 50% are high methylated 

in HSC, while 34% are low methylated and 59% are high methylated in AML. 

In intergenic regions, almost 19% of probes are low methylated, 66% are high methylated 

in HSC, 16% are low methylated, and 74% are high methylated in AML. Hence, 

differences among genomic region types are much higher than between HSC and AML 

inside the same region. Cramer's V statistic was calculated to examine the consistency 

of methylation profiles between AML and HSC. For TSS regions it was equal to 0.6692, 

in gene body regions - 0.6658 and in intergenic regions - 0.6119. So, in TSS and gene 

body regions, V values are similar and almost equal to the whole genome V value, while 

in intergenic regions, it is a little lower. So biggest differences in methylation profiles 

between AML and HSC occur in intergenic regions. 

4.1.2. Estimation of shift between β-value distributions 

The Hodges-Lehmann statistic was calculated for each probe to estimate the difference 

between distributions of β-value in AML patients and healthy donors. Its distribution 

is presented in Figure 4.2 

Values of HL statistic greater than 0 indicate hypermethylation of particular probes, while 

values lower than 0 indicate hypomethylation. Based on the histogram, much more probes 

are hypermethylated than hypomethylated. The hypermethylation process is stronger than 

hypomethylation - positive values range further from 0 than negatives. 
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Figure 4.2 Distribution of HL statistic values across whole genome probes. 

The procedure was repeated for genomic region types to inspect differences in HL 

statistic distribution among regions visually. Results are presented in Figure 4.3. 

 

Figure 4.3 Distributions of HL statistics across TSS regions (A), gene body regions (B), and intergenic 

regions (C) 

In each case, overrepresentation of hypermethylated probes can be observed. Based on 

the HL histogram shape, this process is strongest in intergenic regions and weakest 

in TSS regions. 

4.1.3. Gaussian decomposition of Hodges-Lehmann statistic distribution 

The distribution of Hodges-Lehmann statistic values was decomposed into a mixture 

of Gaussian components. The optimal number of components was selected with BIC. 

The result of Gaussian Mixture decomposition is presented in Figure 4.4. 
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Figure 4.4 Gaussian Mixture Modelling on HL statistics distribution, solid lines represent individual 

components, and dash line - represents their sum. 

The best number of components was nine. Their parameters - means, standard deviations, 

and weights are presented in Table 4.3. 

Table 4.3 Parameters of Gaussian components sorted according to weight. 

Component ID Mean 
Standard  

deviation 
Weight 

1 0.0128 0.0189 0.2645 

2 0.0019 0.0051 0.2148 

3 0.0348 0.0334 0.2045 

4 0.0427 0.0748 0.1942 

5 0.1792 0.1269 0.0597 

6 -0.1248 0.1107 0.0358 

7 -0.3006 0.1940 0.0158 

8 0.3818 0.1775 0.0107 

 

The first four components describe almost 88% of the whole signal. The last four 

components have lower weights but also higher standard deviations. They can 

be responsible for the background signal. The component closest to zero (ID = 2) 

describes probes with no changed methylation level in AML. The other major 

components have positive means and are responsible for hypermethylated probes. 

It confirms that hypermethylation is a stronger process than hypomethylation - several 
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subgroups of hypermethylated probes can be distinguished. Cut-off thresholds according 

to the maximum probability rule were estimated to find them. They are presented 

in Figure 4.5. 

 

Figure 4.5 Cut-off levels for distinguishing subgroups of differentially methylated probes. 

According to cut-off thresholds, hypermethylated probes can be classified as low, 

medium, high, or extremely high hypermethylated. Cut-off threshold values are presented 

in Table 4.4. 

Table 4.4 Threshold values for individual hypermethylation classes. 

Hypermethylation level low medium high extreme high 

Threshold values 0.0000 0.0096 0.0372 0.0819 

 

4.1.4. Detection of differentially methylated probes 

Probes with HL statistic values significantly lower than 0 were considered 

hypomethylated, while ones with HL statistic values significantly higher than 0 were 

considered hypermethylated. Additionally, each probe HL statistic value was compared 

with threshold values with the right-tailed test to define hypermethylation degree. Probes 

with HL statistic significantly greater than 0.0096 were considered at least medium 

hypermethylated, ones with HL significantly greater than 0.0372 - at least high 

hypermethylated, and ones with HL significantly greater than 0.0819 - extreme high 
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hypermethylated. The numbers of differentially methylated probes in the whole genome 

and individual genomic regions are presented in Table 4.5. 

Table 4.5 Number and percentage of differentially methylated probes according to genomic regions 

and differential methylation level. 

Level of AML 

differential 

methylation 

Whole genome TSS region Gene body Intergenic  

N % N % N % N % 

Hypomethylation  15,260 3.14 5,287 2.79 7,010 3.09 3,075 3.29 

H
y

p
er

m
et

h
y

la
ti

o
n

 At least low 84,073 17.32 28,492 15.03 39,622 17.45 19,737 21.10 

At least medium 47,659 9.82 14,196 7.49 22,177 9.77 12,738 13.62 

At least high 17,317 3.57 5,577 2.94 7,414 3.27 4,734 5.06 

Extreme high 8,149 1.86 2,716 1.43 3,477 1.53 2,142 2.29 

 

The hypermethylation process is much stronger than hypomethylation in each genomic 

region type. Hypomethylation is slightly higher than the "by chance" level, especially 

in TSS regions (2,5%). Both processes are the weakest in TSS regions and strongest 

in intergenic regions. These relations remain similar independently of hypermethylation 

level. The percentage of medium and high hypermethylated probes is the biggest 

in intergenic regions and the lowest in the TSS region. The percentage of probes 

categorised as extreme high hypermethylated probes is lower than the "by chance" level. 

Differential methylation processes can differ depending on the initial methylation level 

in particular probes. Relations between initial methylation level in HSC (investigated 

in Chapter 4.1.1) and differential methylation between AML and HSC is presented 

in Table 4.6. 
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Table 4.6 The number of differentially methylated probes according to methylation level in HSC. 

AML differential methylation 
HSC Low HSC Medium HSC High 

N N N 

Whole 

genome 

Hypomethylation  5,374 2,373 7,513 

No change 172,711 37,773 175,735 

Hypermethylation 30,682 10,779 42,612 

TSS 

Hypomethylation 2,764 774 1,749 

No change 109,047 10,694 36,014 

Hypermethylation  16,334 2,864 9,294 

Body 

Hypomethylation  2,189 1,046 3,775 

No change 66,433 17,439 96,528 

Hypermethylation  12,046 5,009 22,567 

Intergenic 

Hypomethylation  523 535 2,017 

No change 12,575 10,364 47,769 

Hypermethylation  4,456 3,213 12,068 

 

In the whole genome, 3.3% of HSC high methylated probes are hypomethylated in AML, 

and 14.7% of HSC low methylated probes are hypermethylated in AML. The situation 

is consistent in all genomic regions. However, changes in TSS regions are weakest 

and intergenic regions are strongest. Two main processes are most interesting: enhancing 

initial methylation level (hypomethylation of low methylated probes or hypermethylation 

of high methylated probes) and compensation (hypermethylation of low methylated 

probes or hypomethylation of high methylated probes). These processes are different 

among genomic regions. Methylation enhancement regards 6.36% for TSS probes, rises 

to 10.90% for gene body located probes to almost double for the intergenic region 

(13.46%). Methylation compensation regards a similar percentage of probes in the body 

and intergenic regions (6.97% and 6.92%, respectively) and 1.5 times increases 

for the TSS regions (9.54% of these probes).  

4.1.5. Detection of differentially methylated genomic regions 

Genomic regions were detected as differentially methylated due to p-value integration. 

Methylation array probes were annotated to 21,227 different gens, from which 20,852 

were measured in at least one TSS probe and 20,527 in at least one gene body probe. 

P-values from the abovementioned tests were integrated into one global p-value for each 

TSS and gene body genomic region. The procedure was firstly performed for unadjusted 
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p-values and then repeated for corrected p-values. Results of p-value integration are 

presented in Table 4.7. 

Table 4.7 The number of differentially methylated TSS and gene body regions for various differential 

methylation levels and integrated p-values. 

AML-associated 

differential methylation 

at the gene level 

Unadjusted p-values Storey’s corrected p-values 

Differentially 

methylated 

TSS regions  

Differentially 

methylated 

body regions 

Differentially 

methylated 

TSS regions  

Differentially 

methylated 

body regions 

N % N % N % N % 

Hypomethylation 90 0.43 112 0.55 22 0.11 14 0.07 

H
y

p
er

m
et

h
y

la
ti

o
n

 

At least low 945 4.53 948 4.62 600 2.88 598 2.91 

At least medium 385 1.85 422 2.06 187 0.90 162 0.79 

At least high 105 0.50 115 0.56 53 0.25 25 0.12 

Extreme high 31 0.15 35 0.17 18 0.09 5 0.02 

 

In a genomic regions domain, the strength of particular differential processes is consistent 

with changes in individual probes. All processes are stronger in gene body regions than 

in TSS regions, considering unadjusted p-values. Oppositely, after corrected p-values 

integration, almost all processes are stronger in TSS regions, but the difference is minor. 

Hypomethylation and extreme high hypermethylation regard a similar number of genomic 

regions. Hence these regions were investigated deeper in further analysis.  

Hypomethylation of the genomic TSS region leads to higher gene expression. 

The number of genes with hypomethylated TSS region has been mentioned 

in the literature concerning cancer diseases. Higher expression of TRPM2 was observed 

in several tumour family diseases: insulinoma, hepatocellular carcinoma, prostate cancer, 

lymphoma, leukaemia, and lung cancer cell lines. In these cases, TRPM2 could enhance 

cell death [127]. ESPNL gene has been detected as hypomethylated in MDS. It is also 

crucial in age-related epigenetic drift in AML and MDS pathogenesis [128]. CFD 

is the main regulator of complement activation and may advantage leukaemia 

aggressiveness by suppressing the immune response to AML and regulating stem cell 

function [129]. NNAT gene has been described as transcriptionally silenced because 

of hypermethylation in paediatric AML [130]. 
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Hypermethylation of the genomic TSS region can stop the expression of this gene. It can 

inhibit some tumour-suppressing processes. HTRA4 was detected as extremely high 

hypermethylated in TSS and gene body regions. It is confirmed to be a tumour suppressor 

gene and a biomarker in other cancers [131]. Extremely high hypermethylated OXT gene 

characterises decreased activity in chronic myeloid leukaemia [132]. MYOD1 has already 

been described as hypermethylated in AML [133], which is confirmed in this study. 

DPP6 and ID4, identified as hypermethylated in the promoter region, and downregulated 

in AML [134], were detected in as medium hypermethylated in the TSS region in this 

study. 

Methylation levels of some abovementioned differentially methylated genes are presented 

in Figure 4.6. 

 

Figure 4.6 The course of methylation level in AML and HCS in selected genes. 
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4.1.6. Functional analysis 

Functional analysis was performed for four separate gene sets: TSS hypo- and extremely 

high hypermethylated and gene body hypo- and extremely high hypermethylated. 

Overrepresented Gene Ontology Terms were looked for in three domains: Biological 

Process, Molecular Function, and Cellular Component. Several GO Terms found for each 

gene set are presented in Table 4.8. 

Table 4.8 The number of overrepresented GO Terms in examined gene sets. 

Gene Ontology terms 
TSS 

hypomethylation 

TSS extreme high 

hypermethylation 

Body 

hypomethylation 

Body extreme high 

hypermethylation 

Biological Process 113 74 8 56 

Molecular Function 13 4 7 2 

Cellular Component 25 7 10 0 

 

Some GO terms overrepresented in TSS hypomethylated genes regard calcium ion 

transport and sequestering (for example, GO:0051283, GO:0051282, GO:0060402, 

GO:0070588, GO:0060401, GO:0010857, GO:0009931) which confirms literature 

findings of alteration in calcium processes in AML [135]. The second group of GO terms 

overrepresented in this gene set regards are immune system processes, which are injured 

in AML [136]. Examples of these processes are leukocyte differentiation (GO:0002521), 

hematopoietic or lymphoid organ development (GO:0048534), regulation of interleukin-1 

production (GO:0032652), negative regulation of myeloid cell differentiation 

(GO:0045638), regulation of cytokine secretion (GO:0050707) and many more.  

Several GO Terms found for TSS extreme high hypermethylated genes are connected 

to hormone metabolic processes, especially estrogen (GO:0042445, GO:0032355, 

GO:0071391, GO:0010817, GO:0046883, GO:0009914, GO:0042562). The estrogen 

receptor gene was described as a cancer biomarker [137]. Some overrepresented 

GO Terms for the same gene set regard response for drugs and steroids, i.e., alkaloids, 

alcohol, cocaine (GO:0042220, GO:0008202, GO:0097305, GO:0045472, GO:0043279). 

The affectivity of drugs is usually bigger in tumours [138]. 
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4.2. Gender differences in DNA methylation in AML 

4.2.1. Comparison of clinical features values between male and female AML patients 

Males and females were compared according to the clinical factors to ensure they are not 

differentiated by them. Results are presented in Table 4.9. 

Table 4.9 Results of comparison between genders for clinical factors 

Feature Vital status Prior treatment Age at diagnosis Days to death 

Values Alive Dead Yes No Mean (SD) Median (MAD) 

Male 36 37 19 54 54.21 (15.67) 365 (212) 

Female 28 39 19 48 53.76 (16.38) 243 (212) 

Statistical 

significance 
p-value = 0.3720 p-value = 0.7567 p-value = 0.8709 p-value = 0.3844 

 

For vital status and prior treatment, proportions for each count were compared. The mean 

values were investigated for age at diagnosis, while the median values - for the number 

of days to death. The impact of each clinical factor is not statistically significant between 

genders. In conclusion, none of the clinical factors would impact gender differences 

in DNA methylation in AML patients.  

4.2.2. Detection of differentially methylated probes. 

Principal Component Analysis (PCA) was done for the whole genome and genomic 

region groups separately. It was performed for the healthy control sample and AML 

sample. Results are presented in Figure 4.7. 

Only whole genome PCA results and CpG-rich regulatory sequence regions PCA are 

presented because results for other regions are very similar to the whole genome. 

The only case where gender differences are observable is CpG-rich RS regions in AML 

patients. Such differences do not occur in healthy persons, even in CpG-rich RS regions. 

In CpG-rich RS regions in AML, two separable groups are apparent. These groups 

represent male and female patients. Such grouping indicates that differences between 

genders occurring in mentioned regions in AML are bigger than in any other genomic 

regions and healthy donors. The methylation level of each probe was compared between 

genders to examine these differences. Because the Lilliefors normality test indicated that 

over 60% of features show non-normal distribution, the Mann-Whitney test was used 
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for this comparison. Additionally, effect size as rank biserial correlation was calculated. 

The number and percentage of differentially methylated probes in healthy donors are 

presented in Table 4.10, while for AML patients, Table 4.11. Number represents probes 

that are differentially methylated in males compared to females. 

 

Figure 4.7 PCA on β-values of all probes (A) and CpG-rich RS regions (B) in healthy donors and of all 

probes (C) and CpG-rich RS regions (D) in AML patients. 

 

Table 4.10 Number and percentage of differentially methylated probes in males in comparison to females 

among different genomic regions for healthy donors. 

 
CpG-rich RS 

regions 
Body regions 3'UTR regions Other Whole genome 

 Hypome-

thylated 

Hyperme

-thylated 

Hypome-

thylated 

Hyperme

-thylated 

Hypome-

thylated 

Hyperme

-thylated 

Hypome-

thylated 

Hyperme

-thylated 

Hypome-

thylated 

Hyperme

-thylated 

p-value 

≤ 

0.025 

7,591 4,263 14,300 23,978 1,166 3,340 14,881 21,602 35,453 51,364 

10.37% 5.82% 8.13% 13.63% 7.02% 20.12% 9.44% 13.70% 8.92% 12.92% 

FDR 

≤ 

0.025 

373 411 739 3,456 49 553 717 2,964 1731 7,166 

0.51% 0.56% 0.42% 1.96% 0.30% 3.33% 0.45% 1.88% 0.44% 1.80% 

Effect 

size 

≥0.5 

233 100 442 1,045 24 183 415 844 1,016 2,108 

0.32% 0.14% 0.25% 0.59% 0.14% 1.10% 0.26% 0.54% 0.26% 0.53% 
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Table 4.11 Number and percentage of differentially methylated probes in males compared to females 

among different genomic regions for AML patients. 

 
CpG-rich RS 

regions 
Body regions 3'UTR regions Other Whole genome 

 Hypome-

thylated 

Hyperme

-thylated 

Hypome-

thylated 

Hyperme

-thylated 

Hypome-

thylated 

Hyperme

-thylated 

Hypome-

thylated 

Hyperme

-thylated 

Hypome-

thylated 

Hyperme

-thylated 

p-value 

≤ 

0.025 

7,045 7,388 11,211 12,160 811 1,001 9,496 11,884 26,035 30,183 

8.71% 9.14% 6.33% 6.87% 4.68% 5.78% 6.47% 8.10% 6.62% 7.67% 

FDR 

≤ 

0.025 

2,723 2,212 2,999 3,510 162 354 2,543 3,402 7,386 8,786 

3.37% 2.74% 1.69% 1.98% 0.94% 2.04% 1.73% 2.32% 1.88% 2.23% 

Effect 

size 

≥0.5 

2318 251 2093 972 91 191 1681 988 5314 2309 

2.87% 0.31% 1.18% 0.55% 0.53% 1.10% 1.15% 0.67% 1.35% 0.59% 

 

It is hard to compare results in healthy and AML samples, looking only at unadjusted 

p-values. However, considering FDR, in a healthy sample, none of the genomic regions 

characterises significant hypo- or hypermethylation, except 3'UTR regions. In AML 

patients, a significant number (FDR greater than 2.5%) of differentially methylated 

probes occurs only in CpG-rich regulatory sequence regions. Both hypo- 

and hypermethylation processes occur. If the effect size value is considered, much more 

probes are hypomethylated than hypermethylated in males. Considering FDR, the number 

of hypo- and hypermethylated probes is similar. In total, 6.11% of probes are 

differentially methylated. Investigating differentially methylated probes in AML, only 

5.54% of them were also differentially methylated in healthy donors. 

Differentially methylated probes were marked on a diagram according to their locus 

in the proper chromosome to examine if differences are equally spread across the whole 

genome. Results are presented in Figure 4.8. The figure also presents the percentage 

of differentially methylated probes, which equals the sum of hypo- and hypermethylated 

probes in males compared to females. 
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Figure 4.8 Differentially methylated probes in CpG-rich Regulatory Sequence regions and their percentage 

in AML and healthy groups among chromosomes. 

The percentage of differentially methylated probes is rather similar among all 

chromosomes. However, in several chromosomes, it is two times higher than in others. 

An example can be chromosomes 8 and 21 with over 8% of differentially methylated 

probes (in AML) and chromosomes 3 and 13 with around 4.5% of differentially 

methylated probes. Differences among chromosomes in healthy samples are not so big - 

the maximal difference is around one percentage point (between 0.42% and 1.44% 

in chromosomes 22 and 20, respectively), but it is three times more at the same time. 

However, this is still less than 2.5%, so that these phenomena can occur by chance. 

4.2.3. Detection of differentially methylated genomic regions. 

P-values of probes belonging to the same regions were integrated to identify differentially 

methylated genomic regions between genders. Then, p-values were compared with 

an adjusted significance level (α), obtained by integrating basic α repeated as many times 

as the number of probes in the region. Regions with integrated p-values lower or equal 
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to adjusted α were considered differentially methylated. Results of this procedure for both 

AML and healthy samples are presented in Table 4.12. 

Table 4.12 Number and percentage of differentially methylated genomic regions in males compared 

to females, according to integrated p-values. 

 CpG-rich RS 

regions 
Body regions 3'UTR regions All regions 

 Hypome-

thylated 

Hyperme-

thylated 

Hypome-

thylated 

Hyperme-

thylated 

Hypome-

thylated 

Hyperme-

thylated 

Hypome-

thylated 

Hyperme-

thylated 

Healthy 
272 228 260 522 574 2,168 1,106 2,918 

2.37% 1.98% 1.54% 3.09% 5.50% 20.76% 2.85% 7.52% 

AML 
462 704 482 470 417 521 1,361 1,695 

3.82% 5.82% 2.68% 2.61% 3.80% 4.75% 3.31% 4.13% 

 

The number of differentially methylated regions in healthy donors is almost always lower 

than in AML patients, except for 3'UTR regions. A big difference in DNA methylation 

of the 3'UTR region between genders has not been reported yet. It can happen because 

only one probe in the 3'UTR region is often measured. When its p-value is statistically 

significant, the whole region becomes differentiating. In CpG-rich RS and body regions, 

p-values must be consistent across the whole region to make it differentiating. Various 

p-values make the whole region irrelevant. 

In AML patients, number of genomic regions which are significantly hypermethylated 

in males is bigger in almost all genomic regions, except body regions. The largest 

disparity and the highest percentage of differentially methylated regions is observed 

in CpG-rich RS regions. Because the methylation level of the CpG-rich regulatory 

sequence region has the most impact on gene transcription, about 9.64% of genes (3.82% 

hypomethylated and 5.82% hypermethylated in males compared to females) can 

be differently expressed in males and females.  

Genes with differentially methylated CpG-rich RS regions were analysed for their 

functions in the STRING tool. The number of enriched items is presented in Table 4.13. 

Some of the enriched items are specific for hypomethylated genes, while much more 

of the items are specific for hypermethylated ones. Several items appear only 

in the combined set of genes analysis: hypo- or hypermethylated in males compared 

to females. 
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Table 4.13 The number of enriched items for genes hypermethylated in CpG-rich RS regions in females, 

males, and a combination of these two sets. 

 Females Males Combined 

GO Biological Process  - 507 303 

GO Molecular Function  - 62 34 

GO Cellular Component  9 51 44 

Publications  282 1025 228 

String Cluster  18 81 53 

Uniprot Keyword  7 45 41 

Pfam  3 40 7 

InterPro  3 53 11 

SMART  - 14 2 

KEGG  - 10 3 

Reactome  - 5 3 

 

The items enriching genes hypomethylated genes are connected to diseases linked 

to the X chromosome, e.g., mental disorders and homeobox. This short DNA fragment 

occurs in genes involved in morphogenesis and organs development.  

The items enriching hypermethylated genes are mentioned in many publications about 

DNA methylation profiling in many different malignancies. They are expected 

to be tumour suppressor genes or diagnostic and prognostic markers (e.g., in pancreatic 

cancer [139] or bladder cancer [140]. They are also connected to homeobox 

and morphogenesis, different tissues and organs development, cell differentiation, and G 

protein pathways. 

InterPro Keywords: KW-0225, KW-0818, and KW-9995 (Disease mutation, Triplet 

repeat expansion, and Disease) occur in both hypo- and hypermethylated genes enriched 

items. 

4.2.4. Survival analysis 

One of the clinical factors measured for AML patients was time to death, but it did not 

differentiate genders. Cox proportional hazards model indicates that gender has no impact 

on the risk (p-value = 0.3866). Log-rank test shows no difference between gender 

survival curves (p-value = 0.3902). The survival curves are presented in Figure 4.9. 

Hence, not only differences between DNA methylation levels in genders should 
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be examined, but also the impact of DNA methylation on survival in all patients 

and separately in genders.  

 

Figure 4.9 Survival curves for both genders with 95% confidence intervals (CI). 

For each probe, survival time was compared between two samples: one with 

a methylation level lower than the median and the second with a methylation level greater 

or equal to the median. For this purpose, Cox proportional hazard model was estimated. 

A positive Cox proportional hazards coefficient indicates that survival decreases with 

a higher methylation level. A negative coefficient means that survival increases with 

a higher methylation level. Histograms of Cox proportional hazards model p-values are 

presented in Figure 4.10. 

In the histograms of p-values of models for all patients, an accumulation of low, next to 0, 

values is observed. It means that factors impacting survival exist. In the case of females, 

the whole histogram is even. It suggests that all findings can be obtained "by chance". 
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Figure 4.10 Histograms of Cox proportional hazard models for all AML patients(A), males (B), 

and females (C). 

Probes with a significant impact on regression were examined deeper with a log-rank test. 

P-values of the log-rank test were compared with significance level α=0.025 because 

of distinguishing negative or positive impact on survival. Results are presented 

in Table 4.14. 

Table 4.14 Numbers and percentages of probes impact survival among genomic regions (N is the number 

of significant features according to the Cox model). 

 
CpG-rich  

RS regions 
Body regions 3'UTR regions Other Whole genome 

Impact 

on 

survival 

Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative 

All patients 

N 5,026 11,464 1,060 9,252 25,037 

Log-rank 

p-value  

≤ 0.025 

785 2,311 1,870 5,856 110 631 1,711 4,358 4,210 12,318 

15.62% 45.98% 16.31% 51.08% 10.38% 59.53% 18.49% 47.10% 16.82% 49.20% 

Males 

N 8,443 11,468 955 8,317 26,340 

Log-rank 

p-value  
≤ 0.025 

287 5,290 1,147 5,720 125 401 779 3,921 2,226 13,543 

3.40% 62.66% 10.00% 49.88% 13.09% 41.99% 9.37% 47.14% 8.45% 51.42% 

Females 

N 3,789 8,476 860 7,447 19,241 

Log-rank 
p-value  
≤ 0.025 

353 1,854 2,364 2,163 279 152 2,115 1,835 4,957 5,374 

9.32% 48.93% 27.89% 25.52% 32.44% 17.67% 28.40% 24.64% 25.76% 27.93% 
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The percentage of features impacting survival is similar among all genome regions. 

Almost always, the number of features with a negative impact on survival is greater than 

positive. The number of significant features negatively impacting males' survival is even 

bigger than in all patients. As mentioned, all of the findings in females were probably 

obtained by chance so that they can compound all patients' results. In females, the number 

of features impacting survival according to the proportional hazards model 

(N in Table 4.14) is very close to 5% (significance level). The percentage of CpG-rich RS 

regions with a negative impact on survival is greater than for all patients. Contrary 

to other examinations, in the remaining regions, more features positively impact survival 

than negatively. Looking at the whole genome, the percentage of features having 

a positive and negative impact on survival is similar.  

Two features having the most impact on survival (positive or negative) for all patients 

were selected. Their survival curves and density are shown in Figure 4.11. 

 

Figure 4.11 Survival curves and density plots for features with the most significant positive (A) 

and negative (B) impact on survival. 

Feature cg11901272 lies on a CpG island in the body region of the HCG4 gene. 

Its methylation level positively impacts survival - higher β-values are associated with 

better survival. Feature cg07749613 lies in the intergenic region. Its methylation level 

harms survival - higher β-values are associated with worse survival. They both are low 

methylated probes. 
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Integration of log-rank test p-values leads to obtaining genomic regions that can impact 

survival. The exact number of each type of genomic regions for all patients and genders 

separately is presented in Table 4.15. 

Table 4.15 The number and percentage of genomic regions significantly impact survival for all patients, 

males and females. 

 CpG-rich  

RS regions 
Body regions 3'UTR regions All regions 

Impact  

on survival 
Positive Negative Positive Negative Positive Negative Positive Negative 

All patients 
67 77 45 113 104 491 216 681 

0.55% 0.64% 0.25% 0.63% 0.95% 4.48% 0.53% 1.66% 

Males 
8 119 43 79 145 167 196 365 

0.07% 0.98% 0.24% 0.44% 1.32% 1.52% 0.48% 0.89% 

Females 
11 32 30 35 167 103 208 170 

0.09% 0.26% 0.17% 0.19% 1.52% 0.94% 0.51% 0.41% 

 

In all patients and males examinations, the number of features with a negative impact on 

survival was greater than ones with a positive impact; in females, oppositely. The highest 

percentage is observed in 3'UTR regions (probably because of a small number of probes 

inside a region), and the lowest is for body regions. Generally, the most features were 

found for all patients, than for males and finally for females. However, in CpG-rich 

regulatory sequence regions, the greatest number is for males. Methylation level in CpG-

rich RS regions influences gene expression the most, mainly affecting survival. Venn 

diagram of CpG-rich RS regions for all examinations is presented in Figure 4.12. 

 

Figure 4.12 Venn diagram showing the number of common CpG-rich RS regions significantly impacting 

survival. 
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To compare the significance of features, the impact value was proposed. The impact 

value is an integrated p-value divided by adjusted α for each region. Features with 

an impact value lower or equal to 1 were considered significantly impacting the survival. 

Impact values for males and females are highly correlated (Spearman correlation 

coefficient equals 0.9024, p-value < 10
-15

). However, this correlation occurs for not 

significant features. There is no relationship between male and female results for those 

with low impact values. 

No common feature for all examinations was obtained. It means that different factors can 

determine survival in genders. Only two CpG-rich RS gene regions were common 

for males and females. One of them, the RBL2 gene, was already reported 

as differentiating indolent and progressive disease of B-cell chronic lymphocytic 

leukaemia (B-CLL) [141]. In progressive B-CLL, it was downregulated. It this study, 

its higher methylation level was detected as negatively impacting survival, which 

is consistent with the literature finding. The second one, the LTF gene, has been 

described as downregulated and hypermethylated in MLL (mixed lineage leukaemia) 

in humans and mice [142]. It this study, it was also detected as negatively impacting 

survival. 

 

4.3. DNA methylation aberrations in de novo and therapy-related AML 

4.3.1. Data preprocessing 

Loading, filtering, and normalisation resulted in DNA methylation level as β-value 

ranging from 0 to 1, where 0 means no methylation and 1 means total methylation.  

In EPIC arrays, methylation level has been measured for 821,323 probes spread genome-

wide. Over half of them - 472,454 probes were assigned to genomic regions. 94,321 are 

located in CpG-rich regulatory sequence regions, 391,335 probes lie in the gene body 

regions, and 23,772 belong to the 3'UTR regions. Because of performing the experiment 

on two arrays (two batches), a batch effect removal procedure was necessary to perform. 

Visualisation of batch effect removal according to Principal Component Analysis 

is presented in Figure 4.13. 
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Figure 4.13 First two components from PCA before (A) and after (B) batch effect removal procedure 

Batch effect removal resulted in distinguishing the control sample from AML samples. 

Particular AMLs became more aggregated - representing them points moved closer 

to each other. 

In the 450K array, methylation level was measured for 485,512 probes. 140,717 were 

assigned to CpG-rich regulatory sequence regions, 210,470 were annotated to gene body 

regions, and 19,741 were on 3'UTR regions. Samples from all 12 patients were measured 

on the same array. 

4.3.2. Global DNA methylation profile analysis 

All probes' distribution on β-values was decomposed into Gaussian Mixture to detect 

thresholds defining low, medium, and high methylation. The result is presented 

in Figure 4.14. 

 

Figure 4.14 Histogram of β-values, their decomposition into Gaussian mixture, and detected thresholds. 
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Probes with methylation level lower than 0.1062 were considered low methylated; ones 

with β-value higher than 0.7484 were considered high methylated. The remaining probes 

were methylated at the medium level. The numbers of probes assigned to each category 

for every patient group are presented in Table 4.16. 

Table 4.16 The number and percentage of a low, medium, and high methylated samples for each patient 

group. 

Methylation level low medium high 

Healthy control 
189,362 239,265 412,696 

22.51% 28.44% 49.05% 

de novo AML 
193,094 216,571 431,658 

22.95% 25.74% 51.31% 

chemo-AML 
205,784 242,888 392,651 

24.46% 28.87% 46.67% 

radio-AML 
179,432 260,501 401,390 

21.33% 30.96% 47.71% 

 

Across the whole genome, most probes (around a half) are high methylated, despite 

the patient group. Methylation levels for the remaining probes are low and medium, 

equally for each quarter. The smallest number of high methylated probes and the greatest 

number of low methylated ones is observed in chemo-AML (46.67% and 24.46%, 

respectively). The greatest number of high methylated probes is observed in de novo 

AML (51.31%), but the smallest number of low methylated probes occurs 

in radio-AML (21.33%). 

The analysis was repeated for genomic regions separately. Results are shown 

in Table 4.17. 

The methylation profile of particular genomic regions is diversified. In CpG-rich 

regulatory sequence regions, most probes are low methylated, indicating good 

accessibility of gene promoters. The lowest number of low methylated probes occurs 

in radio-AML. In the body region methylation profile is similar to the whole genome 

profile. 3' UTR region is the region with the highest methylation. 
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Table 4.17 The number and percentage of a low, medium, and high methylated samples for each patient 

group and every genomic regions. 

Region CpG-rich RS regions Body regions 3' UTR regions 

Methylation 

level 
low medium high low medium high Low medium high 

Healthy 

control 

82,779 9,701 1,841 73,601 100,273 217,461 1,805 5,836 16,131 

87.76% 10.29% 1.95% 18.81% 25.62% 55.57% 7.59% 24.55% 67.86% 

de novo 

AML 

80,052 12,105 2,164 75,202 90,652 225,481 1,929 5,551 16,292 

84.87% 12.83% 2.29% 19.22% 23.16% 57.62% 8.11% 23.35% 68.53% 

chemo-AML 
82,291 10,013 2,017 79,836 102,780 208,719 2,101 6,436 15,235 

87.25% 10.62% 2.14% 20.40% 26.26% 53.34% 8.84% 27.07% 64.09% 

radio-AML 
77,991 13,910 2,420 69,886 108,174 213,275 1,617 6,313 15,842 

82.69% 14.75% 2.57% 17.86% 27.64% 54.50% 6.80% 26.56% 66.64% 

 

Inside-group diversity is observed even if the whole genome methylation profile is not 

diversified among patient groups. The most diverse group is de novo AML. However, 

even the healthy control group is not consistent. It can be observed in the empirical 

cumulative distribution function for pooled patient groups samples and patients separately 

(Figure 4.15).  

 

Figure 4.15 Empirical CDF plots for pooled samples (A) and patients separately (B). 

Around 35% of probes in pooled samples have a methylation level lower than 0.5 

in every patient group. However, among individual patients, this value ranges from 

around 30% to around 45% in both cases for de novo AML patients. Empirical CDF 

for patients in the same group were plotted separately to look deeper into inside-group 

diversity. It is presented in Figure 4.16. 
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Figure 4.16 Empirical CDF plots patients separately for de novo AML (A), chemo-AML (B), 

and radio-AML (C) compared to healthy control (grey lines). 

The most diversified patient group is de novo AML; patients from this group have 

methylation profiles scattered wider than other patient groups and healthy control. None 

of the patient groups can be easily distinguished from the control group based on these 

plots. 

The distribution of β-values is even more diversified among genomic regions. Empirical 

CDF plots for CpG-rich regulatory sequence regions are presented in Figure 4.17, 

for body regions in Figure 4.18, and 3'UTR regions in Figure 4.19. In each case, empirical 

CDF is calculated for pooled samples and individual patients. 

 

Figure 4.17 Empirical CDF plots for pooled samples (A) and patients separately (B) for CpG-rich RS 

regions 

Probes annotated to CpG-rich RS regions are characterised by a much lower methylation 

level than the whole genome. Patient groups are also less diversified inside. 
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Figure 4.18 Empirical CDF plots for pooled samples (A) and patients separately (B) for body regions 

Methylation level in body regions is similar to the whole genome; it is only slightly 

higher than in the whole genome. Patient groups are also diversified inside. 

 

Figure 4.19 Empirical CDF plots for pooled samples (A) and patients separately (B) for 3'UTR regions 

Probes annotated to 3'UTR regions have the highest methylation level of all genomic 

region types. The methylation profile for patients is strongly diversified inside patient 

groups. 

  



76 

 

Changes in the categorisation of probes between healthy control and each AML are 

presented in Figure 4.20. 

 

Figure 4.20 Changes in categorisation from healthy control to de novo AML (A), chemo-AML (B), 

and radio-AML (C). Probes state in control is shown on the left and AML on the right part of the diagram. 

Each line is proportional to the number of probes. 

In the case of de novo AML, most probes remain in the same category; the biggest change 

is from medium methylation in control to high methylation. Transformations from low 

to high and high to low are very weakly represented. In the case of chemo-AML, 

the biggest transformation is from high to medium methylation. In radio-AML, generally, 

changes are the biggest among all AMLs, and the strongest process is a change from 

medium to high methylation. 

4.3.3. Detection of differentially methylated probes 

Detection of differentially methylated probes was performed in two ways: 

 ANOVA and post-hoc pairwise comparisons with Tukey-Kramer test; 

 pairwise comparisons with limma. 

The number of preliminarily selected probes found with ANOVA is presented 

in Table 4.18. 
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Table 4.18 The number of significant probes obtained in ANOVA test, before and after p-value correction 

for all examined probes and each genomic region type 

 
Overall  

N = 472,454  

CpG-rich RS regions 

N = 94,321  

Body regions 

N = 391,335  

3’UTR regions 

N = 23,772  

No p-value 

correction  

(p-value ≤ 0.05)  

118,284  27,641  95,728  5,555  

25.04%  29.31%  24.46%  23.37%  

BH correction 

(FDR ≤ 0.05)  

38,445  8,187  31,687  1,702  

8.14%  8.68%  8.10%  7.16%  

 

The percentage of differentially methylated probes before p-value correction is highest 

in CpG-rich regulatory sequence regions. After the Benjamini-Hochberg correction 

percentage of differentiating probes is similar for every region types. 

Number of probes differentiating particular pairs of patient groups is presented 

in Table 4.19. 

Table 4.19 The number of significant probes obtained in Tukey-Kramer pairwise tests, for each pair 

of patient groups and genomic region type, hypo- and hypermethylation. 

 

Overall  

(ANOVA FDR≤0.05) 

N = 38,445  

CpG-rich RS regions 

N = 8,187  

Body regions  

N = 31,687  

3’UTR regions  

N = 1,702  

Hypome-

thylated  

Hyperme

-tyhlated  

Hypome-

thylated  

Hyperme-

tyhlated  

Hypome

-thylated  

Hyperme

-tyhlated  

Hypome-

thylated  

Hyperme

-tyhlated  

De novo AML  

vs. control  

13,503  14,933  1,402  2,311  12,080  12,764  619  754  

35.12%  38.84%  17.12%  28.23%  38.12%  40.28%  36.37%  44.30%  

Chemo-AML  

vs. control 

14,918  15,180  1,975  4,036  13,085  12,028  688  683  

38.80%  39.48%  24.12%  49.30%  41.29%  37.96%  40.42%  40.13%  

Radio-AML  

vs. control 

11,309  18,463  1,660  4,589  9,858  14,720  472  822  

29.42%  48.02%  20.28%  56.05%  31.11%  46.45%  27.73%  48.30%  

Chemo-AML  

vs. de novo AML 

3,828  3,525  891  2,151  3,110  2,120  177  81  

9.96%  9.17%  10.88%  26.27%  9.81%  6.69%  10.40%  4.76%  

Radio-AML  

vs. de novo AML 

1,892  7,068  581  2,603  1,468  5,092  69  245  

4.92%  18.38%  7.10%  31.79%  4.63%  16.07%  4.05%  14.39%  

Radio-AML  

vs. chemo-AML 

1,255  6,235  628  1,694  824  4,864  34  255  

3.26%  16.22%  7.67%  20.69%  2.60%  15.35%  2.00%  14.98%  

 

Particular AMLs differ more with healthy control than among each other. In AMLs, 

the hypermethylation process is stronger than hypomethylation; the exceptions are body 

regions and 3'UTR regions in chemo-AML. Hypermethylation process is also stronger 

in both therapy-related AMLs compared to de novo AML, with the same exceptions. 
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Limma pairwise comparisons were performed instantly in the second approach, without 

preliminary selection. Number of differentiating probes obtained in this examination 

is presented in Table 4.20. 

Table 4.20 The number of significant probes obtained in limma pairwise tests, for each pair of patient 

groups and genomic region type, hypo- and hypermethylation. 

 

Overall  

N = 472,454  

CpG-rich RS regions 

N = 94,321  

Body regions 

N = 391,335  

3’UTR regions 

N = 23,772  

Hypome-

thylated  

Hyperme

-tyhlated  

Hypome-

thylated  

Hyperme-

tyhlated  

Hypome

-thylated  

Hyperme

-tyhlated  

Hypome-

thylated  

Hyperme

-tyhlated  

De novo AML  

vs. control  

43,736 72,747 2,891 8,961 39,584 63,733 2,754 3,639 

9.26% 15.40% 3.07% 9.50% 10.12% 16.29% 11.59% 15.31% 

Chemo-AML  

vs. control 

54,027 41,253 5,454 9,764 47,901 33,423 3,159 1,891 

11.44% 8.73% 5.78% 10.35% 12.24% 8.54% 13.29% 7.95% 

Radio-AML  

vs. control 

34,676 62,356 3,597 13,492 30,961 50,627 1,741 3,197 

7.34% 13.20% 3.81% 14.30% 7.91% 12.94% 7.32% 13.45% 

Chemo-AML  

vs. de novo AML 

29,015 10,231 4,287 3,703 24,939 7,588 1,493 422 

6.14% 2.17% 4.55% 3.93% 6.37% 1.94% 6.28% 1.78% 

Radio-AML  

vs. de novo AML 

17,718 26,636 1,890 6,559 15,841 20,948 841 1,478 

3.75% 5.64% 2.00% 6.95% 4.05% 5.35% 3.54% 6.22% 

Radio-AML  

vs. chemo-AML 

5,408 28,725 1,276 5,733 4,439 23,464 231 1,612 

1.14% 6.08% 1.35% 6.08% 1.13% 6.00% 0.97% 6.78% 

 

Number of differentially methylated probes in each comparison is greater than 

in the Tukey-Kramer test. However, percentages are lower because the reference 

is the number of all probes, not preliminary selected. Relations between hypo- 

and hypermethylation are consistent with previous analysis. A comparison of both 

method results is presented in Figure 4.21. 

Proportions between limma and Tukey-Kramer results are consistent for every 

comparison. The ANOVA + Tukey-Kramer approach seems more restrictive because 

of the correction for multiple pairwise comparisons in the Tukey-Kramer test. 
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Figure 4.21 Number of differentially methylated (sum of hyper- and hypomethylated) probes in each 

comparison. 

To check "inside-group" diversity, each AML patient was compared with healthy control. 

Only probes annotated to CpG-rich regulatory sequence regions were considered. 47,596 

probes did not differentiate any AML patients with healthy control. For the remaining 

probes, frequencies for hypo- and hypermethylation and no change were computed. 

Results are presented in Table 4.21. 

Table 4.21 Frequencies of hypo- methylation, hypermethylation, and no change for probes differentiating 

at least one patient and control. 

Patient group De novo AML Chemo-AML Radio-AML 

Patient's number 1 2 3 4 5 1 2 3 1 2 

Hypomethylation 0.0345 0.0653 0.0373 0.0301 0.0288 0.0717 0.0403 0.0681 0.0407 0.0531 

No change 0.6337 0.7013 0.7643 0.7291 0.6384 0.7192 0.5693 0.6813 0.5313 0.5488 

Hypermethylation 0.3317 0.2335 0.1984 0.2408 0.3328 0.2091 0.3904 0.2506 0.4280 0.3981 
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Average frequencies are presented in Figure 4.22. 

 

Figure 4.22 Average frequencies with confidence intervals for hypo- and hypermethylation and no change 

for all patient groups. 

The highest frequency of hypomethylation is observed in chemo-AML, while the highest 

frequency for hypermethylation is for radio-AML. De novo AML is characterised 

by the highest no-change frequency. Confidence intervals are widest for chemo AML 

(for no change and hypermethylation) and radio-AML (for hypomethylation). 

The relationship between hypo- and hypermethylation frequencies for each patient 

is presented in Figure 4.23. 

 

Figure 4.23 Relationship between hyper- and hypomethylation frequencies for each patient. 
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Frequencies are diversified even among patients in the same group. However, 

it is possible to separate patients from different groups according to the frequencies (dash 

lines). 

The Pielou diversity index for each patient was calculated based on these frequencies. 

Results are presented in Table 4.22. 

Table 4.22 Pielou diversity index values for individual patients and their averages for patient groups. 

Patient group De novo AML Chemo-AML Radio-AML 

Patient's number 1 2 3 4 5 1 2 3 1 2 

Pielou index 0.7021 0.6979 0.5907 0.6177 0.6871 0.6856 0.7440 0.7202 0.7550 0.7753 

Mean 0.6591 0.7166 0.7652 

 

The highest average diversity index is for radio-AML, and the lowest is for de novo 

AML. Pielou index values were compared among patient groups with ANOVA. ANOVA 

p-value was 0.0458. It means that the diversity of methylation changes significantly 

differentiates patient groups. Also, Tukey-Kramer post hoc tests for pairwise comparisons 

were performed. P-values were 0.2180, 0.0461, and 0.4587 for de novo AML vs. chemo-

AML, de novo AML vs. radio-AML, and chemo-AML vs. radio-AML comparisons, 

respectively. Hence, only two far patient groups differ significantly according 

to the Pielou diversity index. 

4.3.4. Detection of differentially methylated genomic regions 

Differentially methylated regions were detected due to p-value integration. In this case, 

it was focused only on the 14,338 CpG-rich RS regions because they have a proven 

impact on gene expression. It was performed for Tukey-Kramer tests p-values and limma 

test p-values. Number of differentially methylated genomic regions according 

is presented in Table 4.23.  

Number of genomic regions obtained with limma is greater than with Tukey-Kramer 

tests. However, the results are relatively consistent. The greatest difference is the number 

of genomic regions hypomethylated on chemo-AML compared to de novo AML: 

33 in the Tukey-Kramer approach and 204 in the limma approach. Number of common 

genomic regions found in both approaches for each AML compared to control 

is presented in Figure 4.24. 



82 

 

 

Table 4.23 Number and percentage of differentially methylated CpG-rich RS regions. 

 

Tukey-Kramer limma 

Hypomethylated  Hypermetyhlated  Hypomethylated  Hypermetyhlated  

De novo AML 

vs. control 

40 236 58 745 

0.28% 1.65% 0.40% 5.20% 

Chemo-AML 

vs. control 

74 168 111 280 

0.52% 1.17% 0.77% 1.95% 

Radio-AML 

vs. control 

31 466 53 958 

0.22% 3.25% 0.37% 6.68% 

Chemo-AML 

vs. de novo AML 

33 29 204 42 

0.23% 0.20% 1.42% 0.29% 

Radio-AML 

vs. de novo AML 

9 157 27 362 

0.06% 1.09% 0.19% 2.52% 

Radio-AML 

vs. chemo-AML 

5 140 7 378 

0.03% 0.98% 0.05% 2.64% 

 

 

Figure 4.24 Venn diagrams presenting the number of common genomic regions obtained with p-value 

integration of Tukey-Kramer tests and limma for de novo AML (A), chemo-AML (B), and radio-AML (C) 

compared to control. 

Almost all genomic regions found in integration p-values from Tukey-Kramer tests were 

also obtained with integration p-values from limma. 

4.3.5. Unsupervised feature selection  

The distribution logarithm of the variance of their methylation level was decomposed into 

Gaussian Mixture to select features (CpG-rich regulatory sequence genomic regions) 

in an unsupervised way. The visualisation of the results is shown in Figure 4.25. 
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Figure 4.25 Gaussian Mixture components for distribution of the logarithm of methylation level variance. 

Values for genomic regions selected for further analysis are marked with green color. 

Most diverse genomic regions (828) were selected to create a hierarchical tree 

and heatmap of patients according to the average methylation level for each CpG-rich RS 

genomic region. Results are presented in Figure 4.26. 

 

Figure 4.26 Heatmap and a hierarchical tree of patients according to mean methylation level in selected 

genomic regions. 
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The biggest similarity occurs among all healthy control samples grouped. The second 

main root consists of AMLs samples with separated de novo AML and therapy-related 

AMLs. Inside therapy-related AMLs, chemo-AML samples are grouped. 

4.3.6. Functional analysis 

The same procedure was conducted for hiPatia subpathways activation scores. 

Visualisation of Gaussian Mixture Model for distribution of their variance is presented 

in Figure 4.27. 

 

Figure 4.27 Gaussian Mixture components for distribution of the logarithm of hiPathia subpathways activity 

score variance. Values for subpathways selected for further analysis are marked with green color. 

Most diverse subpathways (322) were selected to create a hierarchical tree and heatmap 

of patients according to activation score. Results are presented in Figure 4.28. 

Similarly, as for RS regions, the most compact group was healthy control. AMLs are not 

separated so well - one of the radio-AML patients is clustered with de novo AML 

patients. However, many selected subpathways are included in the KEGG AML pathway 

(hsa05221): PI3K-Akt signaling pathway, Apoptosis, mTOR signaling pathway, MAPK 

signaling pathway, and Cell cycle. They consist of 11% of selected subpathways.  
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Figure 4.28 Heatmap and a hierarchical tree of patients according to subpathways' activation score. 

4.3.7. Validation of selected biomarkers 

A biomarker was defined as a genomic region that differentiates a particular AML from 

control and does not differentiate other AMLs from control. A pyrosequencing 

experiment examined one potential AML marker: AURKC, one potential chemotherapy-

related AML marker: Mir886 (VTRNA2-1), and two potential radiotherapy-related AML 

markers: MEST and GATA5. All selected biomarkers were found in both approaches: 

ANOVA and Tukey-Kramer post hoc tests, as well as in limma. Their significance 

according to integrated p-value and effect size in both primary and validation experiments 

is presented in Table 4.24.  
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Table 4.24 Results of p-value integration and effect size estimation for CpG-rich genomic region of selected 

genes in primary and validation experiments. 

Gene Experiment Comparison Statistical test 
Adjusted 

α 

Integrated 

p-value 

Median 

effect size 

A
U

R
K

C
 

Primary 

experiment 

De novo AML vs. control 

(hypermethylation) 

Tukey-Kramer 4.00∙10
-11

 

1.04∙10
-26

 
10.87 

(huge) 

Chemo-AML vs. control 

(hypermethylation) 
1.64∙10

-25
 

8.52  

(huge) 

Radio-AML vs. control 

(hypermethylation) 
4.35∙10

-24
 

9.33  

(huge) 

Validation 

experiment 

All AMLs vs. control 

(hypermethylation) 
T-test 

4.43∙10
-5

 

2.33∙10
-7

 
9.58  

(huge) 

De novo AML vs. control 

(hypermethylation) 
Tukey-Kramer 1.56∙10

-5
 

1.66  

(very large) 

M
ir

8
8
6

 

(V
T

R
N

A
2

-1
) Primary 

experiment 
Chemo-AML vs. control 

(hypomethylation) 

Tukey-Kramer 5.86∙10
-6

 4.14∙10
-11

 
119.50 

(huge) 

Validation 

experiment 
Tukey-Kramer 5.86∙10

-6
 9.66∙10

-5
 

1.61  

(very large) 

M
E

S
T

 

Primary 

experiment 
Radio-AML vs. control 

(hypermethylation) 

Tukey-Kramer 2.67∙10
-42

 7.92∙10
-44

 
6.53  

(huge) 

Validation 

experiment 
Tukey-Kramer 5.86∙10

-6
 8.91∙10

-5
 

1.91  

(very large) 

G
A

T
A

5
 Primary 

experiment 
Radio-AML vs. control 

(hypermethylation) 

Tukey-Kramer 1.91∙10
-20

 4.57∙10
-22

 
7.06  

(huge)  

Validation 

experiment 
Tukey-Kramer 4.43∙10

-5
 7.46∙10

-4
 

1.77  

(very large)  

 

AURKC was considered an all AMLs biomarker because it differentiated each AML with 

healthy control. In validation experiment analysis, its methylation level was compared 

between all AML patients and healthy control and between de novo AML and healthy 

control. In each case, the integrated p-value is lower than the adjusted significance level, 

and the median effect size is huge or very large (in de novo AML vs. control comparison 

in validation experiment). In the case of other genes, comparisons that resulted 

in a significant p-value in the primary experiment were repeated in validation experiment 

analysis. In each case, in the primary experiment median effect size is huge, 

and in the validation experiment, it is very large. P-values in the validation experiment 

were slightly higher than the adjusted significance level. All markers were confirmed 

in the validation experiment based on median effect size, while AURKC was also based 

on the integrated p-value. 
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Additionally, methylation level in CpG-rich regulatory sequence regions of selected 

biomarkers was checked in the first experiment, conducted on Human Methylation 450K 

array. Visualisation for the AURKC gene is shown in Figure 4.29. 

 

Figure 4.29 Median methylation level for AURKC CpG-rich RS region for each experiment and patient. 

Measurements from all experiments are consistent. All AML patients have similar 

methylation level, except the 49 de novo AML patient, which is an outlier in this case. 

Differences between healthy control and AMLs are greater in the EPIC array (primary) 

experiment than in pyrosequencing (validation) experiment. AURKC is one of the protein 

kinases. It has been described as downregulated in AML, independently of gender [143]. 
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Similar visualisation was performed for the MEST gene (Figure 4.30). 

 

Figure 4.30 Median methylation level for MEST CpG-rich RS region for each experiment and patient. 

In the case of the MEST gene, the methylation level measured in the pyrosequencing 

experiment is lower than in array experiments. Radio-AML patients distinguish from 

the rest patients, except 37 (de novo AML patient) and 18 (chemo-AML patient) 

in the pyrosequencing experiment. These patients are outliers in this case. In the 450K 

array experiment, radio-AML patients have similar methylation level as other AMLs 

patients. MEST is characterised by parental imprinting in lymphocytes. Loss of this 

imprinting is connected to several types of cancer. MEST is silenced by hypermethylation 

in AML, independently of the methylation status of the imprinting control region, and can 

be a tumour suppressor gene [144]. Methylation level at MEST was associated with 

invasive cervical cancer risk [145]. MEST lower expression is associated with NMP1 

mutation in AML and correlated with worse overall survival [146]. 
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Analogous visualisation was prepared for the GATA5 gene (Figure 4.31). 

 

Figure 4.31 Median methylation level for GATA5 CpG-rich RS region for each experiment and patient. 

The situation for the GATA5 gene is similar to the MEST gene. Radio-AML patients 

distinguish well from others in EPIC array and pyrosequencing experiments. In the 450K 

experiment, all AMLs patients have similar methylation level. GATA5 is a transcription 

factor, playing a crucial role in cardiovascular development. It is also a tumour suppressor 

gene. It impacts proliferation and colony formation ability in hepatocellular carcinoma 

(HCC) [147] [148]. Its expression is silenced in colorectal and lung cancers [149]. 

GATA5 is also involved in leukaemia inhibitory factor-responsive transcription 

of the β-myosin heavy chain gene in cardiac myocytes [150]. GATA5 hypermethylation 

has already been reported in chronic lymphocytic leukaemia (CLL) [151] and colorectal 

carcinoma [152]. Its hypermethylation is associated with radiation-induced lung 

adenocarcinoma [153]. 
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Mir886 (VTRNA2-1) gene was not measured on 450K array, so visualisation was 

prepared only for EPIC array and pyrosequencing experiments. It is presented 

in Figure 4.32 

 

Figure 4.32 Median methylation level for Mir886 (VTRNA2-1) CpG-rich RS region for EPIC array 

and pyrosequencing experiments and each patient. 

In the EPIC array (primary) experiment, chemo-AML patients distinguish well from other 

patients. In pyrosequencing (validation) experiment, the same patients (7 and 16) also 

differ from the rest patient groups. However, remaining chemo-AML patients (9 and 18) 

have similar methylation level to control and de novo AML patients. Hence, in this case, 

a smaller effect size is a result of the inside chemo-AML group variety. Mir886 

(VTRNA2-1) is a tumour suppressor gene and outcome predictor in AML - lower 

methylation of it is related to better survival [154].  

 

4.4. Integration of all experiments results 

4.4.1 AML methylation profile 

In the first described study (Chapter 4.1) AML methylation profile was analysed. 

A number of genomic regions that differentiate AML and healthy control was detected 

according to methylation level. Differentiation was categorised into five levels: 

hypomethylation, hypermethylation, medium hypermethylation, high hypermethylation, 
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and extreme high hypermethylation. In the third described study (Chapter 4.3), the AML 

methylation profile was examined for de novo AML, chemotherapy-related AML, 

and radiotherapy-related AML. In this case, several hypo- and hypermethylated genomic 

regions were also found. 

It has been checked if the results for both studies were consistent. TSS genomic regions 

from the first study are related to the CpG-rich regulatory sequence region from the third 

study. However, TSS regions include all probes annotated to TSS1500, TSS200, 

and 5'UTR regions, while CpG-rich RS regions take only those that are also annotated 

to CpG island or shore. The number of hypo- and hypermethylated genomic regions 

detected in corresponding patient groups compared to control is presented in Table 4.25. 

Table 4.25 The number of differentially methylated TSS/CpG-rich RS genomic regions in AML/de novo 

AML separately and in common. 

AML De novo AML Common 

Differential 

methylation 

Number 

of genomic 

regions 

Differential 

methylation 

Number 

of genomic 

regions 

Number 

of genomic 

regions 

Hypomethylation 90 Hypomethylation  40 1 

H
y

p
er

m
et

h
y

la
ti

o
n

 

At least low 945 

Hypermethylation 236 

62 

At least medium 385 37 

At least high 105 18 

Extreme high 31 3 

 

In the first study, methylation level was measured for 20,852 TSS genomic regions, while 

in the third, for 14,338 CpG-rich RS regions. The number of features common for both 

experiments was 11,774. Dice similarity coefficient [155] for hypomethylated genomic 

regions equals 0.0154, while for hypermethylated genomic regions, it is 0.1050. Such low 

value may be the result of different definitions of TSS and CpG-rich RS genomic regions.  

One common hypomethylated genomic region was LOC648691. Its integrated p-value 

in the first experiment was 8.43∙10
-9

 (adjusted significance level: 1.08∙10
-7

), 

and in the third experiment, it was 9.06∙10
-9

 (adjusted significance level: 5.86∙10
-6

). It was 

also detected as hypomethylated in chemo-AML; the integrated p-value was 9.63∙10
-9

. 
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Three genomic regions common for extreme high hypermethylation in the first 

experiment and hypermethylation in the third experiment were KRTCAP3, MTMR7, 

and SPACA1. The integrated p-value for KRTCAP3 in the first experiment was  

2.86∙10
-21

 for extreme high hypermethylation (adjusted significance level: 1.12∙10
-13

), 

while in the third experiment was equal to 1.15∙10
-12

 (adjusted significance level:  

5.86∙10
-6

). It was also hypermethylated in chemo-AML (integrated p-value: 3.50∙10
-8

) 

and in radio-AML (integrated p-value: 1.83∙10
-8

). The integrated p-value for MTMR7 

in the first experiment was 4.18∙10
-11

 (adjusted significance level: 2.86∙10
-10

), while 

in the third experiment was equal to 1.37∙10
-13

 (adjusted significance level: 7.90∙10
-7

). 

It was also hypermethylated in radio-AML (integrated p-value: 2.44∙10
-7

). The integrated 

p-value for SPACA1 in the first experiment was 1.84∙10
-10

 (adjusted significance level: 

7.90∙10
-7

), while in another experiment, it was 1.47∙10
-11

 (adjusted significance level: 

5.86∙10
-6

).  

None of the mentioned genes has already been reported as related to leukaemia. One 

of the genes detected as high hypermethylated in the first experiment 

and hypermethylated in the third experiment was NNAT. 

4.4.2 Gender impact on methylation in AML 

In the second described study (Chapter 4.2), differences in methylation level between 

female and male AML patients were detected. Validation for this analysis was performed 

using the data from the third study (Chapter 4.3): healthy control and de novo AML 

patient groups were taken into account. The three most gender differentiating probes 

in the AML patient group, according to FDR value, were selected. The difference 

between genders was also checked in healthy patients. Boxplots of their methylation 

levels are presented in Figure 4.33. Values from the third validation experiment are 

marked with red color. 
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Figure 4.33 Methylation level in selected probes among all examined patient groups - boxplots for the data 

from the second experiment and individual values for the data from the third experiment. 

 

In the two first probes, the relationship between methylation level in males and females 

is consistent between the second and the third study - methylation level in females 

is lower than in male AML patients. In the case of the third probe, the relationship is not 

preserved. In each case, no difference between healthy males and females is observed.  

 

  



94 

 

 

5. Conclusions 
 

 

The objective of this dissertation, which was the detection of differentially methylated 

probes and genomic regions among various patient groups and the integration 

of the results obtained with the use of different experimental platforms, has been achieved 

in several aspects. 

5.1. Acute myeloid leukaemia methylation profile 

A novel method for methylation data analysis was proposed. It facilitates an effective 

detection of differentially methylated probes and differentially methylated genomic 

regions. AML genome-wide methylation fingerprint was identified with the use 

of the developed technique. The algorithm uses selected statistical methods fitted 

to the characteristics of the data. Additionally, it is supported by mathematical modelling. 

Contrary to existing approaches, it is data-driven and does not use a priori assumed 

cut-offs for differential methylation definition. It uses Gaussian mixture modelling 

of the distribution of methylation shift between groups to detect specific thresholds. They 

allow classifying probes as low, medium, or high hyper- or hypomethylated with 

the support of probability for class membership. Due to p-value integration, this approach 

enables a conclusion about differential methylation of genomic regions, such as TSS 

and gene body for individual genes. The study confirmed that alterations in DNA 

methylation occur in acute myeloid leukaemia. The AML methylation modification varies 

for different genomic region types: TSS, gene body, and intergenic. Much more probes 

and regions were detected as hypermethylated than hypomethylated. The genes in which 

genomic regions (especially TSS regions) were detected as hypo- or hypermethylated 

in AML were confirmed as directly connected to leukaemia. Functional analysis revealed 

the relationship between the found genes and processes alternated in AML.  
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5.2. Gender differences in DNA methylation in AML 

The obtained results reveal differences in methylation profile between males and females 

in AML. Corresponding differences are not observed in healthy persons. Gender disparity 

in AML concerns probes in CpG-rich Regulatory Sequence genomic regions. Alterations 

of DNA methylation in these regions impact gene expression the most. In other genomic 

region types, differences between genders in AML are insignificant. The integration 

of p-values of probes annotated to the same genomic region shows that almost 

10% of genes can be differentially expressed between males and females in AML. These 

genes are connected to many molecular processes and functions examined in functional 

analysis. Several enriched GO Terms, such as GO:0006935 (chemotaxis) 

and GO:0048870 (cell motility), are related to AML development [156]. Additionally, 

the expression of homeobox genes, found in the functional analysis, is correlated with 

epigenetic modifiers and specific to malignant hematopoiesis, suggesting their potential 

causal relationships [157]. Furthermore, survival analysis shows no differences 

in prognosis between males and females. However, it demonstrates that different 

prognostic markers can characterise males and females with AML. Prognostic markers - 

genomic regions in which methylation level significantly impacts survival - were 

successfully detected for all patients and males. The results obtained for females are 

on the "by chance" level. Identified gender-specific differences in epigenomics prognostic 

markers should be considered in the diagnosis and prognosis of AML. 

 

5.3. DNA methylation aberrations in de novo and therapy-related AML 

The results obtained in this study reveal the difficulty of analysing the data with small 

samples. The lack of a control sample and then putting the healthy control in one batch 

could lead to problems with detecting differences between healthy and AML patients. 

However, this imbalance was limited by preprocessing methods, such as batch effect 

removal. Methylation profile analysis presents differences in methylation level 

distribution among genomic region types. The analysis was performed using 

a composition of statistical methods and an Illumina annotation system, which assign 

probes to particular genomic regions. Detection of differentially methylated probes 

and genomic regions, performed with two approaches, leads to consistent results. It shows 
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that methods with corrections for multiple pairwise comparisons are more restrictive. 

Compared to control, aberrations in DNA methylation level in AMLs are different 

for probes belonging to various genomic regions. In regulatory sequence regions, 

hypermethylation is prevalent, while in body regions and 3'UTR regions, 

hypermethylation and hypomethylation are similar. Inside-group variety analysis reveals 

that patient groups are various, but it is lowest for de novo AML and highest 

for radio-AML. P-value integration allows concluding about differential methylation 

of individual regulatory sequence regions. The results show which genes can 

be differentially expressed in de novo AML and therapy-related AMLs. Unsupervised 

feature selection confirms patients' data structure and categorisation as de novo, chemo- 

and radio-AML patients. Functional analysis of genes differentially expressed in de novo 

AML confirms the biological meaning of statistical assay. One AML, one chemo-AML, 

and two radio-AML markers were detected and validated. Differential methylation 

of the found markers is associated with AML in the literature. The found chemo- 

and radio-AML markers can be used as diagnostic factors in distinguishing these two 

types of AML. 

 

5.4. Integration of all experiments results 

The integration of the results from the first and third studies aimed to find differentially 

methylated features for AML. Only a few common hypo- and hypermethylated genomic 

regions were obtained. However, the differences in methylation level distributions among 

genomic region types are similar in both studies. The prevalence of hypermethylation 

over hypomethylation was confirmed. The low similarity of obtained results can 

be an effect of different definitions of compared regions (TSS in the first study 

and CpG-rich RS in the third study) as well as of a small number of examined patients 

and inside-group variety. The integration of results from the second and third studies 

confirmed the gender impact on methylation level in most cases. The consistency 

of observation was evaluated visually. 
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To summarise, the composition of mathematical modelling, comparative statistical 

analysis and their results integration enabled the detection of differentially methylated 

genomic regions between AML patients and healthy donors as well as among several 

AML patient's groups and healthy control. Integration of results acquired using 

methylation arrays and pyrosequencing enabled the validation of detected AML 

epigenomic biomarkers. 
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