
STUDIA INFORMATICA 2011

Volume 32 Number 2B (97)

Krzysztof MIODEK

Uniwersytet Łódzki, Centrum Informatyki

Krzysztof PODLASKI, Ścibór SOBIESKI, Bartosz ZIELIŃSKI

Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej

SOME REMARKS ON OPTIMIZATION IMPACT ON DATABASE

SECURITY

Summary. One of the most important factors of real live business applications are

speed and reliability. The question that arises during development states: what is more

important: efficiency of servers or security of database/application. One of the biggest

databases used in the University of Łódź for its applications must have restricted

access to data. On the other hand, although it is used by many people concurrently

cannot be overloaded. Security rules are based on views created for every user, which

gives scalability and flexibility. Unfortunately this approach has security vulnerabili-

ties which is presented in this article.

Keywords: database security, database optimization

PEWNE SPOSTRZEŻENIA NA TEMAT WPŁYWU OPTYMALIZACJI

NA BEZPIECZEŃSTWO BAZ DANYCH

Streszczenie. W zastosowaniach biznesowych bardzo często, jako najważniejsze

wskaźniki jakości rozwiązania, wskazuje się szybkość działania oraz niezawodność.

W trakcie tworzenia takich rozwiązań pojawia się dylemat: wydajność serwera czy

też jego bezpieczeństwo? Przed podobnym dylematem stanęli twórcy jednej z naj-

większych baz danych użytkowanych na Uniwersytecie Łódzkim, gdyż aplikacje ją

używające musiały posiadać bardzo ograniczony dostęp do danych, a ponieważ apli-

kacje te używane są przez wiele osób, to istnieje problem przeciążenia bazy danych.

Reguły bezpieczeństwa zostały oparte na widokach tworzonych dla każdego użyt-

kownika, co daje dużą skalowalność i elastyczność rozwiązania. Niestety, takie roz-

wiązanie posiada pewne niedostatki związane z bezpieczeństwem, które zostały

omówione w niniejszej publikacji.

Słowa kluczowe: bezpieczeństwo baz danych, optymalizacja baz danych

250 K. Miodek, K. Podlaski, Ś. Sobieski, B. Zieliński

1. Previous works and our contribution

The need for fine grained database access control for sensitive business, personal or med-

ical data, on the level of single rows, as opposed to crude table level control available in most

database systems, is already well recognized. Among mechanisms proposed for implement-

ing such access control, query rewriting [1, 2, 3, 4, 5] seems to be most promising. The basic

idea is to modify the user's queries by adding appropriate WHERE conditions to every refer-

ence to the protected table in the query. The added conditions are to select only those rows

the user is allowed to access. The most available basic mechanism to force such rewriting is

to create views for each user and each protected table as well as to give users access to views

only, instead of tables. Of course for systems with hundreds of tables and thousands of users

such basic mechanisms are useless without some framework to easy administrative and sto-

rage burden but such systems were created both as in-house built systems (e.g. Rektorat) and

database mechanisms for commercial databases (e.g. [5]).

Unfortunately query rewriting systems are susceptible to leakage of secret information

through hidden communication channels [2]. The basic problem is that while the user obtains

as query result only rows he is authorized to see, the expressions in the WHERE part of user

query can be pushed down by optimizer in the query plan, and thus get to be executed before

the selection of authorized rows [2]. Then information can leak because the user expressions

may not be side effect free – either because they contain user defined functions which dump

their arguments to some log table or because the execution of the expression throws an ex-

ception and the value of arguments can be inferred from the error message [2].

There are two most obvious ways to prevent such leaks: to modify the optimizer in order

to prevent generating unsafe query plans [2] which is difficult and sometimes impossible

when one does not have access to the database source code, or one can cut off the optimizer

from bare tables, for instance by using table functions in the definition of a view – table func-

tions are in most cases opaque row sources from the point of view of the optimizer. Unfortu-

nately the second solution is very degrading for the efficiency – not only it prevents the opti-

mizer from rewriting the query into more efficient but possibly unsafe one, but it also makes

it impossible to use the indexes on the protected tables.

Our contribution is the analysis of the problem in the context of PostgreSQL database

and the working University of Łódź database system with an in-house created row level

access control system [1].

Some Remarks on Optimization Impact on Database Security 251

2. Experiences with two approaches to row level access management

In [1] were presented two versions of row level access management system developed for

applications created in the University of Lodz based on PostgreSQL database. First version of

that system was based on a tight access control provided by a function invoked in views to

every table in the database. The function returned only rows, to which client had an access.

That approach had one main disadvantage – it was very time consuming. Using function in

every view meant, that indexes were not taken into account by the database optimizer and the

optimizer could not approximate the number of rows returned by the functions. The result was

that query plans were far from optimal, which degraded database performance significantly.

Second approach loosened some security restrictions in order to gain better response times

for each query. Instead of one view for each table providing access control by a function, static

views were created. As every user might have had different permissions and each application

option might have required different data ranges and also varied permissions, many views for

each table and user were required, one for every option, to which user had an access.

Fig. 1. Access restriction mechanism

Rys. 1. Mechanizm ograniczenia dostępu

PostgreSQL unique functionality allowing modification of search path variable was used.

For every option a given user has access, a separate schema is created. In that schema for

every table needed, a view is created with appropriate WHERE clause restricting access to

data rows. Application for every user action starts a new transaction. At the beginning of the

transaction, application provides option id in which action takes place by updating special

MODUL

PK id

operator

dataZmian

nazw a

nazw a_link

OPCJA

PK id

operator

dataZmian

nazw a

nazw a_link

priorytet

FK PAKIET_id

OPCJA_OPERATOR

PK id

operator

dataZmian

FK OPERATOR_id

FK OPCJA_id

PAKIET

PK id

operator

dataZmian

nazw a

nazw a_link

priorytet

FK MODUL_id

TABELKI

PK id

operator

dataZmian

nazw a

czystdimpl

UPRAWNIENIA

PK id

operator

dataZmian

FK OPCJA_OPERATOR_id

FK TABELKI_id

w_select

w _insert

w _update

w _delete

AKT_MENU

operator

datazmian

FK opcja_operator_id

252 K. Miodek, K. Podlaski, Ś. Sobieski, B. Zieliński

table akt_menu. A trigger on that table sets a proper search_path providing an access man-

agement by selecting right schema with proper set of views. At first all views were to be

created while setting user permissions. This approach proved to be ineffective as the number

of views to create for every user were in hundreds. Updating permissions for all users of the

system took hours. It was decided to delay creating actual views to the moment, when they

are really needed, ie. when a user selects a given option for the first time. Trigger on the men-

tioned akt_menu table checks whether views are already created and invokes function creat-

ing them if needed. This increases the time user waits for the response when using some op-

tions for the first time, but that was acceptable. Another gain was in the fact, that some op-

tions are never used by the users, so unnecessary views were not created in the database. The

figure below shows tables providing access restriction mechanism.

Table “opcja_operator” contains information about which options are available for each us-

er. Table “uprawnienia” contains permissions to specific tables for every pair user-option. Ta-

ble akt_menu contains triggers governing access restriction mechanism, providing proper

search path and ensuring that needed views exist. In a default search path there are only main

user schema and public schema. If proper search path is not set, user has no access to data at all.

Application is required to set akt_menu to NULL before the end of transaction, which re-

sets search path to default.

2.1. Performance comparison

For performance tests two representative options were selected. To avoid external influ-

ence on performance monitoring, tests were conducted on separated system. Prepared scripts

were run 100 times.

Table 1

Performance test results

No access control Function based views Static views in schemas

62s 880s 208s

“No access control” tests were conducted on a user with access granted to tables contain-

ing data without any views covering them and all triggers turned off, simulating plain data-

base without row level access control.

Performance of functions based on an access control was unacceptable. Rewriting the

system to static views provided over four times better performance, which has given accepta-

ble response times for most options. It is worth noting, that users with broad permissions (ie.

to all rows in tables) have better performance than users with more complicated permissions.

Tests above were conducted for a typical user with permissions narrowed to some subset of

data in most of the tables. Permissions on some tables relied on permissions to correlated data

in other tables.

Some Remarks on Optimization Impact on Database Security 253

3. Unauthorized data access

Let us explore the security weaknesses of current [1] system.

3.1. Looking for forbidden data

At first we select data (row) which our test user cannot see, and try to obtain any informa-

tion about it using simple SQL query:

SELECT * FROM harmon WHERE id=16105; (1)

This gives us, 0 rows as result. It is worth to note that usually conditions defining the

view harmon do not allow test user to see the chosen row. The only possibility is to work

“silently” before view restrictions rules are applied. First let us try to create an error prepared

specially for this row. If security rules worked as intended no error would occur. Unfortunate-

ly the query:

SELECT * FROM harmon WHERE (id=16105 AND 1/(id-16105)=0); (2)

gives back the message: ERROR: division by zero.

From this, user knows that there is something he is not allowed to see. Now let us try to

specify when we could expect potentially dangerous situation.

Optimizer implemented in PosgreSQL database will always try to apply first most narrow

condition on an indexed column. Consider the following WHERE conditions supplied by the

user:

1. id=16105 AND 1/(id-16105)=0 (3)

2. id in (15, 33, 16105, 16210) AND 1/(id-16105)=0 (4)

3. id>16103 AND 1/(id-16105)=0 (5)

Cases 1,2 cause errors and 3 is safe and returns 0 rows. We should remember that the defini-

tion of the view harmon has complicated restriction rules and id is an indexed column for this

view. To understand the mechanism we should look at the query plans using SQL command

EXPLAIN.

For query (1) we obtain:

Nested Loop IN Join (cost=719.16..1152.63 rows=1 width=655)

 Join Filter: ("outer".zatrudn_id = "inner".id)

 -> Index Scan using harmon_pkey on harmon (cost=0.00..5.75 rows=1

width=655)

 Index Cond: (id = 16105)

 -> Hash IN Join (cost=719.16..1143.53 rows=268 width=4)

 Hash Cond: ("outer".stanowis_id = "inner".id)

 -> Seq Scan on zatrudnienie (cost=0.00..400.68 rows=2802 width=8)

 Filter: ((s_grupprac_id = 1) OR (s_grupprac_id = 2))

 -> Hash (cost=714.44..714.44 rows=1885 width=4)

 -> Hash IN Join (cost=38.30..714.44 rows=1885 width=4)

254 K. Miodek, K. Podlaski, Ś. Sobieski, B. Zieliński

 Hash Cond: ("outer".jednostka_id = "inner".id)

 -> Seq Scan on stanowisko (cost=0.00..558.86 rows=19686

width=8)

 -> Hash (cost=38.02..38.02 rows=115 width=4)

 -> Seq Scan on jednostka (cost=0.00..38.02 rows=115

width=4)

 Filter: (((kod)::text ~~ '__________'::text)

AND czyaktualne AND ((kod)::text ~~ '__________'::text))

On the other hand for query (2) we have:

 Nested Loop IN Join (cost=719.16..1152.64 rows=1 width=655)

 Join Filter: ("outer".zatrudn_id = "inner".id)

 -> Index Scan using harmon_pkey on harmon (cost=0.00..5.76 rows=1

width=655)

 Index Cond: (id = 16105)

 Filter: ((1 / (id - 16105)) = 0)

 -> Hash IN Join (cost=719.16..1143.53 rows=268 width=4)

 Hash Cond: ("outer".stanowis_id = "inner".id)

 -> Seq Scan on zatrudnienie (cost=0.00..400.68 rows=2802 width=8)

 Filter:((s_grupprac_id = 1) OR (s_grupprac_id = 2))

 -> Hash (cost=714.44..714.44 rows=1885 width=4)

 -> Hash IN Join (cost=38.30..714.44 rows=1885 width=4)

 Hash Cond: ("outer".jednostka_id = "inner".id)

 -> Seq Scan on stanowisko (cost=0.00..558.86 rows=19686

width=8)

 -> Hash (cost=38.02..38.02 rows=115 width=4)

 -> Seq Scan on jednostka (cost=0.00..38.02 rows=115

width=4)

 Filter: (((kod)::text ~~ '__________'::text) AND

czyaktualne AND ((kod)::text ~~ '__________'::text))

It is worth to note that in the query plan for query (2) index condition is taken before view

filters are applied. In the case where our security rules work well (5), the query plan shows

that view rules are checked before user conditions.

Query plan for (5)

Nested Loop (cost=1144.20..3086.41 rows=86 width=655)

 -> HashAggregate (cost=1144.20..1146.88 rows=268 width=4)

 -> Hash IN Join (cost=719.16..1143.53 rows=268 width=4)

 Hash Cond: ("outer".stanowis_id = "inner".id)

 -> Seq Scan on zatrudnienie (cost=0.00..400.68 rows=2802 wid-

th=8)

 Filter: (((s_grupprac_id = 1) OR (s_grupprac_id = 2))

 -> Hash (cost=714.44..714.44 rows=1885 width=4)

 -> Hash IN Join (cost=38.30..714.44 rows=1885 width=4)

 Hash Cond: ("outer".jednostka_id = "inner".id)

 -> Seq Scan on stanowisko (cost=0.00..558.86

rows=19686 width=8)

 -> Hash (cost=38.02..38.02 rows=115 width=4)

 -> Seq Scan on jednostka (cost=0.00..38.02

rows=115 width=4)

 Filter: (((kod)::text ~~

'__________'::text) AND czyaktualne AND ((kod)::text ~~ '__________'::text))

 -> Index Scan using harmon_zatrudn_id_idx on harmon (cost=0.00..7.22 rows=1

width=655)

 Index Cond: (harmon.zatrudn_id = "outer".id)

 Filter: ((id > 16103) AND ((1 / (id - 16105)) = 0))

Some Remarks on Optimization Impact on Database Security 255

From query plans shown above we can conclude that if user conditions are very narrow,

they can be applied before view filters.

3.2. Obtaining hidden data using special tricks

As shown previously, using some specially created query we can obtain information that

we do not have access to. The question arises how we can extract forbidden data. There are

two ways:

1. User defined stored functions.

2. Build-in functions.

3.2.1. User defined stored functions

With using specially prepared functions user can dump all data from forbidden rows.

What is more important even if SQL language allows forbidding a user to call a function

using REVOKE command, PostgreSQL does not implement this. If a user has GRANT to

schema where function is stored he has right to use it. On the other hand most users are not

allowed to create stored functions.

3.2.2. Build-in functions

Second approach is to use build-in functions. We can use for example logarithm function

and obtain error message ERROR: cannot take logarithm of a negative number.

The most dangerous function we can use is CAST operation, because it gives back very

verbose error message. For example the query:

SELECT * FROM harmon WHERE

 (id=16105 AND cast(id||'_'||rok||'_'||d2 as integer)<0);

yields error message:

ERROR: invalid input syntax for integer: "16105_2004_8"

Hence we know that:

Table 2

Obtained forbidden data

id Rok d2

16105 2004 8

No matter how we restrict creation of stored functions for user, if he has possibility to

send SQL queries to database, he can obtain forbidden data. Even if we could revoke permis-

sion to use a function for a user we can’t do it in case of cast function. Cast function must be

allowed for everyone because it is used often implicitly, even without programmer know-

ledge.

256 K. Miodek, K. Podlaski, Ś. Sobieski, B. Zieliński

4. Conclusions

It is well known that views used as security mechanisms can leak information due to side

effects of WHERE clauses in the user queries when those clauses are pushed by the optimizer

below the view filter in the query plan. We have analyzed the problem in the context of

a view based security framework [1] of a working University of Łódź human resources data-

base implemented in PostgreSQL database management system. Since our human resource

database is a good representative example of a large business class database system contain-

ing sensitive information, we believe that some of the conclusions presented below can be

relevant for implementers and users of other database applications, in particular those which

are build on PostgreSQL.

The overall message is that while the standard leak mechanisms do work, the potential

burglar needs an authorized access to a fairly large number of rows in a table he is interested

in before he can use those mechanisms to leak information from the remaining (secret) rows:

1. The information cannot leak from the tables where the user is not authorized to see any

rows – the views for such tables will not be generated in the user schema at all.

2. In order to force the rearranging of clauses into an unsafe query plan the user query

against a view has to be much more selective and simple then the query defining the

view. It follows that the view filter cannot be too selective in the first place.

For instance, we were not able to create the leak using the authorizations allowing only

access to records related only to a single person. Note that this is far from obvious. While one

cannot beat the selectivity of a WHERE clause like pers_id=1000 (where there is an index

on pers_id column), the actual filters of some of the views generated in this case were much

more complex than that and involved complicated sub-queries and joins. In particular, it

seems that un-trusted users (the ones which have some access only to their own data) are un-

able to acquire secret information from our system.

More generally, it is possible to leak only information of a similar kind to the one the user

has already some access to. Only users which have authorized access to information about

salaries of some subset of the university staff can acquire illegitimate access to some of the

remaining salaries.

However even such limited leaks can be damaging in case of sensitive personal, medical

or financial data, and much care should be taken to prevent it.

Our university database is not directly accessible to the users, but only through the web

based applications residing on a trusted application server. Unfortunately this prevents the

attacks of the kind described in this paper only if the application does not allow sending arbi-

trary user queries. It follows that using a database server side fine grained access control re-

lieves the application writer from implementing the details of a security policy (which was

Some Remarks on Optimization Impact on Database Security 257

the purpose of our security framework in the first place), but the application must still be

proofed against SQL injection.

It would be advantageous to close the hidden communication channels in the database it-

self, but unless one is willing to modify the optimizer, perhaps along the lines of [2], it is im-

possible without incurring severe efficiency penalty as described in the Section 2. However in

case of tables storing the most sensitive data, like credit card numbers or medical information,

one could argue that security is more important than efficiency. In this case it might be reason-

able to use table functions in the definition of security views, which prevents the optimizer

from creating unsafe plans even if it causes queries to execute an order of magnitude slower.

Usually common users are not able to create functions anyway, but in the systems where

security is based on views (or more generally query rewriting) a special care should be taken

to ensure that this is indeed the case, as well as to severely limit the access to any existing

functions which log somehow their arguments.

Preventing returning of the error messages (together with what is described in the para-

graph above) would make it impossible to use techniques described in the previous section.

Unfortunately:

1. It is impractical as it would interfere with transactions, making it impossible for an appli-

cation to know when a transaction should be aborted.

2. There are more exotic hidden communication channels which do not require functions or

error messages – like specially engineered queries, where the execution time depends on

the value of some secret row.

On the other hand the PostgreSQL error messages are much more revealing than neces-

sary in the production environment and there is no possibility of reducing their verbosity. The

most egregious example are conversion error messages which allow direct leakage of values.

BIBLIOGRAPHY

1. Miodek K., Pychowski J.: Elastyczny system uprawnień użytkowników w systemie za-

rządzania bazą danych PostgreSQL. [in:] Bazy Danych – Modele, Technologie,

Narzędzia. WKŁ, Warszawa 2006, p. 309-314.

2. Kabra G., Ramamurthy R., Sudarshan S.: Redundancy and Information Leakage in Fine-

Grained Access Contol. SIGMOD, 2006.

3. Stonebraker M., Wong E.: Access control in relational database management system by

query modification. Procs of the ACM Annual Conference, 1974, p. 180-186.

4. Rivizi S., Mendelzon A., Sudarshan S., Roy P.: Extending query rewriting techniques for

fine-grained access control. SIGMOD, 2004.

5. The Virtual Private Database in Oracle9ir2. An Oracle Technical White Paper.

258 K. Miodek, K. Podlaski, Ś. Sobieski, B. Zieliński

Recenzenci: Dr hab. inż. Andrzej Chydziński, prof. Pol. Śląskiej

Dr inż. Paweł Kasprowski

Wpłynęło do Redakcji 14 stycznia 2011 r.

Omówienie

W zastosowaniach biznesowych bardzo często, jako najważniejsze wskaźniki jakości,

rozwiązania, wskazuje się szybkość działania oraz niezawodność. W trakcie tworzenia takich

rozwiązań pojawia się dylemat: wydajność serwera czy też jego bezpieczeństwo? Przed po-

dobnym dylematem stanęli twórcy jednej z największych baz danych użytkowanych na Uni-

wersytecie Łódzkim, gdyż aplikacje ją używające musiały posiadać bardzo ograniczony do-

stęp do danych, a ponieważ z aplikacji tych korzysta wiele osób jednocześnie, to istnieje pro-

blem przeciążenia bazy danych. Reguły bezpieczeństwa zostały oparte na widokach tworzo-

nych dla każdego użytkownika, co daje dużą skalowalność i elastyczność rozwiązania. Zasto-

sowana metoda pozwala na ograniczenie dostępu do poszczególnych wierszy w tabelach nie

zmniejszając jednocześnie wydajności serwera baz danych. Niestety, takie rozwiązanie po-

siada pewne niedostatki związane z bezpieczeństwem. Optymalizatory wykorzystane w silni-

kach baz danych często zmieniają kolejność wykonywanych operacji. Powoduje to zwykle

przyspieszenie działania, jednocześnie dając możliwość spreparowania zapytania w taki spo-

sób, aby uzyskać dostęp do niedozwolonych wierszy. W artykule pokazano, iż wykorzystując

informacje o błędach funkcji cast, można uzyskać dostęp do dowolnego wiersza. Należy jed-

nak zauważyć, że dostęp do danych może uzyskać jedynie osoba mająca uprawnienia do sa-

modzielnego tworzenia zapytań SQL, więc zagrożenia tego typu można wyeliminować

w innych warstwach wykorzystywanych aplikacji.

Addresses

Krzysztof MIODEK: Uniwersytet Łódzki, Centrum Informatyki, ul. Lindleya 3, 90-131

Łódź, Polska, krzysztof.miodek@uni.lodz.pl.

Krzysztof PODLASKI: Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej,

ul. Pomorska 149/153, 90-236 Łódź, Polska, podlaski@uni.lodz.pl.

Ścibór SOBIESKI: Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej,

ul. Pomorska 149/153, 90-236 Łódź, Polska, scibor.sobieski@uni.lodz.pl.

Bartosz ZIELIŃSKI: Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej,

ul. Pomorska 149/153, 90-236 Łódź, Polska, bzielinski@uni.lodz.pl.

	1. Previous works and our contribution
	2. Experiences with two approaches to row level access management
	2.1. Performance comparison

	3. Unauthorized data access
	3.1. Looking for forbidden data
	3.2. Obtaining hidden data using special tricks
	3.2.1. User defined stored functions
	3.2.2. Build-in functions

	4. Conclusions

