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Abstract 

In modern, industrial control systems it is crucial to monitor control performance in continuous 

manner to detect any degradations. Maintaining control performance at a satisfactory level ensures 

high energy efficiency, final product quality and lifetime of control equipment with low post-

production wastages. Considering Industry 4.0 transformation, control performance assessment (CPA) 

algorithms are a point of interest for academic and industrial researchers. 

This PhD dissertation describes synthesis of CPA system dedicated to industrial, PID closed loop 

systems based on machine learning (ML) approach. General concept of suggested system is to assess 

the control performance based on the rejection response of the system to an intentionally applied 

additive disturbance and compare it with the so-called reference response. For practical application, 

binary assessment is suggested (OK or NOK) based on degree of difference with reference response. 

For this purpose, ML classification algorithms were applied. Training and validating datasets consists 

of feature vector of thirty control performance indices (CPIs) calculated based on the closed loop 

response data with the final assessment (OK or NOK) as a label. Automatic labelling method was 

developed, based on frequency-based indices: gain and phase margins supplemented with normalized 

distance from reference response. Generated datasets were used for training of ML algorithms, 

achieving high classification accuracy (higher than 95% for selected algorithms). The performance of 

CPA system was compared with other existing methods and verified based on simulations and 

experimental studies. For the latter, cloud-based implementation of the CPA system was prepared and 

it was verified on a real laboratory setup. Both simulation and experimental validation confirm high 

accuracy of control assessment. 

Generated dataset was investigated for potential correlations between CPIs and then, forward feature 

selection method was used to determine the universal subset of features, reducing the number of thirty 

to seven features. It drastically decreased computational and memory resources required for CPA 

system and allowed to prepare PLC-based implementation. General purpose function block was 

prepared for Siemens S7-1200/1500 PLC, implemented in TIA Portal software. It consists of several 

functionalities, i.e. process model identification, CPIs calculations and classification of control 

performance. Its operation has been verified on real laboratory setup and again, obtained results 

indicate high accuracy of performance assessment. 

In conclusion, suggested CPA system ensures high accuracy of performance assessment  

for considered class of closed loop systems. Thus, the following thesis statement was confirmed:  

the developed CPA system can explicitly assess control performance based on load disturbance 

rejection response data for closed loop systems in process automation, while clearly and objectively 

considering the predefined assumptions and limitations. 



 

 

  

  



 

 

 

Streszczenie 

W nowoczesnych, przemysłowych systemach sterowania kluczowe jest ciągłe monitorowanie jakości 

regulacji w celu wykrywania wszelkich nieprawidłowości. Utrzymywanie jakości regulacji na 

wysokim poziomie zapewnia wysoką efektywność energetyczną, jakość produktu końcowego oraz 

żywotność urządzeń wykonawczych przy niskich odpadach poprodukcyjnych. Biorąc pod uwagę 

transformację do przemysłu 4.0, algorytmy oceny jakości regulacji są punktem zainteresowania 

badaczy akademickich i przemysłowych. 

Niniejsza rozprawa doktorska opisuje syntezę systemu do oceny jakości regulacji dedykowanego dla 

przemysłowych, zamkniętych układów regulacji PID, opartego na wykorzystaniu metod uczenia 

maszynowego. Ogólna koncepcja proponowanego systemu polega na ocenie jakości regulacji na 

podstawie odpowiedzi układu na celowo wprowadzone zakłócenie obciążeniowe i porównaniu jej  

z tzw. przebiegiem referencyjnym. Do praktycznego zastosowania, zasugerowano ocenę binarną (OK 

lub NOK) na podstawie stopnia podobieństwa z przebiegiem referencyjnym. W tym celu, zastosowano 

algorytmy uczenia maszynowego. Zbiory uczący i walidacyjny składają się z wektora trzydziestu 

wskaźników oceny jakości regulacji obliczonych na podstawie odpowiedzi układu na zakłócenie 

obciążeniowe wraz z oceną (OK lub NOK) jako etykietą. Opracowano automatyczną metodę 

etykietowania opartą na wskaźnikach częstotliwościowych: zapasie amplitudy i fazy uzupełnionych  

o znormalizowaną odległość od przebiegu referencyjnego. Wygenerowane zbiory wykorzystano do 

treningu metod uczenia maszynowego, uzyskując wysoką dokładność klasyfikacji (powyżej 95% dla 

wybranych algorytmów). Działanie zaproponowanego systemu zostało porównane z innymi 

istniejącymi metodami i zweryfikowane na podstawie symulacji i badań eksperymentalnych. W tym 

celu, przygotowano implementację systemu z wykorzystaniem infrastruktury chmurowej oraz 

zweryfikowano ją na rzeczywistej instalacji laboratoryjnej. Zarówno symulacja jak i walidacja 

eksperymentalna potwierdzają wysoką dokładność oceny jakości regulacji. 

Wygenerowany zbiór został przebadany pod kątem potencjalnych korelacji pomiędzy wybranymi 

wskaźnikami oceny jakości regulacji, a następnie metodą forward feature selection wyznaczono 

uniwersalny podzbiór cech, redukując liczbę trzydziestu do siedmiu cech. Zmniejszyło to drastycznie 

zasoby obliczeniowe i pamięciowe wymagane dla systemu i pozwoliło na przygotowanie 

implementacji dla sterowników PLC. Blok funkcyjny ogólnego przeznaczenia został przygotowany 

dla sterowników Siemens S7-1200/1500, zaimplementowany w oprogramowaniu TIA Portal. Składa 

się on z kilku funkcjonalności, m.in. identyfikacji modelu procesu, obliczania wskaźników oceny 

jakości oraz klasyfikacji jakości regulacji. Jego działanie zostało zweryfikowane na rzeczywistej 

instalacji laboratoryjnej i ponownie uzyskane wyniki wskazują wysoką dokładność oceny regulacji. 



 

 

  

Podsumowując, zaproponowany system zapewnia wysoką dokładność oceny jakości regulacji dla 

rozważanej klasy układów zamkniętych. Tym samym potwierdzono następującą tezę: opracowany 

system może jednoznacznie ocenić jakość regulacji na podstawie odpowiedzi na zakłócenie 

obciążeniowe dla zamkniętych układów w automatyce procesowej, przy jasno zdefiniowanych 

założeniach i ograniczeniach. 
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1 Introduction 

In recent years, the global manufacturing industry has been subject to dynamic transformations  

in digital technology. To maintain the country’s position as a leading supplier of manufacturing 

equipment [1], the German government introduced a high-tech strategy known as Industry 4.0 (I4.0)  

in 2011. This smart manufacturing concept was necessitated by growing demand for high quality, 

customized products with fast delivery times [2]. The key principle of I4.0 is the incorporation of 

machinery, warehousing systems, and production facilities within a global network [3]. Such  

a combination is intended to optimize production not just for a single machine or factory, but for an 

entire enterprise. The realization of this concept requires the introduction of novel technologies such as 

cyber-physical systems, the internet of things, big data, and cloud computing to the manufacturing 

industry.   

The final report of the I4.0 working group [3] provides explicit recommendations for the 

implementation of the I4.0 strategy, as prepared by the National Academy of Science and Engineering. 

Resource efficiency is a priority area. The authors of the report note that a reduction in both the energy 

and resources consumed during manufacturing processes is critical, while maintaining the stability  

of such processes and avoiding faulty products. This position is convergent with the European Union’s 

Energy Efficiency Directive, which obliges EU member states to use energy more effectively [4]. The 

increased prevalence of global environmental movements suggests that resource efficiency will be  

a key issue in coming years. Such efficiency can be increased on many different levels. From a high-

level enterprise-wide perspective, supply operations, batch and continuous manufacturing processes, 

and other activities can be optimized to reduce costs [5]. Even a 1% decrease in  resource consumption 

can substantially affect the entire enterprise [6]. On the next level, resource consumption can be 

decreased by the optimization of individual processes. In [7], authors suggest improvements for 

industrial ovens, increasing both energy efficiency and process performance. The application of these 

suggestions reduces gas consumption by 20–30% and cooling time by 87.5% for a 1 MW festoon 

oven. The improvement of process performance, such as by increasing energy efficiency, often has  

a positive effect on additional manufacturing factors. In [8], an internal roller burnishing process is 

optimized to reduce energy requirements. This optimization also led to improved surface roughness. 

Finally, low-level aspects of a manufacturing line can also be optimized, such as control systems [6], 

[9]. Such systems are rarely developed with the purpose of minimizing resource utilization [10]. 

Despite this, the performance of these systems has a substantial effect on factors such as energy 

consumption [11], [12]. The satisfactory performance of a control system does not only ensure high 

energy efficiency, but can also decrease the usage of media such as chilled water or steam, reduce 

post-production wastage, and increase the final product quality and the lifetime of control equipment 

such as pumps and valves [13].  
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In the vast majority of cases, control systems are optimized during the commissioning stage—that is, 

during the start-up of new systems or the retrofitting of systems that are already in operation. During 

this stage, experienced engineers adapt the system hardware to conform to requirements, install 

modern control equipment such as sensors, actuators, or programmable logic controllers (PLCs), and 

select an appropriate structure for the control algorithm and tune its parameters, based on the dynamic 

behavior of the system. Each of these steps provide continuous improvement in the control 

performance, until optimal performance is reached. Fig. 1.1 shows the progression of control 

performance over time, from the commissioning period through normal operation. During normal 

operation, the monitoring of control performance is typically discontinued, and performance degrades 

over time. The half-life of good control performance is only approximately 6 months [14]. The 

degradation of control performance is associated with fluctuations in process dynamics caused by 

effects such as slow fouling, the wearing of control equipment such as sensors and actuators without 

periodic maintenance, hardware modifications made to the system, and changes in the type of 

manufactured product [15]. Hence, monitoring of the control performance is crucial—either online or 

during periodical inspections. Continuous monitoring allows any degradation in control performance 

to be immediately detected, then remedied following deeper inspection. As such, the demand for 

control performance assessment (CPA) algorithms is constantly increasing. Optimal performance can 

only be achieved following a diligent commissioning period, carried out by experienced process 

engineers. In practice, the vast majority of control systems enter normal operation while displaying 

suboptimal (only fair or poor) performance. CPA algorithms can indicate such situations. 

 

Fig. 1.1 The control performance of a closed loop system over time, showing both the commissioning and normal 

operation periods. Figure based on [15]. 

CPA algorithms partially fall within the scope of fault detection techniques, with both model-based 

and signal-based approaches [16], [17]. Faults are typically associated with malfunctioning actuators 

or sensors, which directly affect the control system and lead to degradation of the control performance. 

CPA algorithms lack the ability to perform complex diagnoses, such as determining the location of  
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a faulty component. However, such algorithms can be incorporated as part of a fault detection system. 

Upon identification of a control system with poor (faulty) performance using a CPA algorithm, further 

investigation can be undertaken. 

Commercially available solutions for the assessment of control performance [14] invariably take the 

form of additional software for analyzing process data. This approach is very convenient when the 

process data is archived and is available directly from a database. However, if the hardware and 

software infrastructure does not allow for the archiving of data, then further modifications are 

required, with concomitant costs, when implementing the CPA system. In such a case, costs can be 

reduced substantially by implementing the CPA system directly in the control layer, that is, the PLC. 

However, PLCs typically feature low computational and memory resources. As such, lack of 

professional implementations of CPA systems exist as ready-to-use general purpose function blocks 

for PLCs. 

Fig. 1.2 shows the typical structure of an industrial control system with feedback control. The main 

purpose of a feedback controller is to maintain the process value y(t), as measured by the sensor, at the 

desired setpoint sp(t). This is accomplished by calculating the control signal u(t) required to properly 

manipulate the actuator.  

Controller Actuator Process dynamics

Sensor
y(t)

e(t) u(t) ut(t) ym(t)sp(t)

-

+

 

Fig. 1.2 The typical structure of a closed loop system with feedback control. 

The large majority of industrial control systems use proportional integral derivative (PID) controllers. 

Such controllers are used in more than 90% of all industrial control systems [15], [18]. The form most 

commonly used has a transfer function Kr(s) of 

𝐾𝑟(𝑠) = 𝑘𝑟(1 +
1

𝑠𝑇𝑖
+

𝑠𝑇𝑑

1+𝑠𝛼𝑇𝑑
),     (1.1) 

where s is the Laplace operator, kr is the proportional gain, Ti is the integral constant, Td is the 

derivative constant, and α is the filter coefficient. The derivative part of the PID controller is typically 

filtered (α > 0) to ensure sufficient resistance to measurement noise. The high popularity of PID 

controllers in industrial systems is due to their simple, but complex structure, which contains both 

static (proportional) and dynamic (integral and derivative) parts. Both parts show deterministic 

behavior with respect to changes in the controller parameters; a highly desirable property for practical 
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applications. However, PID controllers are linear, thus any variations in the process parameters cause 

behavioral changes in the closed loop system. 

Many different manufacturers provide their own implementations of industrial PID algorithms, in the 

form of general-purpose PLC function blocks. Notable manufacturers include Siemens, Mitsubishi, 

and Allen Bradley. In practical applications, PID algorithms are supplemented with additional 

functionalities, including manual control, anti-windup, and the scaling of input and output signals. For 

the efficient commissioning of applications, each PID function block should include an autotuning 

algorithm. The large majority of autotuning algorithms calculate the controller parameters based on 

the response for relay signal [19]–[21]. However, autotuning experiments can rarely be conducted 

during the commissioning of new or newly modernized control systems for industrial applications, due 

to the lack of necessary functionality. Moreover, the operating conditions during commissioning 

procedures can vary from those during normal operation of a control system. Typically, the control 

parameters are not retuned following commissioning, leading to fair or poor performance during 

normal operation (Fig. 1.1). Thus, even if autotuning is successfully applied, the obtained PID 

parameters should be considered as initial, and their optimality evaluated. This is particularly true for 

strongly nonlinear and nonstationary processes [22].  

Further to the above, the optimality of PID tunings for industrial control parameters should always be 

considered in relation to the best achievable performance of the control system, which is strictly 

dependent on the structure and parameters of the system. During the design of control systems, many 

technological requirements and constraints must be considered, such as the combination of desired 

closed loop system dynamics and appropriate level of robustness. Thus, from a technological 

perspective, there always exists a trade-off between ensuring the best possible closed loop 

performance and providing stable conditions. As such, the best possible performance cannot be 

achieved in practice; rather, designers should focus on producing the best achievable performance.  

In practice, an estimated 80% of control loops can be assessed as poor due to bad tuning [23]. Almost 

30% have received no tuning and operate using default tunings. There currently exist hundreds of 

ready-made tuning rules for PID controllers [24]. These rules can be applied to many different 

conditions, such as desired control system time response [25], frequency response [26], or robustness 

level [27], [28]. In the vast majority of cases tuning rules are calculated based on the simplified 

process model. Various methods exist to simplify the modelling of processes. One of the most popular 

is the first-order plus dead-time (FOPDT) process model: 

𝐾(𝑠) =
𝑘

(1+𝑠τ)
𝑒−𝑠𝜏0 ,      (1.2) 

where k is the gain of the linear transfer function, τ is the time constant, and τ0 is the transportation 

delay time. The model parameters describe the three most important features of the modelled process: 
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the strength of the relationship between the control signal and the process output (gain), the speed of 

the process (time constant), and the time lag between the control signal and the process output 

(transportation delay time). A key practical advantage of the application of FOPDT modelling is the 

simplicity of parameter identification. The parameters can be calculated based on the step response of 

the process using, for example, graphical area methods [29] or the least-square method [30]. Parameter 

identification for closed loop systems is also possible, based on the response to step setpoint change 

[31], or using a specific excitation signal [32], for example. Fig 1.3 shows the accuracy with which the 

FOPDT model can approximate the step response of a higher-order process. 

 

Fig. 1.3 A comparison of the step response of a higher-order process and its FOPDT approximation. 

Despite its advantages, the accuracy of FOPDT modelling decreases substantially when applied to 

higher-order dynamical systems. For more accurate modelling of higher-order systems, the following 

model can be applied: 

𝐾(𝑠) =
𝑘

∏ (1+𝑠𝜏𝑖)𝑖
𝑒−𝑠𝜏0,       (1.3) 

where the τi, (i = 1, …, n) are time constants (τ1  ≥ τ2 ≥ … ≥ τn) and n is the model order. Note that 

increasing the model order n considerably increases the difficulty of parameter identification.  

In practice, a second-order plus dead-time (SOPDT) model (n = 2) is often applied, as it provides a 

trade-off between modelling accuracy and the difficulty of parameter identification.  

Control performance can be improved by modifying the structure of the controller. Given that PID 

controllers are linear (1.1), any changes in process dynamics can cause a significant reduction  

in control performance. As such, adaptation mechanisms should be included to ensure correct 

operation. When using gain scheduling [33]–[35], the controller parameters are dependent upon 

external disturbances, which can affect the dynamic behavior of the control system. PID controllers do 

not ensure proper performance when applied to delay dominated processes. However, the controller 

structure can be enhanced with a Smith predictor, which compensates for transportation time [36]–
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[38]. Additional information about the process dynamics is required when using either gain scheduling 

or a Smith predictor. Such information can include the process model, the estimated delay time, or 

possible variations of the process dynamics. 

In recent years, many advanced control algorithms have been developed and prepared for practical 

applications. Model predictive control (MPC) is an optimization-based control approach, which 

predicts the future behavior of a process by using a dynamic model [39]. Algorithms based on MPC 

are the second most commonly used controllers in industrial applications, after PID controllers [15]. 

MPC-based algorithms provides superior control performance to PID controllers, particularly for delay 

dominated processes [40], [41]. However, MPC-based algorithms do require additional modelling of 

the process dynamics.  

Another highly promising group of advanced algorithms are based on active disturbance rejection 

control (ADRC) [42]. For algorithms of this type, the internal dynamics and external disturbances are 

modelled by a parameter known as the total disturbance, which is ultimately estimated online using an 

extended state observer [43]. Many different extensions of the ADRC algorithm have been developed 

in recent years [44], [45]. These extensions have provided more convenient implementations of the 

algorithm, and improved its operation with delay dominated processes. 

Despite their performance advantage over PID controllers, advanced controllers lack universal tuning 

rules, autotuning methods and PLC-based implementations, which are crucial for industrial 

applications. These issues are the subject of current investigation by many researchers [46]–[50] with 

highly promising results. However, the industry remains to be convinced of the usefulness of advanced 

controllers, and work remains to develop general purpose function blocks for MPC or ADRC 

controllers in Siemens or Mitsubishi PLCs with all necessary functionalities. 

1.1 Control performance assessment—the state of the art 

CPA algorithms have been a point of interest for academic researchers since 1989, when Harris [51] 

introduced the very first CPA index. The Harris index is based on stochastic performance criteria, 

which typically includes the variance of the process variable or the control signal: 

𝜎𝑦
2 =

1

𝑁−1
∑ (𝑦(𝑖) − �̅�)2,𝑁
𝑖=1     (1.4) 

where 𝜎𝑦
2 is the variance of the process variable, �̅� is the mean value of the process variable, and N is 

the number of investigated samples. The index can be applied to control systems that operate under 

stochastic disturbance; such disturbance is assumed to be filtered white noise. The performance 

criteria are directly associated with energy consumption, product quality, and overall process 

performance [15]. In addition to typically increasing product quality, a reduction in variance can also 

reduce energy consumption, as the system is allowed to operate more closely to the constraints of the 
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technological process. This is demonstrated in Fig. 1.4. The assessment of variance is further justified 

by the fact that the vast majority of control systems in process automation operate with a constant 

setpoint. Hence, proper disturbance rejection is more important than tracking properties [52].  

 

Fig. 1.4 The effect of reducing variance on the operating conditions of a closed loop system. 

Many CPA algorithms compare actual control performance with a benchmark or reference value. 

However, the Harris index compares the actual variance of the process variable with the variance that 

could be achieved by implementing a minimum variance (MV) controller [53]: 

𝜂𝑀𝑉 =
𝜎𝑀𝑉
2

𝜎𝑦
2 ,      (1.5) 

where 𝜂𝑀𝑉 is the Harris index and 𝜎𝑀𝑉
2  is the variance obtained with an MV controller. The index 

itself is normalized and bounded, and hence can be interpreted relatively easily by practitioners. The 

value 𝜂𝑀𝑉 → 1, thus  𝜎𝑦
2 → 𝜎𝑀𝑉

2  indicates perfect minimum variance control, with 𝜂𝑀𝑉 → 0 

indicating the worst possible performance. The practical implementation of an MV controller is 

difficult, due to unrealistic variations of the control signal [54]. However, an online implementation is 

not required for the controller to be effectively used as a benchmark for performance assessment. 

Calculation of the Harris index does not require a precise model of the control system; only the delay 

time is required [55]. However, the index can be effectively estimated using real process data [50]. For 

more convenient calculations, and to avoid solving the Diophantine equation, the Harris index can be 

estimated using autoregressive model fitting [56]. Although it is normalized, the Harris index does not 

indicate potential improvements in control performance. However, the index can be used to detect the 

degradation of control performance. Fig. 1.5 demonstrates a possible application of the Harris index. 

In this case, the index itself is used to detect the increased variance of the process value, which results 
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in a degradation of control performance. However, this example requires that the nominal value of the 

Harris index (the best possible control) is first determined by rule of thumb. 

 

Fig. 1.5 The application of the Harris index to the detection of control performance degradation. 

The Harris index is based on the theoretically achievable minimum variance. However, as discussed 

previously, this minimum level is impossible to achieve in practice, particularly when an appropriate 

level of robustness must be maintained. The generalized minimum variance index (ηGMV) can be 

introduced to limit the control activity. This index is based on the general minimum variance (GMV) 

control law [57], in which a generalized output 𝜙𝐺𝑀𝑉 is minimized as 

𝜙𝐺𝑀𝑉(𝑡) = 𝑃𝑐𝑒(𝑡) + 𝐹𝑐𝑢(𝑡),    (1.6) 

where Pc and Fc are weighting functions. The GMV index has a very similar form to the Harris index, 

but compares the actual variance of the generalized signal (1.6) to that which could be achieved by  

a GMV controller [58]. The introduction of weighting functions to both the control error and the 

control signal provides a more realistic benchmark of control performance. An appropriate choice of 

weighting functions allows the desired dynamical behavior of a closed loop system to be determined. 

Such a choice of weighting functions Pc and Fc is critical for proper control and assessment using the 

GMV index. The function Pc should include an integral term, so that the integral action is present 

within the controller, and the function Fc should be constant or feature a lead term to ensure that the 

controller rolls-off at high frequencies [59]: 

𝑃𝑐 = 1 +
𝜔𝑝

𝑠
,      (1.7) 

𝐹𝑐 = −𝜌𝑐 (1 +
𝑠

𝜔𝑓
),     (1.8) 
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where ωp and ωf are the cut-off frequencies and ρc > 0 is the tuning parameter. The frequency ωp 

should be chosen to remove the integral action at the lowest possible frequency. Typically, it is chosen 

as 𝜔𝑝 = 𝜔𝑐/10, where ωc is the desired unity-gain crossover frequency of the system [59]. The 

frequency ωf should be chosen to reduce the control signal at high frequencies, with an initial value of 

𝜔𝑓 = 10𝜔𝑐. Finally, the tuning parameter ρc can be used to determine the speed of the response.  

Fig. 1.6 presents the frequency responses of example weighting functions, together with the response 

of the process model. Notably, the high frequencies of the control error (measurement noise) and the 

low frequencies of the control signal (constant term) are efficiently filtered out by the Pc and Fc 

functions, respectively, and thus do not affect the generalized output (1.6). It should also be noted that 

in the presence of transportation delay within the process model, the control signal affects the output 

with a time delay. Hence, the value of τ0 should be included within the weighting function Fc. This 

emphasizes the necessity of estimating the delay time with the highest possible accuracy. 

 

Fig. 1.6 The frequency responses of example weighting functions and the process model. 

A choice of weighting functions as described above results in GMV control with very similar 

characteristics to linear-quadratic-Gaussian (LQG) control [58]. The latter can also be used as a CPA 

method by obtaining the performance limit curve, which defines the achievable region of control 

performance. This curve can be generated by solving the LQG problem defined by the objective 

function 𝐽𝐿𝑄𝐺 [60]: 

𝐽𝐿𝑄𝐺 = 𝜎𝑒
2 + 𝜌𝐿𝑄𝐺𝜎𝑢

2,     (1.9) 

where 𝜎𝑒
2 and 𝜎𝑢

2 denote variances of control error and signal respectively, and 𝜌𝐿𝑄𝐺 is the tuning 

parameter. By varying the tuning parameter 𝜌𝐿𝑄𝐺 the objective function 𝐽𝐿𝑄𝐺 can be optimized 
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iteratively. The obtained results can be presented as a performance limit curve. Fig. 1.7 shows  

an example of such a curve.  

 

Fig. 1.7 An example performance limit curve obtained for an LQG objective function (1.9). 

In this example, the curve represents the best achievable performance, which is dependent on the 

tuning parameter 𝜌𝐿𝑄𝐺. From this the possible performance improvement can be determined, in terms 

of the control error and signal variances. Two types of improvement can be then analyzed: the degree 

to which the variance of the control signal can be decreased by the same variance of the control error, 

and the degree to which the variance of the control error can be decreased by the same variance of the 

control signal. Clearly, the limit curve can be only achieved by applying the LQG controller.  

In practice, calculation of the performance limit curve can involve unnecessary computation and 

produce an unideal regression effect. A numerical, recursive, or analytical algorithm can be applied to 

obtain the equigrid LQG benchmark, thus improving the regression effect and reducing computing 

costs [61], [62]. 

The vast majority of industrial control systems use PID controllers, which cannot achieve the 

performances displayed by MV, GMV, or LQG controllers. The application of CPA indices to PID 

control systems does not provide explicit information concerning the potential improvement of control 

performance, due to the limitations of the PID algorithm. Indices designed for use with PID systems 

can be applied for a more explicit assessment in practice. In [63], a numerical approach is used to 

estimate the achievable control when using a proportional integral (PI) controller. This approach uses 

the variance of the output signal as the performance measure. To calculate the PI index, only the 

process model and delay time are required, and must be estimated with sufficient accuracy. The 

literature presents two approaches to determine the minimum variance of PI controllers: with  

a disturbance model and without a disturbance model. In [64], an iterative procedure is used to obtain 

the minimum variance and performance index of PID controllers. These parameters are calculated 

based on the step response coefficients of the process model.  
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All of the presented approaches assume that the disturbances affecting the control system are 

stochastic, and that the introduction of additional excitation is not required. However, in practice, 

control systems are not always sufficiently affected by disturbances that can be considered as 

stochastic and that meet these theoretical assumptions. As such, the methods described above cannot 

be used for the assessment of absolute control performance. In these cases, additional excitation is 

applied to the control system in the form of a deterministic disturbance such as a setpoint change sp(t) 

or a load disturbance d(t). The time response samples are then used for performance assessment. These 

can be manually introduced to the closed loop system by a process operator, or their occurrence can be 

the result of a production process that can be automatically detected, such as changes in operating 

point or product demand [65]. If a deterministic disturbance is manually applied to the control system, 

the amplitude and precise time of application can be adjusted by the process operator or the master 

system according to the actual operating conditions. Obviously, the assessment and monitoring of 

performance based on a deterministic disturbance response cannot be conducted continuously. Rather, 

this type of disturbance should be applied periodically to a control system to provide a periodically 

accessible assessment result.  

For a load disturbance, the disturbance and process dynamics are similar. Hence, the block diagram 

shown in Fig. 1.2 can be simplified to the form presented in Fig. 1.8. 

Controller Process dynamics
e(t) u(t) y(t)sp(t)

-

+ + +

d(t)

 

Fig. 1.8 A simplified block diagram of a closed loop system subject to both types of deterministic disturbances. 

Many well-known control performance indices (CPIs) exist, such as settling time or maximum 

overshoot, or integral indices such as integral absolute error (IAE). The latter group are typically used 

as measures of economic performance [66]. They do not require a high degree of computational 

resources, as the vast majority of them can be calculated directly from closed loop response data. 

These approaches are widely used to compare the control performance of various tuning methods or 

control algorithms [22], [40], [46], [67]–[69], but do not provide an explicit assessment or allow 

possible improvements to be determined. The possible values of CPIs are strictly dependent upon the 

closed loop system parameters. For example, the settling time of a system with slow closed loop 

dynamics is typically much higher than for a system with fast closed loop dynamics, even if the 

performance of both control systems is satisfactory. Moreover, CPIs lack reference values, and thus 

can only be used for the monitoring of control degradation, with reference to the historical trends of 
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the chosen CPI. Finally, individual CPIs typically provide much less information concerning control 

performance than stochastic indices such as the Harris or GMV indices. 

Another approach to determine control performance when subject to a deterministic disturbance is the 

idle index, proposed by Hägglund [70]. The idle index is particularly effective for the detection of 

sluggish control loops. The index itself compares the total time during which there is a positive 

correlation between the control signal Δu and process signal Δy increments with the total time during 

which there is a negative such correlation: 

𝐽𝐼𝑑𝑙𝑒𝐼𝑛𝑑𝑒𝑥 =
𝑡+−𝑡−

𝑡++𝑡−
,     (1.10) 

where t+ and t- are the total times during which the product of Δu Δy has a positive or negative sign, 

respectively. An idle index with a value close to 1 indicates sluggish control, while a value close to 0 

indicates good performance. However, the idle index should be interpreted jointly with an oscillation-

detection procedure; a value close to -1 does not provide an explicit assessment of performance, and 

can indicate either a well-tuned controller or oscillatory behavior [15]. 

Deterministic disturbance rejection response data, gathered from a PID control system, can also be 

used to retune the controller via calculation of the process parameters. This approach is presented in 

[71] for setpoint change and in [72] for load disturbance rejection. In [73], a data-driven approach is 

used to obtain a performance limit curve with a PID controller subject to setpoint change. A PID 

controller performance benchmark based on the min-max principle is presented in [74]. This approach 

is particularly effective for nonlinear processes. Finally, [76] presents the frequency and time domain 

assessment and retuning of an internal model control PI controller [75]. 

1.2 Summary and identification of research gaps 

To summarize, the continuous monitoring of control performance is critical; control performance 

directly affects economic factors such as energy efficiency, product quality, and material usage. 

Hence, CPA algorithms are under investigation by both academia and industry [77], [78].  

As demonstrated by the presented state-of-the-art review, several issues remain unresolved and 

additional questions are posed when considering the practical application of CPA algorithms. 

1. The vast majority of CPA algorithms require that the transportation delay time is estimated 

with the highest possible accuracy. The novel increment count method (ICM) was suggested 

by author as a PLC-based implementation of such algorithms [50]. The method ensures that 

the transportation delay time is estimated using steady-state detection, and produces results 

that are comparable with other existing methods. Moreover, the ICM algorithm has low 
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computational and memory resource requirements, and is thus suitable for implementation on 

a PLC. Appendix 1 provides further details of this approach.  

2. Stochastic indices, such as the Harris or GMV indices, provide highly accurate assessment of 

control performance. However, this accuracy comes at the cost of high demand for 

computational and memory resources. Alternatively, CPIs are calculated based on the 

response to a deterministic disturbance, and can be obtained and calculated with ease, as the 

vast majority of them do not require complex mathematical functions. Thus, a worthwhile line 

of investigation is to compare the performance assessment provided by CPIs with that 

provided by stochastic indices, to determine the existence of any correlation between the two. 

3. Several different CPIs can be calculated to assess control performance based on the system 

response to a deterministic disturbance. These indices are widely used to compare different 

control strategies or tunings for a given control system, but do not provide an explicit 

assessment of control performance. This is because the provided values are relative, and 

depend upon the process dynamics. This suggests a possible line of investigation is to 

determine the ability of CPIs to explicitly assess control performance.  

4. Finally, implementation issues remain to be resolved when considering the practical 

applications of a CPA system. The state-of-the-art provides many examples of CPA 

implementations that take the form of external or master systems, but there is a lack of 

examples of implementations directly in the control layer. A PLC-based implementation of  

a CPA system could provide a substantial reduction in cost, as additional software and 

hardware modifications would not be required. 

1.3 Aim and scope of the work 

The main goal of this thesis is to develop a system for the explicit control performance assessment of 

PID-based closed loop systems. Having reviewed the state-of-the-art and the practical issues 

concerning such systems, the following general specification of a CPA system is suggested: 

1. The system should be as general as possible. That is, it should be capable of assessing control 

performance for the widest possible range of processes that are typically found in automated 

industrial closed loop systems. 

2. Typically, the control systems of automated processes operate using a constant setpoint. Thus, 

the assessment procedure should be prepared for load disturbance rejection. This type of 

disturbance can be manually introduced to any considered closed loop system. A load 

disturbance of predefined amplitude should be introduced periodically. Note that the 

investigated closed loop system should not be disturbed significantly. 

3. The reference behavior of a closed loop system should be explicitly predefined. Moreover, the 

behavior should be adjusted according to technological requirements and conditions. 
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4. For the majority of convenient practical applications, the assessment of the considered closed 

loop system should be explicit and binary. For example, an assessment of OK could indicate 

satisfactory performance, and an assessment of NOK could indicate poor performance. Thus, 

the control assessment will be clear even for inexperienced users. 

5. The proposed system should assess control performance based on predefined indices 

calculated from closed loop response data.  

6. The system should be capable of offline design without requiring additional experiments to be 

conducted on a real control system. Only the load disturbance rejection response can be 

obtained from the control system for performance assessment. 

7. The structure of the CPA system should be suitable for implementation on a PLC. That is, its 

design should consider the computational and memory resource limits of PLCs. 

This thesis describes the development of the proposed CPA system, in addition to its verification via 

simulation and experiment. The thesis author suggests the following thesis statement: the developed 

CPA system can explicitly assess control performance based on load disturbance rejection response 

data for closed loop systems in process automation, while clearly and objectively considering the 

predefined assumptions and limitations. 

The general concept and detailed developmental steps of the CPA system are presented in Section II, 

together with a robustness analysis and simulated comparison to other CPA methods. Section II 

concludes with an experimental verification of the developed system using a cloud-based 

implementation. 

Section III presents the implementation of the CPA system on a PLC. The reduction of the CPA 

system structure is fully described, together with implementation issues. A reduced set of indices are 

also discussed. 

Finally, Section IV concludes the thesis and indicates possible future directions of CPA system 

development. 
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2 Synthesis of the CPA system 

This section describes the methodology that is used in this thesis to develop a CPA system that meets 

the requirements defined in Section 1.3. 

2.1 General concept 

The general concept of the proposed CPA system is to assess the control performance of the 

considered class of closed loop systems based on the rejection response of the system to  

an intentionally applied additive disturbance. The data that is obtained from closed loop responses can 

be used to calculate various indices with low computational complexity. Separately, such indices 

describe only limited properties of the performance of the considered systems. The proposed CPA 

system is based on the assumption that the capture of various key features of closed loop responses by 

a sufficiently large number of indices could provide useful information to assess the overall control 

performance. However, the major difficulty with this assumption is that the process dynamics and 

dynamical parameters strongly affect the closed loop response. 

As defined in Section 1.3, a key requirement of the proposed CPA system is the potential for its 

application to the widest possible range of processes. Thus, a general process modelling method 

should be used to model the system, thereby ensuring high modelling accuracy combined with  

a relatively straightforward procedure to identify the model parameters. Moreover, the process 

dynamics should be normalized appropriately, given that various processes can display similar 

dynamic behaviors across different time scales. 

Potential system users will require a convenient assessment system. Among the most convenient 

approaches is binary assessment, with the control performance being judged as either satisfactory 

(OK) or poor (NOK). This approach ensures that the performance assessment is explicit and can be 

easily interpreted by users such as process operators, who are typically inexperienced with process 

automation. Such a binary classification problem could be solved with a supervised machine learning 

(ML) approach. Typically, ML methods are used for the assessment of explicit technological process, 

such as the smelting process of an electro-fused magnesium furnace [79]. An ML system with a more 

generalized approach is presented in [80], wherein the performance of a PID-based control system is 

assessed with use of a k-nearest neighbors (KNN) method. Finally, multi-class SVM is used in [81] to 

indicate potential problems with control systems based on an autocorrelation function coefficient and 

statistical features calculated from time response data. 

The use of a functional classifier requires the generation of training and validation datasets that consist 

of feature vectors with the expected output of the classifier (label). However, offline preparation is  

a requirement of the CPA system, and therefore the use of additional online training experiments using 
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real control setups is not possible. Thus, the training and validation datasets should be generated via 

simulation, before their usefulness for real control systems is evaluated. 

For use with the ML algorithms, a dataset of closed loop systems and corresponding performance 

evaluations is required. To generate such a dataset, a reference response can be defined for each 

considered closed loop system, based on predefined criteria, resulting in reference PID tunings. Then, 

these tunings can be randomly modified to provide various closed loop responses, and thus various 

closed loop systems. Basing on predefined criteria, the randomly generated closed loop responses can 

then be labelled as displaying satisfactory (OK) or poor (NOK) performance. Typically, the control 

performance should be assessed as satisfactory (OK) if the considered closed loop response is 

relatively close to the corresponding reference response. Else, if the dynamic behavior of the 

considered control system differs from the predefined reference, the control performance should be 

assessed as poor (NOK). 

Various classification algorithms can be investigated using the generated training and validation 

datasets, including tree-based, kernel-based, or even fuzzy methods. The following sections present 

further details concerning the discussed issues. 

2.2 Process modelling and model normalization  

One of the key requirements of the proposed CPA system is applicability to the widest possible range 

of dynamic industrial processes. Use of the SOPDT model is appropriate for this purpose, as it 

provides relatively high modelling accuracy in the presence of higher order dynamics. The model 

parameters can be identified based on either open or closed loop response data, using, for example, the 

least squares algorithm. 

Assuming a unitary gain, the SOPDT model consists of three key dynamical parameters: two time 

constants τ1 ≥ τ2 and the transportation delay time τ0. For a more convenient classification of the 

process dynamics, these parameters can be reduced to two normalized dynamical parameters: 

𝐿1 =
𝜏0

𝜏1+𝜏0
 ϵ [0.1, 0.6],     (2.1) 

and 

𝐿2 =
𝜏2

𝜏1
 ϵ [0.1, 1].     (2.2) 

The ranges of L1 and L2 cover all of the dynamic processes that can be reasonably controlled by the 

PID algorithm. The transportation delay dominates processes for which L1 > 0.6. In this case, more 

advanced control algorithms should be implemented (e.g., MPC) to achieve satisfactory performance. 

Conversely, for the case in which L1, L2 < 0.1, the application and tuning of a conventional PI 

controller is sufficient. 
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The L1 and L2 parameters are dimensionless. However, sets of SOPDT model parameters are 

dependent upon the process dynamics; that is, the time constants and transportation delay time 

increase for slower processes. For example, for given values of L1 and L2 parameters, an infinite 

number of equivalent SOPDT processes can be determined, each with a different set of parameters (τ1, 

τ2, and τ0). These equivalent processes have different time responses with similar shapes. Thus,  

a comparison of the time responses requires that they are first normalized. The problem of dynamics 

normalization is discussed in [82], where the authors use gain and time scales to normalize the process 

and controller transfer functions. 

Applying a similar approach to [82], the closed loop response can be normalized using the process 

gain k (along the y axis) and the dominating time constant τ1 (along the time axis). The purpose of 

normalization is to obtain similar dynamic responses for various sets of equivalent SOPDT parameters 

that are all associated with a specific set of values L1 and L2. 

For illustration, let us consider two dynamic processes: 

𝐾1(𝑠) =
1

(1+𝑠)(1+0.2𝑠)
𝑒−0.428𝑠,      (2.3) 

and 

𝐾2(𝑠) =
1

(1+2𝑠)(1+0.4𝑠)
𝑒−0.857𝑠.     (2.4) 

It should be noted that both the time constants τ1 and τ2 and the transportation delay τ0 are twice as 

high in the second process K2 as in the first process K1. However, in both cases L1 = 0.3 and L2 = 0.2. 

Tunings for PID controllers were suggested so as to preserve the similar gain of both controllers, with 

the integral and derivative constants twice as high for the second process K2 as for the first K1. Thus, 

the controller parameters for both processes are presented below: 

𝑘𝑟1 = 1.47,
𝑇𝑖1 = 1.086,
𝑇𝑑1 = 0.22,

      (2.5) 

and 

𝑘𝑟2 = 1.47,
𝑇𝑖2 = 2.17,
𝑇𝑑2 = 0.45.

       (2.6) 

Fig. 2.1 presents the responses of each closed loop system to a step load disturbance. 



 

18 

  

 

Fig. 2.1 The responses of each of the two example closed loop systems to a step load disturbance, prior to 

normalization of the time axis. 

The dynamic behavior of both closed loop systems is identical, but the second system (blue plot) is 

apparently slower. However, when considering that the ratio of the dominant time constants of the K2 

(2.4) and K1 (2.3) processes is equal to 2, the time axis of the K2 closed loop response can be 

normalized by dividing it by 2 to obtain the two identical time responses presented in Fig. 2.2.  

 

Fig. 2.2 The responses of each of the two example closed loop systems to a step load disturbance, following 

normalization of the time axis. 

The responses of equivalent closed loop systems with all possible sets of parameters (time constants 

and transportation delay time) can be normalized for further analysis in a general manner. This is 

accomplished by normalizing the time axis with the dominant time constant τ1, that is, by dividing the 

time vector samples by the dominant time constant τ1. 
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A similar effect to the normalization of the time axis can be achieved by the normalization of the 

process (both time constants and transportation delay time) and controller parameters (integral and 

derivative constants) with the dominant time constant τ1: 

𝜏1, 𝜏2𝜏0
𝑇𝑖, 𝑇𝑑

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
→           

𝜏1,𝑛 = 1, 𝜏2,𝑛 =
𝜏2

𝜏1
, 𝜏0,𝑛 =

𝜏0

𝜏1
  

𝑇𝑖,𝑛 =
𝑇𝑖

𝜏1
, 𝑇𝑑,𝑛 =

𝑇𝑑

𝜏1
 

   (2.7) 

where τ1,n, τ2,n, and τ0,n are the new, normalized process parameters, and Ti,n and Td,n are the new, 

normalized controller parameters. Hence, by introducing normalized L1 and L2 parameters, and by 

normalizing the time axis, the entire range of dynamic processes for a given L1 and L2 can be 

compared with one other, regardless of the SOPDT time-based parameters: 

𝜏1, 𝜏2𝜏0 ∈ (0,+∞)
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
→           𝜏1,𝑛 = 1 𝑎𝑛𝑑 𝜏2,𝑛𝜏0,𝑛 ∈ (0, 1]  (2.8) 

For the normalization of process gain k, let us consider two dynamic processes: 

𝐾3(𝑠) =
1

(1+𝑠)(1+0.2𝑠)
𝑒−0.428𝑠,      (2.9) 

and 

𝐾4(𝑠) =
2

(1+𝑠)(1+0.2𝑠)
𝑒−0.428𝑠.      (2.10) 

Both processes have the same time constants and transportation delay time. However, the gain of the 

K4 process is twice as high as the gain of the K3 process. Again, PID tunings were suggested for both 

processes to preserve the similar dynamic behavior of the closed loop systems. The selected integral 

and derivative constants are the same for both processes, but the controller gain for the K3 process is 

twice as high as the controller gain for the K4 process:  

𝑘𝑟3 = 1.47,
𝑇𝑖3 = 1.086,
𝑇𝑑3 = 0.22,

       (2.11) 

and 

𝑘𝑟4 = 0.735,
𝑇𝑖4 = 1.086,
𝑇𝑑4 = 0.22.

      (2.12) 

Fig 2.3 presents the responses of each closed loop system to a step load disturbance. 
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Fig. 2.3 The responses of each of the two example closed loop systems to a step load disturbance, prior to 

normalization of the y axis. 

Again, the dynamic behavior of both closed loop systems is identical. However, the response of CL 

System 4 is twice as high as the response of CL System 3. It should be noted that the dynamic 

behaviors of the two systems are similar because the product of process and controller gain is equal for 

the K3 (2.9, 2.11) and K4 (2.10, 2.12) processes. To normalize the closed loop responses, each response 

sample must be divided by the gain of system K4. This produces equivalent closed loop responses for 

both processes, as shown in Fig. 2.4. 

 

Fig. 2.4 The responses of each of the two example closed loop systems to a step load disturbance, following 

normalization of the y axis. 

Generally, each closed loop system can be normalized by dividing the process gain k by itself and 

multiplying the controller gain kr by the process gain. Following this normalization process, the gain 

has a unitary value: 

𝑘
𝑘𝑟

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
→           

𝑘𝑛 = 1  
𝑘𝑟,𝑛 = 𝑘𝑟𝑘 

     (2.13) 

where kn is unitary process gain and kr,n is the controller gain following normalization.  
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The process gain k and the dominant time constant τ1 can be used to normalize the response along the y 

axis and the time axis, respectively. Thus, the normalized dynamic behaviors of two processes that are 

described by the same L1 and L2 parameters are identical, independent of the SOPDT parameters. 

However, it should be noted that the SOPDT parameters (gain k and dominant time constant τ1) are 

required for normalization, and hence must be identified for the considered closed loop system. 

2.3 The selection of closed loop response features 

This thesis suggests calculating various CPIs based on the closed loop disturbance rejection response 

to capture the key features of the response and generate the feature vector. The proposed CPA system 

requires the generation of training and validation datasets for the testing of different ML algorithms. 

Hence, each feature vector (sample) should be supplemented with the expected classifier output 

(label), corresponding to either OK or NOK performance. The selected CPIs should not require 

computationally intensive calculations, but should provide useful information about control 

performance when evaluated together. 

2.3.1 Correlation between CPIs and stochastic indices 

Initial studies were conducted to verify the possibility of using relatively simple CPIs to achieve  

a similar accuracy of control performance assessment to that obtained by stochastic indices. For this 

purpose, several CPIs and stochastic indices were selected. Many different CPIs are defined in the 

literature. The most popular were chosen for these studies: 

• the MaxPeak is defined as the maximum value of control error during the closed loop 

response, 

• the SettlingTime is defined as the period of time that is required for the output signal to reach 

its setpoint value following the introduction of an additional excitation, 

• the integral absolute error (IAE) is defined as 

𝐼𝐴𝐸 = ∫ |𝑒(𝑡)|𝑑𝑡
∞

0
,     (2.14) 

• the integral time absolute error (ITAE) is defined as 

𝐼𝑇𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
∞

0
.     (2.15) 

The Harris and GMV indices were chosen as stochastic indices. The potential correlation between 

CPIs and stochastic indices was investigated via simulation. The model of an electric flow heater was 

simulated, as part of the heat exchange and distribution system described in Appendix 4. The heater 

had a constant flow rate of F = 4 L/min. For increased realism, measurement noise was added to the 

simulated output temperature. The noise had a variance of σ2
a = 0.005, and was filtered using a first 

order filter with a time constant τf = 2 s. The tuning of the temperature control system was based on an 

identified FOPDT process model (k = 0.41, τ = 27.1 s, and τ0 = 17.8 s). A total of 13 PI and PID tuning 
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methods were used (see Appendix 5) to generate 13 different temperature control systems. The PI and 

PID parameters of the control systems are summarized in Table  2.1. 

 
PI PID 

kr Ti kr Ti Td 

ZN 3.26 59.33 4.35 35.6 8.9 

SIMC 1.81 27.1 - - - 

CHR 20% reg 2.53 41.47 4.35 35.6 7.47 

CHR 20% serv 2.17 27.1 3.44 36.86 8.37 

CHR 0% reg 2.17 71.2 3.44 42.36 7.47 

CHR 0% serv 1.27 31.71 2.17 27.1 8.9 

AMIGO 0.76 52.89 2.11 25 7.43 

Table  2.1 The PI and PID parameters calculated for the considered process. 

Two experiments were conducted to compare the CPIs and stochastic indices. To calculate the CPIs,  

a deterministic disturbance in the form of an additive load disturbance was introduced to the control 

system as ΔPh = 10%, with the constant setpoint TSP = 35 oC. The responses of the PI and PID control 

systems are presented in Fig. 2.5 and Fig. 2.6, respectively. 

 

Fig. 2.5 The closed loop responses of the considered PI controllers. 
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Fig. 2.6 The closed loop responses of the considered PID controllers. 

Based on each response, four CPIs were calculated and normalized with respect to their minimum 

values, with a unitary value indicating best performance. The normalized values of the studied CPIs 

are presented in Table  2.2.  

The stochastic indices required an additional form of excitation. This was provided in the form of an 

introduced load disturbance. The load disturbance ΔPh consisted of two sinusoidal and two square 

wave signals with different amplitudes and frequencies, and subject to Gaussian noise. The 

transportation delay time required to calculate the stochastic indices was estimated by a correlation 

function of the input and output signals [83]. Using this approach, the transportation delay time was 

calculated as two samples with a sampling time of τp = 5 s. To standardize testing conditions, the same 

stochastic disturbances were applied during every experiment. Although this consistency is not 

achievable in practice, it provides a more reliable comparison between the considered indices.  

Fig. 2.7 presents three example responses to an applied excitation for an example control system. To 

calculate the stochastic indices, 6000 samples were obtained with the same constant sampling time of 

τp = 5 s. 
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Fig. 2.7 Three example responses of closed loop systems to the suggested excitation. 

A moving window of N = 1000 samples was used to calculate the stochastic indies. The window was 

shifted successively by 200 samples. Thus, during each iteration, N = 1000 samples were used to 

calculate consecutive values of the stochastic indices. Both the Harris and GMV indices were 

calculated using an autoregressive model with order m = 30 [56]. The calculated Harris indices are 

presented in Fig. 2.8 and 2.9 for the PI and PID systems, respectively. The calculated GMV indices are 

presented in Fig. 2.10 and 2.11 for the PI and PID systems, respectively. In each case, additional 

filtering of the indices is included for clarity of presentation.  

 

Fig. 2.8 The calculated Harris indices for each of the considered PI closed loop systems. 



 

25 

 

 

Fig. 2.9 The calculated Harris indices for each of the considered PID closed loop systems. 

 

Fig. 2.10 The calculated GMV indices for each of the considered PI closed loop systems. 

 

Fig. 2.11 The calculated GMV indices for each of the considered PID closed loop systems. 
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To provide a comparison with the CPIs, the mean value of each stochastic index was calculated and 

normalized with respect to the minimal value. In this case, a unitary value indicates worst 

performance. Table 2.2 presents the normalized values of the Harris and GMV indices as calculated 

for the studied control systems. The results are presented in descending order according to the GMV 

index.  

  MaxPeaknorm SettlingTimenorm IAEnorm ITAEnorm ηMV,norm ηGMV,norm 

P
ID

 

CHR 20% reg 1.04 1.06 1.00 1.00 9.49 8.03 

ZN 1.00 1.06 1.00 1.00 9.41 8.02 

CHR 20% serv 1.12 1.23 1.17 1.01 6.20 5.59 

CHR 0% reg 1.13 1.54 1.27 1.04 5.71 4.83 

AMIGO 1.32 1.11 1.32 1.02 3.76 4.6 

CHR 0% serv 1.28 1.22 1.34 1.02 3.68 4.38 

P
I 

CHR 20% serv 1.44 1.00 1.32 1.04 3.83 4.24 

SIMC 1.50 1.21 1.47 1.05 2.93 3.45 

CHR 20% reg 1.42 1.71 1.55 1.10 3.73 3.24 

ZN 1.35 2.40 1.66 1.18 4.56 3.00 

CHR 0% serv 1.63 2.12 2.20 1.22 1.76 1.97 

CHR 0% reg 1.49 3.65 2.66 1.56 2.44 1.69 

AMIGO 1.88 6.01 5.26 3.02 1.00 1.00 

Table  2.2 The normalized values of the selected indices, calculated for the considered closed loop systems. 

The results show that the assessment of the control performance made by the GMV index almost 

perfectly aligns with the assessment made by the integral IAE and ITAE indices. Slight differences in 

classification exist between the IAE index and the PI CHR 20% serv tunings, and between the ITAE 

index and the PID CHR 0% reg tunings. However, the classifications made by the MaxPeak and 

SettlingTime indices show no correlation with those of the stochastic indices. 

To provide a deeper analysis, the correlation coefficients r(X, Y) between each pair of indices X, Y 

were calculated: 

𝑟(𝑋, 𝑌) =
∑(𝑥−�̅�)(𝑦−�̅�)

√∑(𝑥−�̅�)2∑(𝑦−𝑦)2
      (2.16) 

where x and y represent the two values of the studied indices and �̅� and �̅� are their mean values. The 

calculated correlation coefficients are presented in Table  2.3. Highly correlated values are highlighted 

in green (|r| ≥ 0.9) and red (|r| ≥ 0.95).  
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 MaxPeak SettlingTime IAE ITAE ηMV ηGMV 

MaxPeak 1.00 0.74 0.82 0.73 -0.91 -0.91 

SettlingTime  1.00 0.97 0.96 -0.57 -0.70 

IAE   1.00 0.98 -0.64 -0.71 

ITAE    1.00 -0.52 -0.59 

ηMV     1.00 0.95 

ηGMV      1.00 

Table  2.3 The calculated correlation coefficients r(X,Y) between considered indices. Highly correlated values are 

highlighted in green (|r| ≥ 0.9) and red (|r| ≥ 0.95). 

The results indicate that the MaxPeak index is strongly correlated with the stochastic indices. These 

indices are presented in Fig. 2.12 in the form of a scatter plot. The graphical representation confirms 

the high degree of correlation between these indices. All of the studied CPIs are more strongly 

correlated with the GMV index than with the Harris index. A strong correlation is also noticeable 

between the SettlingTime, IAE, ITAE, and stochastic indices.  

 

Fig. 2.12 A scatter plot of the MaxPeak and stochastic indices, showing a strong correlation. 

The relatively low degree of correlation between the other CPIs and stochastic indices can indicate 

nonlinear dependency between these indices. To determine the presence of inverse proportionality 

between the different indices, additional r(X, 1/Y) correlation coefficients were calculated. The results 

are presented in Table  2.4. Highly correlated values are highlighted in green (|r| ≥ 0.9) and red  

(|r| ≥ 0.95). The results indicate inverse proportionality between the SettlingTime and GMV indices, 

between the IAE index and the MV and GMV indices, and between the GMV and IAE indices.  

The highly correlated pairs of indices (|r| ≥ 0.95) are presented as scatter plots in Fig. 2.13. 
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 MaxPeak SettlingTime IAE ITAE ηMV ηGMV 

1 / MaxPeak -0.98 -0.64 -0.72 -0.61 0.96 0.94 

1 / SettlingTime -0.68 -0.88 -0.80 -0.73 0.62 0.81 

1 / IAE -0.92 -0.87 -0.88 -0.79 0.87 0.95 

1 / ITAE -0.79 -0.99 -0.98 -0.96 0.61 0.73 

1 / ηMV 0.91 0.87 0.95 0.91 -0.75 -0.77 

1 / ηGMV 0.88 0.96 0.98 0.94 -0.72 -0.81 

Table  2.4 The calculated correlation coefficients r(X,1/Y) between considered indices.  Highly correlated values are 

highlighted in green (|r| ≥ 0.9) and red (|r| ≥ 0.95). 

 

 

 

Fig. 2.13 Scatter plots of index pairs with high inverse correlation. 

The Harris index correlates strongly with both MaxPeak and 1/MaxPeak. Additional results are 

required to confirm the presence of either a direct or inverse dependency. However, the key result for 

this study is that such a dependency exists. 

The obtained results show that for the considered case, the quantification of control performance using 

the IAE or ITAE indices provides similar results to the use of the GMV index. These results are 

particularly promising, given that the GMV index is more suitable for industrial applications than the 

Harris index. Thus, in some cases control performance can be quantified using relatively simple 

integral CPIs, which have low computational and memory resource requirements. The results obtained 
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by these CPIs should be similar to those obtained by the GMV index. However, these conclusions 

were obtained from a specific case study; their generalization requires additional studies. 

It should be noted that the calculations of CPIs and stochastic indices require different types  

of excitations. Typically, industrial control systems operate with a constant setpoint and act to 

compensate for existing disturbances. In such cases, the control system is already affected by  

a stochastic disturbance, and the introduction of an additional stochastic disturbance is not required. 

However, the calculation of a CPI requires the intentional introduction of a load disturbance to the 

control system. For some industrial applications, this could occur incidentally from the result of  

a technological process or additional requirement, such as an increase in demand for a product. In this 

case, only automatic detection is required. Further details on these studies can be found in [84].  

2.3.2 CPIs–discussion and selection 

As demonstrated in the previous section, control performance can be assessed using CPIs that are 

relatively easy to calculate. The obtained results are similar to those that can be produced using more 

complex stochastic indices. Thus, the suggested CPA system could potentially utilize simple CPIs and 

conduct assessments that are similar to those obtained using complex CPA algorithms. 

However, although CPIs are widely used to compare control tunings or strategies, lack of CPI 

applications exist which are used for the explicit assessment of control performance. This is because 

the CPI values depend on the process dynamics, and hence control performance cannot be assessed 

explicitly using only a single CPI. That is, the use of just a single CPI can provide an inaccurate 

assessment of control performance. This problem is illustrated in Fig. 2.14, which presents the 

responses of two different closed loop systems for the same step load disturbance. Both responses 

display a similar overshoot (MaxPeak) of approximately 0.35, however, CL System 1 substantially 

outperforms CL System 2, which has a significantly longer SettlingTime with oscillatory behavior.  

 

Fig. 2.14 The first comparison between the responses of two example closed loop systems to a step load disturbance. 
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Fig. 2.15 presents a second comparison between two different systems. The responses of CL Systems 

1 and 2 display significantly different values of maximum overshoot (MaxPeak). As determined by 

this CPI, CL System 2 outperforms CL System 1. However, the dynamics of CL System 2 are 

dominated by oscillatory behavior, which is detrimental from a practical perspective. Again, focus on 

just a single CPI can provide incorrect results. 

 

Fig. 2.15 The second comparison between the responses of two example closed loop systems to a step load disturbance. 

Fig. 2.16 presents a third and final comparison. CL Systems 1 and 2 display a similar SettlingTime of 

approximately 70, but different dynamic behavior. CL System 1 does not undershoot, but reaches  

a higher value of overshoot (MaxPeak) than CL System 2. A more detailed analysis is required to 

determine which CL System provides better performance. The choice of system is also dependent on 

the precise technological requirements. 

 

Fig. 2.16 The third comparison between the responses of two example closed loop systems to a step load disturbance. 

Two major conclusions can be drawn from the above analysis: 
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1. It is impossible to explicitly assess control performance using only a single CPI, as none of 

them can fully describe the dynamic behavior of the control system. Rather, CPIs describe 

only chosen features of the closed loop response. Analysis using multiple CPIs can provide  

a more accurate description of dynamic behavior, and thus a more accurate assessment of 

performance. Hence, the number and type of CPIs that are required to effectively capture the 

key features of a closed loop response should be investigated. 

2. The definition of satisfactory closed loop response—that is, control performance—depends on 

the precise technological requirements and constraints. For example, one technological 

process may require that a setpoint trajectory is followed as quickly as possible, with the 

existence of overshoots and undershoots being permissible. However, for a different 

application a lack of overshoots may be mandatory, and thus the behavior of the control 

system should be more conservative. As such, the reference dynamic behavior can be different 

for every application. 

At this initial stage of the study, the greatest possible number of CPIs should be defined to ensure that 

all key features are captured and no important information is omitted. To systematize selection of 

CPIs, the closed loop response is divided into three suggested stages, as shown in Fig. 2.17. The first 

stage is defined as the time between the introduction of a load disturbance to the closed loop system 

and the maximum value of the response being reached. This duration of this stage depends on process 

dynamics, transportation time delay, and the initial action (aggressivity) of the controller. The second 

stage encompasses the damping of the maximum peak. Finally, the third stage describes the period in 

which the system reaches a steady state. To fully describe the dynamic behavior of the control system, 

the suggested CPIs should capture features of each distinct stage and of the entire response.  

 

 

Fig. 2.17 The division of a closed loop response into three suggested stages. 



 

32 

  

Considering the above specification, a total of thirty different CPIs were selected for further analysis. 

Table  2.5 presents an exhaustive list of these CPIs, together with short descriptions and appropriate 

acronyms. Appendix 2 contains graphical representations of the selected CPIs. The 12 CPIs that are 

highlighted in grey in Table  2.5 are those that are widely known and used by practitioners: overshoot 

(F1), undershoot (F3), the ratio of overshoot and undershoot (F5), settling time (F7), integral indices 

(F8–F11), decay ratio (F15, F16), and indices calculated using the response derivative (F28, F29). The 

first stage of the response is described by indices F1 and F28, as they evaluate the maximum peak 

value and the rate at which the output signal reaches this value. The second stage of the response is 

directly described by F29, which captures the maximum gradient of the output signal during of its 

decrease from the maximum peak value. The key features of third stage are indirectly captured by the 

decay ratio indices F15 and F16 and by the undershoot indices F3 and F5, as they describe the 

effectiveness with which the close loop response damps oscillations. Features of the overall response 

are assessed by indices F7–F11, which are based on the transient time in correlation with the control 

error e.  

CPI Short description Acronym 

MaxPeak The maximum value of the dynamic system response F1 

MaxPeakTime The time at which the maximum peak occurs F2 

MinPeak The minimum value of the dynamic system response (absolute value) F3 

MinPeakTime The time at which the minimum peak occurs F4 

MinToMax The ratio of the minimum and maximum peaks F5 

MaxToMinTime The difference in time between the occurrence of the maximum and 

minimum peaks  

𝑀𝑎𝑥𝑇𝑜𝑀𝑖𝑛𝑇𝑖𝑚𝑒 = 𝑀𝑖𝑛𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒 −𝑀𝑎𝑥𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒 

F6 

SettlingTime The time at which the system response returns to within the range of 

1% of its steady state value |𝑒| < 0.01 

F7 

IAE The integral absolute error 𝐼𝐴𝐸 =  ∫ |𝑒|𝑑𝑡 F8 

ISE The integral square error 𝐼𝑆𝐸 =  ∫ 𝑒2𝑑𝑡 F9 

ITAE The integral time absolute error 𝐼𝑇𝐴𝐸 =  ∫ 𝑡|𝑒|𝑑𝑡 F10 

IT2AE The integral time square absolute error 𝐼𝑇2𝐴𝐸 =  ∫ 𝑡2|𝑒|𝑑𝑡 F11 

IAEPos The integral absolute error calculated for positive values of the system 

response 𝐼𝐴𝐸𝑃𝑜𝑠 =  ∫ |𝑒|𝑑𝑡 , 𝑒 > 0 

F12 

IAENeg The integral absolute error calculated for negative values of the system 

response 𝐼𝐴𝐸𝑁𝑒𝑔 =  ∫ |𝑒|𝑑𝑡 , 𝑒 < 0 

F13 

IAENegToPos The ratio of IAENeg and IAEPos F14 

DecayRatio The ratio of the maximum peak value to the second positive peak value 

𝐷𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑖𝑜 = 2𝑛𝑑𝑃𝑒𝑎𝑘 𝑀𝑎𝑥𝑃𝑒𝑎𝑘⁄  

F15 

DecayRatioTime The difference in time between the occurrence of the maximum and 

second peaks 𝐷𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑖𝑜𝑇𝑖𝑚𝑒 = 2𝑛𝑑𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒 −𝑀𝑎𝑥𝑃𝑒𝑎𝑘𝑇𝑖𝑚𝑒 

F16 

PeakSettlingTime The difference between SettlingTime and MaxPeakTime F17 

TimePos The total time during which the response of the system is positive 

𝑇𝑖𝑚𝑒𝑃𝑜𝑠 = ∫𝑑𝑡 , 𝑒 > 0 

F18 

TimeNeg The total time during which the response of the system is negative 

𝑇𝑖𝑚𝑒𝑁𝑒𝑔 = ∫𝑑𝑡 , 𝑒 < 0 

F19 

TimeNegToPos The ratio of TimeNeg and TimePos F20 

RisingTime The rising time of the maximum peak, calculated as the time required 

for the system response to move from 5% to 95% of MaxPeak 

F21 
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FallingTime The falling time of the maximum peak, calculated as the time the time 

required for the system response to move from 95% to 5% of MaxPeak 

F22 

RisingToFallingTime The ratio of RisingTime and FallingTime F23 

25%DistRejected The time at which the response of system reaches 25% of MaxPeak, |e| 

< 25%*MaxPeak 

F24 

50%DistRejected The time at which the response of system reaches 50% of MaxPeak, |e| 

< 50%*MaxPeak 

F25 

75%DistRejected The time at which the response of system reaches 75% of MaxPeak, |e| 

< 75%*MaxPeak 

F26 

ZeroCrossingTime The first time at which the response of the system reaches zero F27 

MaxDiff The maximum value of the derivative of the dynamic response F28 

MinDiff The minimum value of the derivative of the dynamic response 

(absolute value) 

F29 

DiffMaxToMin The ratio of MaxDiff and MinDiff F30 

Table  2.5 The exhaustive list of CPIs used for the synthesis of the described CPA system, including short descriptions 

and acronyms. 

The remaining 18 CPIs are novel, and were proposed for this study. The introduction of new CPIs was 

motivated by the desire to capture more dynamic features of the closed loop response. Thus, the large 

majority of the novel CPIs are intended to supplement the 12 commonly used indices described above. 

Well known CPIs F1, F3, and F5 are supplemented with F2, F4, and F6 respectively to capture time 

domain features. They describe the time required to reach the maximum and minimum peaks, in 

addition to the ratio of the peak values. The widely used IAE index is supplemented by indices  

F12–F14, which describe changes in the sign of the control error e. Based on this sign, additional 

integral time-based indices were suggested (F18–F20). These indices more explicitly assess the overall 

closed loop response. Key points during the closed loop response in the time domain are detected by 

indices F17 and F24–F27, which supplement the settling time index F7. The exceptions to this 

supplementary behavior are the rising and falling time indices F21–F23, which were introduced to 

fully capture key features of the maximum peak, and thus describe the first and second stages of the 

closed loop response.  

After considering all of the suggested CPIs, some preliminary conclusions can be drawn: 

1. Calculation of the suggested CPIs does not require a high degree of computational and 

memory resources. Only basic mathematical functions are required for the calculations, such 

as addition, multiplication, and comparison. However, indices F28–F30 are calculated based 

on the derivative of the output signal, which can be problematic in the presence of 

measurement noise. In this case, additional filtering can be required. 

2. Potentially, CPIs that capture similar key features of the closed loop response are correlated. 

For example, a long maximum peak time (F2) is likely to result in a long rising time (F21). 

Alternately, a high ratio of maximum and minimum peak values (F5) is likely to indicate 

oscillations in the closed loop response and a possible increase in decay ratio (F15). Moreover, 

many CPIs are defined as the ratio between other CPIs. Thus, a high correlation between some 

CPIs is to be expected and will be studied further. 
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2.4 Generating closed loop reference responses 

A central requirement of the suggested CPA system is that information from multiple CPIs is 

combined to fully describe the dynamic behavior of the control system. This behavior should then be 

compared with a predefined reference response. Such a comparison is a general assumption of many 

CPA algorithms, including the Harris, GMV, LQG, and optimal PID indices, among others. The 

reference response can be described by reference PID tunings that are defined for a considered SOPDT 

process described by fixed L1 and L2 parameters. However, the definition of the reference behavior can 

vary depending on the differing technological requirements and constraints. Thus, the reference PID 

tunings can also differ, even for the same SOPDT process. Generally, as a reference, any suitable PID 

tuning rule can be chosen [24], or appropriate tunings can be generated using any other method, such 

as optimization-based tuning. In this work, the reference PID tunings are calculated by minimization 

of the IAE index for a closed loop response to a load disturbance. Following this, for fixed L1, L2 

parameters and load disturbance, and for a fixed filter coefficient for the derivative part α = 0.3, the 

IAE value depends only on the PID tunings and can be calculated as 

𝐽 = 𝐼𝐴𝐸(𝑘𝑟, 𝑇𝑖, 𝑇𝑑) = ∫ |𝑒(𝑡)|𝑑𝑡
𝑡𝑚𝑎𝑥
0

,     (2.17) 

where tmax is the settling time after introducing the load disturbance to the control system. However, 

the direct minimization of (2.17) without any constraints results in very aggressive tunings.  

In practice, this approach is not acceptable because constraints are required to ensure proper 

robustness of the control system. Robustness is defined by general frequency-based limitations: the 

gain Am and phase ϕm margins. Introducing the gain and phase margins as additional constraints results 

in the following three-dimensional constrained optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑘𝑟,𝑇𝑖,𝑇𝑑𝜖ℛ

+
𝐼𝐴𝐸(𝑘𝑟, 𝑇𝑖, 𝑇𝑑)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑚  ≥  𝐴𝑚𝑚𝑖𝑛  

𝜙𝑚  ≥  𝜙𝑚𝑚𝑖𝑛

  (2.18) 

where the limit values for the gain and phase margins are denoted as 𝐴𝑚𝑚𝑖𝑛 and  𝜙𝑚𝑚𝑖𝑛, respectively. 

This work assumes that 𝐴𝑚𝑚𝑖𝑛 = 2.5 and 𝜙𝑚𝑚𝑖𝑛 = 60o, which results in conservative tunings. 

However, this method can provide different tunings by adjusting the thresholds. For example, lower 

threshold values will produce more aggressive closed loop behavior.  

The reference closed loop responses were computed within discretized L1, L2 space consisting of  

a mesh of equidistant points with ΔL = 0.1. This produced 60 SOPDT processes, evenly distributed 

throughout the considered ranges of L1 and L2. Note that a denser mesh can be used if greater accuracy 

is required. Then, for each considered process the optimization problem (2.18) was solved numerically 

using an interior point approach [85]. Each optimization problem was solved multiple times, with each 
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solution starting from a different initial point to avoid reaching local minima. This approach generated 

reference PID tunings kr,ref, Ti,ref, and Td,ref for each of the considered SOPDT processes. The tunings 

are presented in Fig. 2.18–2.20 and Table  2.6–2.8. 

kr,ref 
L2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

L1 

0.1 4.051 3.862 3.623 3.551 3.532 3.559 3.607 3.672 3.752 3.833 

0.2 2.189 2.177 2.223 2.281 2.338 2.393 2.442 2.487 2.526 2.586 

0.3 1.484 1.471 1.506 1.558 1.617 1.680 1.743 1.806 1.871 1.934 

0.4 1.089 1.076 1.093 1.127 1.169 1.217 1.267 1.318 1.369 1.421 

0.5 0.823 0.813 0.822 0.842 0.869 0.901 0.935 0.972 1.011 1.050 

0.6 0.634 0.629 0.633 0.644 0.660 0.680 0.702 0.726 0.752 0.779 

Table  2.6 Obtained reference values of the controller gain. 

 

Fig. 2.18 A graphical representation of the obtained reference values of controller gain. 

Ti,ref 
L2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

L1 

0.1 0.577 0.604 0.632 0.725 0.801 0.874 0.939 0.999 1.058 1.107 

0.2 0.838 0.919 0.986 1.041 1.082 1.116 1.139 1.159 1.176 1.226 

0.3 1.004 1.087 1.169 1.249 1.324 1.394 1.458 1.518 1.574 1.624 

0.4 1.137 1.209 1.287 1.369 1.452 1.536 1.617 1.697 1.774 1.849 

0.5 1.267 1.327 1.397 1.472 1.552 1.635 1.719 1.805 1.891 1.976 

0.6 1.413 1.464 1.534 1.611 1.694 1.781 1.865 1.943 2.021 2.103 

Table  2.7 Obtained reference values of the integral constant. 
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Fig. 2.19 A graphical representation of the obtained reference values of the integral constant. 

Td,ref 
L2 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

L1 

0.1 0.125 0.217 0.309 0.353 0.392 0.425 0.455 0.481 0.504 0.527 

0.2 0.150 0.211 0.272 0.332 0.390 0.448 0.506 0.563 0.619 0.644 

0.3 0.181 0.227 0.274 0.320 0.365 0.407 0.447 0.485 0.520 0.554 

0.4 0.217 0.251 0.289 0.328 0.365 0.400 0.434 0.466 0.496 0.525 

0.5 0.261 0.286 0.316 0.348 0.381 0.413 0.443 0.471 0.498 0.524 

0.6 0.360 0.387 0.408 0.428 0.445 0.461 0.478 0.499 0.518 0.538 

Table  2.8 Obtained reference values of the derivative constant. 

 

Fig. 2.20 A graphical representation of the obtained reference values of the derivative constant. 

For each of the considered closed loop systems defined by the SOPDT process, in addition to the 

reference PID tunings computed as described above, corresponding values of gain and phase margins 

can be calculated. Given that they are strictly correlated with the reference PID tunings, these variables 
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are referred to as reference gain Am,ref and phase ϕm,ref margins. Fig. 2.21 and Fig. 2.22 present the 

values of the reference gain and phase margins, respectively. Note that for the vast majority of 

considered closed loop systems, the limiting values of the gain and phase margins as predefined for 

the optimization problem (2.18) and preserved as equality constraints, with Am,ref = 2.5 and ϕm,ref = 60o. 

Only for the case L1 = 0.1 and L2 > 0.1 is the reference gain margin Am,ref > 2.5, and only for L1 > 0.5 is 

the reference phase margin ϕm,ref > 60o. In each case, the constraints assumed for (2.18) are not 

violated. 

 

Fig. 2.21 A graphical representation of the obtained reference values of gain margin. 

 

Fig. 2.22 A graphical representation of the obtained reference values of phase margin. 

Fig. 2.23 presents examples of the reference closed loop responses corresponding to selected SOPDT 

processes. Note that despite differences in the values of the process parameters L1 and L2, each of the 

presented responses display similar behavior. 
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Fig. 2.23 Example reference responses obtained for the selected closed loop systems. 

The optimization-based approach that was used to obtain reference PID tunings was practically 

justified. However, if necessary, the approach could be modified to meet specific technological 

requirements. Additionally, the assumed ranges of the L1 and L2 parameters can be divided into 

smaller, local sub regions within the L1, L2 plane, and the reference PID tunings then computed for 

each sub region individually. This approach could be used to compensate for the nonlinear nature of 

the process. 

The computation of the PID reference tunings as described above assumed that the operation of the 

closed loop system processes can be described by SOPDT dynamics. However, industrial processes 

are very often characterized by higher order dynamics. As such, it is reasonable to investigate the 

difference between the reference PID tunings calculated directly for a closed loop system running 

higher order processes, and the tunings calculated for their corresponding SOPDT approximations. If 

the difference proves to be insignificant, the proposed method of computing the reference PID tunings 

can be directly used for higher order processes based only on their SOPDT approximation. 

This investigation studies a closed loop system that controls a fourth order (4OP) process with the 

following dynamics:  

𝐾(𝑠) =
1

(1+𝑠)(1+𝑠𝑃1)(1+𝑠𝑃2)(1+𝑠𝑃3)
,     (2.19) 

where P1, P2, and P3 represent the relative time constants. The ranges of P1, P2, and P3 were chosen to 

cover the entire landscape of possible dynamics, and discretized with mesh size 0.1. Thus,  

𝑃1 𝜖 < 0.1 ∶ 0.1 ∶  1.0 >, 𝑃2 𝜖 < 0 ∶ 0.1 ∶  𝑃1 >, and 𝑃3 𝜖 < 0 ∶ 0.1 ∶  𝑃2 >. Following this, all of the 

selected 4OP processes were approximated by the SOPDT model. For each 4OP process and its 

SOPDT approximation, the optimization problem (2.18) was solved, resulting in two separately 
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computed sets of reference PID tunings: one for the closed loop system with the 4OP process itself, 

and one for the closed loop system with the respective SOPDT process approximation. The relative 

differences between these reference PID tunings are given by 

∆𝑥𝑅𝑒𝑓 =
𝑥𝑅𝑒𝑓,4𝑂𝑃−𝑥𝑅𝑒𝑓,𝑆𝑂𝑃𝐷𝑇

𝑥𝑅𝑒𝑓,4𝑂𝑃
∗ 100%,    (2.20) 

where ΔxRef is the relative difference between the reference tuning parameter calculated for the closed 

loop system with 4OP process xRef,4OP and for the closed loop system with the respective SOPDT 

approximation xRef,SOPDT. These differences were calculated for all PID tuning parameters, and the 

results are presented in Fig. 2.24–Fig. 2.26 in both the P1, P2, P3 (left figures) and L1, L2 (right figures) 

subspaces. 

 

Fig. 2.24 The relative difference between the reference controller gain calculated for a 4OP process and its SOPDT 

approximation in the P1, P2, P3 (left) and L1, L2 subspace (right). 

 

Fig. 2.25 The relative difference between the reference integral constant calculated for a 4OP process and its SOPDT 

approximation in P1, P2, P3 subspace (left) and L1, L2 subspace (right). 



 

40 

  

 

Fig. 2.26 The relative difference between the reference derivative constant calculated for a 4OP process and its 

SOPDT approximation in P1, P2, P3 subspace (left) and L1, L2 subspace (right). 

For further investigation, Fig. 2.27 presents the relative difference between the reference value of the 

IAE index computed using (2.17) for a closed loop system with a 4OP process, and the same index for 

a closed loop system with the corresponding SOPDT approximation. The graph indicates that the 

maximum relative difference of the IAE index is close to 16%. This difference is positive for some 

processes, and thus the IAE value is higher for the closed loop system with a 4OP process than for the 

closed loop system with the corresponding SOPDT approximation. However, both reference responses 

are very similar in terms of IAE. 

 

Fig. 2.27 The relative difference between the reference cost function (IAE) calculated a 4OP process and its SOPDT 

approximation in P1, P2, P3 subspace (left) and L1, L2 subspace (right). 

The smallest difference between the reference value of the IAE index was 0.0076 %, obtained for  

P1 = 0.6, P2 = 0.4, and P3 = 0. Fig. 2.28 shows a comparison of the reference responses for both the 

4OP process and the corresponding SOPDT approximation at this point in P1, P2, P3 subspace. 

Conversely, the largest difference of -16.4 % was obtained for P1 = 0.9, P2 = 0.9, and P3 = 0.9.  

Fig. 2.29 provides a corresponding comparison of the reference responses. 
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Fig. 2.28 A comparison of the reference responses for a 4OP process and its corresponding SOPDT approximation for 

P1 = 0.6, P2 = 0.4, P3 = 0. 

 

Fig. 2.29 A comparison of the reference responses for a 4OP process and its corresponding SOPDT approximation for 

P1 = 0.9, P2 = 0.9, P3 = 0.9. 

The robustness of a closed loop system with a 4OP process is predefined for the optimization problem 

(2.18). The degree to which a reference PID tuning based on a SOPDT approximation preserves this 

robustness should be investigated. To this end, for each considered closed loop system with a 4OP 

process, a PID controller was tuned using reference tunings obtained for the corresponding SOPDT 

process approximation. Then, based on the responses of simulated closed loop systems with 4OP 

processes and with 4OP and SOPDT reference tunings, the gain and phase margins were calculated, in 

an analogous manner to (2.20). The relative differences between the gain and phase margins are 

presented in Fig. 2.30 and Fig. 2.31, respectively. 
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Fig. 2.30 The relative difference between the reference gain margins as calculated for a 4OP process using 4OP 

tunings and the corresponding SOPDT approximation tunings. 

 

Fig. 2.31 The relative difference between the reference phase margins as calculated for a 4OP process using 4OP 

tunings and the corresponding SOPDT approximation tunings. 

For the vast majority of closed loop systems with 4OP processes, the relative differences between the 

gain margins are negative. For these cases, the gain margins obtained using the SOPDT reference 

tunings are higher, and thus the system has a greater robustness. However, the relative differences for 

the phase margins are negative, and thus the system is less robust. However, the maximum difference 

is only 2.5%, which is acceptable from a practical perspective. To provide a complete overview, the 

relative difference of the IAE index was also calculated, and is presented in Fig. 2.32. The results show 

that the direct transfer of closed loop reference tunings computed using an SOPDT process 

approximation to closed loop systems with a 4OP process does not lead to a substantial decrease in 

performance, with a maximum difference of approximately 15%. 
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Fig. 2.32 The relative difference between the reference cost function (IAE) as calculated for a 4OP process using 40P 

tunings and the corresponding SOPDT approximation tunings. 

To summarize, reference PID tunings calculated using the proposed method for SOPDT processes can 

be applied as close to reference for a relatively wide range of higher order processes. This was 

demonstrated using 4OP process as an example (2.19), with the approximated tunings showing no 

substantial degradation of performance when compared to reference PID tunings calculated directly 

for the considered 4OP processes. This result is of great practical importance, given that the practical 

determination of higher order dynamics (n ≥ 3) is difficult when using real process data. Thus, the use 

of SOPDT approximations for deriving reference PID tunings is much more convenient from  

a practical perspective.  

2.5 The generation of training and validation datasets 

Following the definition of the general process model, the reference closed loop response, and a set of 

features, the next stage is to propose the general methodology for generating training and validation 

datasets that can be used to train and validate the proposed CPA system. 

Both datasets contain a large set of different SOPDT processes defined by the L1 and L2 parameters, in 

addition to closed loop reference trajectories obtained for the PID reference tunings computed for each 

considered SOPDT process. To generate the datasets, a number of SOPDT processes were randomly 

drawn within the predefined ranges L1 ϵ <0.1, 0.6> and L2 ϵ <0.1, 1.0>. For each generated process, 

PID reference tunings were computed to produce the closed loop reference response. As described in 

Section 2.4, the reference tunings were computed only for SOPDT processes defined by combinations 

of the parameters L1 and L2 that represent mesh points within the space L1 ϵ <0.1 : 0.1 : 0.6>, 

 L2 ϵ <0.1 : 0.1 : 1.0>. Thus, for generated SOPDT processes defined by combinations of the 

parameters L1 and L2 that were between mesh points, the reference PID tunings were calculated by 

spline interpolation between reference tunings. The interpolation was calculated by solving the 
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optimization problem (2.18) for neighboring mesh points L1 ϵ <0.1 : 0.1 : 0.6>, L2 ϵ <0.1 : 0.1 : 1.0>. 

This approach substantially reduced the number of times that the optimization problem (2.18) required 

solving during the generation of the training and validation datasets. Moreover, it ensured that the 

reference tunings for each considered closed loop system were sufficiently accurate. However, this 

approach can produce PID reference tunings that are not optimal with respect to the optimization 

problem (2.18), and can violate the problem constraints slightly. If this limited accuracy is not 

acceptable, then the PID reference tunings can be calculated by solving the optimization problem 

(2.18) for each randomly generated SOPDT process, or by increasing the density of the L1, L2 

subspace mesh to increase the accuracy of spline interpolation. 

For each considered closed loop system, the control performance was assessed as satisfactory (OK) if 

the closed loop response was relatively similar to the corresponding reference response. Thus, for each 

closed loop system defined by a generated SOPDT process and a corresponding set of PID reference 

tunings, a very large number of different closed loop responses were generated to densely cover the 

region of satisfactory control performance. To this end, for the closed loop system defined by each 

randomly generated SOPDT process, the corresponding PID reference tunings were modified  

as follows:  

𝑘𝑟,𝑚𝑜𝑑 = 𝑎1𝑘𝑟,𝑟𝑒𝑓 ,

𝑇𝑖,𝑚𝑜𝑑 = 𝑎2𝑇𝑖,𝑟𝑒𝑓 ,

𝑇𝑑,𝑚𝑜𝑑 = 𝑎3𝑇𝑑,𝑟𝑒𝑓 ,
      (2.21) 

where kr,mod, Ti,mod, and Td,mod are the modified PID tunings and a1, a2, and a3 are random numbers that 

are taken from a normal distribution with N(1, 0.0225). For PID tunings modified in this manner, the 

corresponding closed loop responses are generated by simulation. The degree by which the PID 

tunings are modified depends on the random values of a1, a2, and a3. If the corresponding simulated 

closed loop response is then similar to the predefined reference response, then the response is assessed 

as OK. Otherwise, the generated closed loop response is assessed as NOK. 

The similarity between the reference closed loop response and the corresponding response simulated 

using the modified PID reference tunings must be assessed. This can be accomplished by comparing 

the gain and phase margins for each response: Am,ref and ϕm,ref for the former and Am,mod and ϕm,mod for 

the latter. Hence, the similarity between the responses can be quantified by the distances Am,dist and 

ϕm,dist, calculated as 

𝐴𝑚,𝑑𝑖𝑠𝑡 =
|𝐴𝑚,𝑟𝑒𝑓−𝐴𝑚,𝑚𝑜𝑑|

𝐴𝑚,𝑟𝑒𝑓
,     (2.22) 

  



 

45 

 

and 

𝜙𝑚,𝑑𝑖𝑠𝑡 =
|𝜙𝑚,𝑟𝑒𝑓−𝜙𝑚,𝑚𝑜𝑑|

𝜙𝑚,𝑟𝑒𝑓
.     (2.23) 

A 10% deviation from the reference gain and phase margins is considered allowable. Hence, the 

control performance of a closed loop response generated using modified PID reference tunings (2.21) 

is assessed as OK if the distance Am,dist < 10% and ϕm,dist < 10%. 

However, initial studies indicate that an assessment based only upon the distances Am,dist and ϕm,dist  

provides incorrect results. There exist certain closed loop responses with a shape that diverges 

substantially from the reference response, but which preserve the distances Am,dist < 10% and  

ϕm,dist < 10%. This problem can be illustrated using the normalized distance edist as a measure of the 

difference in shape between the closed loop control error samples generated the for modified PID 

tunings (2.21) emod and those generated for the PID reference tunings eref : 

𝑒𝑑𝑖𝑠𝑡 =
∫|𝑒𝑟𝑒𝑓−𝑒𝑚𝑜𝑑|𝑑𝑡

∫|𝑒𝑟𝑒𝑓|𝑑𝑡
.       (2.24) 

For illustration, 60000 different SOPDT processes were randomly generated, with the modified PID 

tunings (2.21) ensuring stability of the closed loop system. Following this, 60000 corresponding 

closed loop responses were generated by simulation. Fig. 2.33 shows a graphical representation of this 

dataset, with each dot representing a generated closed loop response. To improve clarity, the amplitude 

Am,dist and phase ϕm,dist distances were normalized: 

𝐴𝑚,𝑛𝑜𝑟𝑚 =
𝐴𝑚,𝑑𝑖𝑠𝑡

10%
,     (2.25) 

𝜙𝑚,𝑛𝑜𝑟𝑚 =
𝜙𝑚,𝑑𝑖𝑠𝑡

10%
.     (2.26) 

Thus, |Am,norm| ≤ 1 and |ϕm,norm| ≤ 1 indicate satisfactory (OK) control performance. This region is 

highlighted with a green box in Fig. 2.33.  
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Fig. 2.33 A graphical representation of the generated training dataset, with the green box highlighting the region of 

satisfactory (OK) control performance. 

For further analysis, the closed loop systems for which the gain and phase margins were preserved  

(| Am,norm| ≤ 1 and | ϕm,norm| ≤ 1) were selected from the generated dataset. Fig. 2.34 presents a histogram 

of the normalized distances edist of these closed loop systems. The histogram shows that the closed 

loop responses of the large majority of these systems are shaped very similarly to the corresponding 

reference response (edist ≈ 0). However, there also exist many closed loop systems with preserved gain 

and phase margins that display a relatively high value of edist; the largest value of edist within the 

generated dataset is 0.51. Thus, despite the preservation of assumed robustness, the dynamic behavior 

of the closed loop systems with modified PID tunings is different from that of the corresponding 

reference systems. 

 

Fig. 2.34 A histogram of the normalized distances of the closed loop responses with preserved gain and phase margins. 
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As such, relying solely on the deviation of the gain and phase margins from their reference values is 

insufficient for the explicit assessment of control performance. Thus an additional condition must be 

introduced: for the control performance of a closed loop system to be assessed as satisfactory (OK), 

the normalized distance should be less than a predefined threshold value edist < edist,thresh. The value 

taken by the threshold edist,thresh can be adjusted by rule of thumb, depending on the acceptable 

difference in shape between the closed loop response and the corresponding reference. The threshold 

value could also be determined by preliminary studies. By manipulating the distance threshold 

edist,thresh, only those closed loop systems that meet the condition  edist < edist,thresh will be extracted. From 

this, the percentage of closed loop systems that preserve the gain and phase margins can be 

determined, with respect to all such extracted systems. This approach was applied using threshold 

values edist,thresh ϵ (0; 1.0], with the results presented in Fig. 2.35. For edist,thresh < 0.05, almost 100% of 

the closed loop systems are assessed as providing satisfactory (OK) control performance in terms of 

preserving the gain and phase margins. However, as the value of the distance threshold increases, this 

percentage decreases. These results suggest that a value of edist,thresh = 0.1 is appropriate for further 

studies, given that for this value almost 96% of all closed loop systems preserve the gain and phase 

margins. 

 

Fig. 2.35 The percentage of closed loop responses that preserve the gain and phase margins for various values of 

distance threshold edist,thresh. 

One can notice, that basing on normalized distance edist with predefined threshold value edist,thresh = 0.1, 

the closed loop response can be assessed in terms of deviations of gain and phase margins with 

accuracy of almost 96 %. Process parameters L1 and L2 must be determined at initial stage of 

assessment for normalization of closed loop response (see Section 2.2), thus they could be potentially 

used for generating reference response (based on reference tunings, see Section 2.4) and normalized 

distance (2.24) could be calculated. Then, the control performance assessment  can be determined 

based on threshold value edist,thresh = 0.1 defined based on the above considerations. However, in this 
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thesis, this possibility was rejected due to the fact that even if the presented results are complete, they 

should be treated as an important but also initial stage of developing the final CPA system.  It is 

assumed that this final version will not require identification of the process model and the 

classification will be based only on a number of features computed directly from measurement data of 

closed loop disturbance rejection response. Then, any assessment basing only on the value of the 

normalized distance is not possible.  

In summary, a generated closed loop response can be assessed as satisfactory (OK) if the following 

three conditions are met: 

1. |Am,dist| < 10%, 

2. |ϕm,dist| < 10%, 

3. edist < 0.1. 

Using these criteria, the generated dataset can be easily labelled. Fig. 2.36 presents example results of 

this process. The green and red dots represent closed loop responses with satisfactory (OK) and poor 

(NOK) control performance, respectively. For clarity, the region of satisfactory control performance is 

highlighted with a green box.  

 

Fig. 2.36 A graphical representation of the generated training dataset, labelled according to the suggested criteria. 

Green and red dots represent satisfactory (OK) and poor (NOK) control performance, respectively. The region of 

satisfactory control performance is highlighted with a green box. 

Finally, using the proposed methodology, a dataset of 60000 closed loop systems was generated.  Half 

of the systems were labelled as OK and the other half as NOK, in accordance with the suggested 

criteria. Then, for each closed loop response, the thirty CPIs defined above were calculated forming  

a corresponding feature vector. 

The robustness of the suggested labelling method was verified for higher order processes (2.19). For 

each considered 4OP process, a SOPDT approximation was used to randomly generate 200 sets of PID 
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tunings. Based on these PID tunings 200 closed loop responses were generated, with half of them 

labelled as OK and the other half as NOK, in accordance with the suggested criteria. Following this, 

the PID tunings were directly transferred to closed loop systems with 4OP process. Another set of 

closed loop responses were then generated and labelled; now based upon the closed loop reference 

responses of the 4OP processes. The two sets of labels produced by this approach for each closed loop 

response were then compared. The degree of compliance between them is presented in Fig. 2.37.  

 

Fig. 2.37 The compliance of labels obtained using a 4OP process model and those obtained using an SOPDT 

approximation. 

The results show very high compliance between labels generated directly for closed loop systems with 

4OP processes and those generated for systems using SOPDT approximations. The minimum 

compliance level is 89%, although it is greater than 98% for the large majority of process. These 

results demonstrate that using SOPDT approximations to assess closed loop systems with higher order 

processes produces similar results to an assessment that directly considers higher order processes in 

the closed loop system. As described previously, the identification of higher order models using real 

measurement data is difficult. The ability to use SOPDT approximations that are relatively easy to 

identify significantly simplifies the assessment procedure. Thus, although the training dataset of the 

presented CPA systems was generated for assumed SOPDT processes, it can be effectively used for 

assessment of closed loop systems with higher order processes. 

2.6 Selection of the classification algorithm 

Various classification methods can be used to assess control performance as satisfactory or poor, 

based on the dataset described in the previous section. For this purpose, the following classification 

algorithms were selected, with varying degrees of complexity: Gaussian Naïve Bayes (GNB) [86], 

Linear Discriminant Analysis (LDA) [87], K-nearest Neighbors (KNN) [88], Decision Tree (DT) [89], 

and General Fuzzy Min-Max Neural Network trained by either an online learning algorithm (Onln-

GFMM) [90] or an agglomerative learning algorithm (AGGLO-2) [91]. In addition, less transparent 
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but more powerful classification algorithms were selected, including kernel-based methods: Support 

Vector Machines (SVM) [92] and tree-based ensembles such as Light Gradient Boosted Machine 

(Light GBM) [93], Extreme Gradient Boosting (XGBoost) [94], Adaptive Boosting (AdaBoost) [95], 

Extremely Randomized Trees (Extra Trees) [96], and Random Forest (RF) [97]. Hyper-parameters of 

the selected models (except GNB and LDA) were obtained using random search within given ranges. 

This ensured the highest possible classification accuracy, as calculated based on 5-fold cross 

validation. Optimal values of the individual parameters together with their assumed ranges are 

presented in Table  2.9.  

Classification 

algorithm 
Parameter Range 

Optimal 

value 

Decision Trees 
Max depth [4, 20] 19 

Min samples per leaf [4, 30] 4 

Light GBM 

Max depth [4, 20] 20 

Min samples per leaf [4, 30] 12 

Sampling rate {0.3, 0.4, 0.5, 0.6, 0.7} 0.4 

% features used {20%, 30%, 40%, 50%, 60%, 70%} 70% 

Learning rate {0.025, 0.05, 0.1, 0.2, 0.3} 0.3 

No. of estimators {30, 50, 70, 100, 150, 200} 200 

XGBoost 

Max depth [4, 20] 8 

Sampling rate {0.3, 0.4, 0.5, 0.6, 0.7} 0.7 

% features used {20%, 30%, 40%, 50%, 60%, 70%} 70% 

Learning rate {0.025, 0.05, 0.1, 0.2, 0.3} 0.2 

Gamma {0, 0.1, 0.2, 0.3, 0.4, 1, 1.5, 2} 1 

No. of estimators {30, 50, 70, 100, 150, 200} 200 

Extra Trees 

Max depth [4, 20] 20 

Min samples per leaf [4, 30] 6 

% features used {20%, 30%, 40%, 50%, 60%, 70%} 40% 

Sampling rate {0.3, 0.4, 0.5, 0.6, 0.7} 0.7 

No. of estimators {30, 50, 70, 100, 150, 200} 50 

Random 

Forest 

Max depth [4, 20] 20 

Min samples per leaf [4, 30] 6 

% features used {20%, 30%, 40%, 50%, 60%, 70%} 40% 

Sampling rate {0.3, 0.4, 0.5, 0.6, 0.7} 0.7 

No. of estimators {30, 50, 70, 100, 150, 200} 50 

AdaBoost 

Max depth [4, 20] 11 

Min samples per leaf [4, 30] 12 

No. of estimators {30, 50, 70, 100, 150, 200} 150 

Learning rate {0.001, 0.01, 0.1, 0.2, 0.5, 1} 0.1 

Support 

Vector 

Machines 

Kernel {'rbf', 'sigmoid', 'linear'} rbf 

Gamma {2^-15, 2^-13, …, 2^3} 8 

C {2^-5, 2^-3, …, 2^15} 512 

K-nearest 

Neighbor 

K {1, 3, …, 29} 5 

Onln-GFMM 
Maximum hyperbox 

size  

{0.1, 0.15, …, 0.55, 0.6} 0.1 

AGGLO-2 
Maximum hyperbox 

size  

{0.1, 0.15, …, 0.55, 0.6} 0.4 

Table  2.9 Individual parameters together with their assumed ranges for the considered classification algorithms, 

obtained via a hyper-parameter optimization procedure. 
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The generated dataset of 60000 samples was used to train the selected classifiers. An additional 

validation dataset, consisting of 10000 samples, was generated using similar criteria to the generation 

of the training dataset. Fig. 2.38 presents the classification accuracy of the selected algorithms when 

applied to all 30 considered CPIs (red bars). The majority of the selected algorithms provide  

a classification accuracy of greater than 91%, and are thus suitable for the CPA classification problem. 

The highest accuracy, of more than 96%, was obtained when using the SVM classifier. The 

classification accuracy was also verified for training and validation datasets consisting of the 12 

commonly used CPIs (those highlighted in grey in Table  2.5). The results are also presented in Fig. 

2.38 (the blue bars). The results show that when restricting the CPIs to only those that are commonly 

used, the classification accuracy significantly decreases for the large majority of classifiers. Only the 

SVM classifier displays substantial robustness, as its accuracy does not significantly decrease. It can 

be concluded that the use of all 30 CPIs rather than the most common 12 positively affects the 

classification algorithms, as more nuanced features of the closed loop response can be captured. 

Furthermore, the simple linear models (GDA or LDA) provide a classification accuracy of less than 

80%—an insufficient level of accuracy. Significantly higher performance is obtained by the nonlinear 

models. This suggests that the decision boundary between the OK and NOK classes is strongly 

nonlinear, and cannot be effectively captured by linear models, such as GDA or LDA. Thus, nonlinear 

algorithms are the most appropriate for the CPA classification problem. A relatively high classification 

accuracy was obtained for models such as DT, KNN, or AGGLO-2, which are complex but more 

interpretable than the black-box models, such as SVM or tree-based ensemble models. The best 

performance was obtained by powerful nonlinear classifiers such as SVM, in addition to the following 

nonlinear kernel and boosted ensemble classifiers: Light GBM, AdaBoost, and XGBoost.  

 

Fig. 2.38 The classification accuracy obtained by each of the considered algorithms, when trained on the 12 commonly 

used CPIs (blue bar plot) and all 30 CPIs (red bar plot). 
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Although the classification accuracy of the fuzzy models (Onln-GFMM, AGGLO-2) was lower than 

that of the SVM classifier, the fuzzy-model membership functions can be used to provide a more 

precise assessment of control performance, by determining the distance between the assessed closed 

loop response and the OK and NOK control performance boundary. The membership functions for the 

OK and NOK classes were calculated for the validation dataset. The histograms for correctly assessed 

closed loop responses are presented in Fig. 2.39 and Fig. 2.40. The histograms for incorrectly assessed 

closed loop responses are presented in Fig. 2.41 and Fig. 2.42. The results show that for correctly 

assessed closed loop responses the membership functions of the correct class (OK for Fig. 2.39 and 

NOK for Fig. 2.40) dominates the incorrect class, with a value of close to 1. Moreover, the distribution 

of the membership functions of the incorrect classes has a somewhat high deviation. 

 

Fig. 2.39 Histograms of the membership functions of the OK and NOK classes, calculated for closed loop responses 

that are correctly assessed as OK. 

 

Fig. 2.40 Histograms of the membership functions of the OK and NOK classes, calculated for closed loop responses 

that are correctly assessed as NOK. 
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As expected, the incorrect class dominates in the case of incorrectly assessed control performance (OK 

for Fig. 2.41 and NOK for Fig. 2.42). However, in this case the membership function of the correct 

class is also very close to unitary value. The distributions of both membership functions are clustered 

around unitary value, and the deviation is small.  

 

Fig. 2.41 Histograms of the membership functions of the OK and NOK classes, calculated for closed loop responses 

that are incorrectly assessed as OK. 

 

Fig. 2.42 Histograms of the membership functions of the OK and NOK classes, calculated for closed loop responses 

that are incorrectly assessed as NOK. 

Finally, the differences between the membership functions for the OK and NOK classes were 

calculated for both correctly and incorrectly assessed closed loop responses. The normalized histogram 

of calculated differences is presented in Fig. 2.43. The histogram shows that the differences between 

the membership functions in the case of incorrectly assessed closed loop responses are close to zero. 

In these cases, the closed loop response is close to the boundary between OK and NOK performance, 
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and thus explicit assessment can be more difficult. In the case of correct assessment, the calculated 

differences are higher, and thus membership of the given class is more obvious.  

 

 

Fig. 2.43 Normalized histograms of the calculated differences between membership functions for OK and NOK 

classes, for correctly (blue) and incorrectly (red) assessed closed loop responses. 

Information concerning the membership functions, such as the difference between the functions for the 

OK and NOK classes, can be used to determine the effectiveness of the CPA algorithms. This 

approach can potentially be used to monitor the degradation of control performance. If this occurs,  

a gradual decrease in the OK membership function and corresponding increase in the NOK 

membership function should be noticed. Such an investigation provides an interesting direction for 

further studies, but is beyond the scope of this thesis. 

2.7 Simulated and experimental verification 

The practical utility of the suggested CPA system was verified based on simulations and experimental 

studies. All of the presented results were obtained using the SVM classifier, as this was shown to 

achieve the highest possible classification accuracy amongst all investigated classifiers (see Section 

2.7). The classifier was trained off-line using the methodology described previously.  

2.7.1 Simulated validation of the system with SOPDT processes 

The system was initially validated using simulations. Two different SOPDT processes were selected, 

defined by L1 = 0.4, L2 = 0.5 and L1 = 0.3, L2 = 0.9. For each process, 35 different PID tunings were 

obtained based on a FOPDT approximation of the process step response. These tunings are shown in 

Appendix 5. Following this, a load disturbance was introduced to each control system, and the closed 

loop response data was collected. The CPIs were then calculated, to produce a new validation dataset 

consisting of 35 different samples. 
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Fig. 2.44 presents the classification accuracy in the form of a confusion matrix for the SOPDT process 

with L1 = 0.4, L2 = 0.5. The matrix shows perfect classification accuracy, with 100% of responses 

being assessed correctly. As such, control performance was assessed well. Fig. 2.44 also shows the 

validation dataset, with the green and red dots representing OK and NOK closed loop responses, 

respectively. The green box indicates the region of satisfactory (OK) control performance.  

 

Fig. 2.44 The confusion matrix obtained for the simulation dataset with L1 = 0.4, L2 = 0.5 (left). A graphical 

representation of the simulation dataset with L1 = 0.4, L2 = 0.5 (right).  

The closed loop responses from the generated validation dataset are presented in Fig. 2.45. The green 

and red responses represent OK and NOK closed loop responses respectively, and the black line 

represents the reference response. Those closed loop responses that are assessed as OK are relatively 

close to the corresponding reference response. However, those responses for which the dynamic 

behavior differs substantially from the predefined reference are assessed as NOK. 

 

Fig. 2.45 The closed loop responses assessed as OK (left) and NOK (right), with the reference response indicated 

(black line), for the simulation dataset with L1 = 0.4, L2 = 0.5. 

Using the same methodology, a validation dataset was generated for the second considered SOPDT 

process with L1 = 0.3, L2 = 0.9. However, for this process, one set of PID tunings lead to unstable 

behavior, and thus the corresponding closed loop system was excluded from the dataset.  
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The classification accuracy is presented in Fig. 2.46. The accuracy remains high, but is not perfect. 

The correctly classified samples are presented in Fig. 2.47. One NOK closed loop response was 

incorrectly classified as OK according to the assumed assessment criteria. However, this particular 

sample is very close to the decision boundary between OK and NOK performance, and thus is 

particularly difficult to assess accurately.  

 

Fig. 2.46 The confusion matrix obtained for the simulation dataset with L1 = 0.3, L2 = 0.9. 

 

Fig. 2.47 A graphical representation of the correctly (left) and incorrectly (right) assessed samples of the simulation 

dataset with L1 = 0.3, L2 = 0.9. 

Fig. 2.48 presents the closed loop responses for the second SOPDT process that were correctly 

assessed as either OK or NOK. The single response that was incorrectly assessed (as NOK) is 

presented in Fig. 2.49. This response is relatively close to the corresponding reference response, 

indicated in black. Thus, from a practical perspective this misclassification is insignificant.  

As described earlier, the use of fuzzy models and their related membership functions could potentially 

be helpful for such cases. 
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Fig. 2.48 The closed loop responses correctly assessed as OK (left) and NOK (right) with the reference response 

indicated (black line), for the simulation dataset with L1 = 0.3, L2 = 0.9. 

 

Fig. 2.49 The closed loop response incorrectly assessed as NOK, with the reference response indicated (black line), for 

the simulation dataset with L1 = 0.3, L2 = 0.9. 

For completeness, the classification results, classification accuracies, and confusion matrices for the 

generated datasets are shown in Table  2.10 for the other considered classifiers. The results show that 

other classifiers, such as Random Forest or AdaBoost, provide a similar accuracy to that of the 

selected SVM classifier. However, the simulation datasets are less representative than the validation 

dataset described in Section 2.6, and thus these results cannot be used for an explicit comparison of the 

involved classifiers. 

Classification algorithm Simulation dataset L1 = 0.4, L2 = 0.5 Simulation dataset L1 = 0.3, L2 = 0.9 

Confusion matrix Accuracy, % Confusion matrix Accuracy, % 

Decision Trees [
3 0
0 32

] 100 [
1 1
2 30

] 91.17 

Gaussian Naïve Bayes [
2 1
3 29

] 88.57 [
1 1
5 27

] 82.35 

Linear Discriminant Analysis [
1 2
3 29

] 85.71 [
1 1
1 31

] 94.11 

Light GBM [
3 0
1 31

] 97.14 [
1 1
0 32

] 97.05 

XGBoost [
3 0
1 31

] 97.14 [
1 1
0 32

] 97.05 

Extra tree [
2 1
0 32

] 97.14 [
1 1
1 31

] 94.11 

Random Forest [
3 0
0 32

] 100 [
1 1
0 32

] 97.05 
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AdaBoost [
3 0
0 32

] 100 [
1 1
0 32

] 97.05 

Support Vector Machine [
3 0
0 32

] 100 [
1 1
0 32

] 97.05 

k-Nearest Neighbor [
3 0
1 31

] 97.14 [
1 1
0 32

] 97.05 

Onln-GFMM [
3 0
1 31

] 97.14 [
1 1
1 31

] 94.11 

AGGLO-2 [
2 1
0 32

] 97.14 [
1 1
0 32

] 97.05 

Table  2.10 The classification results obtained for other classifiers as applied to both simulation datasets. 

This validation shows that the proposed CPA system can accurately assesses the control performance 

of closed loop systems with SOPDT processes.  

2.7.2 Comparison with existing CPA algorithms 

The accuracy with which the suggested CPA system can assess performance was compared with other 

existing CPA methods. Based on the closed loop response data, the following CPA indices were 

calculated: the R index [98], the idle index [70], the area index [99], the load disturbance rejection 

performance (LDR) index [72], and the Harris index [51]. Note that the assessment procedure for each 

of these CPA algorithms, other than the Harris index, is similar to that required by the suggested CPA 

system. That is, each index is calculated based on the load disturbance rejection response of the closed 

loop system. However, the Harris index is a more complex CPA algorithm, and requires stochastic 

disturbances. For this purpose, load disturbances with different amplitudes were introduced to the 

assessed closed control system across multiple consecutive steps. The LDR index was calculated 

based on the reference PID tunings used for the synthesis of the suggested CPA system. 

Explicit assessment using the Harris index is impossible. However, control performance can be 

assessed using the other indices based on the corresponding index values presented in Table  2.11. 

R Index Idle Index Area Index LRP Index 

NOK (oscillatory) 1.0 NOK (sluggish) 1.0 NOK (sluggish) 1.0 NOK > 1.4 

OK 0.5 OK / NOK (oscillatory) -1.0 OK 0.5 OK 1.0 

NOK (sluggish) 0.0   NOK (oscillatory) 0.0 NOK < 0.6 

Table  2.11 Values of the selected CPA algorithms that assessed performance as OK or NOK.  

The comparison was conducted based on the generated closed loop responses of the datasets described 

in the previous section, for the same two SOPDT processes with L1 = 0.4, L2 = 0.5 and L1 = 0.3,  

L2 = 0.9, and the same PID tunings. The selected CPA indices were calculated for each of the 

processes, with the results presented in Table  2.12 andTable  2.13. Score Expert is the expected 

assessment based on the criteria suggested in Section 2.5, and Score SVM is the assessment made by 

the suggested CPA system. The results are color-coded: green and red denote OK and NOK closed 

loop systems, respectively. The results are also presented in graphical form in Fig. 2.50 and Fig. 2.51.  
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Number of 

response 
Score Expert Score SVM R index Idle index Area index LRP index Harris index 

1 OK OK 0.6270 -0.1939 1.0000 0.9887 0.3871 

2 NOK NOK 0.5342 -0.6137 0.2740 1.1142 0.3767 

3 NOK NOK 0.3147 0.8930 1.0000 0.6107 0.4650 

4 NOK NOK 0.4462 0.6386 0.6642 0.9179 0.4429 

5 NOK NOK 0.5301 0.1070 1.0000 0.6856 0.3742 

6 NOK NOK 0.4820 0.1329 1.0000 0.8692 0.4328 

7 NOK NOK 0.6383 -0.7357 0.4337 1.2327 0.3649 

8 NOK NOK 0.3403 0.7884 0.0872 0.7650 0.4613 

9 NOK NOK 0.2313 0.8772 1.0000 0.5100 0.5009 

10 NOK NOK 1.0690 -0.4078 0.1180 0.1339 0.0329 

11 NOK NOK 0.9147 -0.6850 0.4050 1.3557 0.3552 

12 NOK NOK 0.4462 0.6386 0.6642 0.9179 0.4429 

13 NOK NOK 0.4379 0.1609 0.6630 0.9179 0.4471 

14 NOK NOK 0.4355 0.1929 1.0000 0.7915 0.4462 

15 NOK NOK 1.0494 -0.6838 0.1124 0.6052 0.1742 

16 NOK NOK 0.4937 -0.7260 0.3717 1.1246 0.3749 

17 NOK NOK 0.9086 -0.8995 0.3734 1.1001 0.3160 

18 NOK NOK 0.1959 0.1500 0.2548 0.4301 0.4384 

19 NOK NOK 0.9472 -0.6311 0.6057 1.4707 0.3411 

20 NOK NOK 0.9246 -0.6128 0.8035 1.3816 0.3294 

21 NOK NOK 1.0352 -0.6692 0.4962 1.3538 0.2849 

22 NOK NOK 1.0208 -0.6713 0.5252 1.3639 0.2860 

23 NOK NOK 0.4554 0.8496 0.0518 0.8383 0.4256 

24 NOK NOK 0.4467 0.8626 0.0153 0.8171 0.4278 

25 OK OK 0.5878 -0.1430 0.6564 0.9554 0.3938 

26 NOK NOK 0.5049 0.8188 1.0000 0.8451 0.4099 

27 NOK NOK 0.5658 -0.0262 0.5255 1.0327 0.4055 

28 NOK NOK 0.6176 -0.1033 0.4705 1.0622 0.4084 

29 NOK NOK 0.4086 -0.2740 0.5649 0.9235 0.4510 

30 NOK NOK 0.6576 -0.6575 0.5248 1.2462 0.3826 

31 NOK NOK 0.5083 0.1647 0.0177 0.8810 0.4185 

32 NOK NOK 0.6269 -0.6490 0.4588 1.2396 0.3962 

33 NOK NOK 0.5287 0.6664 0.3074 0.9263 0.4096 

34 NOK NOK 0.4567 0.3150 1.0000 0.4865 0.3590 

35 OK OK 0.6012 0.6574 0.6598 0.9449 0.3804 

Table  2.12 The assessment of the 35 samples from the simulation dataset with L1 = 0.4, L2 = 0.5 by selected indices, 

and comparison with the expected assessment (Score Expert), and the assessment of the suggested CPA system (Score 

SVM). 
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Fig. 2.50 A graphical representation of the assessment by selected CPA indices of the 35 samples from the simulation 

dataset with L1 = 0.4, L2 = 0.5. 

Number of 

response 
Score Expert Score SVM R index Idle index Area index LRP index Harris index 

1 OK OK 0.5564 -0.3342 1.0000 0.9480 0.0632 

2 NOK NOK 0.5452 -0.4309 0.6530 1.2876 0.0762 

3 NOK NOK 0.4469 0.8697 1.0000 0.6439 0.0562 

4 NOK NOK 0.5761 0.4196 0.8982 0.9679 0.0597 

5 NOK NOK 0.5807 -0.1245 1.0000 0.5419 0.0431 

6 NOK NOK 0.4487 0.8836 1.0000 0.6629 0.0581 

7 NOK NOK 0.6380 -0.0386 0.7204 1.1844 0.0603 

8 NOK NOK 0.4374 0.8596 0.4473 0.8065 0.0650 

9 NOK NOK 0.3185 0.8895 1.0000 0.5377 0.0655 

10 NOK NOK 0.8151 -0.5854 0.7924 1.5144 0.0618 

11 NOK NOK 0.5761 0.4196 0.8982 0.9679 0.0597 

12 OK NOK 0.5638 -0.1041 0.9153 0.9679 0.0610 

13 NOK NOK 0.5907 -0.2695 1.0000 0.7664 0.0525 

14 NOK NOK 0.5100 -0.6416 0.4977 1.3877 0.0772 

15 NOK NOK 0.4191 0.8592 0.2641 0.7031 0.0600 

16 NOK NOK 0.4369 0.8116 0.3438 0.7031 0.0566 

17 NOK NOK 0.2460 0.3929 1.0000 0.4205 0.0682 

18 NOK NOK 0.8555 -0.8055 0.8662 1.2802 0.0517 

19 NOK NOK 0.8346 -0.8716 0.8545 1.1781 0.0488 

20 NOK NOK 0.9194 -0.8441 0.8137 1.3401 0.0511 

21 NOK NOK 0.9224 -0.8046 0.8174 1.3444 0.0514 

22 NOK NOK 0.4275 0.8580 0.0375 0.6380 0.0566 

23 NOK NOK 0.4141 0.8624 1.0000 0.6095 0.0566 

24 NOK NOK 0.5613 0.8012 0.7716 0.7111 0.0493 

25 NOK NOK 0.4979 0.8528 0.0097 0.6292 0.0507 

26 NOK NOK 0.5161 0.8494 0.6189 0.7714 0.0559 

27 NOK NOK 0.5946 -0.4869 1.0000 0.8774 0.0556 

28 NOK NOK 0.3504 0.8927 0.0716 0.6902 0.0714 

29 NOK NOK 0.5251 0.7878 0.7306 0.9491 0.0623 

30 NOK NOK 0.4769 0.8548 0.0406 0.6482 0.0532 

31 NOK NOK 0.5032 0.7324 0.7265 0.9491 0.0650 

32 NOK NOK 0.5027 0.8475 0.4358 0.7030 0.0533 

33 NOK NOK 0.5263 0.1553 1.0000 0.3727 0.0382 

34 NOK NOK 0.5712 0.7623 0.7224 0.7171 0.0480 

Table  2.13 The assessment of the 35 samples from the simulation dataset with L1 = 0.3, L2 = 0.9 by selected indices, 

and comparison with the expected assessment (Score Expert), and the assessment of the suggested CPA system (Score 

SVM). 
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Fig. 2.51 A graphical representation of the assessment by selected CPA indices of the 35 samples from the simulation 

dataset with L1 = 0.3, L2 = 0.9. 

The results indicate that OK and NOK samples cannot be distinguished by individual CPA indices. 

Thus, individual CPA indices are insufficient for explicit control assessment. In [99], a combination of 

the idle index and the area index are suggested for more precise assessment. However, the results here 

indicate that a combination of all of the selected CPA indices does not ensure accurate assessment.  

Potentially, the selected CPA indices could be used to supplement the feature vector of the derived 

classification system, as they are more complex than simple CPIs and potentially provide more 

information. The supplemented feature vector could capture additional key features of the closed loop 

response, thus potentially improving the classification accuracy. This approach is beyond the scope of 

this thesis, but will be investigated in future works. 

Closed loop responses numbers 16, 27, 28, and 29 were assessed as OK by all of the selected CPA 

indices, but as poor (NOK) by the predefined criteria for the suggested CPA system. These closed loop 

responses are presented in Fig. 2.52, together with the corresponding reference response. The dynamic 

behavior of the selected closed loop system is noticeably different from the predefined reference. 

Moreover, closed loop responses numbers 16, 27, and 29 display oscillatory behavior, which is not 

acceptable in industrial control systems.  
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Fig. 2.52 Closed loop responses that were assessed as NOK by predefined criteria (Score Expert) and OK by selected 

CPA algorithms. 

As described above, assessment using the Harris index requires a more aggressive excitation of the 

closed loop system, when compared to the single step load disturbance required for the other CPA 

indices and for the proposed CPA system. In practice, the achievable performance of a PID-based 

control system is always limited when compared to a minimum variance controller, for example. Thus, 

the Harris index reference value in such cases is unknown. This ambiguity means that explicit 

assessment using the Harris index can be challenging task. 

2.7.3 Simulated validation of the system with higher order processes 

The previous section validated the proposed CPA system for the assessment of systems with second 

order dynamics. The purpose of this section is to validate the CPA system for the assessment of 

systems with higher order dynamics. Such systems differ substantially from those modelled by 

SOPDT, which was used to generate the training dataset for the CPA classification algorithm. Two 

benchmark transfer functions were chosen [100] with an additional scalable time delay for K2(s): 

𝐾1(𝑠) =
1

(1+𝑠)𝜇
,       (2.27) 

𝐾2(𝑠) =
1

(1+𝑠)(1+𝜇𝑠)(1+𝜇2𝑠)(1+𝜇3𝑠)
𝑒−𝜇𝑠.    (2.28) 

These transfer functions can be parametrized with the μ coefficient, resulting in different dynamic 

behavior. Table  2.14 presents the transfer functions that were selected to validate the proposed CPA 

system. Notably, the SOPDT approximations of these higher order systems cover a wide range of 

assumed L1 and L2 parameters. 
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Process 

Acronym 

Transfer 

Function 
L1 L2 

P1 K1, μ = 3 0.27 1.0 

P2 K1, μ = 4 0.41 1.0 

P3 K2, μ = 0.25 0.24 0.28 

P4 K2, μ = 0.3 0.28 0.33 

P5 K2, μ = 0.4 0.37 0.5 

P6 K2, μ = 0.5 0.49 1.0 

P7 K2, μ = 0.6 0.53 1.0 

Table  2.14 The selected higher order processes used to validate the proposed CPA system, together with the 

calculated L1 and L2 parameters based on the corresponding SOPDT approximations. 

For each closed loop system with selected higher order process, 20 different sets of PID tunings were 

selected, resulting in 20 different control systems. Some of these were chosen from Appendix 5. 

Others were generated by using a trial-and-error method to manipulate the reference tunings, in an 

attempt to ensure the most satisfactory control performance.  

The applied methodology together with the obtained results is presented below, using the P1 process 

as an example. The results of the same experiments for processes P2–P7 are presented in Appendix 3 

At the outset of the experiment, the step response of P1 was used to identify its SOPDT approximation 

(Fig. 2.53). Following this, the reference PID tunings were calculated from the identified parameters 

L1, L2 and the reference closed loop response was generated, both for a closed loop system with P1 and 

a system with the corresponding SOPDT approximation (Fig. 2.53). The results show that the direct 

transfer of the reference PID tunings calculated using the SOPDT approximation to the closed loop 

systems with higher order P1 processes does not cause a substantial difference in the dynamic 

behavior of the control systems, given that both reference responses are very similar.   

 

Fig. 2.53 A comparison of the responses of SOPDT and FOPDT processes (left). Reference closed loop responses of a 

higher order process and its SOPDT approximation (right). 

Next, the closed loop system with an SOPDT approximation of the P1 process was used to generate 

sets of PID tunings for the validation dataset. The results of assessment with the proposed CPA system 
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are presented in Fig. 2.54. The responses were assessed as OK (green) or NOK (red).  

The corresponding reference is also provided (black line). 

 

Fig. 2.54 The results of assessment with the proposed CPA system based on an SOPDT approximation of a higher 

order process. Both OK (left) and NOK (right) closed loop responses are shown, together with its corresponding 

reference (black line). 

Finally, the PID tunings generated and labelled in this manner were transferred to a closed loop system 

with the higher order process P1. Again, closed loop responses were generated. Fig. 2.55 presents the 

results, with the responses grouped by the assessment made based on the SOPDT approximation.  

The results indicate that such an assessment also provides accurate results for the closed loop system 

with higher order process P1, given that those responses that are close to the reference response are 

assessed as OK. 

 

Fig. 2.55 The results of assessment with the proposed CPA system of a higher order process. Both OK (left) and NOK 

(right) closed loop responses are shown, together with its corresponding reference (black line). 

Analysis was conducted of the assessment results for closed loop systems with processes P2–P7, as 

presented in Appendix 3. The analysis shows that for closed loop systems with processes described by 

the transfer function K2 (P3–P7), the reference closed loop responses for both control systems with the 

higher order processes and those with the corresponding SOPDT approximations are similar. A more 

significant difference can be observed for the closed loop systems with processes described by the 

transfer function K1 (P1 – P2). Despite the greater difference, the shapes and major properties of the 

responses are still preserved.  
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The proposed CPA provides a very accurate assessment of closed loop systems with the considered 

higher order processes. For all selected processes P1–P7, the closed loop responses that were 

classified as OK are very similar to the corresponding predefined references. Closed loop responses 

that deviated more strongly were classified as NOK. The SOPDT modelling was highly accurate for 

processes P3–P7, and thus the performance assessment based on the SOPDT approximations of these 

processes can be directly applied to the assessment of the corresponding higher order processes 

without a reduction in efficiency of the proposed CPA. However, the SOPDT modelling was less 

accurate for the P1 and P2 processes. As such, the difference between the higher order processes and 

the corresponding SOPDT approximations is greater.  

To summarize, the proposed CPA system can be used to assess the responses of closed loop systems 

with higher order processes that have significantly different dynamics from the SOPDT model that 

was used to generate the training dataset for the ML methods. Closed loop performance can be 

successfully assessed using SOPDT approximations of higher order processes, while maintaining high 

accuracy. These findings are critical for the practical application of the proposed CPA system, given 

that in practice SOPDT approximations are not perfect, and differences exist between real processes 

and their SOPDT approximations.  

2.7.4 Experimental validation 

Following validation via simulation, the performance of the CPA system was verified using  

a laboratory control system. For this purpose, a cloud-based implementation of the CPA system was 

developed. 

2.7.4.1 Cloud-based implementation of the proposed CPA system 

The CPA system was initially implemented with a full vector of features, consisting of thirty selected 

CPIs. Due to the system’s high demand for computational and memory resources, the initial 

implementation was given the form of a cloud-based application. The assessing control system  

is implemented on a Siemens S7-1500 PLC in the form of a PID_Compact library function block. 

Only the necessary functionalities are implemented directly within the PLC, in the form of  

a ControlPerformanceAssessment function block. The integration of the testing PID controller with 

the PLC implementation of the CPA system is shown in Fig. 2.56. The integration requires that the 

controller output is connected directly to the CPA dedicated function block. This is a software 

modification, and can be downloaded to the PLC without interrupting its normal operation. The main 

tasks of the dedicated function block are initializing the CPA procedure and gathering the closed loop 

response data for further analysis. The CPA procedure can be initialized by either the master system or 

the process operator, periodically or upon request. When the InitializeCPA input is set, the CPA 

procedure is initialized. If a steady state is detected by the ICM algorithm [50], a load disturbance is 

introduced to the control system via the ControlSignal output, the amplitude of which is set as 10% of 
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the range of the manipulating variable stored in the structure PID_CompactConfig. If a transient state 

is detected, the load disturbance is no longer applied, until a steady state is once again detected by the 

function block. Following the introduction of the load disturbance, the closed loop response data 

(Setpoint and ProcessSignal) is collected and stored within the internal PLC memory together with the 

constant SamplingTime, which is ensured by calling the CPA function block in the cyclic interrupt 

organization block OB30. Once a transient state is detected, data is collected until a new steady state is 

detected. After all the necessary closed loop response data have been gathered, they are sent to an OPC 

Unified Architecture (UA) server, together with the actual PID tunings (stored in 

PID_CompactCtrlParams) and a notification that the data is ready for further analysis. As an 

additional functionality, the CPA function block constantly monitors steady and transient states, the 

presence of which are indicated at the SteadyState and TransientState outputs, respectively.  

 

Fig. 2.56 The PLC implementation of the proposed CPA system on a Siemens S7-1200/1500, and its integration with a 

PID control system, implemented using TIA Portal software. 

The architecture of the cloud-based CPA system is presented in Fig. 2.57. The collected data is stored 

in the OPC UA server, which is connected to the cloud-based application. Once the server receives  

a notification that the gathered data is ready for further analysis, the process model identification stage 

is initialized. The SOPDT process parameters are identified by minimizing modelling error with  

a nonlinear Nelder-Mead simplex algorithm. Then, based on the identified model and the actual PID 

parameters of the tested closed loop system, the process dynamics are normalized. Finally, the 

normalized closed loop response is simulated and used to calculate the CPIs. Once the feature vector is 

formed, the SVM classifier conducts the final assessment of control performance, as it provides the 

greatest accuracy of all selected algorithms. The final decision (OK or NOK) is sent to the OPC UA 

server, from where it can be read by the PLC or visualized using additional tools. OPC UA is an open 

communication standard, and does not restrict user specific client implementation. The OPC UA 

communication libraries are implemented in a wide range of programming languages, including 

Python, C#, and MATLAB. Fig. 2.58 shows an example client application for the proposed CPA 

system, developed using MATLAB. All necessary functionalities are implemented, including the 

ability to establish a connection with the OPC UA server, manual initialization of the CPA procedure, 
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and process data visualization. In addition, if poor control performance is detected, the application 

calculates suggested PID tunings based on its SOPDT approximation. Users can confirm the 

classification accuracy by a visual comparison of the reference and simulated responses. 

Process model 

identification

Normalization, closed loop 

response simulation, CPIs 

calculation

Classification of control 

performance

Secured 

connection

SOPDT model

CPIs vector
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Fig. 2.57 The architecture of the cloud-based implementation of the proposed CPA system. 

 

Fig. 2.58 An example implementation of a client application for the proposed CPA system, developed using MATLAB. 

2.7.4.2 Verification of the system as applied to a heat exchange and distribution plant 

For verification, the implemented system was applied to a heat exchange and distribution plant 

(described in Appendix 4. Such plants are characterized by complex, higher order dynamics with 

transportation delay time. Thus, this experimental validation investigates the overall performance of 

the CPA system, both in terms of its practical applicability and its capability to handle closed loop 

system with real higher order process. 

For a constant flow rate of F = 3.5 L/min, 20 different sets of PID tunings were selected, representing 

20 different control systems to be assessed. Each control system was assessed by initializing the CPA 

procedure with a load disturbance of ΔPh = 10% applied to the closed loop system. The resultant 
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closed loop response was then obtained and used to create an SOPDT model of the real process. 

Finally, the SOPDT model parameters were normalized, and the new closed loop response was 

simulated to allow the CPIs to be calculated. 

The classification results are presented in Fig. 2.59, with OK (green) and NOK (red) closed loop 

responses indicates. Both plots show the reference responses calculated based on the identified 

SOPDT model. Note that the identified parameters were slightly different for each of the obtained 

closed loop responses, and thus the resulting reference responses differ slightly from one another. 

Nevertheless, the results confirm the high assessment accuracy, with the closed loop responses that 

displayed similar dynamic behavior to the reference response classified as OK. Correspondingly, those 

closed loop responses that differed substantially from the reference were classified as NOK.  

The results show that such control systems are also unacceptable due to their sluggish or oscillatory 

behavior. 

 

Fig. 2.59 The results of the assessment of real control systems by the proposed CPA system, with OK (top, green) and 

NOK (bottom, red) closed loop responses indicated, together with the corresponding reference responses (black lines). 
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2.8 Summary of the proposed CPA system 

Section 2 described the synthesis of the proposed CPA system, in addition to validation via 

simulations and experiments. Note that each of the design stages described in the previous sections 

were conducted based on simulation studies, and only the rejection response of a closed loop system to 

a load disturbance is required for assessment. Validation via simulation demonstrated that the system 

can perform highly accurate assessments of PID-based closed loop systems with SOPDT or higher 

order processes. The latter is particularly important for the practical usability of the proposed CPA 

system. Given its high classification accuracy (greater than 96% when using the SVM classifier) and 

the possibility for parametrization, the system is an ideal tool for the assessment of industrial PID-

based closed loop systems. 

Fig 2.60 shows a complete block diagram describing the stages of development of the proposed CPA 

system. This process ultimately produced a functioning classifier. All of the predefined criteria used 

for the generation of reference tunings or the assessment of performance, among other tasks, should be 

considered as examples. These criteria can be modified to meet the technological requirements of the 

assessed closed loop systems. Thus, the presented developmental stages of the CPA system represent 

the general procedure, which can be freely parametrized. Potentially, this approach can also be applied 

for closed loop systems that are not based on PID controllers. 

A cloud-based implementation of the proposed CPA system was developed for experimental 

validation. The integration of the CPA system with an existing PLC-based closed loop system is 

presented in Fig 2.61. The assessment procedure can be summarized as follows: 

1. The CPA procedure is initialized with an external signal. Upon detection of a steady state,  

a step load disturbance is introduced to the control system. This load disturbance should not be 

introduced during a transient state, as external disturbances effecting the response will render 

the collected closed loop response data inappropriate for further analysis. Thus, for best 

possible accuracy a steady state must be detected first, which is done using ICM method 

proposed by author in [50] and described in details in Appendix 1.  

2. The closed loop response data is collected during the transient state (load disturbance 

rejection). Upon detection of a steady state once again, data collection should cease, as the 

disturbance rejection is complete. 

3. The obtained closed loop response data is used for SOPDT model identification, as the model 

parameters are necessary to normalize the closed loop response. Following the normalization 

of the process dynamics, the closed loop response is reproduced by simulations. The newly 

generated data, now without measurement noise, is used for further analysis. 
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4. Selected CPIs are calculated from the generated normalized closed loop response, forming  

a feature vector for the classification algorithm. Finally, the selected classifier assesses the 

control performance. 

Reference tunings 

generation based 

on simulation

Definition of process model and its normalized parameters 

(in this thesis: SOPDT model with L1 ϵ [0.1, 0.6], L2 ϵ [0.1, 1.0] )

Closed loop 

response 

simulation with 

randomly modified 

reference tunings

Reference PID tunings for considered processes

Simulated closed loop responses

CPIs 

calculation

OK/NOK 

assessment

Formation of 

training dataset: 

CPIs (features) + 

assessment (label)

Classifier training and 

validation

CPIs vector OK/NOK assessment

Training dataset

Classifier

Predefined critera 

(in this thesis: see Eq. 2.15 )

CPIs set 

(in this thesis: see Table 2.5)

Acceptable deviation from 

reference tunings 

(in this thesis: see Eq. 2.18)

Selected classifiers

Predefined criteria

(in this thesis: OK, if deviation of 

Am and ϕm less than 10% and edist < 0.1)

Implementation

 

Fig. 2.60 A complete block diagram showing the development of the proposed CPA system. 
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Fig. 2.61 A block diagram showing the CPA assessment procedure, and the integration of the CPA system with an 

existing PLC-based closed loop system. 

The integration of the cloud-based implementation of the suggested CPA system with an existing 

PLC-based closed loop system requires additional hardware infrastructure. Such infrastructure is not 

always available in an industrial environment, given that its application requires relatively high 

additional costs. Existing commercial CPA systems for industrial environments are implemented in 

the form of external or master systems which also require integration with the existing hardware 

infrastructure. This strongly limits the practical usability of such CPA systems for industrial closed 

loop systems. These additional costs could potentially be reduced by implementing the CPA system 

directly within the control layer, that is, within a PLC. This approach would require no modifications 

of the existing hardware setup, and the only additional costs would be related to the licensing fees of 

the CPA system. Moreover, with a correctly prepared PLC-based implementation, the proposed CPA 

system could be implemented on-line without any interruption in the normal operation of the closed 

loop system. Note that such PLC-based implementations of CPA systems are not yet available. This 

represents an interesting research gap that is important from scientific and practical perspectives. 
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3 A PLC-based implementation of the proposed CPA system 

This section investigates the possibility of implementing the proposed CPA system on a PLC.  

3.1 General concept 

Due to the very limited computational and memory resources of PLCs, the proposed CPA system must 

be simplified before being implemented on a PLC. Such a simplification can be achieved by reducing 

the dimensionality of the feature vector (the number of CPIs), which affects the structure of the final 

classifier. However, such a reduction must be accomplished without a significant reduction in 

classification accuracy. Thus, the generated dataset must first be analyzed to investigate any potential 

effects of reducing the number of CPIs. This analysis will take the form of a correlation analysis 

between the number of CPIs and the feature importance score of tree-based classifiers. Following this, 

the forward selection method will be used to derive a universal subset of features that are sufficient to 

ensure satisfactory classification accuracy for all of the selected classification algorithms.  

This approach will allow the user of the proposed CPA system to individually verify the 

implementation issues for all of the selected classifiers and chose the most convenient, without 

needing to determine a new subset of features. A successful reduction in the number of CPIs and the 

classifier itself could allow the proposed CPA system to be implemented on a PLC, thus avoided the 

need for either hardware modifications or a cloud-based implementation. This would significantly 

simplfy the pracitcal implementation of the CPA system. 

3.2 Correlation analysis of the selected CPIs 

The classifier structure can be simplified by reducing the number of CPIs that form the feature vector. 

This can be achieved without reducing accuracy by eliminating redundant CPIs that capture similar 

features of the closed loop response. To estimate the potential reduction of CPIs in this manner,  

an analysis of the distributions of and correlations between CPIs was conducted. 

Initially, a dataset of 60000 samples was generated. A total of 30  CPIs were calculated based on the 

closed loop responses. Each feature (CPI) was normalized to have mean value of 0, with a unitary 

standard deviation. Fig. 3.1 presents a parallel coordinated plot of the OK and NOK classes, with the 

median values (continuous lines) and upper 0.75 and lower 0.25 quantiles (dashed lines) indicated. 

The feature names correspond to those shown in Table 2.5. 
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Fig. 3.1 A parallel coordinated plot of the generated training dataset, showing the median values (continuous lines) 

and upper (0.75) and lower quantiles (0.25) (dashed lines), for the OK (green) and NOK (red) classes.  

The graph indicates that some CPIs produce similar distributions of OK and NOK labels. For example, 

the median, lower quartile, and upper quartile values for F8, F12, and F27 are similar. This is 

confirmed by Fig. 3.2, which compares the distributions of example features F8 and F12. Conversely, 

Fig. 3.3 presents example features F17 and F23, which have very different distributions. Such features 

are potentially important for the decision making of classification algorithms. 

 

Fig. 3.2 The similar distributions of example CPIs F8 (left) and F12 (right) for both OK and NOK samples. 
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Fig. 3.3 The dissimilar distributions of example CPIs F17 (left) and F23 (right) for both OK and NOK samples. 

Further analysis can be used to determine the correlations between features. The obtained dataset can 

then be divided into clusters of highly correlated CPIs. Highly correlated CPIs provide redundant 

capture of features of the closed loop responses, and thus represent an opportunity to simplify the 

training dataset. Table  3.1 presents the correlation matrix for the obtained dataset. From this matrix 

clusters of highly correlated features were extracted, for which the correlation between cluster 

members was greater than 0.8. This process produced four highly correlated groups of features. 

This first group consisted of the features F1, F2, F8, F9, F10, F12, F21, F24, F25, and F26. From these 

CPIs, some subgroups can be extracted: F1 and F2 describe the value of the maximum peak and the 

time at which it occurs; F8, F9, F10 and F12 are integral indices that are calculated for the entire 

closed loop response; F24, F25 and F26 indicate the times at which 25%, 50%, and 75% of the 

maximum peak is damped, respectively. The final feature within the group is F21, which describes the 

rising time of the maximum peak. Notably, the large majority of these indices (F1, F2, F21, F24, F25, 

F26) refer to the first maximum peak. The integral indices (F8, F9, F10, F12) are also heavily 

dependent upon the shape of the maximum peak, given that the index values increase for higher values 

of control error, which correlate with the size of the maximum peak.  

The second group contains the features F3, F5, F13, and F14. Features F3 and F5 describe the value of 

the minimum peak and its ratio when compared to the size of the maximum peak. The integral index 

F13 depends on the negative values of the control error. Given that the size of the minimum peak is 

correlated with the negative values of control error, features F13 and F3 are related. Feature F14 is  

a ratio-based index, and is calculated together with F13. However, F15 is similar to feature F5. 

The third group contains the features F4, F6, and F27. Features F4 and F6 are time-based indices, 

calculated based upon the time at which the maximum and minimum peaks occur. Feature F27 

describes the time at which the closed loop response crosses the zero value between the minimum and 

maximum peaks. Thus, a high value of F4 (the time at which the maximum peak occurs) correlates 

with a high value of F27 (the time at which zero crossing occurs between the maximum and minimum 

peaks) and a high value of F6 (the time at which the minimum peak occurs). 
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The fourth group contains the features F7, F11, F17, and F18. Features F7, F17, and F18 are time-

based indices; they describe the settling time of the entire closed loop response, the difference between 

the settling time and the time at which the maximum peak occurs, and the time during which the 

control error has a positive sign, respectively. Feature F11 is an integral-based index, and hence also 

time-based, and is given by the integral of the control error multiplied by time squared. In this case, 

F11 increases substantially as settling time increases. As such, all of these indices are based on the 

settling time. 

 

Table  3.1 The correlation matrix obtained for the features in the generated training dataset. 
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An agglomerative hierarchical clustering methodology was used to verify the obtained feature clusters. 

A measure of distance rdist between features X and Y is defined as 

𝑟𝑑𝑖𝑠𝑡 = 1 − 𝑟(𝑋, 𝑌),      (3.1) 

where r(X, Y) is the correlation coefficient. As such, a distance of zero indicates perfect correlation. 

Three linkage methods were applied: single (shortest distance), complete (farthest distance), and 

average (average distance). Figs. 3.4–3.6 present the hierarchical clustering results in the form of 

dendrograms, for each of the three linkage methods. Distance thresholds of 0.1 and 0.2 were used to 

extract clusters from the obtained dendrograms. Figs. 3.4–3.6 present color-coded groups of features 

for the two distance threshold values. 

Single Linkage, Correlation-based Distance 

  

Fig. 3.4 The dendrogram obtained for the correlation-based distance metrics and single linkage method (left), with 

color-coded groups for threshold distance 0.2 (right, top) and 0.1 (right, bottom). 
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Complete Linkage, Correlation Distance 

 
 

Fig. 3.5 The dendrogram obtained for the correlation-based distance metrics and complete linkage method (left) with 

color-coded groups for threshold distance 0.2 (right, top) and 0.1 (right, bottom). 
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Average Linkage, Correlation Distance 

 
 

Fig. 3.6 The dendrogram obtained for the correlation-based distance metrics and average linkage method (left) with 

color-coded groups for threshold distance 0.2 (right, top) and 0.1 (right, bottom). 

All of the obtained clusters are summarized in Table  3.2. The clusters are color-coded according to 

the results provided by the correlation matrix. The results display a high degree of consistency. The 

blue cluster (F3, F5, F13, and F14) was derived from all obtained dendrograms. However, with  

a distance threshold of 0.1, or for complete linkage with a threshold of 0.2, it can be divided into two, 

smaller clusters: F3 and F13, and F5 and F14. The green cluster (F4, F6, and F27) was obtained for all 

studied dendrograms. The yellow cluster (F1, F2, F8, F9, F10, F12, F21, F24, F25, and F26) was 

obtained by the correlation matrix, and for complete linkage and average linkage. In the case of single 

linkage, features from the yellow cluster are grouped with some features from the orange cluster  

(F7, F11, F17, and F18). However, the other linkage methods do not indicate such overlapping.  
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Method 

Single 

Linkage 

(0.1) 

Single 

Linkage 

(0.2) 

Complete 

Linkage 

(0.1) 

Complete 

Linkage 

(0.2) 

Average 

Linkage 

(0.1) 

Average 

Linkage 

(0.2) 

Correlation 

Matrix 

Clusters 

F5, F14 F3, F5, 

F13, F14 

F5, F14 F5, F14 F5, F14 F3, F5, 

F13, F14 

F1, F2, F8, 

F9, F10, 

F12, F21, 

F24, F25, 

F26 

F3, F13 F1, F2, F7, 

F8, F9, 

F10, F11, 

F12, F17, 

F18, F21, 

F22, F24, 

F25, F26 

F3, F13 F3, F13 F3, F13 F7, F11, 

F17, F18 

F3, F5, F13, 

F14 

F7, F17 F4, F6, F27 F10, F11 F10, F11 F7, F17 F1, F2, F8, 

F9, F10, 

F12, F21, 

F24, F25, 

F26 

F4, F6, F27 

F1, F2, F8, 

F9, F10, 

F11, F12, 

F21, F24, 

F25, F26 

  F7, F17 F7, F17 F2, F8, F9, 

F10, F12, 

F21, F24, 

F25, F26 

F4, F6, F27 F7, F11, 

F17, F18 

F4, F6, F27   F2, F21, 

F24, F25, 

F26 

F1, F2, F8, 

F9, F12, 

F21, F24, 

F25, F26 

F4, F6, F27     

    F1, F8, F9, 

F12 

F18, F22       

    F4, F6, F27 F4, F6, F27       

Table  3.2 The clusters obtained from the correlation matrix and the generated dendrograms with selected linkage 

methods and distance thresholds. 

These results suggest that some of the suggested CPIs are redundant, given that the correlation 

between some pairs of CPIs is relatively high. Thus, this initial analysis confirms that the number of 

features can potentially be decreased, without decreasing the useful information that is available to the 

classification algorithms.  

Tree-based models can be used to obtain the importance scores of individual CPIs. The importance 

score determines the usefulness of each CPI for the classifier prediction. The tree-based classifiers 

were trained using the K most important features, with K ranging across all features, from 1 to 30. The 

classification accuracies obtained with the K most important features, together with the feature 

rankings, are presented in Table  3.3. Particular features are color-coded according to the clusters 

obtained by the correlation matrix. The rankings indicate that the most important features for 

classification are the individual CPIs that are not associated with any cluster. CPIs that are associated 

with the blue cluster are also important. CPIs from the yellow and orange clusters are less important, 

but still relatively high in the feature ranking. The rankings indicate that CPIs from the green cluster 

are not important for tree-based classification. The individual features that are important for all tree-
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based models are F1, F3, F13, F17, F22, F23, F29, and F30. For the XGBoost model, features F3, F23, 

and F30 are particularly important. Note that F23 and F30 are newly proposed indices.  

Rank 

Decision Tree Random Forest Extra Trees Light GBM XGBoost AdaBoost 

Feature 
Acc, 

% 
Feature 

Acc, 

% 
Feature 

Acc, 

% 
Feature 

Acc, 

% 
Feature 

Acc, 

% 
Feature 

Acc, 

% 

1 F23 73.70 F23 74.36 F23 74.76 F30 64.28 F13 70.36 F30 63.61 

2 F3 78.50 F30 81.06 F30 81.5 F23 77.99 F3 72.45 F23 78.82 

3 F30 84.98 F3 88.19 F3 86.15 F29 86 F22 75.36 F29 84.95 

4 F22 89.23 F13 89.72 F22 88.38 F1 88.78 F17 80.42 F1 93.18 

5 F29 90.92 F17 90.93 F17 90.36 F28 93.31 F23 86.87 F20 95.14 

6 F28 90.63 F22 91.65 F19 89.77 F9 93.35 F30 90.74 F9 94.92 

7 F1 91.99 F15 92.28 F14 89.72 F20 94.2 F5 92.89 F28 94.88 

8 F19 91.48 F29 93.26 F20 91.23 F22 94.35 F12 93.52 F3 95.55 

9 F15 91.96 F19 92.98 F13 90.61 F3 95.04 F26 93.94 F14 95.69 

10 F13 92.09 F28 93.14 F29 92.15 F14 95.17 F15 94.4 F17 95.72 

11 F5 91.76 F5 93.24 F5 92.17 F5 95.17 F29 95.1 F19 95.58 

12 F9 91.83 F20 93.25 F6 91.78 F19 95.11 F1 95.1 F5 95.68 

13 F20 91.93 F1 93.76 F4 91.89 F15 95.3 F20 95.08 F15 95.64 

14 F17 91.64 F16 93.74 F1 92.04 F16 95.39 F14 95.33 F13 95.66 

15 F14 91.67 F14 93.55 F27 92.49 F6 95.35 F19 95.37 F12 95.56 

16 F16 91.81 F9 93.79 F16 92.38 F2 95.46 F2 95.43 F18 95.51 

17 F24 91.81 F8 93.65 F28 92.33 F17 95.2 F8 95.33 F22 95.71 

18 F11 91.64 F12 93.69 F9 92.67 F18 95.17 F16 95.29 F16 95.82 

19 F12 91.65 F6 93.75 F15 92.51 F12 95.34 F28 95.41 F8 95.53 

20 F6 91.47 F7 93.71 F2 92.62 F13 95.18 F6 95.38 F6 95.69 

21 F18 91.44 F2 93.65 F8 92.81 F8 95.06 F9 95.25 F27 95.65 

22 F8 91.52 F26 93.64 F18 92.49 F26 95.06 F10 95.47 F4 95.63 

23 F25 91.49 F10 93.66 F10 92.72 F7 95.23 F21 95.3 F7 95.58 

24 F21 91.73 F18 93.59 F26 92.53 F21 94.84 F25 95.34 F11 95.55 

25 F7 91.61 F24 93.6 F12 92.94 F27 95.43 F27 95.42 F24 95.41 

26 F10 91.54 F25 93.6 F24 92.54 F11 95.23 F18 95.17 F25 95.55 

27 F2 91.6 F27 93.47 F7 92.63 F24 95.48 F7 95.12 F10 95.43 

28 F4 91.52 F21 93.61 F21 92.58 F25 95.24 F24 95.38 F2 95.52 

29 F26 91.49 F11 93.51 F25 92.72 F4 95.13 F11 95.23 F21 95.69 

30 F27 91.54 F4 93.7 F11 92.85 F10 95.23 F4 95.26 F26 95.48 

Table  3.3 The classification accuracy of tree-based models with a training dataset consisting of the K most important 

features. 

Fig 3.7 presents the classification accuracy of the selected tree-based classifiers obtained for the K of 

most important features. The graph indicates that classification accuracy plateaus after approximately 

ten features, with further increases in the number of features providing no corresponding increase in 

accuracy. Thus, the initial number of 30 CPIs can be reduced without decreasing classification 

accuracy. This will potentially reduce the computational and memory resources that are required for 

implementation of the CPA system. However, the optimal subset of features remains to be determined. 

This issue will be addressed in the following section. 
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Fig. 3.7 A graphical representation of the classification accuracy of tree-based models with a training dataset 

consisting of the K most important features. 

3.3 Reduction of the feature vector 

The reduced CPI vector should be as universal as possible so as to provide a high classification 

accuracy for all of studied classification algorithms. With this approach, the most suitable classifier 

can be chosen for each implementation, without requiring the generation of a new feature vector. 

For this purpose, the effect on classification accuracy of the addition of new features to the training 

dataset was determined. This iterative procedure was initialized with the single feature that provides 

the greatest accuracy. Following this, additional features were added, one by one. Each added feature 

was that which provided the greatest increase in accuracy. This process was repeated for the training 

and validation datasets, with an increasing number of CPIs. This forward feature selection procedure 

was repeated for each selected classifier, other than the fuzzy models and simple LDA and GNB.  

The obtained results are presented in Table  3.4, together with both feature rank and classification 

accuracy obtained for the validation dataset. 
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Table  3.4 The classification accuracy obtained during consecutive steps of the forward feature selection procedure for 

selected classification models. 

The feature rankings provide some initial findings: 

1. Feature F23 is clearly the most important for classification, as is provides the highest possible 

accuracy for all of the selected classifiers. A training dataset that consists only of feature F23 

provides a classification accuracy of approximately 74–75%. Thus, three out of four closed 

loop responses can be accurately assessed using only feature F23. This feature describes the 

ratio of rising and falling time of the first maximum peak. Thus, it directly describes the shape 

of the first maximum peak.  

2. For six of the eight selected classifiers, the second added feature is associated with the yellow 

cluster. 

3. The derivative-based indices F28, F29, and F30 rank relatively highly. This suggests that 

information concerning the derivative of the closed loop response is also highly important for 

accruate performance assessment. The maximal and minimal values of the derivative describe 

the maximum rising and falling rates of the first maximum peak. As described above, these 

indices indirectly describe the maximum peak of closed loop response. 

4. From the set of CPIs that form the top five most important for each classifier, 30% are 

associated with the yellow cluster, 10% with the blue cluster, 5% with the orange cluster, and 

Feature Acc, % Feature Acc, % Feature Acc, % Feature Acc, % Feature Acc, % Feature Acc, % Feature Acc, % Feature Acc, %

F23 73.7 F23 75.12 F23 73.56 F23 74.76 F23 74.36 F23 74.5 F23 74.29 F23 72.06

F25 80.8 F24 75.12 F3 80.88 F25 84.19 F25 83.19 F21 81.64 F24 84.01 F11 81.75

F30 86.68 F25 83.16 F29 81.68 F30 88.66 F30 89.34 F30 86.95 F30 88.23 F30 85.69

F1 91.06 F30 89.99 F9 88.01 F1 90.63 F1 92.87 F28 92.96 F28 94.14 F14 91.35

F15 92 F1 93.28 F30 94.56 F15 92.78 F15 93.76 F14 95.15 F14 95.97 F7 92.67

F6 92.3 F5 94.44 F20 94.69 F29 93.07 F29 94.39 F9 95.42 F6 96.4 F29 94.26

F4 92.47 F20 95.03 F5 95.43 F14 92.86 F16 94.43 F27 95.6 F9 96.55 F27 94.59

F29 92.44 F12 95.15 F14 95.23 F24 93.41 F26 94.27 F24 95.72 F11 96.56 F5 94.61

F16 92.65 F29 95.17 F1 95.4 F12 93.11 F9 94.19 F11 95.75 F3 96.57 F3 94.75

F26 92.63 F13 95.37 F15 95.77 F28 93.6 F11 94.19 F6 95.63 F19 96.61 F15 94.75

F21 92.64 F14 95.51 F24 95.58 F21 93.44 F6 94.22 F20 95.67 F29 96.72 F13 94.7

F9 92.67 F6 95.34 F7 95.6 F16 93.28 F12 94.18 F29 95.64 F10 96.78 F10 94.68

F2 92.6 F9 95.48 F16 95.59 F27 93.22 F4 94.11 F3 95.84 F13 96.79 F8 94.52

F11 92.63 F11 95.58 F19 95.56 F9 93.05 F14 94.1 F8 95.78 F22 96.76 F4 94.46

F8 92.61 F18 95.52 F26 95.62 F8 93.41 F18 94.17 F16 95.87 F8 96.75 F6 94.36

F22 92.67 F28 95.45 F18 95.56 F26 93.3 F13 94.06 F2 95.8 F15 96.74 F22 94.29

F10 92.64 F4 95.42 F27 95.58 F20 93.13 F22 94.06 F1 95.76 F12 96.73 F18 94.23

F24 92.5 F16 95.45 F2 95.45 F11 93.25 F8 94.03 F12 95.82 F5 96.73 F1 94.11

F27 92.31 F27 95.43 F12 95.6 F4 93.01 F10 93.97 F15 95.83 F18 96.71 F19 94.11

F12 92.35 F22 95.48 F8 95.55 F18 93.21 F28 94.04 F4 95.83 F25 96.72 F17 94.07

F5 92.25 F17 95.41 F10 95.48 F2 93.14 F21 94.04 F17 95.78 F4 96.68 F24 94.05

F17 92.17 F7 95.42 F13 95.57 F6 93.07 F17 94.11 F26 95.73 F26 96.61 F16 93.88

F13 92.32 F26 95.32 F22 95.46 F19 92.94 F7 93.99 F22 95.8 F2 96.63 F9 93.9

F20 92.33 F2 95.27 F4 95.36 F17 92.93 F20 93.86 F13 95.71 F27 96.67 F12 93.68

F28 92.46 F15 95.42 F17 95.51 F5 92.81 F2 93.78 F25 95.74 F21 96.59 F26 93.52

F19 92.36 F19 95.32 F25 95.32 F22 92.63 F24 93.84 F7 95.76 F7 96.56 F25 93.38

F18 92.43 F3 95.3 F6 95.49 F7 92.8 F27 94 F18 95.68 F17 96.49 F2 93.2

F7 92.35 F21 95.22 F21 95.32 F3 92.84 F19 93.86 F19 95.82 F1 96.47 F21 93.07

F14 92.22 F8 95.14 F11 95.41 F13 92.81 F5 93.68 F5 95.69 F16 96.44 F28 92.72

F3 91.54 F10 94.84 F28 95.32 F10 92.85 F3 93.7 F10 95.62 F20 96.17 F20 92.24

AdaBoost KNNSVMDT RFExtra TreesXGBoostLight GBM
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0% with the green cluster. The remaining 55% of features are individual CPIs that are not 

associated with any cluster. 

5. The five highest ranked CPIs are similar for each of the tree-based models: F23, F25, F30, F1, 

and F15.  

6. For the majority of classifiers, among the five highest ranked CPIs there are a maximum of 

two CPIs from any given cluster. The Light GBM classifier is an exception, with three out of 

the five highest ranked CPIs being associated with the yellow cluster. 

Fig 3.8 presents the classification accuracy obtained for various number of features within the training 

dataset. Correspondingly, Fig. 3.9 presents the change in classification accuracy obtained during each 

step of the forward feature selection procedure.  

 

Fig. 3.8 A graphical representation of the classification accuracy obtained during consecutive steps of the forward 

feature selection procedure for selected classifiers. 
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Fig. 3.9 A graphical representation of the change in classification accuracy obtained during consecutive steps of the 

forward feature selection procedure for selected classifiers. 

The graphs indicate that for each selected classifier, the best possible classification accuracy was 

achieved after as few as five iterations of the forward feature selection procedure, and hence for five 

features within the training dataset. A further increase in the number of features does not produce  

a significant increase in assessment accuracy. These results alone are insufficient to derive a universal 

set of features that will ensure the highest possible classification accuracy, independent of the 

classifier used. The top five features are similar only for the tree-based models (DT, Extra trees, and 

RF); for the other models, the features are ranked differently. Hence, further analysis is required.  

The detailed results of the iterative procedure for all selected classifiers are presented in  

Table  3.5–Table  3.12. Detailed results for the first six iterations of the forward feature selection 

procedure are presented together with the achieved accuracy and the difference between the accruacy 

achieved by that feature and the best accuracy achieved in that iteration. Table  3.5 shows the results 

for the DT model. During the first iteration, the best possible accuracy (73.7%) is displayed by feature 

F23. No other feature provides an accuracy within 1% of this. The addition of a second feature to F23 

provides an increase in classification accuracy. The best possible accuracy (80.8%) is obtained by 

feature F25, although features F2, F4, F8, F11, F21, F22, F24, and F26 also provide a relatively high 

accuracy, within 1% of that obtained by F25. Moreover, the difference between the accuracies of F25 

and F22 is only 0.02%. Thus, when selecting a subset of features during the second iteration, F23 can 

be supplemented with F25 or F22 while retaining a high classification accuracy. Hence, the subset of 

features for each classifier can be slightly modified from those presented in Table  3.4. Each selected 

classifier was analyzed in this manner, and common subsets of features were investigated. 
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DT 

 

Table  3.5 The detailed results of the first six consecutive steps of the forward feature selection procedure for the DT 

model. 

Light GBM 

 

Table  3.6 The detailed results of the first six consecutive steps of the forward feature selection procedure for the 

Light GBM model. 

XGBoost 

 

Table  3.7 The detailed results of the first six consecutive steps of the forward feature selection procedure for the 

XGBoost model. 

Extra Trees 

 

Table  3.8 The detailed results of the first six consecutive steps of the forward feature selection procedure for the 

Extra trees model. 

 

 

 

Iteration Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Accuracy, % 51,45 50,8 72,54 60,73 70,3 66,38 61,44 54,08 52,54 53,68 54,25 53,26 70,43 69,72 71,44 66,83 66,09 58,43 64,56 61,56 51,39 70,09 73,7 53,79 51,4 51,6 62,67 51,17 55,98 63,02

Difference 

from best
-22,25 -22,9 -1,16 -12,97 -3,4 -7,32 -12,26 -19,62 -21,16 -20,02 -19,45 -20,44 -3,27 -3,98 -2,26 -6,87 -7,61 -15,27 -9,14 -12,14 -22,31 -3,61 0 -19,91 -22,3 -22,1 -11,03 -22,53 -17,72 -10,68

Accuracy, % 78,95 80,36 78,5 80,25 78,45 79,71 78,45 79,95 79,45 79,49 80,05 79,43 78,35 79,25 79,25 79,69 76,97 76,95 75,84 75,76 80,19 80,78 80,63 80,8 80,47 79,65 77,19 77,08 78,06

Difference 

from best
-1,85 -0,44 -2,3 -0,55 -2,35 -1,09 -2,35 -0,85 -1,35 -1,31 -0,75 -1,37 -2,45 -1,55 -1,55 -1,11 -3,83 -3,85 -4,96 -5,04 -0,61 -0,02 -0,17 0 -0,33 -1,15 -3,61 -3,72 -2,74

Accuracy, % 82,82 84,89 84,29 83,01 83,76 83,04 84,44 82,59 83,14 82,29 83,39 81,96 83,66 83,3 83,61 83,75 83,72 83,2 82,76 82,82 82,01 82,92 82,74 83,4 82,52 82,54 83,71 86,68

Difference 

from best
-3,86 -1,79 -2,39 -3,67 -2,92 -3,64 -2,24 -4,09 -3,54 -4,39 -3,29 -4,72 -3,02 -3,38 -3,07 -2,93 -2,96 -3,48 -3,92 -3,86 -4,67 -3,76 -3,94 -3,28 -4,16 -4,14 -2,97 0

Accuracy, % 91,06 87,96 89,78 87,39 90,6 87,26 89,04 89,54 90,45 88,53 87,53 90,33 89,43 90,22 90,88 87,59 88,66 87,6 88,69 88,93 88,04 87,43 87,16 87,31 88,17 90,17 90,29

Difference 

from best
0 -3,1 -1,28 -3,67 -0,46 -3,8 -2,02 -1,52 -0,61 -2,53 -3,53 -0,73 -1,63 -0,84 -0,18 -3,47 -2,4 -3,46 -2,37 -2,13 -3,02 -3,63 -3,9 -3,75 -2,89 -0,89 -0,77

Accuracy, % 90,91 91,54 91,04 91,89 90,8 90,82 91,02 91,18 91,06 91,02 91,16 91,09 91,79 92 90,61 91,02 91 91,38 91,52 90,75 90,48 91 90,89 91,07 91,51 91,43

Difference 

from best
-1,09 -0,46 -0,96 -0,11 -1,2 -1,18 -0,98 -0,82 -0,94 -0,98 -0,84 -0,91 -0,21 0 -1,39 -0,98 -1 -0,62 -0,48 -1,25 -1,52 -1 -1,11 -0,93 -0,49 -0,57

Accuracy, % 91,91 92,07 92,18 91,32 92,3 91,84 92,09 92,04 91,91 91,86 91,79 91,64 91,78 92,05 91,56 91,76 91,73 91,77 91,74 91,9 92,3 91,78 92,16 92,21 92,29

Difference 

from best
-0,39 -0,23 -0,12 -0,98 0 -0,46 -0,21 -0,26 -0,39 -0,44 -0,51 -0,66 -0,52 -0,25 -0,74 -0,54 -0,57 -0,53 -0,56 -0,4 0 -0,52 -0,14 -0,09 -0,01

6

1

2

3

4

5

Iteration Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Accuracy, % 51,12 50,49 74,36 62,18 71,87 67,05 62,43 54,2 53,46 54,21 54,49 52,92 71,9 71,66 72,04 67,72 66,48 59,8 64,49 62,08 51,4 70,04 75,12 53,58 51,08 52,13 63 50,79 57,38 64,28

Difference 

from best
-24 -24,63 -0,76 -12,94 -3,25 -8,07 -12,69 -20,92 -21,66 -20,91 -20,63 -22,2 -3,22 -3,46 -3,08 -7,4 -8,64 -15,32 -10,63 -13,04 -23,72 -5,08 0 -21,54 -24,04 -22,99 -12,12 -24,33 -17,74 -10,84

Accuracy, % 51,12 50,49 74,36 62,18 71,87 67,05 62,43 54,2 53,46 54,21 54,49 52,92 71,9 71,66 72,04 67,72 66,48 59,8 64,49 62,08 51,4 70,04 75,12 75,12 75,12 75,12 75,12 75,12 75,12

Difference 

from best
-24 -24,63 -0,76 -12,94 -3,25 -8,07 -12,69 -20,92 -21,66 -20,91 -20,63 -22,2 -3,22 -3,46 -3,08 -7,4 -8,64 -15,32 -10,63 -13,04 -23,72 -5,08 0 0 0 0 0 0 0

Accuracy, % 81,51 82,04 82,33 81,52 81,56 81,57 80,31 81,75 81,83 82,11 81,91 81,62 81,23 81,47 81,96 81,59 78,37 79,26 78,58 77,21 82,91 82,54 83,16 83,16 83,16 83,16 83,16 83,16

Difference 

from best
-1,65 -1,12 -0,83 -1,64 -1,6 -1,59 -2,85 -1,41 -1,33 -1,05 -1,25 -1,54 -1,93 -1,69 -1,2 -1,57 -4,79 -3,9 -4,58 -5,95 -0,25 -0,62 0 0 0 0 0 0

Accuracy, % 86,6 89,02 87,59 86,89 87,46 86,73 87,98 86,71 86,5 86,61 87,34 86,8 87,46 87,15 87,66 87,28 86,96 86,76 86,6 86,04 86,67 85,91 87,32 87,38 87,19 87,36 89,99

Difference 

from best
-3,39 -0,97 -2,4 -3,1 -2,53 -3,26 -2,01 -3,28 -3,49 -3,38 -2,65 -3,19 -2,53 -2,84 -2,33 -2,71 -3,03 -3,23 -3,39 -3,95 -3,32 -4,08 -2,67 -2,61 -2,8 -2,63 0

Accuracy, % 93,28 91,37 92,04 90,84 92,74 90,83 91,12 92,49 92,97 91,93 91,32 92,64 91,84 92,61 92,43 90,91 91,08 91,33 91,75 91,68 91 90,35 90,79 91,03 93,15 93,14

Difference 

from best
0 -1,91 -1,24 -2,44 -0,54 -2,45 -2,16 -0,79 -0,31 -1,35 -1,96 -0,64 -1,44 -0,67 -0,85 -2,37 -2,2 -1,95 -1,53 -1,6 -2,28 -2,93 -2,49 -2,25 -0,13 -0,14

Accuracy, % 93,08 94,38 93,69 94,44 93,74 93,77 93,26 93,11 93,29 93,67 93,13 94 94,08 94,09 93,81 93,51 93,85 93,58 93,91 93,33 92,91 93,12 93,79 93,6 93,36

Difference 

from best
-1,36 -0,06 -0,75 0 -0,7 -0,67 -1,18 -1,33 -1,15 -0,77 -1,31 -0,44 -0,36 -0,35 -0,63 -0,93 -0,59 -0,86 -0,53 -1,11 -1,53 -1,32 -0,65 -0,84 -1,08
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Iteration Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Accuracy, % 49,95 50,67 72,36 60,92 70 66,33 61,54 52,39 50,93 51,78 52,6 51,02 70,36 69,9 70,71 66,55 66,04 58,33 64,26 60,52 51,26 70,2 73,56 53,2 50,69 52,01 62,44 50,76 54,22 62,07

Difference 

from best
-23,61 -22,89 -1,2 -12,64 -3,56 -7,23 -12,02 -21,17 -22,63 -21,78 -20,96 -22,54 -3,2 -3,66 -2,85 -7,01 -7,52 -15,23 -9,3 -13,04 -22,3 -3,36 0 -20,36 -22,87 -21,55 -11,12 -22,8 -19,34 -11,49

Accuracy, % 76,22 77,22 80,88 76,74 80,21 76,92 74,46 77 76,62 76,69 76,11 76,56 79,53 79,85 79,83 77,11 75,8 74,27 74,53 74,67 76,52 78,32 76,31 76,39 76,93 77,3 75,98 77,21 75,9

Difference 

from best
-4,66 -3,66 0 -4,14 -0,67 -3,96 -6,42 -3,88 -4,26 -4,19 -4,77 -4,32 -1,35 -1,03 -1,05 -3,77 -5,08 -6,61 -6,35 -6,21 -4,36 -2,56 -4,57 -4,49 -3,95 -3,58 -4,9 -3,67 -4,98

Accuracy, % 80,98 81,22 80,6 80,2 80,82 81,05 81,11 81,29 80,96 80,84 80,96 80,58 80,34 80,94 81,02 80,52 80,82 81,02 80,27 81,18 81,38 80,91 80,93 81,36 80,58 80,73 81,68 81,68

Difference 

from best
-0,7 -0,46 -1,08 -1,48 -0,86 -0,63 -0,57 -0,39 -0,72 -0,84 -0,72 -1,1 -1,34 -0,74 -0,66 -1,16 -0,86 -0,66 -1,41 -0,5 -0,3 -0,77 -0,75 -0,32 -1,1 -0,95 0 0

Accuracy, % 87,45 87,52 86,99 85,88 86,77 86,91 87,76 88,01 87,73 87,46 87,84 85,51 85,82 85,96 86,69 86,76 86,42 86,92 86,29 87,24 87,29 87,17 87,51 87,17 86,97 86,75 87,04

Difference 

from best
-0,56 -0,49 -1,02 -2,13 -1,24 -1,1 -0,25 0 -0,28 -0,55 -0,17 -2,5 -2,19 -2,05 -1,32 -1,25 -1,59 -1,09 -1,72 -0,77 -0,72 -0,84 -0,5 -0,84 -1,04 -1,26 -0,97

Accuracy, % 90,15 91,07 89,84 89,02 89,55 89,81 89,48 90,39 90,42 89,4 89,34 89,54 89,61 89,99 89,71 89,96 90,05 90,79 90,67 89,96 90,62 90,49 90,96 89,82 92,58 94,56

Difference 

from best
-4,41 -3,49 -4,72 -5,54 -5,01 -4,75 -5,08 -4,17 -4,14 -5,16 -5,22 -5,02 -4,95 -4,57 -4,85 -4,6 -4,51 -3,77 -3,89 -4,6 -3,94 -4,07 -3,6 -4,74 -1,98 0

Accuracy, % 94,35 94,08 94,37 94,53 94,38 94,37 94,31 94,45 94,24 94,42 94,46 94,48 94,37 94,44 94,2 94,49 94,57 94,69 94,54 94,21 94,31 94,22 94,32 94,39 94,45

Difference 

from best
-0,34 -0,61 -0,32 -0,16 -0,31 -0,32 -0,38 -0,24 -0,45 -0,27 -0,23 -0,21 -0,32 -0,25 -0,49 -0,2 -0,12 0 -0,15 -0,48 -0,38 -0,47 -0,37 -0,3 -0,24
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Iteration Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Accuracy, % 50,71 51,09 74,11 61,68 71,77 66,83 61,75 53,72 52,34 52,89 53,84 52,79 71,48 71,6 71,78 67 66,04 58,5 64,57 62,26 51,41 70,15 74,76 53,21 51,01 51,37 62,72 51,16 56,44 63,2

Difference 

from best
-24,05 -23,67 -0,65 -13,08 -2,99 -7,93 -13,01 -21,04 -22,42 -21,87 -20,92 -21,97 -3,28 -3,16 -2,98 -7,76 -8,72 -16,26 -10,19 -12,5 -23,35 -4,61 0 -21,55 -23,75 -23,39 -12,04 -23,6 -18,32 -11,56

Accuracy, % 82,45 83,61 83,25 83,14 82,99 83,01 81,51 83,12 82,92 83,31 83,61 83,12 82,59 83,25 83 83,09 80,14 80,65 79,38 78,61 83,97 83,85 84,16 84,19 83,89 83,07 80,64 81,11 81,5

Difference 

from best
-1,74 -0,58 -0,94 -1,05 -1,2 -1,18 -2,68 -1,07 -1,27 -0,88 -0,58 -1,07 -1,6 -0,94 -1,19 -1,1 -4,05 -3,54 -4,81 -5,58 -0,22 -0,34 -0,03 0 -0,3 -1,12 -3,55 -3,08 -2,69

Accuracy, % 86,09 86,07 87,22 84,35 86,93 84,2 86 85,83 86 85,25 84,99 85,86 87,02 87 85,86 84,73 86 85,32 86,1 85,12 85,12 84,39 84,96 85,16 84,26 86,32 86,78 88,66

Difference 

from best
-2,57 -2,59 -1,44 -4,31 -1,73 -4,46 -2,66 -2,83 -2,66 -3,41 -3,67 -2,8 -1,64 -1,66 -2,8 -3,93 -2,66 -3,34 -2,56 -3,54 -3,54 -4,27 -3,7 -3,5 -4,4 -2,34 -1,88 0

Accuracy, % 90,63 88,49 89,16 87,32 89,23 87,46 88,67 89,27 89,75 88,37 87,51 89,05 88,41 89,27 89,4 88,35 88,52 87,97 87,49 87,83 88,39 87,54 88,32 88 87,49 90,23 90,18 0

Difference 

from best
0 -2,14 -1,47 -3,31 -1,4 -3,17 -1,96 -1,36 -0,88 -2,26 -3,12 -1,58 -2,22 -1,36 -1,23 -2,28 -2,11 -2,66 -3,14 -2,8 -2,24 -3,09 -2,31 -2,63 -3,14 -0,4 -0,45

Accuracy, % 92 92,63 91,29 92,53 91,43 91,83 92,14 92,27 92,1 91,87 91,61 92,25 92,34 92,78 91,67 91,99 92,19 91,52 91,88 91,97 91,5 91,71 91,73 91,21 92,37 92,67

Difference 

from best
-0,78 -0,15 -1,49 -0,25 -1,35 -0,95 -0,64 -0,51 -0,68 -0,91 -1,17 -0,53 -0,44 0 -1,11 -0,79 -0,59 -1,26 -0,9 -0,81 -1,28 -1,07 -1,05 -1,57 -0,41 -0,11

Accuracy, % 92,12 91,78 91,58 92,13 91,3 92,09 92,25 92,78 92,01 92,3 92,39 92,06 91,88 92,16 92,05 91,84 91,68 91,88 92,24 91,45 92,12 92,05 91,41 93,03 93,07

Difference 

from best
-0,95 -1,29 -1,49 -0,94 -1,77 -0,98 -0,82 -0,29 -1,06 -0,77 -0,68 -1,01 -1,19 -0,91 -1,02 -1,23 -1,39 -1,19 -0,83 -1,62 -0,95 -1,02 -1,66 -0,04 0
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RF 

 

Table  3.9 The detailed results of the first six consecutive steps of the forward feature selection procedure for the RF 

model. 

AdaBoost 

 

Table  3.10 The detailed results of the first six consecutive steps of the forward feature selection procedure for the 

AdaBoost model. 

SVM 

 

Table  3.11 The detailed results of the first six consecutive steps of the forward feature selection procedure for the 

SVM model. 

KNN 

 

Table  3.12 The detailed results of the first six consecutive steps of the forward feature selection procedure for the 

KNN model. 

 

Iteration Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Accuracy, % 51,47 50,57 73,49 61,43 71,46 66,52 61,59 53,91 51,89 53,24 54,34 52,73 71,66 71,24 71,66 66,86 66,08 58,44 64,54 61,52 51,3 70,11 74,36 53,08 50,53 51,42 62,67 50,92 56,58 63,14

Difference 

from best
-22,89 -23,79 -0,87 -12,93 -2,9 -7,84 -12,77 -20,45 -22,47 -21,12 -20,02 -21,63 -2,7 -3,12 -2,7 -7,5 -8,28 -15,92 -9,82 -12,84 -23,06 -4,25 0 -21,28 -23,83 -22,94 -11,69 -23,44 -17,78 -11,22

Accuracy, % 81,66 82,42 82,3 82,13 82,19 82,1 80,52 82,55 82,61 82,63 82,44 82,54 81,68 81,97 82,25 81,69 78,84 79,32 78,61 78,12 83,1 82,71 83,1 83,19 82,64 82,28 80,19 80,59 81,06

Difference 

from best
-1,53 -0,77 -0,89 -1,06 -1 -1,09 -2,67 -0,64 -0,58 -0,56 -0,75 -0,65 -1,51 -1,22 -0,94 -1,5 -4,35 -3,87 -4,58 -5,07 -0,09 -0,48 -0,09 0 -0,55 -0,91 -3 -2,6 -2,13

Accuracy, % 86,25 87,29 87,1 85,93 87,44 85,55 86,85 85,94 85,97 86,05 85,84 85,91 87,17 86,94 87,41 86,35 86,41 85,94 86,27 85,67 85,99 84,57 85,16 85,78 86,2 86,57 87,15 89,34

Difference 

from best
-3,09 -2,05 -2,24 -3,41 -1,9 -3,79 -2,49 -3,4 -3,37 -3,29 -3,5 -3,43 -2,17 -2,4 -1,93 -2,99 -2,93 -3,4 -3,07 -3,67 -3,35 -4,77 -4,18 -3,56 -3,14 -2,77 -2,19 0

Accuracy, % 92,87 90,08 91,65 89,56 91,97 89,6 90,56 91,31 92,22 90,44 89,94 91,41 91,64 91,79 92,17 89,86 90,72 90,33 91,04 91,12 90,58 89,78 90,06 89,53 89,79 92,6 92,46

Difference 

from best
0 -2,79 -1,22 -3,31 -0,9 -3,27 -2,31 -1,56 -0,65 -2,43 -2,93 -1,46 -1,23 -1,08 -0,7 -3,01 -2,15 -2,54 -1,83 -1,75 -2,29 -3,09 -2,81 -3,34 -3,08 -0,27 -0,41

Accuracy, % 92,71 93,59 92,77 93,61 92,79 92,63 93,05 92,85 92,94 92,63 92,93 93,61 93,75 93,76 92,93 92,91 93,26 93,17 93,58 92,75 92,56 92,71 92,64 92,85 92,98 93,05

Difference 

from best
-1,05 -0,17 -0,99 -0,15 -0,97 -1,13 -0,71 -0,91 -0,82 -1,13 -0,83 -0,15 -0,01 0 -0,83 -0,85 -0,5 -0,59 -0,18 -1,01 -1,2 -1,05 -1,12 -0,91 -0,78 -0,71

Accuracy, % 93,51 93,65 93,75 93,56 93,8 93,33 93,73 93,78 93,53 93,5 93,7 93,32 93,55 93,58 93,32 93,59 93,58 93,53 93,58 93,6 93,52 93,56 93,51 93,98 94,39

Difference 

from best
-0,88 -0,74 -0,64 -0,83 -0,59 -1,06 -0,66 -0,61 -0,86 -0,89 -0,69 -1,07 -0,84 -0,81 -1,07 -0,8 -0,81 -0,86 -0,81 -0,79 -0,87 -0,83 -0,88 -0,41 0
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Iteration Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Accuracy, % 51,19 50,75 73,75 61,86 71,5 66,81 61,95 54,17 53,06 53,84 54,42 53,07 71,75 71,32 71,77 67,16 66,04 58,77 64,63 62,05 51,36 70,09 74,5 53,07 51,1 51,86 62,66 50,9 56,82 63,61

Difference 

from best
-23,31 -23,75 -0,75 -12,64 -3 -7,69 -12,55 -20,33 -21,44 -20,66 -20,08 -21,43 -2,75 -3,18 -2,73 -7,34 -8,46 -15,73 -9,87 -12,45 -23,14 -4,41 0 -21,43 -23,4 -22,64 -11,84 -23,6 -17,68 -10,89

Accuracy, % 79,57 81,23 79,99 80,35 80,21 80,12 79,09 80,67 80,4 80,39 80,73 80,29 80,16 80,27 79,76 79,9 77,72 77,57 77,41 76,93 81,64 80,99 81,39 81,3 80,79 80,05 77,83 78,94 78,51

Difference 

from best
-2,07 -0,41 -1,65 -1,29 -1,43 -1,52 -2,55 -0,97 -1,24 -1,25 -0,91 -1,35 -1,48 -1,37 -1,88 -1,74 -3,92 -4,07 -4,23 -4,71 0 -0,65 -0,25 -0,34 -0,85 -1,59 -3,81 -2,7 -3,13

Accuracy, % 83,29 84,13 84,32 83,81 84,85 83,94 84,69 83,51 83,35 83,29 83,79 83,52 84,68 84,22 84,37 84,41 84,26 82,7 83,17 83,09 81,37 83,5 84,09 83,45 84,28 83,34 84,91 86,95

Difference 

from best
-3,66 -2,82 -2,63 -3,14 -2,1 -3,01 -2,26 -3,44 -3,6 -3,66 -3,16 -3,43 -2,27 -2,73 -2,58 -2,54 -2,69 -4,25 -3,78 -3,86 -5,58 -3,45 -2,86 -3,5 -2,67 -3,61 -2,04 0

Accuracy, % 92,83 90,55 91,56 89,62 92,65 88,95 90,7 92,18 92,59 90,99 89,88 92,63 91,28 92,37 92,22 89,87 90,39 89,99 90,22 90,65 86,7 88,49 89,26 90,69 90,73 92,96 92,62

Difference 

from best
-0,13 -2,41 -1,4 -3,34 -0,31 -4,01 -2,26 -0,78 -0,37 -1,97 -3,08 -0,33 -1,68 -0,59 -0,74 -3,09 -2,57 -2,97 -2,74 -2,31 -6,26 -4,47 -3,7 -2,27 -2,23 0 -0,34

Accuracy, % 93,44 92,96 94,76 93,55 95,07 93,95 93,8 93,16 93,5 93,1 93,41 93,1 94,68 95,15 95,15 93,8 94,01 94,31 94,68 94,47 92,69 92,74 92,82 93,02 93,83 93,19

Difference 

from best
-1,71 -2,19 -0,39 -1,6 -0,08 -1,2 -1,35 -1,99 -1,65 -2,05 -1,74 -2,05 -0,47 0 0 -1,35 -1,14 -0,84 -0,47 -0,68 -2,46 -2,41 -2,33 -2,13 -1,32 -1,96

Accuracy, % 95,3 94,97 95,34 95,06 95,3 95,29 95,12 95,16 95,42 95,02 94,97 95,06 94,97 94,98 95,32 95,03 94,91 94,9 95,23 94,9 95,09 95,07 94,91 95,16 95,12

Difference 

from best
-0,12 -0,45 -0,08 -0,36 -0,12 -0,13 -0,3 -0,26 0 -0,4 -0,45 -0,36 -0,45 -0,44 -0,1 -0,39 -0,51 -0,52 -0,19 -0,52 -0,33 -0,35 -0,51 -0,26 -0,3
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Iteration Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Accuracy, % 52,96 52,51 64,46 62,76 61,87 67,52 62,46 55,58 53,92 55,28 53,52 55,61 61,47 61,38 62,42 67,44 66,03 59,37 64,12 61,03 51,71 70,48 74,29 54,95 53,44 52,64 63,54 51,8 57,03 62,44

Difference 

from best
-21,33 -21,78 -9,83 -11,53 -12,42 -6,77 -11,83 -18,71 -20,37 -19,01 -20,77 -18,68 -12,82 -12,91 -11,87 -6,85 -8,26 -14,92 -10,17 -13,26 -22,58 -3,81 0 -19,34 -20,85 -21,65 -10,75 -22,49 -17,26 -11,85

Accuracy, % 82,12 83,31 81,51 83,19 81,76 82,72 80,97 83,01 82,69 82,67 81,46 83,14 78,61 81,9 78,82 81,81 79,06 79,91 77,57 77,24 83,5 83,44 84,01 83,89 83,39 82,76 79,94 80,34 80,68

Difference 

from best
-1,89 -0,7 -2,5 -0,82 -2,25 -1,29 -3,04 -1 -1,32 -1,34 -2,55 -0,87 -5,4 -2,11 -5,19 -2,2 -4,95 -4,1 -6,44 -6,77 -0,51 -0,57 0 -0,12 -0,62 -1,25 -4,07 -3,67 -3,33

Accuracy, % 86,26 87,08 86,37 84,57 86,34 84,46 85,74 85,5 85,56 84,44 84,24 85,62 85,48 86,29 84,5 84,62 85,53 85,32 85,01 85,6 84,88 84,72 84,9 85,86 84,9 86,32 86,8 88,23

Difference 

from best
-1,97 -1,15 -1,86 -3,66 -1,89 -3,77 -2,49 -2,73 -2,67 -3,79 -3,99 -2,61 -2,75 -1,94 -3,73 -3,61 -2,7 -2,91 -3,22 -2,63 -3,35 -3,51 -3,33 -2,37 -3,33 -1,91 -1,43 0

Accuracy, % 93,93 91,57 90,35 89,37 91,62 89,08 89,57 91,84 92,76 89,19 88,34 92,62 89,59 91,67 89,24 89,3 89,87 89,49 90,47 90,06 89,64 89,17 90,63 91,51 89,84 94,14 93,9

Difference 

from best
-0,21 -2,57 -3,79 -4,77 -2,52 -5,06 -4,57 -2,3 -1,38 -4,95 -5,8 -1,52 -4,55 -2,47 -4,9 -4,84 -4,27 -4,65 -3,67 -4,08 -4,5 -4,97 -3,51 -2,63 -4,3 0 -0,24

Accuracy, % 94,92 94,81 95,25 94,81 95,94 94,82 94,51 94,59 94,65 94,15 94,21 94,77 94,75 95,97 94,3 94,62 94,64 94,79 94,92 95,23 94,86 94,58 94,69 94,88 94,92 94,16

Difference 

from best
-1,05 -1,16 -0,72 -1,16 -0,03 -1,15 -1,46 -1,38 -1,32 -1,82 -1,76 -1,2 -1,22 0 -1,67 -1,35 -1,33 -1,18 -1,05 -0,74 -1,11 -1,39 -1,28 -1,09 -1,05 -1,81

Accuracy, % 96,07 96,04 96,04 96,36 95,98 96,4 96,04 96,2 96,28 95,98 95,93 96,23 95,98 96 96,19 96,01 96,26 96,15 96,09 96,16 96,14 96,08 96,03 96,32 96,08

Difference 

from best
-0,33 -0,36 -0,36 -0,04 -0,42 0 -0,36 -0,2 -0,12 -0,42 -0,47 -0,17 -0,42 -0,4 -0,21 -0,39 -0,14 -0,25 -0,31 -0,24 -0,26 -0,32 -0,37 -0,08 -0,32
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Iteration Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30

Accuracy, % 49,96 50,38 71,47 58,46 69,11 62,58 57,02 51,74 51,17 51,98 51,77 50,51 69,73 69,14 69,27 63,07 60,91 56,08 60,31 59,58 50,49 64,06 72,06 52,6 51,51 51,71 58,91 50,26 53,57 61,1

Difference 

from best
-22,1 -21,68 -0,59 -13,6 -2,95 -9,48 -15,04 -20,32 -20,89 -20,08 -20,29 -21,55 -2,33 -2,92 -2,79 -8,99 -11,15 -15,98 -11,75 -12,48 -21,57 -8 0 -19,46 -20,55 -20,35 -13,15 -21,8 -18,49 -10,96

Accuracy, % 79,26 81,05 80,63 80,89 80,11 80,3 78,57 80,12 80,45 81,64 81,75 80,73 80,03 80,06 80,95 80,34 76,7 77,87 76,42 76,25 81,26 81,21 81,55 81,46 81 80,76 77,1 77,76 79,2

Difference 

from best
-2,49 -0,7 -1,12 -0,86 -1,64 -1,45 -3,18 -1,63 -1,3 -0,11 0 -1,02 -1,72 -1,69 -0,8 -1,41 -5,05 -3,88 -5,33 -5,5 -0,49 -0,54 -0,2 -0,29 -0,75 -0,99 -4,65 -3,99 -2,55

Accuracy, % 81,57 81,65 85,4 81,7 84,52 81,94 83,47 81,15 82,12 82,24 81,45 85,44 83,98 84,84 82,55 83,31 81,55 83,44 81,65 82,58 82,58 82,13 82,2 81,53 82,24 83,44 84,03 85,69

Difference 

from best
-4,12 -4,04 -0,29 -3,99 -1,17 -3,75 -2,22 -4,54 -3,57 -3,45 -4,24 -0,25 -1,71 -0,85 -3,14 -2,38 -4,14 -2,25 -4,04 -3,11 -3,11 -3,56 -3,49 -4,16 -3,45 -2,25 -1,66 0

Accuracy, % 90,32 87,87 90,3 87,89 91,28 87,89 87,19 88,86 90,15 88,25 89,45 88,39 91,35 88,55 88,08 88,16 87,87 87,11 88,33 87,82 87,39 87,63 87,77 88,01 88,47 87,45 87,83

Difference 

from best
-1,03 -3,48 -1,05 -3,46 -0,07 -3,46 -4,16 -2,49 -1,2 -3,1 -1,9 -2,96 0 -2,8 -3,27 -3,19 -3,48 -4,24 -3,02 -3,53 -3,96 -3,72 -3,58 -3,34 -2,88 -3,9 -3,52

Accuracy, % 92,19 92 91,83 92,4 91,15 92,48 92,67 92,41 92,3 92,66 92,4 91,9 91,44 92,33 92,46 92,29 92,19 90,92 91,93 92,53 92,49 92,44 92,14 92,49 91,32 92,03

Difference 

from best
-0,48 -0,67 -0,84 -0,27 -1,52 -0,19 0 -0,26 -0,37 -0,01 -0,27 -0,77 -1,23 -0,34 -0,21 -0,38 -0,48 -1,75 -0,74 -0,14 -0,18 -0,23 -0,53 -0,18 -1,35 -0,64

Accuracy, % 93,66 92,33 92,79 92,72 92,85 92,74 93,29 93,43 92,98 93,25 92,78 92,7 92,68 92,58 92,69 92,51 92,57 92,51 93,07 93,01 92,67 92,52 92,58 93,42 94,26

Difference 

from best
-0,6 -1,93 -1,47 -1,54 -1,41 -1,52 -0,97 -0,83 -1,28 -1,01 -1,48 -1,56 -1,58 -1,68 -1,57 -1,75 -1,69 -1,75 -1,19 -1,25 -1,59 -1,74 -1,68 -0,84 0
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Following an in-depth analysis, four subsets of features were selected, with each associated with a set 

of classifiers: 

1. DT, Light GBM, Extra Trees, RF: F23, F25, F30, and F1. 

2. AdaBoost, SVM: F23, F25, F30, F29, and F5. 

3. KNN: F23, F11, F30, and F5. 

4. XGBoost: F23, F5, F29, and F25. 

Each subset was selected to minimize the diversity of features without a significant decrease  

in classification accuracy. In addition to the dedicated features for each selected classifier, a universal 

subset of features was extracted for use with all selected classifiers. This universal subset is the sum of 

the four dedicated subsets, and thus consists of seven CPIs: F1, F5, F11, F23, F25, F29, and F30.  

Fig. 3.10 presents the universal subset together with the dedicated subsets for selected classifiers, in 

the form of decision paths. 

 

Fig. 3.10 A graphical representation of the universal and dedicated subsets of features for selected classifiers, obtained 

by the feature reduction procedure. 

Table  3.13 presents the classification accuracy of selected algorithms for the full set of features  

(30 CPIs), the universal subset of features (seven CPIs), and the dedicated subset of features for each 

selected classifier. The results show that the universal subset of features ensures high classification 

accuracy, independent of the algorithm used. For some classifiers, the classification accuracy is lower 

when using the universal subset than when using the full set of features. However, the maximum 

difference of 0.45% is negligible from a practical perspective. Conversely, for some classifiers the 

accuracy increases slightly when using the universal subset, which confirms the usefulness of the 

universal subset. The dedicated subsets of features also provide relatively high classification accuracy. 

However, the decrease in accuracy is somewhat significant when compared to the full set of features. 

Note that the subset of features is even smaller than the universal subset, and thus the number of 
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captured key features decreases. The best possible classification accuracy is again obtained by the 

SVM classifier, including when using the appropriate dedicated subset. 

Number of 

features 

Full set of 

features 

Universal 

subset of 

features 

Dedicated 

subset of 

features 

DT 91.54 91.97 90.6 

Light GBM 95.23 95.00 91.53 

XGBoost 95.26 95.01 94.0 

Extra Trees 92.85 92.40 89.23 

RF 93.70 93.87 91.97 

AdaBoost 95.48 95.57 95.3 

SVM 96.17 96.18 95.8 

KNN 92.24 93.62 92.21 

Table  3.13 The classification accuracy of selected classification models trained with a full set, universal subset, and 

dedicated subset of features. 

The high classification accuracy obtained when using the universal subset confirms that the features 

captured by the CPIs in this subset are sufficient for precise classification. In the following sections, 

the universal subset of features is analyzed further and then used to implement the proposed CPA 

system on a PID. 

3.3.1 In-depth analysis of the universal subset features 

As described in the previous section, the most important feature for classification is F23. Use of this 

feature alone provides a classification accuracy of approximately 74–75%. The feature is defined as 

the ratio of rising and falling time of the first maximum peak of the closed loop response, and thus 

directly describes the shape of maximum peak. This is a key aspect of the entire response. As the value 

of F23 goes to zero (F23 → 0), the falling time dominates and the closed loop response is sluggish. 

This can be caused by an integral constant that is too high, for example. As the value of F23 goes to 

infinity (F23 → ∞), the rising time dominates and the closed loop response is aggressive, with 

oscillatory behavior. Thus, a good ratio is critical for satisfactory control performance. However, even 

if F23 indicates satisfactory performance, the overall closed loop response can be still poor due to 

conservative or sluggish dynamic behavior. Such cases are presented in Fig. 3.11, which presents three 

closed loop responses with the same value of the F23 index.  
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Fig. 3.11 The first comparison between three example closed loop responses, each with the same value of F23. 

The shape of the first maximum peak is similar for each closed loop response. However, further 

stabilization about the setpoint differs substantially. This explains why additional indices must be 

included to provide a more accurate assessment. As indicated by Fig. 3.10, the F23 index should be 

further supplemented by the F5 index, which describes the ratio of undershoot and overshoot of the 

process response, the F11 integral index, which considers the product of the control error and the 

squared time vector, or the F25 index, which describes the time at which the response reaches 50% of 

the maximum peak value. Notably, indices F11 and F25 directly capture features of the entire 

response, while F5 describes the closed loop response once the maximum peak has been damped. 

Thus, when combined with F23, each index increases the effectiveness with which the dynamic 

behavior of the system is described. Cases in which the F23 index indicates acceptable behavior but 

the response is too sluggish or too aggressive can be caused by the following: 

• the undershoot, as described by F5, is too large or too small, producing aggressive or sluggish 

dynamic behavior, respectively; 

• a high control error, as described by the integral index F11, causes either aggressive and 

conservative behavior, to persist for a relatively long period of time; or 

• as described by F25, the closed loop response reaches 50% of the maximum peak value too 

slowly for sluggish or aggressive behavior, or too quickly for aggressive behavior. 

If two selected indices are similar, the remaining CPIs will correctly assess performance. Fig. 3.12 

presents a further three closed loop responses. The first maximum peak is similar for both the blue and 

red closed loop responses. This indicates similar values of F23 and F25. However, the dynamic 

behavior differs once the first maximum peak is damped. Despite this, the overall behavior of these 

closed loop responses is more similar than that of the three responses depicted in Fig. 3.11, for which 



 

90 

  

only the F23 index takes similar values. The difference between the blue and red responses shown in 

Fig. 3.12 is successfully captured by the F5 and F11 indices. 

 

Fig. 3.12 The second comparison between three example closed loop responses. The red and blue responses have 

similar values of the F23 and F25 indices. 

A third comparison is presented in Fig. 3.13. The blue and green closed loop responses have similar 

shapes, with the same F23 index, but the green response is too conservative. This behavior is captured 

by the F5, F11, or F25 indices. The value of the F23 index would also be similar for the red closed 

loop response that is dominated by oscillatory behavior. This is also be captured by additional CPIs. 

 

Fig. 3.13 The third comparison between three example closed loop responses. 

Notably, the subsets of features are supplemented by the derivative-based indices F29 and F30. These 

indices indirectly describe the shape of the maximum peak, and thus provide a more precise 

assessment of that section of the response, in conjunction with F23. 
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An analysis of all seven features within the universal subset reveals the presence of two ratio-based 

indices, F5 and F30, together with their components, F1 and F29, respectively. This suggests that both 

ratio-based features and value-based features are important for classification.  

3.4 Technical aspects of the PLC implementation 

The universal subset of features allows the classifier structure to be simplified substantially, with the 

number of parameters decreasing greatly. This simplified structure allows the system to be 

implemented directly on a PLC as a general-purpose function block. The SVM algorithm was selected 

for practical implementation, as it provides the highest possible accuracy. This algorithm is also the 

most suitable for implementation on a PLC, because its output can be calculated directly from an 

analytical formula. For this particular classifier, the use of a universal subset of features provides  

a 63.2% reduction in the memory required to store the SVM parameters, from 475.1 kB for the full set 

of features to 174.8 kB for the universal subset. The CPA system was implemented in the form of  

a ControlPerformanceAssessment function block for Siemens S7-1200/1500 PLCs using TIA Portal 

v15.1. The function block incorporates several functionalities, including steady state detection, closed 

loop response data collection, SOPDT model identification, process dynamics normalization, CPI 

calculation, and SVM-based classification. The implemented function block can be integrated with 

PID_Compact, as presented in Fig. 3.14. Note that such an integration does not require normal 

operation of the closed loop system to be halted or otherwise interrupted.  

 
Fig. 3.14 The integration of a PLC-based implementation of the proposed CPA system with an existing PID control 

system for Siemens S7-1200/1500 PLCs, using the TIA Portal. 

Fig 3.15 presents the sequence of operations implemented within the function block. The CPA 

procedure is initialized with the execute input. Then, once the ICM method [50] has detected a steady-

state, the step load disturbance is introduced to the control system, with an amplitude given by 10% of 

the total range of the control signal (stored in the PIDCompactConfig structure). During the 

subsequent transient behavior, the closed loop response data (setpoint and processValue) are collected 

according to the constant samplingTime. This sampling rate is ensured by the cyclic interrupt OB30 
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organization block. Once the steady state is detected again, the gathered data is used for SOPDT 

model identification. For this purpose, the leapfrogging optimization method is used [101], [102] to 

minimize the modelling error of the simulated closed loop response. This simple yet powerful 

optimization method does not require complex calculations, and so is suitable for the PLC-based 

implementation. The obtained SOPDT parameters are then normalized, and new closed loop response 

data is simulated, allowing the seven CPIs to be calculated. Once the feature vector is generated, the 

output of SVM classifier is calculated, based on the sign of the expression 

∑ 𝑦𝑖𝛽𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏𝑖∈𝑆𝑉 ,     (3.2) 

where x is a testing sample vector consisting of the seven calculated CPIs, the xi are training support 

vectors (SV) with class yi, the βi are dual coefficients, K is the Gaussian kernel, and b is an 

independent term. The SVM parameters were obtained during offline simulation studies with the 

Python scikit-learn library, and transferred to the internal PLC memory in the form of an array, stored 

within a data block. Satisfactory control performance (OK) is indicated by a high performanceOK 

output.  

Initialize CPA

Steady state 

detected?

No

Introduction of load 

disturbance

Yes

Steady state 

detected?

Collect closed 

loop response 

data

Identification of 

SOPDT model

Yes

No

Normalization and 

cloed loop response 

simulation

SOPDT parameters

CPIs calculation

Closed loop response

SVM-based 

classification

Feature vector

OK/NOK decision on 

control performance
 

Fig. 3.15 A block diagram showing the PLC-based implementation of the proposed CPA system. 

The ControlPerformanceAssessment function block was implemented using several sub-functions. 

Fig. 3.16 presents the block diagram of the ControlPerformanceAssessment function block, including 

a description of the implemented sub-functions and the flow of key signals.  
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Input signals:

- setpoint
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- controller output

- initialize CPA
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closed loop 

response 

samples
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- SOPDT model identification 

  with LeapFrogging optimization method 

SOPDT model 

parameters
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- simulation od normalized closed loop response

Simulated 
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- calculation of CPIs

Calculated CPIs

- calculation of SVM classifier output

Output signal:

- performance OK/NOK

ControlPerformanceAssessment function block

 
Fig. 3.16 A block diagram for the ControlPerformanceAssessment function block, including a description of the 

implemented sub-functions and the flow of key signals. 

Note that the operating cycle time of a PLC should be as small as possible. Typically, the maximum 

cycle time cannot exceed 150 ms—the default watchdog value. During this interval all logical and 

arithmetical calculations must be performed. In practice, the typical cycle time is much shorter.  

All functionalities that are executed followed data collection still consume resources, and are thus 

implemented in an asynchronous manner, to ensure that the maximum cycle time is not violated. 

3.5 Experimental verification 

The implemented CPA system was used to assess a temperature controller TC within the heat 

exchange and distribution system (Appendix 4). For clarity, 10 sets of PID tunings were selected. Half 
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of them were calculated by introducing small deviations into the reference tunings to ensure 

satisfactory (OK) performance, based on predefined criteria. The other half were derived from 

Appendix 5. These tunings ensured stable behavior, but were significantly different from the 

predefined reference. This approach produced 10 different closed loop systems for assessment with the 

implemented CPA system. Fig. 3.16 presents the closed loop responses that were assessed as either 

OK or NOK (continuous lines), compared with the predefined reference responses (dashed lines). 

Each closed loop response was used independently for SOPDT model identification, resulting in small 

variations in the obtained model parameters. Thus, the calculated reference response differs slightly 

for each closed loop system. Despite this, the classification accuracy is high, given that the closed loop 

responses that were assessed as OK are similar to the predefined reference responses. Conversely, the 

dynamic behavior of the NOK closed loop responses is significantly different from the predefined 

reference behavior. 

 

 

Fig. 3.17 The results of the assessment of real control systems using the PLC implementation of the proposed CPA 

system, showing OK (top) and NOK (bottom) closed loop responses (continuous lines), compared with the 

corresponding reference responses (dashed lines). 
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4 Conclusion 

This dissertation described the development of an automatic system for the performance assessment of 

PID-based control systems. To increase the practical usability of the system, key requirements were 

first defined. The most important requirements were generality, so that the proposed system could be 

used with a wide range of self-stabilizing processes, the possibility of parametrization, so that the 

system could be adapted to predefined technological requirements, and the possibility of 

implementation on a PLC. The proposed system assesses control performance based on the closed 

loop response to a step load disturbance. This assessment procedure is convenient from a practical 

perspective, as it can be manually introduced to any considered control system, without significant 

disturbance from its operating point. The central principle of the proposed system is similar to that of 

other existing CPA algorithms: to compare actual control performance with a predefined reference 

performance. To generate this reference closed loop response, reference PID tunings were derived 

following the minimization of the IAE index for a closed loop response with constraints on the gain 

and phase margins to ensure proper robustness.  

However, different tunings can be used as a reference without loss of generality. The training dataset 

for the ML algorithms was generated for a wide range of SOPDT processes by slightly modifying the 

corresponding reference tunings. A method to automatically label the closed loop responses was 

developed. The method is based on the acceptable deviation of gain and phase margins, with an 

appropriate normalized distance from the predefined reference. Thirty simple CPIs were used to create 

a feature vector describing the closed loop response. The CPIs require neither high computational or 

memory resources. This approach was based on the assumption that the combined application of  

a large number of the suggested CPIs could capture key features of the closed loop response and 

provide potentially useful information for performance classification. Various classification algorithms 

were verified. For the majority of classifiers, classification accuracy was higher than 90%. The SVM 

classifier achieved the highest accuracy, of greater than 96%. 

 From a practical perspective, the obtained level of accuracy is sufficient for the application of the 

proposed CPA system to industrial control systems. The proposed approach was compared with other 

existing methods, and the obtained results show that it provides additional, useful information 

concerning control performance. A Cloud-based implementation of the system was developed, and the 

entire system was verified by applying it to a laboratory heat distribution and exchange system. 

Finally, the structure of the classifier was minimized to allow the system to be implemented on a PLC. 

Following deep analysis of index correlations and feature importance, a forward feature selection 

algorithm was used to determine a universal subset of features that can be used by all selected 

classifiers. The dimensionality of the feature vector was thus reduced from 30 CPIs to seven, without  

a significant decrease in classification accuracy. This reduction was sufficient to allow the proposed 
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CPA system to be directly implemented on a PLC as a ready-to-use, general purpose function block. 

This block can be easily integrated with existing PID algorithms, without negatively effecting normal 

operation. Operation of the PLC-based CPA system was again verified using a laboratory control 

system. The obtained results confirmed the practical usability of the implementation. 

In consideration of the above conclusions, the following thesis statement was confirmed: the 

developed CPA system can explicitly assess control performance based on load disturbance rejection 

response data for closed loop systems in process automation, while clearly and objectively 

considering the predefined assumptions and limitations. 

When conducting the studies described in this thesis, many interesting directions of development of 

the proposed CPA system emerged. One of the most promising is the use of fuzzy models for more 

precise assessment of control performance. The use of fuzzy model membership functions could 

potentially allow the gradual degradation of control performance to be monitored. Such degradation 

could be caused by slow fouling, for example. 

At the same time, this PhD thesis describes complete results of the successful generation and 

implementation of CPA system. However it should be considered as important but still an initial stage 

of the studies. Based on the obtained results, another interesting direction of development is to derive 

CPA system that does not require any identification of process parameters. It probably requires 

determining a different set of CPIs (features), which are dimensionless and insensitive to process 

dynamical parameters and measurement noise. Very initial studies on this subject have been already 

conducted and results show that it is possible to suggest set of dimensionless CPIs, which do not 

require normalization of closed loop rejection response and ensure high classification accuracy of 

control performance. Thus, this new approach will significantly simplify the assessing procedure by 

removing the stages of necessity of process parameters identification, normalization and simulation of 

the closed loop response.  

The results of this thesis have been already published in: 

• [50], which describes ICM method for determining transportation delay time with high 

accuracy, which is essential for many CPA algorithms, published in IEEE Transactions on 

Industrial Electronics (IF = 8.236, TOP10 based on Scopus) 

• [84], which describes correlation between stochastic and deterministic-based CPA indices, 

published in conference proceedings of the 22nd International Conference on Process Control.  

All of the results presented in this thesis were developed with the participation of a research team from 

the Silesian University of Technology and the University of Technology Sydney. However, the author 
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of this dissertation made the most significant contribution to the development of the presented CPA 

system, including suggesting and developing: 

• the general principles of the CPA system,  

• the normalization of the closed loop responses,  

• the generation of reference responses,  

• the use and deep analysis of novel CPIs,  

• the generation of closed loop responses to create a training dataset,  

• the automatic labelling method,  

• the comparison of simulation results with other existing methods, 

• the cloud- and PLC-based implementations of the CPA system, together with their 

experimental verification.  

The dissertation author also played an active role in the development of the classifiers and the feature 

reduction process.  
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Appendix 1 – Use of the ICM for steady-state detection and time delay 

estimation 

For the accurate assessment of control performance, many studied algorithms require that information 

concerning the transportation delay time (TDT) is estimated with the highest possible accuracy.  

The literature suggests many different approaches for TDT estimation [83], [103]–[105], with 

reference to a cross-correlation method (CCM) [13]. A complete review is provided in [106].  

To improve practical usability, the TDT estimation procedure should be implemented directly on the 

PLC, and thus should not require a high level of computational or memory resources. To fulfil this 

requirement, use of the novel ICM was suggested for the estimation of TDT [50]. This method is used 

for the detection of both steady and transient states, and can detect the precise moment of transition 

into the transient state. Thus, the TDT can be calculated as the time between the introduction of an 

external excitation into the dynamical system, and the time at which the system transitions into  

a transient state. The underlying concept of the ICM is based on the consecutive counting of positive 

and negative increments of the process output 

∆𝑦𝑖 = 𝑦𝑖 − 𝑦𝑖−1      (Ap1.1) 

for each sample i, within a predefined discretized period of time L. Detection of the steady and 

transient states is based upon the assumption that during steady state, the dynamical system is only 

affected by measurement noise. Thus, the number of positive and negative increments Δy should be 

equal, during a given period of time. During transient-state, the number of positive or negative 

increments should be unequal. 

Consider an L element vector of counters incj, with j = 1, ..., L, where inc1 is a counter calculated at the 

current sampling instant i, and inc2, …, incL are calculated at previous instants (i-1), …, (i-L+1).  

At each sampling instant i, elements of inc vector are moving backwards, as 

𝑓𝑜𝑟 𝑗 = 2, . . , 𝐿,    𝑖𝑛𝑐𝐿−𝑗+2 = 𝑖𝑛𝑐𝐿−𝑗+1,     (Ap1.2a) 

and the inc1 counter is updated according to the sign of the increment of the process output: 

𝑖𝑛𝑐1 = 𝑖𝑛𝑐2 + 𝑠𝑖𝑔𝑛(∆𝑦𝑖).     (Ap1.2b) 

Thus, the vector inc stores the last L counters calculated at sampling instants i to (i-L+1). Linear 

regression can then be applied by computing the least squares method for the pairs (j, incj), where  

j = 1, …, L. This analysis will detect potential trends in the vector inc. The slope of the regression  

ainc ϵ [-1, 1] provides information concerning the state of the process: |ainc| < γss indicates steady state 

and |ainc| > γts indicates transient state. For the case γts > |ainc| > γss it is assumed that the previously 

detected state did not change (hysteresis). For the accurate detection of steady and transient states, and 
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hence accurate TDT estimation, the following general rules are suggested: γss = 1/L and γts = (1 - 1/L). 

The presented approach can be implemented directly on a PLC, as it has low computational and 

memory resource requirements. At each iteration (sampling instant), 5(L+1) floating point operations 

are performed, which results in O(L) complexity. Moreover, 4(L+10) bytes are required for data 

storage. Note that the detection of steady and transient states is delayed by L samples, as only 

increments of the process output are considered. Despite its disadvantages, this property makes the 

ICM general and insensitive to process gain. 

The accuracy with which the ICM can detect steady states was compared with the commonly used  

R-statistics method (RSM) [107], which calculates the ratio between two variances calculated for the 

measurement data using two different methods. The RSM requires the calculation of three dynamical 

filters, and hence is suitable for a PLC-based implementation. However, detection of the precise 

moment of transition into transient-state is difficult, due to the additional dynamics of the filters.  

A heat distribution system (described in Appendix 4) was used for the steady-state detection 

comparison. Several step changes in heater power were introduced to the real laboratory system, and 

the outlet temperature samples, gathered with constant sampling time 2 s, were used as input data for 

steady state detection. Fig. Ap1.1 presents the accuracy of steady-state detection when using ICM with 

L = 5, ICM with L = 10, and RSM. The results show that both RSM and ICM achieve high accuracy.  
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Fig. Ap1.1 A comparison of steady-state detection when using ICM and RSM, showing outlet temperature (top), 

steady-state detection using ICM with L=5 (second from top) and L=10 (second from bottom), and steady-state 

detection using RSM (bottom). 

Following this, the output temperature response for the first three step changes in heater power was 

used to verify the accuracy of the TDT estimation. The results of steady-state detection using the ICM 

is presented in Fig. Ap1.2.  

 
Fig. Ap1.2 Response of the outlet temperature to step changes in heater power, with TDT estimation based on steady-

state detection by the ICM. 
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Fig. Ap1.3 presents the accuracy of TDT estimation based on the ICM, compared to the reference 

CCM. 

 

 

 
Fig. Ap1.3 The results of TDT estimation using the ICM and CCM for three outlet temperature responses to step 

changes in heater power of 30% to 50% (top), 50% to 60% (middle) and 60% to 40% (bottom). 

The accuracy of TDT estimation using the ICM is relatively high, and comparable with that provided 

by the reference CCM. A deeper comparison of the ICM and CCM was conducted via simulation for 

the FOPDT K1(s) and SOPDT K2(s) processes (see Table Ap1.1). For five different levels of 
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measurement noise, denoted here by the signal to noise ratio (SNR), 100 noisy step responses were 

generated with a constant sampling time of 0.5. For each response, the TDT was estimated by the ICM 

and CCM. These results were used to calculate the distribution features of the TDT: the median, and 

the first and third quartiles. Table Ap1.1 presents the results for both K1 and K2 processes, and the 

different SNR values. Within each table cell, the TDT median is presented on the first row, with the 

first and third quartiles given inside parentheses on the second row. Expected values of the TDT are 

highlighted in bold. The results again confirm the high accuracy of the ICM, even in the presence of 

second order dynamics. 
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65.53 
2.5 

(2.5, 3.0) 

3.0 

(3.0, 3.0) 

2.5 

(2.25, 3.0) 

3.5 

(3.5, 3.5) 

59.47 
2.5 

(2.0, 3.0) 

3.0 

(3.0, 3.0) 

2.5 

(2.25, 3.0) 

3.5 

(3.5, 3.5) 

45.58 
2.5 

(2.5, 3.0) 

3.0 

(3.0, 3.0) 

3.0 

(2.5, 3.5) 

3.5 

(3.5, 4.0) 

39.50 
3.0 

(2.5, 3.0) 

3.0 

(3.0, 3.0) 

3.5 

(3.0, 4.0) 

3.5 

(3.5, 4.0) 

Table Ap1.1 The accuracy of TDT estimation by the ICM and CCM for two processes with various noise levels. In 

each cell, the first row presents the median TDT and the second row the first and third quartiles (in parentheses). 

Expected values are highlighted in bold. 

Further details concerning the ICM, together with an example of its application for the autotuning of 

the Reduced Order ADRC algorithm, can be found in [50].  
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Appendix 2 – Graphical representation of the selected CPIs 

This appendix presents graphical representations of all of the selected CPIs in the form of an example 

process response.  

 

Fig. Ap1.1 Graphical representations of the F1, F2, F3, F4, F5, F6 (left), and F7 (right) CPIs. 

 

Fig. Ap1.2 Graphical representations of the F8, F9, F10, F11 (left), F12, and F14 (right) CPIs. 

 

Fig. Ap1.3 Graphical representations of the F13, F14 (left), F15, and F16 (right) CPIs. 
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Fig. Ap1.4 Graphical representations of the F17 (left), F18, and F20 (right) CPIs. 

 

Fig. Ap1.5 Graphical representations of the F19, F20 (left), F21, and F23 (right) CPIs. 

 

Fig. Ap1.6 Graphical representations of the F22, F23 (left), and F24 (right) CPIs. 

 

Fig. Ap1.7 Graphical representations of the F25 (left), and F26 (right) CPIs. 
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Fig. Ap1.8 Graphical representations of the F27 (left), F28, F29, and F30 (right) CPIs. 
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Appendix 3 – Validation of the CPA system for higher order dynamics 

This appendix presents the results of applying the CPA system to the higher order systems P2–P7. The 

results show the accuracy of modelling higher order systems with FOPDT and SOPDT 

approximations, a comparison between reference responses generated for a higher order system and its 

SOPDT approximation, the classification results of various process responses based on a SOPDT 

approximation, and the process responses generated for a higher order system and labelled according 

to classification results based on a SOPDT approximation. 

• Process P2: 

 

 

 

Fig. Ap2.1 The modelling accuracy of FOPDT and SOPT approximations (top left), the reference closed loop 

responses for reference PID tunings computed based on a SOPDT approximation (top right), the classification results 

of closed loop responses based on a SOPDT approximation, simulated based on a SOPDT approximation (middle left 

and middle right), and the classification results of closed loop responses based on an SOPDT approximation, 

simulated based on a higher order process (lower left and lower right). All results for process P2. The green and red 

responses denote OK and NOK control performance, respectively. 
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• Process P3: 

 

 

 

Fig. Ap2.2 The modelling accuracy of FOPDT and SOPT approximations (top left), the reference closed loop 

responses for reference PID tunings computed based on a SOPDT approximation (top right), the classification results 

of closed loop responses based on a SOPDT approximation, simulated based on a SOPDT approximation (middle left 

and middle right), and the classification results of closed loop responses based on an SOPDT approximation, 

simulated based on a higher order process (lower left and lower right). All results for process P3. The green and red 

responses denote OK and NOK control performance, respectively. 
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• Process P4: 

 

 

 

Fig. Ap2.3 The modelling accuracy of FOPDT and SOPT approximations (top left), the reference closed loop 

responses for reference PID tunings computed based on a SOPDT approximation (top right), the classification results 

of closed loop responses based on a SOPDT approximation, simulated based on a SOPDT approximation (middle left 

and middle right), and the classification results of closed loop responses based on an SOPDT approximation, 

simulated based on a higher order process (lower left and lower right). All results for process P4. The green and red 

responses denote OK and NOK control performance, respectively. 
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• Process P5: 

 

 

 

Fig. Ap2.4 The modelling accuracy of FOPDT and SOPT approximations (top left), the reference closed loop 

responses for reference PID tunings computed based on a SOPDT approximation (top right), the classification results 

of closed loop responses based on a SOPDT approximation, simulated based on a SOPDT approximation (middle left 

and middle right), and the classification results of closed loop responses based on an SOPDT approximation, 

simulated based on a higher order process (lower left and lower right). All results for process P5. The green and red 

responses denote OK and NOK control performance, respectively. 
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• Process P6: 

 

 

 

Fig. Ap2.5 The modelling accuracy of FOPDT and SOPT approximations (top left), the reference closed loop 

responses for reference PID tunings computed based on a SOPDT approximation (top right), the classification results 

of closed loop responses based on a SOPDT approximation, simulated based on a SOPDT approximation (middle left 

and middle right), and the classification results of closed loop responses based on an SOPDT approximation, 

simulated based on a higher order process (lower left and lower right). All results for process P6. The green and red 

responses denote OK and NOK control performance, respectively. 
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• Process P7: 

 

 

 

Fig. Ap2.6 The modelling accuracy of FOPDT and SOPT approximations (top left), the reference closed loop 

responses for reference PID tunings computed based on a SOPDT approximation (top right), the classification results 

of closed loop responses based on a SOPDT approximation, simulated based on a SOPDT approximation (middle left 

and middle right), and the classification results of closed loop responses based on an SOPDT approximation, 

simulated based on a higher order process (lower left and lower right). All results for process P7. The green and red 

responses denote OK and NOK control performance, respectively. 
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Appendix 4 – Description of the heat distribution and exchange system 

The central component of the heat distribution and exchange system is the electric flow heater.  

A block diagram of the laboratory system is presented in Fig. Ap4.1.  

T

Heating 

unit

F

T

FC

TC

V

Tout

Tin

F

TSP

FSP

 
Fig. Ap4.1 A picture of the heat distribution and exchange system (left) and the corresponding block diagram (right). 

Water flows through the electric flow heater of constant volume V = 1.2 L and of maximum power 

Pmax = 12 kW. The mean power of the heater Ph is adjusted from 0% to 100% of its maximal power 

using a pulse width modulation (PWM) signal. The inlet Tin and outlet Tout temperatures of the water 

are measured with PT100 sensors. The flow rate F of the water is controlled with a local PI controller. 

Both the temperature and flow sensors are of IO-Link type. The primary purpose of the control system 

is to keep the output temperature Tout of the heater at the desired temperature TSP by manipulating the 

mean power Ph. The control algorithm is implemented in a Siemens S7-1516-3 PN/DP PLC unit, using 

5 MB of data memory and 1 MB of code memory. All of these signals are directly connected to 

distributed input and output modules. The complete topology of the Profinet network is presented in 

Fig. Ap4.2. 

 

Fig. Ap4.2 The topology of the Profinet network. 
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As part of the research into virtual commissioning methodologies, a model of the studied section of 

the heat distribution and exchange system was identified. The structure of the suggested model is 

presented in Fig. Ap4.3.  

Nonlinear 

dynamical equation

Additional SOPDT 

dynamics

Ph

F
Tin

T*
out Tout

 

Fig. Ap4.3 The complete structure of the suggested model of the studied section of the heat distribution and exchange 

system. 

The model primarily consists of the nonlinear dynamical equation 

𝑑𝑇𝑜𝑢𝑡
∗

𝑑𝑡
=

𝐹

60𝑉
(𝑇𝑖𝑛 − 𝑇𝑜𝑢𝑡

∗ ) +
𝑃ℎ𝑃𝑚𝑎𝑥

100𝑐𝑠𝜌𝑠𝑉
,     (Ap4.1) 

where cs = 4200 J/(kg oC) is a water specific heat capacity, ρs = 1 kg/L is water density, and Tout
* in oC 

is the unmeasurable output temperature. However, to increase the accuracy with which transients are 

modelled, additional SOPDT dynamics were included: 

𝐾(𝑠) =
𝑇𝑜𝑢𝑡(𝑠)

𝑇𝑜𝑢𝑡
∗ =

𝑘(𝑃ℎ)

(1+𝑠𝜏1(𝐹))(1+𝑠𝜏2(𝐹))
𝑒−𝑠𝜏0(𝐹)    (Ap4.2) 

where gain k is dependent upon the mean power Ph, and the time constants τ1 and τ2 and the 

transportation time τ0 are dependent upon the flow rate F. These functions were identified using real 

process data, and take the following form: 

𝑘(𝑃ℎ) = −0.0002347𝑃ℎ + 1.012,

𝜏1(𝐹) = 𝜏2(𝐹) = 19.08𝐹
−0.4293 − 4.042,

𝜏0(𝐹) = 11.93𝐹
−0.7838 + 2.365.

    (Ap4.3) 

The modelling accuracy is presented in Fig. Ap4.4, which presents the responses of the real system 

and the identified model for several step changes in mean power Ph and flow rate F. 
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Fig. Ap4.4 A comparison of real process data and the output of the identified model. 
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Appendix 5 - PID tuning rules for CPA 

Based on the FOPDT approximation, countless methods have been developed in recent decades to 

determine PID tuning parameters. To validate the proposed CPA system, various tuning rules were 

selected. All of them are summarized in Table Ap5.1. The majority of them were sourced from 

scientific papers, but industrial examples are also included. 

Tuning rule kr Ti Td 

Ziegler-

Nichols [108] 

1.6𝜏

𝑘𝜏0
 2𝜏0 0.5𝜏0 

SIMC PI [28] 𝜏

2𝑘𝜏0
 min (𝜏, 8𝜏0) 0 

Chien-Hrones-

Reswick 

Regulator 

mode; 

0% overshoot 

[25] 

0.95𝜏

𝑘𝜏0
 2.38𝜏0 0.42𝜏0 

Chien-Hrones-

Reswick 

Regulator 

mode; 

20% 

overshoot [25] 

1.2𝜏

𝑘𝜏0
 2𝜏0 0.42𝜏0 

Chien-Hrones-

Reswick 

Servo mode; 

0% overshoot 

[25] 

0.6𝜏

𝑘𝜏0
 𝜏 0.5𝜏0 

Chien-Hrones-

Reswick 

Servo mode; 

20% 

overshoot [25] 

0.95𝜏

𝑘𝜏0
 1.36𝜏 0.47𝜏0 

AMIGO PI 

[109] 

0.15

𝑘

+ (0.35 −
𝜏0𝜏

(𝜏0 + 𝜏)
2
)
𝜏

𝑘𝜏0
 

0.35𝜏0 +
6.7𝜏0𝜏

2

𝜏2 + 2𝜏0𝜏 + 10𝜏0
 0 

AMIGO PID 

[109] 

1

𝑘
(0.2 + 0.45

𝜏

𝜏0
) 

0.4𝜏0 + 0.8𝜏

𝜏0 + 0.1𝜏
𝜏0 

0.5𝜏0𝜏

0.3𝜏0 + 𝜏
 

Cohen-Coon 

[110] 

1

𝑘
(1.35

𝜏

𝜏0
+ 0.25) 𝜏 (

2.5(𝜏0 𝜏⁄ ) + 0.46(𝜏0 𝜏⁄ )
2

1 + 0.61(𝜏0 𝜏⁄ )
) 

0.37𝜏0
1 + 0.19(𝜏0 𝜏⁄ )
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Parr [111] 1.25𝜏

𝑘𝜏0
 2.5𝜏0 0.4𝜏0 

Sain-Ӧzgen  1

𝑘
(0.6939

𝜏

𝜏0
+ 0.1814) 

0.8647𝜏 + 0.226𝜏0
𝜏
𝜏0
+ 0.8647

 
0.0565𝜏

0.8647
𝜏
𝜏0
+ 0.226

 

Connell [112] 

 

1.6𝜏

𝑘𝜏0
 1.6667𝜏0 0.4𝜏0 

Moros 

(Attributed to 

Oppelt) 

1.2𝜏

𝑘𝜏0
 𝑇𝑖 = 2𝜏0 0.42𝜏0 

Moros 

(Attributed to 

Rosenberg) 

 

1.2𝜏

𝑘𝜏0
 2𝜏0 0.44𝜏0 

Liptak 0.85𝜏

𝑘𝜏0
 1.6𝜏0 0.6𝜏0 

Chidambaram 

[113] 

 

1

𝑘
(1.8

𝜏

𝜏0
+ 0.45) 2.4𝜏0 0.4𝜏0 

ControlSoft 

Inc. (Slow 

loop) 

2

𝑘
 𝜏 + 𝜏0 max (

𝜏0
3
,
𝜏

6
) 

ControlSoft 

Inc. (Fast 

loop) 

2

𝑘
 𝜏 + 𝜏0 min(

𝜏0
3
,
𝜏

6
) 

PMA [114] 0.59𝜏

𝑘𝜏0
 2𝜏0 2𝜏0 

Minimum IAE 

Murrill [115] 

1.435

𝑘
(
𝜏

𝜏0
)0.921 

𝜏

0.878
(
𝜏0
𝜏
)0.749 0.482𝜏(

𝜏0
𝜏
)1.137 

Minimum IAE 

Arrieta 

Orozco [116] 

1

𝑘
(0.2068

+ 1.1597 (
𝜏

𝜏0
)
1.0158

) 

𝜏(−0.2228

+ 1.3009 (
𝜏0
𝜏
)
0.5022

) 
0.3953𝜏(

𝜏0
𝜏
)0.8469 

Minimum ISE 

Murrill [115] 

1.473

𝑘
(
𝜏

𝜏0
)0.97 

𝜏

1.101
(
𝜏0
𝜏
)0.771 0.56𝜏(

𝜏0
𝜏
)1.006 

Minimum ISE 

Zhuang-

Atherton [117] 

1.473

𝑘
(
𝜏

𝜏0
)0.97 

𝜏

1.115
(
𝜏0
𝜏
)0.753 0.55𝜏(

𝜏0
𝜏
)0.948 

Minimum IAE  

Rovira [118] 

1.086

𝑘
(
𝜏

𝜏0
)0.869 

𝜏

0.74 − 0.13
𝜏0
𝜏

 0.348𝜏(
𝜏0
𝜏
)0.914 

Minimum IAE 

Sadeghi-Tych 

[119] 

1

𝑘
(0.26266 + 0.82714

𝜏

𝜏0
) 𝜏(0.28743

𝜏0
𝜏
+ 1.35955) 

1.45933𝜏0
𝜏0
𝜏
+ 3.27873
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Minimum IAE 

Arrieta 

Orozco [116]  

1

𝑘
(0.3295

+ 0.7182 (
𝜏

𝜏0
)
0.9971

) 

𝜏(0.9781

+ 0.3723 (
𝜏0
𝜏
)
0.8456

) 
0.3416𝜏(

𝜏0
𝜏
)0.9414 

Minimum IAE  

Wang [120] 
(0.7645 +

0.6032
𝜏0 𝜏⁄

)(𝜏 + 0.5𝜏0)

𝑘(𝜏 + 𝜏0)
 

𝜏 + 0.5𝜏0 
0.5𝜏𝜏0
𝜏 + 0.5𝜏0

 

Minimum ISE 

Wang [120] 
(0.9155 +

0.7524
𝜏0 𝜏⁄

)(𝜏 + 0.5𝜏0)

𝑘(𝜏 + 𝜏0)
 

𝜏 + 0.5𝜏0 
0.5𝜏𝜏0
𝜏 + 0.5𝜏0

 

Minimum ISE 

Zhuang-

Atherton [117] 

1.048

𝑘
(
𝜏

𝜏0
)0.897 

𝜏

1.195 − 0.368
𝜏0
𝜏

 0.489𝜏(
𝜏0
𝜏
)0.888 

Minimum ISE 

Sadeghi-Tych 

[119] 

1

𝑘
(0.40455 + 0.96441

𝜏

𝜏0
) 𝜏(0.4377

𝜏0
𝜏
+ 1.39588) 

1.93576𝜏0
𝜏0
𝜏
+ 3.83528

 

Van der 

Grinten 

for step 

disturbance  

1

𝑘
(0.5 +

𝜏

𝜏0
) 𝜏 + 0.5𝜏0 

𝜏𝜏0
2𝜏 + 𝜏0

 

Mann [121] 𝜏(0.77 + 0.245(𝜏0 𝜏⁄ )
0.854)

𝑘𝜏0
 𝜏(1.262 + 0.147 (

𝜏0
𝜏
)
0.854

) 𝜏0
0.262 + 0.147(𝜏0 𝜏⁄ )

0.854

0.77 + 0.245(𝜏0 𝜏⁄ )
0.854

 

Sree [122] 1.377

𝑘
(
𝜏

𝜏0
)
0.8422

 1.085𝜏 (
𝜏0
𝜏
)
0.4777

 𝜏(0.3899
𝜏0
𝜏
0.0195) 

Brambilla 

[123] 

𝜏 + 0.5𝜏0
0.85𝑘𝜏0

 𝜏 + 0.5𝜏0 
𝜏𝜏0

2𝜏 + 𝜏0
 

Gerry [124] 𝜏

2.5𝑘𝜏0
 𝜏 0.5𝜏0 

Gong [125] 0.7556𝜏

𝑘𝜏0
(1 + 0.3866

𝜏0
𝜏
) 𝜏 + 0.3866𝜏0 

0.3866𝜏0
1 + 0.3866(𝜏0 𝜏⁄ )

 

Table Ap5.1 Selected PID tuning rules. 
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