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Summary. In this paper, we present a new method for time series forecasting 

based on wavelet support vector machines (WSVM). To better represent any curve in 

)(2 nRL  space (quadratic continuous integral space), we used a new kernel function. 

This function is the wavelet function. The SVM with wavelet kernel function is re-

ferred to as a wavelet SVM. In order to determine the optimal parameter of the 

WSVM, the multi-elitist particle swarm optimization (PSO) was used.  Computational 

results demonstrate the effectiveness of the proposed method over the traditional me-

thods.  

Keywords: wavelet support vector machine, multi-elitist particle swarm optimiza-

tion, time series forecasting  

FALKOWE MASZYNY WEKTORÓW WSPIERAJĄCYCH ORAZ 

WIELOELITARNA OPTYMALIZACJA CZĄSTEK ROJÓW DLA 

PRZEWIDYWANIA SZEREGÓW CZASOWYCH  

Streszczenie. W artykule przedstawiono nową wersję falkowej maszyny wekto-

rów wspierających (ang. wavelet support vector machines, WSVM), którą zastosowa-

no do przewidywania wielowymiarowych szeregów czasowych. Do wyznaczenia 

optymalnych parametrów falkowej maszyny wektorów wspierających użyto wieloeli-

tarnej optymalizacji rojów cząstek (ang. multi-elitist particle swarm optimization, 

MEPSO). Efektywność uzyskanych wyników obliczeniowych została porównana 

z rezultatami tradycyjnych metod przewidywania wielowymiarowych szeregów cza-

sowych. 

Słowa kluczowe: falkowa maszyna wektorów wspierających, wieloelitarna opty-

malizacja cząstek rojów, przewidywanie szeregów czasowych 
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1. Introduction   

The forecasting is a dynamic process in which some parameters are predicted for the giv-

en time duration. This process is characterized by many factors, such as an uncertain charac-

teristics, fuzziness of some numbers, etc. In other words, the forecasting is an estimation of 

the relationship by means of the defining the mathematical model of the process and, further, 

by means of the development of computer and estimation techniques, some estimated data 

put forward for further analysis and evaluation.  

The accuracy of the traditional methods of forecasting, such as the time series forecasting 

[3], high-order time series forecasting [13] or the regression analysis [15], is limited. There-

fore, the artificial intelligence methods  are in use more and more often.  Among others  such 

techniques as neural networks [23], fuzzy time series [11], expert systems [18], fuzzy-neural 

networks [17], neural networks and genetic algorithms [1], etc., have been applied. 

Recently, a new method for  regression and  classification was developed by V. Vapnik 

[21], [22]. This method, called the support vector machine (SVM),  can find the optimal se-

parating hyperplane between the positive and the negative examples. This hyperplane max-

imizes the margin between the training examples that are closely to the hyperplane and mi-

nimizes the number of the data points which are classified wrongly. The SVM method has 

been successfully used for high dimensional data in many problems, such as pattern recogni-

tion [1], electric load forecasting [10], etc. Compared with the traditional neural networks, the 

SVM can obtain a unique global optimal solution and avoid the curse of dimensionality. 

In many applications of the SVM for the pattern recognition, regression analysis, etc.,the 

kernel function must satisfy the Mercel conditions. The Gauss function used more often as 

the kernel function in the SVM,  does not provide  satisfying results. As a result this kernel 

function is not a complete orthonormal base. Therefore, the SVM used at present cannot map 

every curve in the )(2 nRL  space. 

In order to overcome this weakness of the SVM, a new kernel function based on the 

wavelet function has been proposed. Among others, the so-called wavelet kernel function has 

been suggested in a number of papers. For example, the papers by Khandoker [12], Widodo 

[19] described some experiments with the wavelet kernel function. The authors of these pa-

pers show that the performance of the wavelet function in the SVM  is much better than the 

traditional kernel function. Moreover, the SVM with the kernel function can reduce the gene-

ralization error. It was observed by Lu et al. [14] in the application of the linear programming 

support vector regression with the wavelet dynamical systems identification. 

The main goal of this paper is to construct a hybrid system devoted to the forecasting of 

the time series. To avoid the weakness of the traditional SVM method, we suggest the wave-

let kernel function in the SVM. In order to optimize the SVM we propose a new method of 
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optimization called a multi-elitist particle swarm optimization (MEPSO). A built this way 

hybrid intelligent system which  can predict the time series,  is a novel proposal in the field of 

the forecasting method implementation. 

The rest of the paper is as follows. Firstly, the kernel function and their properties are 

presented in section 2. Afterwards, the model of the wavelet support vector machine 

(WSVM) is presented in section 3. The proposed optimization and the forecasting scheme are 

given in section 4. In section 5 we give some computational results. Finally, the paper ends 

with a conclusion and a direction of further work. 

2. Kernels and their properties    

Let points  ),(),)(,( 221 nn yxyxyx   be a set of data which are independently and ran-

domly generated from an unknow function. n  denotes the total number of examples, n

i Rx   

is the input and Ryi   are the target output data. Kernel functions of the form 

)()(),( 2121 xxxxk   , where is an inner product and   is in general a nonlinear mapping 

from the input space X  onto the feature space Z . In fact, the kernel function k  is directly 

defined,   and the feature Z  is derived from its definition. The SVM introduced by V. Vap-

nik [21], [22] finds a hyperplane in a space different from that of the input data x . It can be 

said that this hyperplane in a space is induced by kernel k . 

In order to guarantee the existence of a feature space the Mercer’s Thorem [16] for kernel 

)',( xxk  should be satisfied. 
 

The Mercer’s theorem (Mercer, 1909) 

Let )',( xxK  be a continuous symmetric kernel in the closed interval bxa  and likewise 

for 'x . Kernel )',( xxK  can be expanded in the series 
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with positive coefficients, 0i , for all i . 

For this expansion to be valid and for its absolute and uniform coverage, it is necessary 

and sufficient that condition 
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dxx)(2  (3) 

Functions i  are called eigenfunctions and i  are called eigenvalues. The fact that all of the 

eigenvalues are positive means that kernel )',( xxK  is a positive definite [10]. 

We can also give the above-given condition in the time-frequency terms, namely. 
 

Theorem 1 (Smola and Schölkopf, 1998) 

The horizontal floating function is an allowable support vector’s kernel function if and only if 

the Fourier transformation of )(xK  needs to satisfy the condition as follows: 
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Let the wavelet function   satisfy conditions )()()( 22 RLRLx   and 0)(  x , where 

 is the Fourier transformation. The wavelet function group is given by 

dx
a
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axma 







 
 )(,  (5) 

where ,0, aa  is the so-called scaling parameter, ,, Rmm   is the horizontal floating coeffi-

cient, )(x  is the ”mother wavelet”. Parameters m  and a  are called the parameters of trans-

lation and dilatation, respectively. The wavelet transform )(xf  is defined as 
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where  )(x  is a complex conjugation of )(x . 

The original signal can be obtained by classical inversion formula for )(xf , namely 
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Here we use the following notation: C is a constant with respect to )(x  and 


 dxexw jwx)()( . 

The multi-dimensional wavelet function is defined as follows 
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where x  is a column vector with a d  dimension. 
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The horizontal floating kernel function for the scaling parameter of the wavelet, ,0, aai  

is as follows   
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It is obvious that the wavelet kernel function must satisfy the condition of Theorem 1. To the 

wavelet kernel which satisfies this condition belongs to the Mexican hat wavelet. The Mex-

ican hat wavelet is defined as follows [2]: 
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Theorem 2 The kernel of the Mexican hat 

The Mexican hat wavelet is defined as 
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and this kernel is an allowable support vector kernel function. 

3. Wavelet support vector machines     

In order to build the wavelet support vector machine we can combine the wavelet kernel 

function with the SVM. For a set of data points given above, we now define the wavelet sup-

port vector machine (WSVM) as 

minimize   
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subject to   iii ybxw   )(
 

(14) 

 iii bxwy )(  (15) 

Rbi  ,0,0,0   (16) 

where i  and 

i  are the slack variables corresponding to the size of the excess positive and 

negative deviation, respectively. w  and ix  are a column vector with a d  dimension, 0C  

is a penalty factor. 

The problem given by Eq. (13) is a quadratic programming (QP) problem. By introducing 

Lagrangian multipliers, a Lagrangian function can be defined as 



434 J. Martyna 

 



 















l

i

l

i

iiiiiiii

l

i

iiii

l

i

ii

bxwybxwy

l

C
CwbwL

1 1

11

2)()()(

)()(

)()(
2

1
),,,,,,(





 (17) 

where },,,,,,{ 11

)(   iii        , lilli ,,1,0},,,,,{ 11     l are the 

Lagrangian multipliers. By differentiating the Lagrangian function (17) with respect to 



ibw  ,,,  and by using Karush-Kuhn-Tucker (TKK) conditions, we can obtain the corres-

ponding dual form of function (13), namely 

maximie    
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Further for the construction the QP problem of the WSSM and the solution this problem, we 

can obtain parameters 

i  . Parameter  b  can be obtained after selecting ),,0[,
C

l
jj   and 

),0[,
C

l
kk   , namely 
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The regression function of WSVM can be given by 
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4. The proposed optimization algorithm 

The determination of the unknown parameters of the WSVM is a multivariable optimiza-

tion process in a continuous space. We propose a modification of the classical particle swarm 

optimization algorithm here.  

We recall that the basic PSO algorithm was introduced by Eberhart and Shi (2001) [8] 

and Kennedy (2002) [5]. The convergence of the classical PSO is obtained with the use of 

a small inertia weight  or a constriction coefficient. However, the searching process may 
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have a poor local minimum. Therefore, here we suggest a multi-elitist strategy for searching 

the global best of the PSO. This modification of the PSO called MEPSO was at first proposed 

by Deb et al. (2002) [6]. Let    be a growth rate for each particle. If the defined fitness value 

of a particle of the k -th iteration is higher than that of a particle of the )1( k -th iteration, the 

  will be increased. Thus, we move the local best of all particles which has a higher fitness 

value than the global best into the candidate area. As a result we obtain the replacement of the 

global best by the local best with the highest growth rate  . In other words, the current glob-

al best given by the fitness value is always higher than the old global best.  

4.1. The MEPSO algorithm 

The multi-elitist particle swarm optimization (MEPSO) algorithm works as follows: The 

swarm consists of n  particles. Each particle has a position ),,( 1 idii xxX  , a velocity 

),( 1 idii vvV   and moves through a d  dimensional serach space. According to the 

MEPSO, each particle moves towards the best previous position and towards the best particle 

pg  in the swarm. We assume that the best previously visited position of the i-th particle 

gives the best fitness value, namely ),,( 1 idii ppp  . Also, the best previously visited posi-

tion of the swarm gives the best fitness as ),,(
1 dggg ppp  . 

By incorporating the MEPSO for the previous velocity of the particle, we can update the 

velocity and the particle position by means of using the equations:  

))(()(()()1( 2211 kXpCkXPCkVkV idgdid

l

ididid    (24) 

)1()()1(  kVkXkX ididid  (25) 

where 1 and 2 are random positive number 

The MEPSO algorithm is terminated with a maximal number of generations or best particle 

positions of the entire swarm. When the swarm cannot be improved after a given number of 

generations, the obtained values are accepted as the best.  

The pseudocode of the MEPSO algorithm 

 

procedure MEPSO_algorithm;  

begin  

  for  1t  to maxt do 

    if  maxtt   then 

      for 1j  to N  do  {swarm size is equal to N } 

         if  the fitness value of jparticle  in the t -th time-step > that of 

jparticle  in )1( t -th 

              time-step   then    ;1 jj   
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         endif; 

            update local jbest ; 

         if  the fitness of local jbest  that of global best now then  

            choose local jbest  put into candidate list; 

         endif;; 

      endfor; 

        calculate    of every candidate and record the candidate of max ; 

        update the global best to become the candidate of    max ; 

     else  

         update  the global best to become the particle of highest fitness val-

ue.  

     endif;   

  endfor; 

end; 

 

4.2. The Fitness Function 

In order to evaluate the accuracy of a forecasting an appropriate fitness function can be 

used. We designed it as follows: 
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where iy  denotes the forecasting value of the selected sample, iy  is the original date of the 

selected sample, l  is the size of the selected sample. The proposed MEPSO algorithm is used 

for determining the parameters of the WSVM. The different parameters of the WSVM are 

adapted for the sake of forecasting the time series. The most adequate WSVM with the opti-

ma parameters is used in the final forecasting. 

 
Fig. 1. Flowchart of  the WSVM –based forecasting algorithm for the time series forecasting by 

means of the SVM and the MEPSO methods 

Rys. 1. Schemat algorytmu opartego na WSVM dla przewidywania szeregów czasowych, przy użyciu 

metod SVM i MEPSO 

  
The MEPSO algorithm is terminated with a maximal number of generations or best par-

ticle positions of the entire swarm. When the swarm cannot be improved after a given number 

of generations, the obtained values are accepted as the best.  
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4.3. The Proposed Forecasting Function 

The proposed forecasting metod is described in steps as follows (see fig. 2):  

1. Initialize the original data. 

2. Data normalization. 

3. Construct the WSVM and the QP problem of the WSVM. 

4. Set the MEPSO parameters including number of swarm particles )(N , swarm particie 

dimension )(d , number of maximal iterations )( maxk , fitness value of swarm particie  

5. )( , inertia weight )( , acceleration constans ),( 21 CC , growth rate )( , etc. 

6. Optimize the parameters i  and computer the regression coefficient coefficient b given 

by Eq. (22). 

7. Compute the forecasting result. 

5. Experimental Results  

To performance evaluation of the proposed forecast method, the accuracy of prediction of 

the time series by means of combining theWSVM and the MEPSO was studied.   We have 

used the script with the WSVM and the MEPSO methods which was included to Oracle Data 

Mining Software.  

We used the following normalization: 
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where i  is the index of sample, s

ix  and  
s

ix are the original value and the normalized value of 

the s  sample, respectively.  

For the Mexican hat wavelet kernel used in the WSVM three parameters are determined, 

namely 
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We assumed that  the MEPSO is convergent with the minimal value. For the minimal value 

of the fitness function the following values of the parameters: 8700C , 82.0v , 95a  

are obtained. 
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To performance evaluation of the proposed forecast metod, the accuracy of prediction of 

the time series by means of ARIMA metod was studied. We take into consideration the stock 

of the PKO B.P. noted in the Warsaw Stock Exchange [6].  

The comparison of the forecasting result obtained by WSVM with the MEPSO algorithm 

and ARIMA metod of the PKO B.P. stock with the real value for the twelve months from the 

beginning of the 10 November 2008 year is given in fig. 2. It can be seen that the MEPSO 

can improve the global searching ability of the particie swarm optimization algorithm. 

To evaluate the performance of forecasting the underlying WSVM, two performance 

measures are calculated, the root mean squared error (RMSE) and mean relative error (MRE). 

For day i  to each data set, we define 
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where ijŷ is the forecast for ijy , m is the time interval. 

 
Fig. 2. The comparison of the forecasting result obtained by WSVM and ARIMA methods of the PKO 

B.P. stock with the real value for the twelve months from the beginning of the 10 Nov. 2008 

Rys. 2. Porównanie wyników przewidywania, uzyskane przy użyciu metod WSVM, ARIMA i rzeczy-

wistych notowań kursu akcji PKO B.P. w ciągu 12 miesięcy, począwszy od 19 listopada 2008 r. 

 
The Mean RMSE and Mean MRE (%) of the forecast time series are then calculated for 

data sets. For each forecasting methods, the fig. 3 plots the empirical cumulative distribution 

function (CDF) of the Mean RMSE calculated on the data sets by means of WSVM and 

ARIMA methods, respectively. The true data is indicated in the figures using a triangle. In 
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both cases, our solution based on WSVM and MEPSO methods is competitively close to the 

true data. 

 
Fig. 3. The empirical cumulative distribution function (CDF) calculated by means of WSVM and 

ARIMA, respectively 

Rys. 3. Funkcja kumulacyjnego rozkładu (CDF) w zależności od średniej wartości RMSE obliczone 

przy użyciu WSVM i ARIMA 

6. Conclusion 

The concept of combining the SVM method and the MEPSO technique into the hybrid 

system for forecasting the time series is very promising. A mathematical model for this sys-

tem has been also developed. By means of using the computational experiment it has been 

shown that the forecasting of the time series can be achieved with satisfactory accuracy. 

The scope of the analytical model presented in this paper is limited to one method of op-

timization, e.g. the MEPSO method. As a future work, we plan to develop an SVM method 

that will be improved by another optimization method in order to solve the formulated fore-

casting problem. 
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Omówienie  

W artykule wprowadzono falkowe maszyny wektorów wspierających (ang. Wavelet 

Support Vector Machines) dla przewidywania szeregów czasowych. Istotą tej metody jest 

zastosowanie falkowej funkcji jądrowej w maszynie wektorów wspierających. Jako falkową 

funkcję jądrową użyto falkę znaną jako „meksykański kapelusz”. Wartości parametrów fal-

kowej maszyny wektorów wspierających uzyskano dzięki oryginalnej metodzie, opartej na 

wieloelitarnej optymalizacji rojów cząstek (ang. Multi-Elitist Particie Swarm Optimization). 

Opracowaną metodę przewidywania szeregów czasowych zastosowano do prognozowania 

kursu akcji papierów wartościowych spółki KGHM S.A., notowanych na Giełdzie Papierów 

Wartościowych w Warszawie. Dla porównania wyników przewidywania, uzyskanych przy 

użyciu falkowej maszyny wektorów wspierających wraz z wieloelitarną optymalizacją rojów 

cząstek, obliczono dwa mierniki trafności prognoz ex post: standardową średnią błędów 

względnych (ang. root mean squared error, RMSE) oraz relatywną standardową średnią błę-

dów (ang. mean relative error, MRE).  
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