
STUDIA INFORMATICA 2011
Volume 32 Number 2A (96)

Paweł KAPŁAŃSKI
Gdansk University of Technology,
Faculty of Electronics, Telecommunications and Informatics

CONTROLLED ENGLISH INTERFACE FOR KNOWLEDGE BASES

Summary. This paper describes the approach to interface for OWL Knowledge
Bases based on Controlled English that is transformed directly to OWL 2 expressions
and back. Two possible modes enable usage of the interface to specify Terminology,
World Description as well as Integrity Constrains. Knowledge Base then can be vali-
dated against the Integrity Constrains to enable its continuous validation.

Keywords: OWL, Controlled Natural Language, Description Logic, Knowledge
Base

KONTROLOWANY JĘZYK ANGIELSKI, JAKO INTERFEJS BAZ
WIEDZY

Streszczenie. W artykule przedstawiono interfejs dla baz wiedzy, stworzony na
podstawie kontrolowanego języka angielskiego, który to jest przekształcany bezpo-
średnio do wyrażeń OWL 2 i z powrotem. Wskazano dwa tryby pracy, opierające się
na tym interfejsie, umożliwiające zapisywanie terminologii bazy wiedzy oraz opisu
świata, jak również na zapisie ograniczeń wewnętrznych bazy wiedzy. Taka baza
wiedzy może być następnie automatycznie kontrolowana pod kątem ww. ograniczeń.

Słowa kluczowe: OWL, kontrolowany język naturalny, logika opisowa, baza
wiedzy

486 P. Kapłański

1. Introduction

Knowledge Bases1 (KB) naturally appear in almost every area of endeavor where com-
puters are used intensively and knowledge management is required. Nowadays we observe
the evolution process that brings KB from the human-readable form (where KB acts as an
archive of searchable information) into the more-and-more computer-readable form that al-
lows for automated deductive reasoning – semantic KB. To understand the knowledge mod-
el2 stored in semantic KB one is required to have a background in the field of an artificial
intelligence, knowledge representations and knowledge modeling. There is also required to
know the supporting tools that are mostly organized around the graphical knowledge model-
ing languages. While without the support of formal methods it is almost impossible to trace
and understand the knowledge model if KB is complex, it is still very hard to trace a formal
knowledge model for an authority that is not familiar with a particular graphical knowledge
representation language. In consequence, strategic decisions that are made by the authorities
not familiar with semantic tools might reveal a lack of crucial information.

To overcome those limitations we propose to use Controlled English (CE) as a know-
ledge modeling language. Proposed CE is supported via Predictive Editor that will prohibit
one to enter any sentence that is not grammatically or morphologically correct and will ac-
tively help the user during sentence writing.

2. Natural language as an interface for OWL Knowledge Bases

CE is a subset of Standard English with restricted grammar and vocabulary in order to re-
duce the ambiguity and complexity inherent in full English. In the last years Controlled Eng-
lish established itself in various application fields as powerful knowledge representation lan-
guage that is readable by humans and processable by computers. CE texts can automatically
be translated into and from description logic, specifically SROIQ, the basis of the semantic
web language OWL2. Although OWL2 [6] is associated with the Semantic-Web [3], new
applications appeared recently proving its usability also in other fields of interest.

The research for CE described in this paper was inspired by ACEOWL [8], however gram-
mar of invented language, was implemented using LARL(1) top-down parser generator [11]
and equipped with additional features that are not accessible within ACEOWL. Therefore,

1 Knowledge Base is an integral component of knowledge management systems. It is a special kind of da-
tabase used to optimize information collection, organization, and retrieval for an organization, or for the general
public.

2 Knowledge models are expressed in knowledge representation languages or data structures that enable the
knowledge to be interpreted by software and to be stored in a database or data exchange file.

Controlled English Interface For Knowledge Bases 487

there exist sentences of invented language (called LARL(1)CEDL) that are not a valid expres-
sions in ACE (and even in English), nevertheless the EBNF grammar (see fig. 2) of the
LARL(1)CEDL is designed to be as close as possible to Natural English and can be translated
to OWL2 and back easily.

LARL(1)CEDL language deals with concepts, roles and instances that can be represented
by symbols in form of buzz-words3. Concept and role identifiers should start with small letter
in opposite to instances and cannot be any of keywords. The morphology is applied if needed
by separated dictionary based module. Additionally it is required that each sentence starts
with upper-case letter and ends with ‘full stop’ sign. There are four general groups of sen-
tences that are allowed:
1. Concept (possibly pseudo-modal) subsumption – represents all cases where there is

a need to specify the fact (or constrain) about specific concept or instance (or expressions
that evaluate to concept or instance) in form of subsumption e.g.: “Every cat is a mam-
mal.”, “Pawel has two legs.” or “One cat (that is a brown-one) has red eyes”

2. Concept equivalence4 – represents facts about concept or instance equivalences. “Every
man and every male-human means-the-same.”

3. Role (possibly complex) inclusion – specify the properties and relationships between
roles in terms of expressiveness of SROIQ e.g.: “If X loves something that covers Y then
X loves-cover-of Y.”

4. Role equivalence – useful e.g.: in definition of inverse roles e.g.: “X is-type-of Y and Y
has-type-that-is X means-the-same.”

ALGORITHM Validation(terminology, world-description, integrity-constrains)
1. Tell the Reasoner about terminology
2. Tell the Reasoner about world-description

3. IF(knowledge base is not consistent)
4. THEN
5. show inconsistency
6. STOP
7. ENDIF
8. FOR(ic∈integrity-constrains)
9. FOR(instance∈LeftHandSide(ic))
10. IF(instance∉RightHandSide(ic))
11. show error or warning depending on modality flag
12. STOP
13. END
14. END

Fig. 1. The validation algorithm
Rys. 1. Algorytm walidujący

3 Buzz words are a group of words connected with ‘-‘ sign.
4 “A and B means-the-same.” construction correspond to A≡B expression.

488 P. Kapłański

Fig. 2. EBNF Grammar of LARL(1)CEDL
Rys. 2. Gramatyka LARL(1)CEDL w postaci EBNF

To enable expression of complex SROIQ expressions LARL(1)CEDL grammar allows to

use parentheses that can be nested if needed in form of (that <expression>)5 e.g.: “Every hu-
man is something (that is a man or is a woman or is a hermaphrodite).”. The pseudo-modal
subsumption expressions use the “must” or “should” keywords e.g.: “Every child should have
parents.” Such pseudo-modal expressions are in-fact translated to the OWL expressions that
are simply annotated with the modal-word. Grammar in this form was required to provide
one common language for:
1. Terminology – conception of terms in the world (the global axioms and core taxonomy).

This category includes generalized T-Box (set of expressions, role specifications and oth-
er global assumptions – possibly including nominal that in this case become a part of such
metaontology)

5 “A (that is B or is C)” expression corresponds to A⋘ (B⋙ C).

<paragraph> ::= {<sentence>}

<sentence> ::= <subject>[<modalWord>]<objectRoleExpression>
 | ‘if’ ‘X’ <roleChain> ‘Y’ ‘then’ ‘X’ <role> ‘Y’ ‘.’
 | ‘if’ ‘X’ <roleChain> ‘Y’ ‘then’ ‘Y’ <role> ‘X’ ‘.’
 | <subject> ‘and’ <subject> ’means-the-same’ ‘.’

| ‘X’ <role> ‘Y’ ‘and’ ‘X’ <role> ‘Y’ ’means-the-same’ ‘.’
| ‘X’ <role> ‘Y’ ‘and’ ‘Y’ <role> ‘X’ ’means-the-same’ ‘.’

<subject> ::= (’every’|’no’) <single> | ’everything’ [<that>] | <instance>| ’nothing’

<modalWord> ::= [‘must’|’should’]

<objectRoleExpression> ::= [{‘not’}] ((‘is’|’be’|’are’) <object>| <role> <objectRestriction>)

<roleChain> ::= <role> [{‘something’ ‘that’ <role>}]

<role> ::= <name> | (‘is’|’be’|’are’) <name> ’by’

<instance> ::= <bigName>

<object> ::= [‘a’|’an’] <single> | ’something’ [<that>] | <instance> | ’nothing’

<objectRestriction> ::= <object>
| (’nothing-but’|<comparer><count>) (<single>|<instance>|’something’ <that>)

 | ‘none’
 | ’itself’

<single> ::= <name> [<that>] | ’thing’ | ’things’

<that> ::= ’that’ <objectRoleExpressionIntersectionUnion>
| ’(‘ ‘that’ <objectRoleExpressionIntersectionUnion> ‘)’
| ’(‘ ‘that-is-one-of:’ <instance> {‘,’ <instance>} ‘)’

<objectRoleExpressionIntersection> ::= <objectRoleExpression> [{‘and’ <objectRoleExpression>}]
<objectRoleExpressionIntersectionUnion>::=<objectRoleExpressionIntersection>

[{‘or’ <objectRoleExpressionIntersection>}]

<comparer> ::= [‘at-most’|’at-least’|’less-than’|’more-than’|’different-than’]

<count> ::= (‘no’| ‘single’ |’two’ |’three’ |...|'ten') | {<digit>}

<name> ::= <smallLetter>{<digit>|<smallLetter>|<bigLetter>|'-'|'.'|'/'}

<bigName> ::= <bigLetter>{<digit>|<smallLetter>|<bigLetter>|'-'|'.'|'/'}

<digit> ::= '0'|1'|'2'|'3'|'4'|'5'|'6'|'7'|'8|'9'

<smallLetter> ::= 'a'|'b'|'c'|'d'|'e'|'f'|'g'|'h'|'i'|'j'|'k'|'l'|'m'|'n'|'o'|'p'|'q'|'r'|'s'|'t'|'u'|'v'|'w'|'x'|'y|'z'

Controlled English Interface For Knowledge Bases 489

2. World Description – particular manifestations of Terminology. This category includes
generalized A-Box (set of expressions about instances that are related to particular entity
of analyzed problem).

3. Integrity Constrains (pseudo-modal expressions that can be validated by Reasoner)
While OWL2 lack the expressivity to describe modal logics there is a need to annotate

the pseudo-modal expressions with additional tag: “must” or “should”. It is then possible to
build the KB validator by continuously applying Integrity Constrains on both World Descrip-
tion and Terminology using Reasoner6 (see fig. 1).

3. Motivating example

Object-oriented program built over object-oriented design ontology7 forms a World De-
scription of particular object-oriented program8. The object oriented design ontology is
a Terminology as it consists from general rules e.g.: polymorphism and encapsulation. Incor-
porating LARL(1)CEDL as a language that is able to model object-oriented structures enables
us to use one and the same system for storing Integrity Constrains, as well as the project and
system architecture, which in turn ensures the logical cohesion of artifacts created in different
stages of software development (see fig. 3).

Fig. 3. Software Engineering with semantic KB
Rys. 3. Inżyniera Oprogramowania z wykorzystaniem semantycznej Bazy Wiedzy

6 The proposed algorithm is insufficient but proves the idea. The real-life solution require Reasoner to have

embedded integrity-constrains checking as a reasoning-task (e.g.: Pellet Integrity Constrain Validator
http://clarkparsia.com/pellet/icv/).

7 A hierarchical structure of design constructs.
8 Program entities form a structure of design constructs (derived from object-oriented design ontology) us-

ing various relations that may exist amongst these constructs. This structure can be seen as a model of know-
ledge about those entities and therefore it forms ontology.

Programmer

Architect & Designer

490 P. Kapłański

4. The toolchain and methodology

To prove the concept, the toolchain was implemented as a pair of complementary tools.
To deal with KB in form of OWL2 files that include each other using <import> OWL state-
ment, we developed Predictive Editor for LARL(1)CEDL called “FluentEditor for OWL”. It is
fully functional editor for OWL2 with natural language interface (see fig. 4). The second
main component is Integrity Constrains Validator that runs validation algorithm (see fig. 1)
on stored KB. The main validation tasks are performed by HermiT [12] Reasoner. Both:
Predictive Editor and Integrity Constrain Validator are implemented on top of OWLAPI [2].

Among the toolchain the work methodology was invented. By default we distinguish be-
tween two groups of users: Knowledge Engineers that specify the Terminology and map re-
quirements to Integrity Constrains and Knowledge Providers that produce World Description;
it can be also produced from already existing data sources. Both participants do complemen-
tary work using Predictive Editor and are continuously synchronized by Integrity Constrains
Validator.

The toolchain and methodology were especially designed to be a part of novel software
engineering methodology called OASE (Ontology Aided Software Engineering) designed for
requirement engineering a part of that methodology among others e.g.: software architecture,
design and program-code. While requirement engineers use Predictive Editor as a standalone
application, other participants use Predictive Editor as a tool build-in IDE9.

5. Evaluation

5.1. Advantages

Proposed methodology has a number of advantages for all involved groups of contribu-
tors. Input and output of KB is based on the same natural-looking language and the logic is
hidden behind. Users do not need any training in formal logic formalisms nor the ICT support
due to the Predictive Editor. Knowledge Providers are continuously checked by Validator if
the entered knowledge fulfills the Integrity Constrains. Knowledge Engineers are provided
with ability to explore the software using formal tools and they can continuously modify the
Integrity Constrains while the KB implementation progress.

9 Integrated Development Environment (e.g.: Visual Studio, Eclipse, Code Lite)

Controlled English Interface For Knowledge Bases 491

5.2. Limitations

First general limitation of CE is the need for Predictive Editor. It is very hard to create
a correct CE sentence without such support. Second general limitations come from selection
of Description Logic as underlying formalism. This limitation allows specifying and verify-
ing only statements that are in the expressivity power of SROIQ. Future research need to be
made to allow for expressivity in e.g.: Adjectives, Full Modal Logic, Temporal Logic etc. –
however it is not obvious if then it will be possible to use LARL(1) or any other context-free
grammar anymore.

6. Related Work

Very expressive CE languages like ACE [5] are already used to verbalize OWL. ACE can
be translated into a non-decidable subset of first-order logic equipped with modal extensions.
It includes subset called ACEOWL [8] that can be translated into OWL 2. On the other hand
most of OWL 2 can be translated into a subset ACEOWL. Moreover, it was recently shown [9]
that ACEOWL is more natural for people than formal-looking CEDL syntaxes (like Manchester
[7] /Sydney [4] OWL Syntax).

Fig. 4. Fluent Editor 4 OWL – the main window
Rys. 4. Fluent Editor 4 OWL – główne okno programu

492 P. Kapłański

There are dozens known ontology-editors and the number of them is growing from day to
day. The most famous is Protégé [10] Most of them are difficult to understand and use by
a typical domain user (they require knowledge about ontology engineering). Protégé allows
editing ontology and inspect the inferred knowledge.

7. Future Work

Existing implementation is based on a file-system approach however, in the next step the
approach with database instead of file-system is planned to be performed. It should be easy
task as the solutions for it already exists [1].

 Moving further, one can consider modern software-intensive systems as made of three
kinds of participants: software, hardware and bioware10. While communication between
software and hardware is realized by the computer-code, a programming language bridges
software components with bioware. In our opinion it is worth to explore the abilities of
LARL(1)CEDL if and how it allows bioware to access (and to be accessed by11) the software.
We expect then to know how to provide the smooth communication between computers and
human beings that lack any prior knowledge of CE language.

8. Conclusion

This paper presents the results of research on application of Description Logic verbalized
by Controlled English implemented with LARL(1) grammar. It was shown that invented lan-
guage can be used as interface for OWL Knowledge Bases as it has the same expressivity.
The invented methodology is a part of novel Ontology Aided Software Engineering metho-
dology however successful implementation of predictive editor based on this approach opens
a spectrum of potential applications (e.g.: in Crowd Sourcing).

10 Bioware is a neologism for the human that can be seen as a part of computer system through the special

API (see e.g.: Crowd Sourcing).
11 Computer System can use the bioware as a system service (or just like any other system component). CE

defines here a communication protocol for interaction with such a bio-service.

Controlled English Interface For Knowledge Bases 493

BIBLIOGRAPHY

1. Auer S., Ives Z. G.: Integrating ontologies and relational data. Technical Report MS-CIS-
07-24, University of Pennsylvania Department of Computer and Information Science
Technical, 11, 2007.

2. Bechhofer S., Volz R., Lord P. W.: Cooking the semantic web with the OWL API. In The
Semantic Web – ISWC 2003: Second International Semantic Web Conference, Sanibel
Island, FL, USA 2003, p. 659÷675.

3. Berners-Lee T., Hendler J., Lassila O.: The Semantic Web. Scientific American, 2001,
284(5), p. 34÷43.

4. Cregan A., Schwitter R., Meyer T.: Sydney owl syntax – towards a controlled natural lan-
guage syntax for owl 1.1. In OWLED, 2007.

5. Fuchs N. E., Schwertel U., Schwitter R.: Attempto controlled english – not just another
logic specification language. In LOPSTR ’98: Proceedings of the 8th International Work-
shop on Logic Programming Synthesis and Transformation, London, UK 1990, Springer-
Verlag, p. 1÷20.

6. Hitzler P., Krötzsch M., Parsia B., Patel-Schneider P. F., Rudolph S.: OWL 2 Web Ontol-
ogy Language Primer. W3C Recommendation, World Wide Web Consortium, October
2009.

7. Horridge M., Drummond N., Goodwin J., Rector A. L., Stevens R., Wang H.: The man-
chester owl syntax. In OWLED, 2006.

8. Kaljurand K.: Attempto Controlled English as a Semantic Web Language. PhD thesis,
Faculty of Mathematics and Computer Science, University of Tartu, 2007.

9. Kuhn T.: How to evaluate controlled natural languages. CoRR, abs/0907.1251, 2009.
10. Stanford School of Medicine. Protégé [http://protege.stanford.edu], 2010.
11. Rosenkrantz D. J., Stearns R. E.: Properties of deterministic top down grammars,

[in:] STOC’69: Proceedings of the first annual ACM symposium on Theory of computing,
New York, NY, USA 1969, p. 165÷180.

12. Shearer R., Motik B., Horrocks I.: HermiT: A Highly-Efficient OWL Reasoner, [in:] Rut-
tenberg A., Sattler U., and Dolbear C. (eds.): Proc. of the 5th Int. Workshop on OWL:
Experiences and Directions (OWLED 2008 EU), Karlsruhe, Germany, October 26–27
2008.

 Recenzent: Dr inż. Michał Świderski

Wpłynęło do Redakcji 31 stycznia 2011 r.

494 P. Kapłański

Omówienie

W artykule przedstawiono podejście do interfejsów baz wiedzy. Jest ono oparte na kon-
trolowanym języku angielskim, a gramatyka proponowanego języka jest gramatyką typu
LARL. Zdania języka mogą być bezpośrednio transformowane do wyrażeń OWL 2, a także
z powrotem. Dwa tryby pracy umożliwiają wkorzystanie interfejsu do opisu wiedzy zarówno
o obszarze zainteresowań (terminologii), do zapisania samych danych (opisu świata), jak i do
zapisu ograniczeń zapewniających integralność bazy wiedzy (ograniczeń wewnętrznych).
Pozwalają one na ciągłe monitorowanie bazy wiedzy pod kątem spełniania przez nią narzu-
conych ograniczeń.

Metodologia jest częścią metody wytwarzania oprogramowania na podstawie ontologii
(OASE – Ontology Aided Software Engeenering). Udana implementacja edytora predyktyw-
nego (4), powstałego, jako jedno z narzędzi wspierających tę metodę, otwiera jednak szero-
kie spektrum potencjalnych zastosowań także w innych dziedzinach zainteresowań (np. w
crowdsourcingu).

Address

Paweł KAPŁAŃSKI: Politechnika Gdańska, Wydział Elektroniki, Telekomunikacji i Infor-
matyki, ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk Wrzeszcz. pawel@kaplanski.pl.

	1. Introduction
	2. Natural language as an interface for OWL Knowledge Bases
	3. Motivating example
	4. The toolchain and methodology
	5. Evaluation
	5.1. Advantages
	5.2. Limitations

	6. Related Work
	7. Future Work
	8. Conclusion

