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SPLICO – SPLINE DESCRIPTION OF CLOSED CONTOURS 

Summary. This paper deals with approximation of a two-dimensional closed 

curve. The notion of SpliCo is introduced that is based on spline functions. Spline 

functions are a common method of the regression function estimation. As the closed 

curve cannot be described as the function (from the mathematical point of view) 

a modification of the standard method must be done. This paper describes three fol-

lowing models and each of them makes it possible to describe a contour more 

smoothly and accurate. The best model of SpliCo is compared with the standard B-

spline model. 

Keywords: approximation, function smoothness, estimation of the regression 

function, spline functions 

SPLICO – OPIS ZAMKNIĘTYCH KONTURÓW ZA POMOCĄ FUNKCJI 

SKLEJANYCH 

Streszczenie. Niniejszy artykuł porusza problem aproksymacji dwuwymiarowej 

krzywej zamkniętej. Nazwa SpliCo została wprowadzona ze względu na to, że roz-

wiązanie oparte jest na funkcjach sklejanych. Funkcje sklejane są typową metodą es-

tymacji funkcji regresji. Zamknięta krzywa nie może, z matematycznego punktu wi-

dzenia, być przedstawiona jako funkcja, więc do tego celu należy zaproponować mo-

dyfikację standardowej metody aproksymacji. Artykuł ten przedstawia trzy kolejne 

modele aproksymacji, każdy dający bardziej poprawny i wizualnie gładszy opis kon-

turu. 

Słowa kluczowe: aproksymacja, estymacja funkcji regresji, funkcje sklejane, 

gładkość funkcji 
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1. Introduction 

Estimation of the regression function is one of the subproblems from the discipline called 

machine learning [11, 12]. The aim of the evaluation of regression function is to find some 

dependencies between variables in the observed data set. The same task may be also de-

scribed as the approximation of the known (unknown) function with the other one. There are 

two main groups of methods of the regression function estimation: parametrical and non-

parametrical. Models with a well defined functional form belong to parametrical methods and 

are  described with finite number of free parameters which values must be established (usu-

ally as the result of the optimization). Nonparametrical methods are also described by some 

free parameters but their results are not given in the analytical form. These methods do not 

make any assumptions about the functional form of described dependence. They only de-

scribe dependence but do not explain its nature. Very common nonparametric regression 

functions estimators are spline functions [1, 4], radial basis functions [6], additive (and gen-

eralized additive) models [5] or kernel estimators [8, 13] with Support Vector Machines [2]. 

This short article describes the application of modified spline functions into approximation of 

closed curves (contours). First part of the paper describes the context of the problem and ex-

plains the nature of spline function regression. Afterwards three models of spline closed 

curve approximation are described. Finally results of experiments, including the comparison 

of SpliCo and B-splines, are shown and some final conclusions complete the paper. 

2. Problem Description 

The closed curve is given as a series of points in two-dimensional space. The demanded 

result should be an equation representing the curve as accurately as possible. This means that 

the sequence of points representing the curve will be approximated by a function. Since the 

curve is closed there are at least two points where its shape cannot be represented as a func-

tion. This is why the curve must be divided into fragments which will be approximated sepa-

rately. The result of this approximation will be a group of splines. The point of two splines 

connection is called a knot. 

The above calculations may seem trivial but there is a requirement that the shape of the 

approximated spline curve should be smooth. This requirement is not ensured in the 

neighbourhoods of the knots. Therefore a special modification of each consequent spline 

must be considered. 
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3. Spline Regression  

One of the method of nonparametrical regression are spline functions [1]. With this 

method an unknown regression function is divided into several functions in the given knots. 

If we assume that the domain of the spline function is divided with K knots (what means that 

there will be K + 1 different functions) and particular functions are polynomials with degree 

equal to q the spline function equation simplifies and takes the following form: 
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where t represents knots, β represents additional factors, m+ means the positive value of the m 

also defined as 
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 and q is the degree of the approximating polynomial. The error 

is generally based on the difference between the input and output functions so the approxima-

tion minimizes the norm ||f(x) − F(x)||, usually using the root mean squared error as the objec-

tive function. 

4. SpliCo Definitions 

As it was described in the previous section spline functions can be named as the analyti-

cal description of the unknown dependence. The main aim of this article is to create a “spline 

language” for closed curves description. It is obvious that a closed curve cannot be repre-

sented by a single y = f(x) function . Its shape simply prevents it by having more than one 

value for a single argument. But a closed curve may be described as the connection of several 

non-closed curves that may be functions from the mathematical point of view. 

This section describes three approaches for spline contour description. Each of them is 

based on the assumption that the single spline is the polynomial which order is equal to four: 
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where α represents unknown factors of the approximation function. This form of F(x) is sim-

ple to be calculated and is often used for this purpose. It can have both convex and concave 

parts which makes it ideal for most cases. The factor before the highest powers of x can be 

equal to zero if a lower degree polynomial is sufficient. This covers the quadratic and linear 

functions. 
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4.1. Spline Approximation 

Spline approximation extends typical task of approximation by dividing arguments into 

intervals in selected knots. Created fragments are approximated separately. Usually, in typi-

cal spline approximation, knots are equidistant from each other. However in case of a closed 

curve the most intuitive solution is to place them in points where the curve shape stops being 

a function. In this kind of points (x0, y0) the tangent line of the curve given by the equation: 

  0 0 0'y y f x x x    (3) 

will be vertical what means the value of the tangent line direction coefficient will equal infin-

ity: 

0'( )f x   . (4) 

Fig. 1. shows an example of choosing the spline knots for a closed curve. 

 
Fig. 1. Example of choosing spline knots 

Rys. 1. Przykład wyboru węzłów  

  

However the above description is only a speculation. The shape of the whole curve has 

the influence on errors so the created solution should decide about the knots on its own. In 

this paper it is assumed that at the beginning the number and position of knots are given. 

There is nothing said whether they will give satisfying result. Approximation can be done in 
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iterations until a certain stop condition is fulfilled e.g. number of iteration is exceeded, the 

error is lower than the given threshold or the error is not declining. In the proposed solution 

knots are changed so that the absolute value of the derivative in every knot will grow during 

iterations. In geometric terms the tangent lines in moving knots will tend to be as close to 

being vertical as possible. Iterations are conducted as long as the error declines because this 

method should give the most accurate results. 

4.2. Assurance of Smoothness – Smoothing Addend 

The results of the approximation for every spline joined together create the approximated 

shape of the curve. However in the neighbourhood of the spline knots the smoothness of the 

new curve is not assured. A modification of the spline polynomials is required to achieve 

a continuity of the curve. A special addend could make the values of every two functions 

equal in their common knot. Additionally the curve shape could be differentiable which will 

make sure that no sharp edges are present but this is very hard to compute. Furthermore knots 

placed on the curve in places where tangent line will be vertical complicates even the 

smoothness assurance. 

The mathematician definition of smoothness say that function is called smooth of class C
n
 

if all derivatives of the function up to and including order n exist and are continuous [10]. 

The class C
1
 ensures that a function do not have discontinued parts and is differentiable in 

every point and therefore displayed function looks smooth. Since polynomials have smooth 

derivatives up to any order the interesting part is the knot between two splines. It requires 

that left-hand and right-hand derivatives in the knot point (or two left-hand or right-hand de-

rivatives in case of a point in whose neighbourhood the shape is not a function) are equal. 

Therefore so called smoothing terms are used in spline approximation e.g. in [9]. According 

to the Eq. (1) and to the assumption of the number of knots (parameter that is set at start) and 

the polynomial degree we obtain the following spline formula: 
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If we assume that the approximated shape is a function and splines are calculated from 

left to right then every next spline will have a polynomial addend based on previous knots 

(for x > tk). Previous spline will shape the new one making the output smoother. K first 

splines will create the result. 
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4.3. Assurance of Smoothness – Geometric Construction 

The results of implemented solution still have issues with curve smoothness as shown in 

the results chapter. To create a fully smooth shape a geometric algorithm will be proposed. In 

this algorithm approximation is done without any smoothing addend. Returned polynomials 

almost surely do not have matching endings nor create a smooth closed curve. The algorithm 

uses a fragment of a circle and (if necessary) a fragment of a straight line to create a hyphen 

filing the gap between two splines. The algorithm steps for a pair of neighbour splines are as 

follows (refer to Fig. 2 for details): 

1. Remove ends of the splines near the spline knot with a chosen range. Approximation er-

ror is growing near the ends of the approximated function interval. Save new ends of the 

splines: S1 and S2. 

2. Construct tangent lines to the two splines in S1 and S2. 

3. Calculate tangents crossing point P. 

4. Check whether point P coordinates values are between coordinate values of points S1 and 

S2 in at least one dimension (e.g. near the points of the curve with minimal and maximal 

x coordinates values). If this condition is not satisfied then extend the range of spline ends 

cutting and go to 1. 

5. Find the distance a between P and the closest from S1 and S2. Mark the longer segment 

from point P to S1 or S2. 

6. Calculate point T on the longer segment which distance from P is a. 

7. The remaining part of the longer segment of length b will be put into result – part of 

a straight line. New ends are one of the S1 and S2 points (point S) and point T. 

8. Calculate perpendicular lines to tangent lines in corresponding point S and T. 

9. Since there are two segments SP and PT with equal length, the new lines have a crossing 

point R, which is a centre point of a circle with radius r. 

10. Add to the result the part of the circle between point S and T, which is closer to point P. 

Additionally the implementation should return the hyphen points in order imposed by 

splines order, e.g. counter clockwise from S1 to S2. Although inserted circle part is not 

a function the use of tangent lines assures smooth shape of the connected splines and hy-

phens. 
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Fig. 2. Smoothing hyphen geometric construction 

Rys. 2. Konstrukcja łącznika wygładzającego 

5. Experiments and Results 

5.1. Application 

Contours come from a raster map with isolines. The only interesting part of the map were 

closed isolines and they were taken into the further preprocessing step. With the usage of 

standard image processing methods (thresholding etc.) five isolines were extracted and saved 

into separate black-white bitmap files. The extraction of contour pixels were performed with 

the usage of the 8-way chain code that is used to describe direction to move over pixels of the 

image [3]. 

5.2. Quality Measure 

The approximation error is the sum of errors for every spline. There is also a special fac-

tor expanding the error on the basis of information about knots and the degree of the polyno-

mial approximation function: 
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where: 

 error is the error that origins from the spline function itself: for the polynomial part it is 

the root mean squared error (RMSE) and for circular part it is the average Euclidean dis-

tance of the point from the arc, 

  is a given penalty factor for high power exponents in the spline function and bigger 

number of knots, 

 xPower is the power exponent of given occurrence of x in the spline polynomial function 

(where factors are not equal to zero), 

 K is the number of knots. 

5.3. Results 

Figure 3 shows an example of the same calculations done with no smoothing, smoothing 

addend and geometric smoothing. Note that the result in the first two figures is not very satis-

fying. Table 1 shows approximation results for five contours. 

  
Fig. 3. Example results (contour 1) from left to right: with no smooth-

ing, with addend, with geometric construction 

Rys. 3. Przykładowe wyniki (kontur 1) od lewej: bez wygładzania, ze 

składnikiem wygładzającym, z wygładzaniem geometrycznym 

  

Table 1 

Summarized results of the approximation 

Contour No smoothing Smoothing addend Geometric smoothing 

1 42.64 34.24 40.35 

2 39.16 33.46 67.98 

3 36.08 31.24 59.48 

4 24.45 27.04 36.48 

5 24.35 36.84 25.99 

     
We may see that from the qualitative point of view the most advanced model does not 

give satisfying results. But it also may be seen (Fig. 3) that from the utilical point of view the 

third seems as smooth as it should. 
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5.4. Comparison with B-splines 

B-spline parametric curves can also be used for approximation [1]. The approximation of 

the five isolines was therefore tested using a MATLAB-derived procedure creating B-spline 

curves. This procedure is able to calculate the best positions of knots and control points of the 

B-spline and apart from the points does not require any other parameters [7]. The results from 

MATLAB were then compared to SpliCo approximation in terms of error and calculation 

time. Since it will be the best compare both algorithms under the same conditions, the pro-

posed precautions were conducted: 

 RMSE errors are assessed for both algorithms (in case of SpliCo  = 0) based on the dis-

tance of an output point to the closest of the input points (the easiest way for a closed 

curve), 

 run time of both algorithms was measured on the same machine, not aggravated with any 

other time-consuming calculations, taking into account only algorithms itself not i.e. 

drawing results. 

SpliCo was run with standard parameters (four start knots evenly distributed, default error 

growth threshold) except of the mentioned error modifications. Results of approximation for 

first two contours are shown in fig. 4. and fig. 5. Table 2 shows the RMSE errors and run 

times for both methods. 

  

Fig. 4. Results of the approximation using SpliCo (left) and B-splines (right) 

for the first contour 

Rys. 4. Wyniki aproksymacji z wykorzystaniem SpliCco (po lewej) i funkcji 

B-sklejanych (po prawej) dla pierwszego konturu 
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Fig. 5. Results of the approximation using SpliCo (left) and B-splines 

(right) for the second contour 

Rys. 5. Wyniki aproksymacji z wykorzystaniem SpliCo (po lewej) i funkcji 

B-sklejanych (po prawej) dla drugiego konturu 

  

Table 2 

Comparison of the two methods for the test data 

Contour 
SpliCo B-spline  

RMSE error Run time [s] RMSE error Run time [s] 

1 3.0366 0.407 3.3748 296.083 

2 3.8374 0.215 3.0551 258.522 

3 2.6524 0.095 2.7523 213.673 

4 1.8204 0.054 1.8004 150.362 

5 1.5571 0.023 1.3709 111.742 

     
The error values for the both of algorithms are comparable with the small advantage for 

the B-splines. However execution times are radically longer in case of the B-splines. At this 

moment it is relevant to mention that MATLAB is an interpreted script executed on the Java 

Virtual Machine and the SpliCo algorithm was implemented directly in Java and also exe-

cuted on the  Java Virtual Machine. Nevertheless the additional strain (the script interpreting) 

will not slow down the application 1000 times. The most important factor here is the calcula-

tion of the knots and control points of the B-spline. SpliCo algorithm finds the potential knots 

in the initial part of the algorithm so finding the optimal solution has the smaller complexity. 

In SpliCo results limitations of use of the polynomials are visible by presence of certain 

“waves”. They can be reduced by experimenting with knots position or adding/removing 

knots. In general, higher number of knots increases the probability of “waving” curve, but too 

small number of knots increases the error. 

Both compared solutions give satisfying results, however SpliCo is simpler and faster. 
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6. Conclusions and Further Work 

In this article the method of closed curves approximation with the usage of spline func-

tions was presented. Starting from the original spline functions following modifications were 

introduced like smoothing addend and geometric construction. Final SpliCo fulfils the condi-

tion of being smooth and accurate though it is not obvious when the approximation error is 

observed. It points that the standard method of approximation error evaluation (RMSE) 

should be replaced with the more appropriate method. The RMSE fails as the quality function 

near regions where the slope of the tangent of SpliCo takes values close to right angle. It 

causes that the SpliCo is relatively close to training points from the Euclidean distance point 

of view, but the difference between f(x) and F(x) is big. 

Also the choosing the start knots has impact on the result. The smoothing addend modi-

fies the curves equation. The smoothing hyphens are outputted between the splines. Output 

range for every polynomial is therefore shrank to ending points of the neighbour hyphens. 

The total error grows when geometric smoothing is applied because the method does not take 

into account the knot position nor the shape of the approximated curve. It is simply trying to 

connect two splines. It suggests to define the new condition of choosing the starting knots 

positions and the number of knots. It is worth to notice that SpliCo finds the spline model 

significantly faster than full adaptive B-splines model. 

SpliCo should be useful as the mathematical description of isolines, especially as the base 

of three-dimensional maps generating. It is also common that three-dimensional grids need 

the analytical form of contours as the input argument. SpliCo should be attractive for this 

purpose also. 
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Omówienie 

Artykuł opisuje nowe podejście do modelowania krzywych zamkniętych. Algorytm  

SpliCo (Spline Contour) pozwala na opisanie konturów na płaszczyźnie za pomocą odpo-

wiednio zmodyfikowanych funkcji sklejanych. Ponieważ, z matematycznego punktu widze-

nia, nie jest możliwe opisanie takiej krzywej funkcją postanowiono podzielić problem opisa-

nia całego konturu jednocześnie na kilka mniejszych zadań, w których poszukuje się anali-

tycznego opisu fragmentu konturu. Do tego celu zastosowano podejście znane z wykorzysta-

nia funkcji sklejanych do estymacji funkcji regresji. 

W artykule przedstawiono dwa sposoby (analityczny i geometryczny) rozwiązania pro-

blemu nieciągłości i nieróżniczkowalności konturu w węzłach złączeń. Jako rozwiązanie re-

ferencyjne potraktowano wykorzystanie wielomianu czwartego rzędu jako funkcji sklejanej. 



SpliCo – Spline Description of Closed Contours 601 

Jako punkt wyjścia dla rozwiązania analitycznego posłużyło równanie (1). Równanie to 

pozwala zachować ciągłość, jak również różniczkowalność odpowiedniego rzędu w punk-

tach, w których następuje sklejenie dwóch wielomianów. Nie uwzględnia ono jednak skleje-

nia w węzłach początkowym i końcowym, które to w przypadku konturu stanowią ten sam 

punkt oraz w węzłach, w sąsiedztwie których krzywa nie jest funkcją. 

Geometryczne rozwiązanie problemu opiera się na konstrukcji fragmentu okręgu lub 

okręgu i prostej wypełniającego przerwę między dwoma sąsiednimi wynikami aproksymacji 

(rys. 2). Powstały fragment ma na swoich końcach identyczne styczne, jak wspomniane za-

proksymowane funkcje w tych samych punktach. 

W artykule zaproponowano również funkcję oceniającą jakość znalezionego dopasowa-

nia konturu sklejanego (równanie (6)). Uwzględnia ona jednocześnie samą dokładność mode-

lu, a także jego złożoność. Złożoność ta jest bowiem reprezentowana przez składnik będący 

liczbą węzłów (K), a także stopniem użytych wielomianów (xPower). Stała  pozwala na 

odpowiednie sterowanie siłą wpływu złożoności modelu sklejanego na ocenę dokładności 

dopasowania. Mimo że użycie geometrycznej konstrukcji gładkiej krzywej aproksymującej 

daje największe błędy dopasowania (tabela 1), wygląd wyniku jest najbliższy oczekiwanemu 

(rys. 3). 

Porównując czas generowania konturu z użyciem SpliCo oraz w pełni adaptacyjnej wersji 

krzywych B-sklejanych okazuje się, że użycie nowo zaproponowanego algorytmu pozwala 

skrócić czas o kilka rzędów wielkości. 
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