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1. INTRODUCTION

1.1. Introduction and Statement of the Problem

One of the most meaningful steps towards protein identification is mass spectrometry which
allows obtaining protein structural information, such as amino acid sequence, which can be the
basis of protein identification via searching protein databases [1]. Due to the fact that the
majority of chemical elements have isotopes of different masses, the isotopic mass of a molecule
observed on a mass spectrum reflects the kind and number of atoms included in the measured
(molecular) ion and the distribution of different isotopes [2]. Depending on the achievable
resolving power of a mass spectrometer, molecular ions can be represented by either the
monoisotopic mass, which considers only the masses of the most abundant naturally occurring
stable isotope of each atom present in a molecule or the average mass, which considers the
presence of both light and heavy isotopes. Theoretically, it can be considered as the sum of the
average weights of all elements. For an atom, the difference between those two masses is
insignificant. However, within a biomolecule like a peptide, the difference between the
monoisotopic mass and the average mass increases with the number of atoms of which the
biomolecule is constructed. Such mass variance causes a bias in results leading to the
misidentification of peptides and the limitation of the number of quantified peptides. Therefore,
accurate identification should consider the presence of natural isotopes in peptides. [2]

It has been proven in [2] that considering natural isotopes in the analysis results in precise
peptide quantification and validation. The method for removing isotopic envelopes from a mass
spectrum is called deisotoping.

A plethora of methods concerning deisotoping exist, but they have several limitations, which were
thoroughly explained and compared in 2.6. Most of these methods are dedicated to different kinds
of data - from different types of mass spectrometry experiments, various types of biomolecules-
driven, suitable only for low- and high-resolution mass spectrometry, or not suitable for large
MALDI-MSI-driven data. Hereby, the method for MALDI-TOF data-driven deisotoping, based on
universal assumptions and expert knowledge in the field of mass spectrometry imaging, is
proposed, which applies different approaches to finding a solution - fuzzy-inference system (4),

machine learning, and statistics (5).
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1.2. Purpose of the Study

The main goal of the research described in this dissertation is to identify isotopic envelopes for
data from MALDI-TOF mass spectrometry imaging experiments by applying in silico methods. Due
to the developed methodology, the accuracy of peptide detection can be improved since
deisotoping is based on removing the peaks that are the members of an isotopic envelope. As a
consequence, peptide detection is more accurate and reliable. The research goal is as follows:
application of the method of initial preselection of isotopic envelope members using a
combination of fuzzy-inference system with an evaluation of the peaks’ spatial distribution. Such
a method allows for effective isotopic envelopes identification in medium-resolution mass
spectrometer data.

The goal will be achieved by:

1. development of the fuzzy-inference system for the preselection of the isotopic envelope
members
2. verification of the membership of the predefined peaks into the isotopic envelopes based

on the descriptors of the spatial distribution of the peaks’ differential images.
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2. REVIEW OF THE LITERATURE

2.1. Proteomics
Proteomics is a large-scale study of proteins, their structure, functions, and physiological role [3].
Proteins are crucial biomolecules since they are either structural or functional elements of a cell,
their amino acid sequences determine their structure and, accordingly, their cellular function. It is
worth mentioning that they can also function in the extracellular space, circulating via the
bloodstream. Therefore the plethora of proteins (e.g. serum or urine proteins) serve as clinical
biomarkers. [4]
Proteins determine the cellular structure, activity, and signalling between cells and tissues.
Moreover, they support metabolism by catalysing chemical reactions. Generally, proteins are
notable biomolecules from medicine’s point of view, as they can be a root cause of a disease (such
as Huntington’s or Alzheimer's disease), but what is more, they can be used for curing - for
instance, antibodies are used in therapies against bacterial or viral infections. [5]
Spatial proteomics is essential from the point of view of modern biology and medicine, since it
enables detection of dozens of proteins across a tissue with their simultaneous spatial
distribution, and preservation of tissue histology. [6]
Proteins are built from amino acids, linked by peptide bonds [7] [8]. Depending on the number of
linked amino acids in the molecules, the following groups of biomolecules can be distinguished:
oligopeptides (2 - 20 amino acids)[9], polypeptides (20 - 50 amino acids)[10], proteins (above 50
amino acids)[11].
The vast majority of proteins are too large to be analysed in a mass spectrometer as intact
molecules. In order to perform their mass spectrometric measurement, they are usually digested

to peptides using a specific proteolytic enzyme, e.qg. trypsin [12](Figure 1).
R R
H 0 0
N O_ H3N+
'S AL TS + VY
N : N :
H ’ R’ H 0 R’

Figure 1. Scheme of trypsin digestion.
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Several proteases are used in proteomics experiments (Table 1), but the most frequently used is
trypsin, which cleaves proteins into peptides with an average size of 700-1500 Da (such a range is
considered ideal for mass spectrometry)[13].

The cleavage site is the carboxyl side of Arginine and Lysine residues. As a result, a positive
charge appears at the peptide C-terminus, which is an advantage from the MS (mass
spectrometry) analysis point of view, and tryptic peptides become easily detectable by the mass
spectrometer. [13][14]

Table 1. Proteases used in typical shotgun proteomics experiments[15].

Enzyme name Cleavage site Recommended digestion conditions
pH temperature hours
[-C]
ArgC C-terminal of R 8 37 12
AspN N-terminal of D 8 37 12
Chymotrypsin C-terminal of F, Y, L, W | 8 25 12
and M
GluC C-terminal of D 8 25 12
LysargiNase N-terminal of R and K - - -
LysC C-terminal of K 8 37 12
LysN N-terminal of K 8 37 12
Pepsin C-terminal of Y, Fand W - - -
Trypsin C-terminal of Rand K 8 37 12
WalLP and MalLP C-terminal of aliphatic | - - -
amino acids

Mass spectrometry is an analytical technique for protein analysis [16] that allows accurate
measurement of chemical substances’ molecular masses. Moreover, it provides information on
molecular composition and chemical structure. [17]

There are two approaches used in mass spectrometry to identify proteins and define their amino

acid sequences and post-translational modifications: bottom-up (BU) and top-down (TD)
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approach. Bottom-up proteomics allows for the analysis of peptides originating from
enzymatically digested proteins. In this approach, the information on the protein is gathered
based on its peptide fragments identification/analysis, which were created as a result of
proteolytic cleavage. Consequently, the BU approach is based on creating the protein beginning
from peptides and ending on the whole protein. In contrast, top-down proteomics allows the
direct analysis of an intact proteoform (which arose from the same gene product via degradation
and post-translational modifications) which cleaves into smaller fragments during the mass
spectrometry experiment, [18][19]

however it requires application of dedicated techniques of ion activation. Thus, such an approach
is more complex. Moreover, the protein should be pure and isolated. The analysed sample cannot
be a mixture, as the obtained results will be hard to analyse. The bottom-up mass spectrometry
(BU-MS) is the most widely used proteomic approach nowadays. It involves several steps, such as
protein enzymatic digestion into peptides, ions separation according to their mass-to-charge
ratio (m/z), selection of ions for fragmentation, controlled fragmentation of parent ions and
detection of daughter/fragment ions. [5]

In mass-spectrometry-based proteomics, the accurate determination of a mass is challenging in
many cases because of the high mass of the analytes and applied method - ESI (Electrospray
lonization, soft ionization technique favouring the protonation of many amino acid residues). As a
result, different charge states and isotopes (in the case of a mass analyser with specified
resolution) appear on the spectrum, which makes the signal complex. [18]

Accordingly, deconvolution and deisotoping are crucial steps in mass spectrometry data analysis,

thoroughly explained in the subsequent chapters.

2.2. Mass spectrometry
An essential part of clinicopathological diagnostics is investigation of molecular and
morphological tissue features. Understanding the molecular basis of diseases provides
meaningful insights into their mechanism. One of various advanced technologies used for tissue-
based research is mass spectrometry. Mass spectrometry (MS) has become a powerful tool to
characterize large molecules [20], ranging from 100 Da to beyond 100 kDa [21]. Its advantages are

high sensitivity, a wide range of detectable molecules, and molecular specificity. [22]
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Due to the need for high-throughput techniques in cancer proteomics, mass spectrometry-based
techniques are widely used in the oncology clinic since they are helpful for quantifying proteins
from complex clinical samples[23].

Mass spectrometry analysis is based on ionising the molecules and determining the mass-to-
charge (m/z) ratios of molecular ions [17]. A molecule needs to undergo the ionisation process, as
mass spectrometers can only detect charged analytes (e.g. proteins, peptides)[24].

Gas-phase ions are split into characteristic fragments. As a result, the measured fragment
masses define the original ion’s molecular structure. [17]

There are a plethora of ionization techniques and various types of mass analysers and detectors.
High- and low-resolution mass spectrometry instruments can be distinguished and many
configurations of them exist. Still, they consist of three basic parts: the ion source, the mass

analyser, and the detector [25](Figure 2).

lon WERS lon

Source Analyser j| Detector

Figure 2. Flowchart of a mass spectrometer.

In an ion source, a sample is ionised. Then, the obtained ions are separated according to their
mass-to-charge ratio in a mass analyser. The detector identifies ions and finally, obtained mass
spectra are analysed and interpreted.

A mass spectrum is a plot of the relative abundance of ions (the numbers of counts from the ion

detector [26]) versus their m/z values [27] (Figure 3). The higher the mass spectrometer

12
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resolution is, the more peaks are visible in a mass spectrum, since an isotopic distribution in a

given molecule gets visible in a mass spectrum.
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Figure 3. AMALDI-TOF MSI mass spectrum of tryptic peptides.

There are two types of ionisation techniques: soft and hard. The main product of the first method
is a molecular ion, whilst the second method allows to detect the molecular ion and fragments of
a given molecule. [28]

The most important and frequently used soft ionisation methods are MALDI and ESI:

1. Matrix-Assisted Laser Desorption/lonization (MALDI) is based on the desorption and
ionisation of analyte molecules by using a pulsed laser beam which is directed to co-
crystals of matrix and the analyte [25];

2. In Electrospray lonization (ESI)[17][29][30] high voltage is used in order to disperse and
spray solvated analytes; multiply charged ions are created. An analyte is ionised in the
liquid phase and released to the gas phase[25].

Other ionisation methods are as follows: Atmospheric Pressure Chemical lonization (APCI) [25],
Atmospheric Pressure Photoionization (APPI)[25], Ambient Desorption lonization [25], Desorption
Electrospray lonization (DESI)[31], and Direct Analysis in Real Time (DART)[25].

Mass analysers allow the determination the mass-to-charge ratio of the ions by subjecting the

ions to several magnetic or electric fields [17][27].

13
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The following types of mass analysers can be distinguished:

1.

Quadrupole: generated ions pass through rods, and rotating magnetic field potentials are
then applied to them in order to focus the ions and allow the ions to reach a detector [17]
[32];

TOF (time of flight): the principle of operation is measuring the flight time for an ion [33],
which is converted to an m/z value [17]. Generally, ions with the same kinetic energy (they
are accelerated by an applied potential [17]) but different masses have different velocities
- lighter ions arrive before the heavier ones. Thus, a mass spectrum can be recorded [33];
lon trap: ions stabilise their trajectories because of hyperbolic-shaped electrodes inside
aniontrap [17];

FT-ICR (Fourier Transform lon Cyclotron Resonance): a trapped ion technique which is
based on measuring the cyclotron frequency (cyclic oscillation of a charged ion within a
magnetic field). Fourier Transform is used to transform the time-domain transient current
to the frequency measurements [34];

Orbitrap: a trapped ion technique, ions are subjected to an electric field, cycle around the
central electrode, and oscillate along the horizontal axis [17]. In order to measure ion
frequencies, time-domain image current transients are acquired, and simultaneously Fast

Fourier Transform is used to obtain a mass spectrum [35].

Separation techniques are combined with mass spectrometry in order to separate different

compounds. The separation techniques are as follows:

1.

2.
3.
4,

Liquid chromatography-mass spectrometry (LC-MS or LC/MS) is a technique used for
elucidating the composition of liquid samples. The sample contains analytes (molecules
such as lipids or peptides), which have to be identified in the process called identification.
Moreover, their quantity in the sample has to be determined in the process called
quantification. [ 24]

Generally, chromatography separates the components by distributing them between two
phases: stationary (solid, gel or liquid) and mobile (liquid, gas or supercritical fluid), which
moves in a definite direction [36];

Gas chromatography-mass spectrometry (GC-MS or GC/MS)[37];
Capillary-electrophoresis-mass spectrometry (CE-MS)[38];

lon mobility spectrometry-mass spectrometry (IMS/MS or IMMS)[39].

14
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Tandem mass spectrometry is based on controlled fragmentation of a selected ion and as a
result, a mass spectrum of the resulting fragment ions is obtained. MS/MS (MS2) is simple, single-
stage tandem mass spectrometry experiment, whereas other, higher-order stages are also
possible and take place when a fragment ion (so-called “daughter ion”) is further fragmented into

a “grand-daughter ion”, and so forth. [16][40]

2.3. MALDI-TOF Mass Spectrometry

Generally, for proteins, the most effective ionisation methods are soft ionisation methods [17],
such as MALDI and ESI[21][41], as they are used for sensitive detection of large, labile molecules
using mass spectrometry [16]. Several types of mass analysers can be used for MALDI ions
analysis, with the time-of-flight mass analyser (TOF) as one of the most common[16].

A solution of an analyte, or a mixture of analytes, is mixed with a solution of a matrix and the
solvent is evaporated, which results in co-crystallisation of an analyte with a matrix. Then, a
pulsed laser beam irradiates the crystals, which results in the desorption of analyte and matrix
molecules, followed with ionisation of analytes in the gas phase. TOF mass analyser is used for
separation of the formed ions. Knowing the flight time (7), the mass-to-charge ratio can be

calculated based on the following Eq. 1: [42]

T = CJm/z+ C, (1)

where:

C;, Coare the instrumental constants.

2.4.MALDI Mass Spectrometry Imaging (MALDI MSI)
The basic principle of mass spectrometry imaging (MSI) is performing mass spectrometry directly
on the sample surface. This technique is used for gathering information on the distribution of
various molecules, such as lipids, peptides, proteins, and drugs. MALDI is one of the most
commonly used ionisation methods. What differentiates MSI from other general imaging methods,
such as optical microscopy, is the possibility of acquiring a variety of molecular distributions at

once - especially in the case of TOF MS. Moreover, another distinct feature is that distribution of
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molecules that have been ionised can be visualised in a form of molecular images generated for
the analysed tissue.[43]

Sample preparation is one of the essential steps of the experiment because tissue preservation is
critical from when the surgical resection takes place to the protein digestion stage in order to
avoid sample degradation or contamination [21] [23]. Therefore, different kinds of preservation
methods can be distinguished, each with its unique sets of advantages and disadvantages: fresh
frozen (FF), formalin-fixed paraffin-embedded (FFPE), and optimal cutting temperature embedded
(OCT)[23]. MALDI Imaging experiment differs for sample preparation of FF (Figure 4) tissue and of
FFPE tissue (Figure 5). In both methods tissue specimens are sectioned [22] and mounted on
conductive indium tin oxide (ITO)-coated slides [44]. The processing of FF tissue includes
washing in order to remove all unwanted chemical species [22] - to remove lipids the most
common methods are employed: “Carnoy’s wash” [44] or washing in increasingly higher
percentages of ethanol [22]. Finally, a tissue section is covered with a matrix in order to extract

molecules from the tissue specimen into the matrix [22].

Sectioning
and ITO

mounting
On-Tissue
digestion

Figure 4. FF tissue collection and preservation for MALDI MSI[21][22][43][45].

Covering
tissue with
matrix
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Tissue resection

Fixation and dehydration

Paraffin embedding

Sectioning and ITO mounting

Paraffin removal

Reversal of crosslinks

On-Tissue digestion

Covering tissue with matrix

Figure 5. FFPE tissue collection and preparation for MALDI MSI[21][22][43][45].

Principle of MSI[21][22] (Figure 6):

After covering a tissue section with a matrix, a pulsed laser beam [46] shoots in the matrix layer,
whereas the underlying tissue remains intact (it allows histological tissue examination in the same
tissue section after the measurement). The matrix absorbs the laser energy, and the analytes are
desorbed and transferred to the gas phase where they get ionised. The produced ions are then
accelerated and analysed in the TOF mass analyser. The tissue is scanned with the laser, with a
pre-defined raster width, so that a mass spectrum is acquired for each laser ablation position.
After the MALDI Imaging experiment, the tissue section can be stained, for instance, using the
H&E technique (Hematoxylin and eosin stain is widely used in histologic examination of human
tissues [47] [48]) for further histopathological examination. Then, the detected m/z signals are

visualised as colour intensity maps.
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Figure 6. MALDI Imaging Mass Spectrometry workflow based on[22]. The tissue section image is from the head and neck cancer data
published in[70], courtesy of Maria Sktodowska-Curie National Research Institute of Oncology, Gliwice Branch.
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Imaging of proteins provides the ability to gather information about the distribution of proteins,
protein isoforms, modifications and posttranslational modifications, degradation or cleavage

[22].

2.5. Isotopic envelope
The vast majority of elements (carbon, hydrogen, oxygen, nitrogen, phosphorus, sulphur) create
different isotopic forms in nature [49]. Mass distributions of the isotopically complex molecules
result from the contributions from different isotopic combinations [50]. The same chemical
properties characterise isotopes as their parental element, but they differ in the number of
neutrons, which results in the difference in mass [2]. As a result, in the mass spectrum the
isotopic envelope (isotopic pattern of peaks, also called isotopomer envelope [51]) is observed
[49], which is a result of the presence of natural isotopes in the sample [40]. Peaks that are
members of an isotopic envelope are composed of chemically similar compounds, which differ in
the weight of particular isotopes [51]. Peak patterns are observed in intact proteins, digested
proteins (peptides, for instance (Figure 7)), metabolites, and tandem mass spectra (MS/MS) of

proteins, peptides, or metabolites [49].
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Figure 7. Theoretical isotopic envelope of the peptide YDLDFK.

A single mass spectrum consists of mass-to-charge ratios of ions (m/z) and
corresponding intensities (abundance) values [40][49]. Such a spectrum ,consists of patterns of
isotopic peak distributions for many different peptides, each with its charge and intensity” [49].
The isotopic distribution of the elements the peaks are composed of determines the spacing
between observed peaks and also their relative heights [49]. Also, the operational aspects of the

instrument, such as resolution, type of detector, etc., impact the distance between adjacent
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peaks and their heights [49]. Isotopic distributions of peptides are dominated by carbon (it has
the largest proportion of naturally abundant isotope to any other one). For MALDI, for a singly
charged peptide, the average mass difference between peptides peaks is 1.003 / 1 = 1.003 Da
(the difference between the masses of 13-C and 12-C) (Figure 8). Peptides with a higher charge

generate peaks with spacing ~1.003/charge. [49]
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Figure 8. Isotopic envelope consisted of three peaks.

There are different isotopic combinations of elements, which are not resolvable by a mass
spectrometer [49]. Therefore, there is an urgent need of automated interpretation of obtained
mass spectra during the experiment [49]. In order to resolve multi-charged spectra and remove
isotopic envelopes, decharging and deisotoping are applied. Decharging and deisotoping are
together called spectra deconvolution [18]. Spectral deconvolution means grouping into isotopic
envelopes [51]. As a result, the monoisotopic mass and the charge state of each isotopic envelope
can be effectively determined [51]. The main goal of deisotoping is to collapse a complex mass
spectrum into a representative set of peptide or metabolite masses, which in most cases means a
monoisotopic mass and their abundance values, respectively [49]. The monoisotopic mass is the
total abundance of a peptide: a summation of the intensities of all the isotopomers [52] or sum of

the masses of the atoms using the most abundant (principal) isotope for each element [51].
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Figure 9. Isotopic envelope of the peptide YDLDFK, generated using
Compass IsotopePattern by Bruker Daltonics.

For a small peptide, the most intense peak is the first one, but it is not the case for larger proteins

- simultaneously with the mass range, the peak that is the most intense one, changes.

For instance, in the mass range ~800 to ~1800 Da, the abundance of the first peak is 100.00, and

this is the monoisotopic mass (Figure 9), (Table 2).

Table 2. YDLDFK peptide m/z values and corresponding abundance.

m/z Abundance
800.382497 100.000
801.385540 44.735
802.388205 12.245
803.390798 2.494
804.393326 0.414
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Beginning from the mass range ~1900 Da, the second or even subsequent peaks are the most

intense ones, with the highest abundance (Figure 10), (Table 3).

A  Monoisotopic mass
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Intensity
3 5 3 3

$ $ $ $ r } $ >
2126 2127 2128 2129 2130 2131 2132

m/z

Figure 10. Isotopic envelope of the peptide ALPGOLKPFETLLSONQGGK,
generated using Compass IsotopePattern by Bruker Daltonics.

Table 3. ALPGOLKPFETLLSONQGGK peptide m/z values and corresponding abundance.

m/z Abundance
2126.1604 86.837
2127.1633 100.000
2128.1660 62.256
2129.1687 27.490
2130.1713 9.587

There are different types of isotopic envelopes that can be distinguished in a mass spectrum [53]:

1) overlapping
Overlapping isotopic patterns can be observed from proteomics and metabolomics
samples [49], because many isotopic peaks are observed in a narrow m/z range [54]

(Figure ). It is also possible that overlapping isotopic envelopes have a shared peak.
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Figure 11. Overlapping isotopic envelopes in FFPE peptides data(green - first isotopic envelope,

red - second, - the third one).

2) non-overlapping (Figure 12).

Cancer
T T T T T T T T T
250 -
200 -
X 709.4
_ Lo X 712.4
2150 Y 138 .
c
5]
=
100 | .
X710.4
Y 63.07 X713.4
sk X 711.4 Y5132 |
Y 32.62
0 J 1 1 /j\ 1 J 1 1
709 709.5 710 710.5 711 711.5 712 7125 713 713.5 714
m/z

Figure 12. Non-overlapping isotopic envelopes in FFPE peptides data (red - first isotopic

envelope, green - the second one).
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2.6. Algorithms for isotopic envelope identification

Hereby, algorithms and methods used for deisotoping are described.
Envelope selection problems focus on selecting these isotopic envelopes that explain the
spectrum most accurately - the most optimal ones, as isotopic envelopes often overlap and share
peaks [51][53]. A plethora of deisotoping algorithms have been described in the literature, which
are described below.
There are two main approaches [53]:

- Graph theory

- Based on matching the theoretical isotopic distribution with the experimental.
The major disadvantage of the approach based on matching the theoretical and experimental
isotopic envelope is that in the case of overlapping isotopic envelopes, relying solely on
intensities of the theoretical and experimental isotopic envelopes is insufficient [53] [55]. Other
algorithms that rely only on the information on the spectrum intensity are as follows: BPDA[56]
and method based on LASSO [60]. Algorithm based on quadratic programming requires the
knowledge of the parameters that need to be optimized [55][57]. The aforementioned statistical
approach decreases the false positives and false negatives because of selecting the simplest
model with the least number of isotopic envelopes [53][55][58] . In order to accurately analyse
complex mass spectra, the overlapping isotopic envelopes should be taken into consideration, but
some existing algorithms do not take it into account [53], such as: probabilistic classifier [59],
Decon2L.S[60].

1. Graph theory-based

a) Features-Based Deisotoping Method for Tandem Mass Spectra: the algorithm is based

on constructing isotopic-cluster graphs. Firstly, it searches for possible isotopic
clusters, where a space between pairs of adjacent isotopic peaks is 1.003/z(z=1, 2, 3),
then the isotopic-cluster graphs are constructed. Possible isotopic clusters are
scored on the basis of four non-intensity features, such as losing a water or ammonia
molecule by side chains of some amino acids residues of fragment ions. [55]

b) MS-Deconv is a combinatorial algorithm for spectral deconvolution based on graph
theory. Firstly, a large set of isotopic envelopes is generated and represented as a
graph. Afterwards, envelopes that have the highest score (a heaviest path in the

graph) are selected. [51]
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c) MS2-Deisotoper identifies isotopic clusters consisting of two or more peaks. The

cluster is based on comparing the mass and relative intensity of each peak to every
other higher peak in the MS/MS spectrum. This method is solely dedicated to
deisotoping high-resolution, centroided MS/MS spectra. [61]

2. Based on comparing theoretical isotopic distribution to the experimental
Envelope detection problem is based on using theoretical isotopic distributions to detect
and evaluate potential isotopic envelopes. This problem has been well studied and a
plethora of various metrics for evaluating the candidate isotopic envelope to its
theoretical isotopic distribution has been proposed. [51]
Some of the algorithms are based on matching theoretical isotopic distribution with the
experimental one [53]. If the matching of these two distributions is good, then these
peaks are considered as an isotopic cluster. [55]
Knowing the average molecular mass, the monoisotopic mass of a molecule can be
estimated [1]. For more accurate monoisotopic mass assignment, the Averagine method
(C4.9384 N1.3577 01.4773 S0.0417 H7.7583) was introduced. It is based on comparing high
resolution spectra with model isotopic distributions. Measured isotopic distribution is
compared with the distribution for a model molecule of the same average molecular mass,
based on a statistical test. It results in determining the monoisotopic mass. [53][62]
a) THRASH
It is one of the widely used and cited algorithms. Possible isotopic clusters are found
in the spectrum by using a subtractive peak finding routine. It determines the charge
using Fourier transform / Patterson method and compares a peak cluster with an
Averagine isotopic distribution by applying the least-squares method [60].
b) Decon2lS
Decon2LS algorithm is based on comparing the molecular formula generating by
Averagine and the theoretical profile generated by Mercury. The authors stated that
the fitness score is usually poor when overlapping isotopic envelopes occur [49]. It is

based on THRASH algorithm [60].
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c)

d)

e)

f)

9)

h)

OpenMS
It is the Python library pyOpenMS. It groups peaks of the same isotopic envelope

charge state and uses a theoretical isotope pattern to find members of an isotopic
envelope [63].

NITPICK

It is the R package. This approach Is an extension for the well-known averaging model
[64].

DeconMSn deisotopes the high mass measurement accuracy precursor spectrum by
comparing the theoretical profile with the observed one. Additionally, SVM-based
(Support Vector Machine) charge detection is implemented in order to determine
parent mass for low-resolution data (LCQ / LTQ)[65].

FLASHDeconv is dedicated to top-down mass spectrometry (TD-MS)-based
proteomics studies. It transforms m/z within spectra into log m/z [18]. Deisotoping is
based on ,finding theoretical isotope patterns (derived from the Averagine model
[62]) around the charge-determined peaks”[18].

mMass searches for isotopic envelopes by comparing an intensity of every isotope
with its theoretical value. Due to the fact that it is mostly used for proteomic data,
theoretical isotopic patterns are approximated using the Averagine[62][66].

iIMEF and ProteinGoggle 2.0 allow to determine an isotopic mass-to-charge ratio and

experimental isotopic envelope fingerprinting by fingerprinting to the values from the
corresponding theoretical isotopic envelope based on computing elemental
composition of the product ions’ amino acids [54].

RAPID presents a probabilistic model of an isotopic distribution, which is based on
calculating intensity ratios of the adjacent peaks, which are then approximated as
linear functions of peptide mass values, using the theoretical distributions of tryptic

peptides[20].
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3. Another existing approaches for selecting a set of isotopic envelopes:

a)

b)

c)

d)

e)

f)

9)

h)

i)

j)

Probabilistic classifier with dynamic programming algorithm with a condition that the

envelopes do not overlap. Dynamic programming has been also employed in order to
predict the probabilities of potential isotopic distributions, taking into consideration
length, shape, inter- and intradistribution distances. [59]

Statistical approach based on variable selection based on non-negative sparse

regression scheme [58]
LASSO method for solving the statistical problem of variable selection [67]

Quadratic programming: an approach called Pepex is based on spectra modelling by a

linear mixture model [57].

Approximation of isotopic patterns by a Poisson distribution [68]

Bayesian approach for deisotoping and simultaneous deconvolution of mass spectra:

BPDA (a Bayesian peptide detection algorithm)[56]

Xtract is a top-down approach that includes also tandem mass spectra for protein
identification, which automatically combines isotopic peaks to one monoisotopic peak
mass [69].

Zscore - algorithm for isotopic cluster identification based on a charge-scoring
scheme [70].

Isotopica is used for calculating and visualising isotopic distributions on the basis of
molecular formulas, peptides or proteins, DNA or RNA or carbohydrate sequences
using the Fast Fourier Transform [40].

An algorithm dedicated to overlapping isotopic envelope identification, published in
[54], that is not based on Averagine units that create the theoretical isotopic envelope
was developed. It is based on computing isotopic envelopes “from the elemental

composition of the product ions’ actual amino acids” [53].
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Table 4. Comparison of commonly used deisotoping algorithms [53].

Name

DeconMSn
Decon2LS

FLASHDeconv
MS-Deconv

MS2-Deisotoper

RAPID
BPDA

Features-Based Deisotoping
Method

THRASH
pyOpenMS

NITPICK
mMass
iMEF & ProteinGoggle 2.0
Xtract
/score

Mass spectrometry
technique/proteomic
strategy

LC-MS/MS
LC-MS/MS

Top-down proteomics

Tandem mass spectra, Top-
down proteomics

High resolution bottom-up
spectra, MS/MS

LC-MS/MS
MALDI-TOF-MS, LC-MS

Tandem mass spectra,
bottom-up spectra

MALDI-MS, ESMS
LC-MS/MS

not limited
MALDI-TOF-MS, all others
Tandem mass spectra
Top-down proteomics
ESI-MS

Biomolecules

peptides

proteins, peptides,
metabolites

proteins, peptides
proteins, peptides

peptides

peptides
proteins, peptides

proteins, peptides, DNA,
polymers

proteins, peptides,
metabolites

not limited
proteins, peptides
proteins, peptides
proteins
proteins

According to Table 4, there is no standardisation across different instruments and experiments.

There are only a few methods dedicated to MALDI-TOF-MS data. MALDI MSI experiments datasets

are large (even 40 GB), which requires the methods to be efficient. The dataset can be comprised

of over 608 000 spectra, ~108 000 m/z mass channels, and corresponding intensity values. Hence,

there is a need to create a method that will be able to handle the such size of datasets.
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3. MATERIALS

3.1. Data characteristics
The studies were carried out using four fresh frozen (FF) tissue datasets and four formalin-fixed
paraffin-embedded (FFPE) tissue datasets. The workflow for handling both types of tissues
mentioned above is presented in Figure 13. Both datasets were collected in Maria Sktodowska-
Curie National Research Institute of Oncology Gliwice Branch, Poland, from patients who suffered
from head and neck cancer (HNC) and consisted of peptide mass spectra acquired in MALDI-TOF

MSI experiments [53].

HNC-FF

This dataset was collected for fresh frozen tissues in Maria Sktodowska-Curie National Research
Institute of Oncology Gliwice Branch, Poland, and published in [71]. Four oral cavity squamous cell
carcinoma patients (males with tumour located in the tongue and on the floor of the mouth) were
involved in the study at age 36-59 years old. After surgical resection, the tissue specimens were
frozen and stored at -80 °C, and then each sample was cut into a 10 pm section in a cryostat and
placed onto ITO glass slide. One consecutive section was H&E stained for histopathological
evaluation by an experienced pathologist. As a next step of sample preparation for the MALDI-MSI
experiment, the sections were dried, and washed twice in 70% ethanol and once in 100% ethanol
and dried again. Subsequently, the samples were coated with a trypsin solution, incubated, and
coated with a matrix. For spectra analysis MALDI-TOF ultrafleXtreme mass spectrometer (Bruker
Daltonik, Bremen, Germany) was used. The process of spectra acquisition was performed in
positive reflectron mode within the mass range 800-4000 m/z. From each ablation point, 400
spectra were collected, and a 100 pm raster width was applied. After analysis in the mass
spectrometer, the matrix was removed from the slides, H&E staining was done, and the slides
were scanned for co-registration with MALDI images (flexImaging 4.1 software, Bruker Daltonik,
Bremen, Germany). As a result, the dataset consisting of 45738 raw spectra with 109 568 mass
channels was obtained. The acquired spectral data were pre-processed and the features were
extracted by performing the following steps: spectrum resampling, baseline removal, TIC (total ion
current) normalisation, alignment based on Fast Fourier Transform, and spectra modelling and
peaks detection by using the Gaussian mixture model (GMM) approach. Then, pairwise convolution

of the GMM components and individual spectra was done in order to estimate the peptide
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abundance. After that, neighbouring peaks (a result of the right skewness of spectral peaks) were
identified and merged (summation of their estimated abundance values). All of these steps
resulted in the reduction of dimensionality to 3 714 Gaussian components. Such a data set was

used for further analysis. [563][71]

HNC-FFPE

The analysed tissue material comprised four patients suffering from oral squamous cell
carcinoma (located on the tongue and the floor of the mouth). After surgical resection, the
collected material was stored as FFPE tissue blocks. Then, the blocks were sectioned using a
rotary microtome and placed on a conductive glass slide. The slides were dried (56 °C, Th)and then
stored at room temperature. Afterward, the tissue sections were heated (60 °C, 30 minutes),
paraffin was removed from ITO slides, boiled (for reversal of protein crosslinking), and dried. Next,
the trypsin was deposited onto a section, and the section was placed in a humid chamber
(solution: 100 mM NH.HCOsM, 5% MeQH, 37 °C, 18h). After that, the section was coated with a
matrix solution. MALDI MSI measurement was performed using the ultrafleXtreme MALDI-TOF
mass spectrometer (Bruker Daltonik, Bremen, Germany) operated in positive reflectron mode.
Mass spectra were recorded in the 700 - 3000 m/z range (raster width = 100 um). The final
datasets comprised 22 389, 22 267, 21395, and 31654 raw spectra with 200 704 mass channels,
respectively. The spectra underwent the pre-processing and feature extraction pipeline that
consisted of mass channels unification, baseline removal, spectra identification, peak alignment,
TIC normalisation, and peak detection using GMM (Gaussian Mixture modelling of the average
spectrum). The aforementioned steps resulted in a reduction to 1776, 1766, 1697, 2 510
components (tryptic peptide species), respectively. [563][72]

Data was collected in Maria Sktodowska-Curie National Research Institute of Oncology Gliwice
Branch, Poland, and published in [72]. MSI components were identified by assigning a component
location at m/z for the measured masses of tryptic peptides identified by LC-MS/MS. The +/-

0.05% mass tolerance was allowed.[72]
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Figure 13. Workflow of MSI experiment for FFPE tissue block and FF tissue based on[45][53].
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3.2. Data pre-processing methods
Determination of peptide mass fingerprint (experimental peptide masses) is a formidable
challenge since distinguishing spectra peaks corresponding to digested peptides from the
associated isotopomer peaks and spurious peaks (that come from sample contamination and
noise) require complex pre-processing of the raw mass spectrum. [34]
The following pre-processing steps were employed [53][59][60][73]:
1. Unification of mass channels (resampling)
Noise reduction with the use of the Savitzky-Golay filter

Adaptive baseline correction

BN N

Outlying spectra identification: outlying means that spectra are characterised by too small or
too big TIC (total ion current) value; for such spectra, the Bruffaerts’ criterion is used in
order to cope with highly skewed distributions

b. Spectra alignment with the use of Fast Fourier Transform

6. Normalisation to the mean TIC.

As a result, the average spectrum is created (a mean intensity signal of all samples)[74].

3.3. Feature extraction

1. Average spectrum modelling and peak detection with the use of the Gaussian Mixture Modelling
approach (GMM)[26][53]1[61]1[62]

Signals from spectra registered by the mass spectrometer in mixtures of proteins or peptides are
considered spectral peaks that reflect a specific protein or peptide species. In further analysis of
proteomic mass profiles, they are used as features of the MS spectra[26].

Spectral signals can be modelled by mixtures of Gaussian distribution component functions, such
as the univariate Gaussian mixture probability density function (Eq. 2). The components of mixture

models of MS spectra are characterised by position and shape (width)[26].

K (2)
f(xn) = Z e fre (Xn » tir Ok),

k=1
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where:

Xn-Mm/z values of the registered ions,

K-the number of Gaussian components,

ai- Gaussian component,

k=1 2, .., K-component weights that sumup to 1,
Hi- means of the Gaussian components,

ok - standard deviations of the Gaussian components.

The probability density function of the Gaussian distribution is denoted by (Eq. 3) [26]:

_ﬂ£¥ﬁ (3)
e 2

1
(X, U, OF) =
fre (i, Ui O ka

The mixture model is scaled, and after that, the obtained scaled mixture model is fitted to spectral
data by using expectation maximization (EM algorithm) on previously decomposed MS signal to

smaller fragments [26].

Intensity

0
3494 3495 3496 3497 3498 3499 3500
m/z

Figure 14. Zoomed out fragment of 3494-3500 Da mean spectrum from the proteomic dataset of
head and neck cancer tissues: Fragment of the MS signal (black), GMM of the signal (red),
components of the Gaussian mixture model (green).

Finally, all the GMM components are aggregated into one set - a “whole-spectrum mixture model

of the MS signal” [26]. Computations in that work are based on the components of the Gaussian

mixture model, marked in green in Figure 14 [26]. A constructed mixture model of the average
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spectrum consists of components with defined location, spread, and weight parameters [74].
Each component “represents measured protein/peptide concentration in an analysed spot on the
tissue” [74].

2. Spectrum filtering by removal of GMM components with high variance and/or low amplitude [53]
[73]

3. Modelling the right-skewed spectrum peaks by GMM components and merging with the left-
neighbouring major component; the estimated abundance of the same spectrum peaks is merged,
and the dominant component has the location of a peptide ion m/z value [563][73].

4, Pairwise convolution of GMM components and individual spectra to calculate peak intensity
(abundance)[53][73].

Every Gaussian component is defined by three parameters: location of a component, spread of a
component, and a weight of the component [74]. In mass spectrometry, the term peak is used
when referring to the mass spectrum. Thus, in subsequent chapters of the dissertation, the term
peaks will be used to reflect the model Gaussian components since further analysis steps take
into account the aforementioned model components parameters and calculations are performed

based on those components parameters. [53]

3.4.Final data structure and general workflow
In order to measure the spatial distribution of peptides in a sample, MSI is applied. For every
tissue coordinate a separate spectrum is acquired. The raster width (lateral resolution) of
obtained MS images is 100 pm. The predominant charge of MALDI ions is the single one [16]. Thus,
there is no need to apply deconvolution methods for the data.
In order to define which peaks are members of an isotopic envelope, the two-step algorithm has
been proposed (Figure 15):

1. Potential isotopic envelope member peaks are identified using the Mamdani-Assilan fuzzy-
inference system. For every peak pair, the possibility value of being an isotopic envelope
member is assigned. Peak pairs with a possibility value greater than 89.66% are annotated as
potential isotopic envelope members.

2. Then, the molecular spatial maps of every peak are created, and based on them, several
descriptors related to the parameters of Gaussian components, image texture, and structure are

calculated, which are used in the classification process. Naive Bayes classifier denotes the peaks
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as the potential isotopic envelope members (E) or non-included in isotopic envelopes (

l peak pairs

Potential isotopic envelope members
identification by Mamdani-Assilan fuzzy-
inference system

Potential isotopic envelope members
with the assigned possibility value

[%]>89.66

Verification of the membership of the
predefined peaks into the isotopic
envelope based on molecular images in
classification process

7\

Envelope non-Envelope

Figure 15. General workflow of the algorithm [53].
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4. ISOTOPIC ENVELOPE IDENTIFICATION IN MALDI-TOF MOLECULAR IMAGING DATA

4.1. Fuzzy-inference systems
The term fuzzy set was introduced in 1965 by Lotfi Zadeh [75]. The idea of fuzzy sets arose as a
generalisation of crisp sets.
One of the first use of fuzzy sets was fuzzy data grouping, described by Ruspini in 1969 [76][77].
In 1973 L. A. Zadeh introduced the terms linguistic variable and fuzzy IF-THEN rules to represent
human knowledge [78]. Based on this work, in 1975, Mamdani and Assilan designed a fuzzy
regulator which controls a steam engine. Hence, this work enables the first practical usage of
fuzzy sets theory. [76]
Fuzzy sets have become more and more popular over the years since they allow the expression of
non-precise terms (not specific knowledge) in a formal way. They are applied in a plethora of
different fields, especially in medicine, automation control, economics, information technology,
and forensics. [79]
A fuzzy set A in the space X can be described directly either by the function pA (x)or by the set of
ordered pairs (x, i1 (x)), where ua (x) represents the degree (level) of membership of object x

to the fuzzy set A[76][79] (Eq. 4):

A={m)Ix [0,1]} (4)

An element belongs to the crisp set (value 1) or not (value 0), whereas fuzzy sets are characterised
by partial belonging to the set by an element [79].

An element x € X can be a member of the fuzzy set A in the following ways[79]:

1. not included: pa (x) =0

2. partially included: 0 < pa (x) < 1

3. fully included: pa (x) = 1.
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Mutual relations between crisp and fuzzy sets are presented in (Figure 16):

Fuzzy sets

Figure 16. Relationship between fuzzy sets and crisp sets[79].

JA fuzzy set is a class of objects with a continuum of grades of membership. Such a set is
characterized by a membership (characteristic) function which assigns to each object a grade of
membership ranging between zero and one”. [75]

The membership function takes values from the interval <0, 1>[76][75] (Eq. 5}

wa: X - [0, 1]. (5)

The values of a membership function can be interpreted as[76][80]:

1. a grade of membership of the element x to the fuzzy set 4

2. a grade of preference - the set 4 presents the set of more or less preferred objects, and
U4 (x) represents the intensity of the preference for the object

3. a grade of uncertainty - x4 (x) describes the degree of reliability that the variable X will
get the value x.

Each fuzzy set is described by its membership function[76].
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The most common membership function classes are as follows [76]:

1. Triangular (Eq. 6) (Figure 17):

where:
a, b, c are the parameters (a< b < ©).

na(x; 0, 7, 10)
1r : ;

0 1 2 3 4 5 6 7 8
X

Figure 17. Example of triangular membership function.

Trapezoidal (Eq. 7) (Figure 18):

(x_aO, x <a,
P a<x <b,
b <x <cg,
c<x <d,

0,x >d

Q

ua (x;a,b, ¢, d) =

R

d_
d-c’
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where:
a, b, ¢ dare the parameters(a< b < c< d).

The rectangular membership function is obtained for a = band c = d.

pa(x; 0, 5,7, 10)
1|_ T T T

Figure 18. Example of trapezoidal membership function.

3. Gaussian (Eq. 8) (Figure 19):

—(x-m)? 8
Ha (X; m,0) =e 202 (8)

where m- mean, oare the parameters.
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o> 0 determines the width of the fuzzy set.

The impact of o on the membership function shape is presented in the following Figure 19:

hp(X; 6, 0)

1 : : . | )
08
06
04-

0.2+~

Figure 19. Example of Gaussian membership function.

4, Generalised bell shaped (Eq. 9):

uA(x;m,o,Y)=1|xﬁ (9)

ag

where m, o, yare the parameters(o> 0, y> 0).

o> 0 determines the width of the fuzzy set, whereas the parameters g, yinfluence the slope of

its slopes.
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pa(X; 6, 0y 7)

1r- I = I -l
—=2,7=1

—_—o=2y=2

=2,7v=3

0.8 == 1=
0.6 o
| L L 1 - |
5 6 7 8 9 10

Figure 20. Example of Generalised bell shaped membership function with parameters o =2
and y =1, 2, 3.

The impact of the o and y values (for ¢ = y = a) on the shape of the membership function is
presented in the Figure 20 and Figure 21:

1p(X; 6, o, 7)

1r

Figure 21. Example of Generalised bell shaped membership function with parameters o =1, 2, 3
and y =2.
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5. Sigmoidal (Eq. 10}

1

a (%6 ¢, B) = o o

where ¢ fare the parameters.
c defines the crossing point, whereas affects the slope of the membership function.

1| ” " T I |

—_— =]

— = -2

g=-3

0.8 - A
0.6 1
0.4 - -
0.2+ .

oL | | I I 1 I |
0 1 2 3 4 5 6 7 8 9 10
X

Figure 22. Example of sigmoidal membership function with positive B values.

(10)

Membership function shape dependence on the sign of the parameter value, and the value of £

are presented in the Figure 22 and Figure 23:

pa(X; 6, 5)
ll' T A T T

0.8+

0.6 -

0.4 '

0.2 - 1

Figure 23. Example of sigmoidal membership function with negative S values.
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Operations on fuzzy sets

Let 4 and B be fuzzy sets in a universe of discourse X, and x4 and g be the membership
functions of 4 and B, respectively, then the operations of product and sum over fuzzy sets 4 and

Bare listed as follows [76][81] (Eq. 11, Eq. 12):

tang(x) = pa(x) Aug(x),dlax € X (1)

tave(x) = pa(x) Vug(x),dlax € X (12)

In order to define the operations that can be performed on the fuzzy sets, norms (t-norms) and
triangular conorms (s-norm) were introduced [79].

The t-norm (s-norm) is the function of two variables T :

[0,1]x[0,1] = [0, 1], S: [0, 1] x [0, 1] - [0, 1], with the following properties [76][79]:
T1)boundaries:T (x,1) =x, T (x,0)=0

T2) monotonicity:

x<u TyY)<T(y)

y<r T(x,y)<T(xr)

T3) commutativity: T (x, ) =T (y, X)

T4)associativity: T (x, T (y,2)) =T (T (%, ¥), )

S1)boundaries:S (x,1) =1, S(x,0)=x

S2) monotonicity:

x<u S(Xy)<S(uy)

y<r S(xy)<S(xr)

S3) commutativity: S (x,y) =S (y, X)

S4)associativity: S (x, S (y,z)) =S (S (%, ¥), 2),

u,rxyz €|0,1].
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Exemplary t-norms and corresponding s-norms are presented in (Table 5)[76][79]:

Table 5. Examples of t-norms and corresponding s-norms.

Name t-norm s-norm
Zadeh M (%, y) = min (X, y) M’ (x,y) = max (X, y)
Algebraic / Probabilistic [1xy) =xy IT xy)=x+y-xy
kukasiewicz W (x,y) =max (x+y-1,0) W (x,y) =min (x+y, 1)
Fodor mino (x,y) = maxi (X, y) =
{min ,y),x+y >1 {max xy)x+y <1
0, x+y <1 L, x+y =1
Drastic Z(xy) = Z(xy)=
{min(x, y), max(x,y) =1, {max (x,y), min(x,y) = 0,
0, otherwise 1, otherwise
et _ xy ) _ Xty
Einstein E(xy)= Parp— E(xy)= Trxy
Fuzzy-inference systems work in the following way (Figure 24):
Crisp CHSP
) (numerical)
(numerical)
inout outputs
INPULS o} ¢\ zzification |l Defuzzification |~ »
Inference Engine
Fuzzy K Fuzzy
inputs OUtpUtS

Figure 24. A structure of a fuzzy-inference system.

Both linguistic values (presented in the form of fuzzy sets) and numerical (crisp) values can be
given for the inputs of fuzzy systems [76]. If crisp data are applied, then the inference process is
preceded by fuzzification (the appropriate fuzzy set is assigned to the non-fuzzy input) [82] or
these values are considered as the fuzzy singletons [76]. The fuzzy system contains a knowledge
base written in fuzzy conditional IF-THEN rules and a fuzzy inference engine, an approximate
inference mechanism based on the fuzzy set theory, and fuzzy inference [76]. If the numerical
(crisp) data are required as the fuzzy system output, defuzzification methods need to be applied
(the numerical data is assigned to the resultant output fuzzy set)[82].

The methods used for defuzzifying the fuzzy output functions are as follows [83]:

1. Max-membership principle

2. Centre of gravity method
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Weighted average method
Mean-max membership
Centre of sums

Centre of largest area

N o oo oW

First of maxima or last of maxima.
Fuzzy conditional rules follow the structure:

if Xis A, then Y is B,
where 4 and B are the values of linguistic variables X and Y, respectively, defined by fuzzy sets
with membership functions p4(x) and us(y)[76].
The statement , X is A” is called the antecedent (premise), whereas the statement ,Y is B” is
called the conclusion (consequent). Each of the IF-THEN rules from the knowledge base
represents a local dependency between input and output. The rule’s premise defines the fuzzy
area of its activity, whereas the conclusion determines the system’s output for that area. [76][82]
Linguistic variable values correspond to certain natural language categories and are represented
by words or statements [76].
There are a plethora of fuzzy-inference systems, such as Mamdani-Assilan [84], Takagi-Sugeno-
Kang[85][86] with moving consequents in IF-THEN rules [87], Tsukamoto [88], Baldwin [89].
The first fuzzy-inference system is the Mamdani-Assilan (MA) one [76][84].
This system is based on a set of conditional fuzzy IF-THEN rules in a canonical form, given by a

human expert (Eq. 13)[76][82][84]:

! (13)

N
R={RO}_ = {if (\/Xn is A,&”),theny is B(i)}
= i=1

n=1

where:

X1, X2, ..., Xy are the input linguistic variables of a system,

Y is an output linguistic variable of a system,

A1®, A;®, ..., An®, BO represent the linguistic values for an /ith rule, defined directly on the
universes of discourse X1, Xz, ..., Xk, .

E. H. Mamdani and S. Assilan used the minimum operation as the t-norm to model the conjunctive

LAND” of the IF-THEN rules antecedents and the s-norm maximum to aggregate the results of
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interference obtained based on individual rules. The singleton fuzzifier is used for mapping the
numerical inputs into fuzzy sets. The centre of gravity method (COG) is used as a defuzzification

method.[76][82]

4.2.Mamdani-Assilan fuzzy-inference system for isotopic envelope member
peaks preselection

In order to perform a preselection of peaks that can be potential isotopic envelopes members, a
Mamdani-Assilan fuzzy-inference system has been constructed.
Herein, the Mamdani-Assilan fuzzy-inference system for potential isotopic peaks (isotopic
envelope members) is described, which has been published in [90], but since then, it has been
modified. The reason for creating the fuzzy-inference system based on the Mamdani-Assilan one
is that it is well-suited to human input (expert knowledge) and intuitive. The system is published in
[53].
The system'’s structure is based on the knowledge of an experienced mass spectrometrist in the
field of MALDI MS and is as follows: two inputs (distance between means of two adjacent model
components and estimated variances ratio of two adjacent model components) and one output (E,
which means ‘envelope’):
1) Distance between means of two adjacent model components is approximately equal to
one (Figure 25)[53]
The reason for that is typical MALDI data consist of single charged ions on the mass spectrum,

therefore (Eq. 14)[53]:

1.003 _ 1.003
z 1

(14)

= 1.003 [Da]
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Figure 25. Distance (m) between means of two adjacent model components [53].

2) Ratio of estimated variances of adjacent model components is approximately equal to one
(Figure 26)[53].
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=
@
=
b= 100 -
50 -
- 1 ]
855 856 857 858 859 860

m/z

Figure 26. Ratio of estimated variances of two adjacent model components(s)[53].

Based on the histogram of distance values and ratio of variances, respectively, the modified

Gaussian membership functions with the following parameters have been constructed:

mi1= 0.99, 011 =0.0637 mz1 = 0.99, 021 = 0.0200
mi2 = 1.01, 612 = 0.0637 mz2 = 1.01, 022 = 0.1000
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Output:
M1 =0.9405, 01 = 0.09216
Mz =1.06, 02 = 0.08710
It was constructed in MATLAB with the knowledge base consisting of one conditional fuzzy rule
(Figure 27):
IF distance is IN THE RANGE and variances ratio is IN THE RANGE, then output is E.

IF mistherange AND s isintherange, THEN outputis E

J i\

I
Envelope (E)

Figure 27. Implication and aggregation in fuzzy logic system [53].

It can be observed (Figure 28) that for s = 1 and m = 1, the summit of the surface plot is
observed. The lower sis, the more significant PVchanges can be observed, and the steep slope.
PV is sensitive to the schanges. Below s= 0.7, PV values are small. PV decreases gradually for

s intherange s € (1; 2),. The further from m = 1, the worse results are obtained.
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Figure 28. Surface plot of possibility value (PV), variance ratio (s) and distance between means of

model components (m).

In order to find a threshold value of the output, Gaussian Mixture decomposition was applied [26]

[91]. In order to find the number of components, BIC scores [92] with corresponding gradients

were calculated. [53]
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BIC scores with corresponding gradients
©
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o
T
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0 2 4 6 8 10 12 14 16 18

No. of clusters

Figure 29. BIC scores with corresponding gradients vs. number of clusters [53].

20

Generally, the lower the BIC value is, the more accurate the model predictions are. According to

the BIC scores gradients versus no. of clusters (Figure 29), it can be observed that beginning from

the 6. cluster, the change in slope is not significant. Therefore, it is not worth taking into
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consideration so big number of clusters. As a result, Gaussian Mixture decomposition has been

performed with 5 components. [53]

Gaussian mixture decomposition with 5 components

1500

1000

Counts

500

0.65 0.7 0.75 0.8 0.85 0.9 0.95
Variable

Figure 30. GMM decomposition with 5 components [53].

Peaks with an output value over the threshold (0.8966) are considered the potential isotopic

envelope members (Figure 30) [53]. Such a strict threshold was chosen in order to optimise the

process and reduce the dimensionality of data.

The output of the fuzzy-inference system indicates whether the pair of peaks are the members of

isotopic envelope by the possibility of an isotopic envelope membership [ % ].

m/z
805.6
808.7
810.7
810.8
812.7
812.7
843.7

m/z,
809.7
809.7
811.7
897.6
813.7
897.6
844.7

Table 6. Exemplary results for HNC-FF Dataset 1 mass spectrum[53].

Possibility of isotopic envelope membership [ %]
46.0 (non-Envelope)

74.7 (non-Envelope)
98.1(Envelope)
15.3(non-Envelope)

98.7 (Envelope)
25.1(non-Envelope)
99.0(Envelope)

It can be noticed in Table 6 that isotopic envelope member peaks are characterised by possibility

values bigger than 89.66%.
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Table 7. Results of applying the fuzzy-inference system to different datasets [53].

susetame | No.ofutpea | Moot || gt
pairs member peak pairs
HNC-FFPE Dataset 1 97 910 1916 98.04
HNC-FFPE Dataset 2 55 030 1457 97.35
HNC-FFPE Dataset 3 68 920 1584 97.70
HNC-FFPE Dataset 4 97 840 1945 98.01
HNC-FF Dataset 1 47750 1662 96.52
HNC-FF Dataset 2 46 350 1610 96.53
HNC-FF Dataset 3 54 030 1624 96.99
HNC-FF Dataset 4 55 070 1603 97.09

In (Table 7)and (Figure 31) it can be observed that the number of peak pairs that should be taken

into further analysis has significantly decreased for every dataset (over 96%)[53].

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

FFPE 1 FFPE 2

No. of input peak pairs
No. of potential isotopic envelope member peak pairs|

FFPE 3

FF 1 FF 2

FFPE 4

FF3 FF 4

Figure 31. Reduction of input peak pairs after applying Mamdani-Assilan fuzzy-inference system

[53]

For every dataset, the algorithm has reduced the number of peaks to over one thousand

deisotoped peaks.

The primary purpose of employing fuzzy logic as a first step to the problem of isotopic envelope

identification is to reduce the dimensionality of peak pairs that should undergo subsequent

analysis.
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5. VERIFICATION OF THE MEMBERSHIP OF THE PREDEFINED PEAKS INTO THE

ISOTOPIC ENVELOPE

5.1. Peaks spatial distribution as a basis for further analyses

The peak intensity in the mass spectra of each spot (or pixel) is defined for each analyte.

Therefore, it is possible to map the spatial distribution of the analyte. All peaks from the mass

spectrum (with a given m/z value) are visualised as a map of intensities (creating the so-called

image) that are shown in Figure 32. Such spatial map of a molecular distribution presents the

in

The idea has been published in[93].

tensities of peaks registered for m/z values across the whole tissue section.[53][93]

Intensity

35 -
30 X 2218 -
Y 25.88
25 =
20 -1
X 2219
15 -
Y 11.8
10 B
: LA‘ j
0 1 1 1 1 1 1 —2
2214 2215 2216 2217 2218 2219 2220 2221 2222

m/z

Figure 32. Visualisation of the peaks with given m/z values as the spatial maps of molecular
distribution (maps of intensities) [53].
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The spatial maps of molecular distribution of peaks are constructed in the following way (Figure
33)[93]:

Intensity map of the
second peak

Intensity map of the
first peak

(IMG 1) (IMG 2)

— .
enhancement enhancement

{ [

i 1

Normalisation Normalisation

Differential intensity map
(IIMG1- IMG2I)

Figure 33. The pipeline of constructing the differential intensity map [93].

a) Constructing a map of intensities for each peak from the mass spectrum with a given

m/z value is based on presenting peak intensities registered for given m/z values
across the whole tissue section at the original coordinates. Different colours reflect
different peak intensity values.[93]

b) Histogram enhancement [94]

Histogram equalization was performed to enhance the contrast by widening the range
of intensities of the image. Histogram equalization transformation is performed in the
following way (Eq. 15, Eq. 16, Eq. 17)

s = K X CDF (1) (15)
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k (16)

CDF(r,) = ZP(rj)

J=0

“ (17)
$=T0) =K Y p(r)
j=0

where:

It- specific random intensity value,

Sk-corresponding random intensity value,

r-random variable,

K -scaling constant.

c) Spatial filtering was performed in order to remove noise from the image using the

median filter [94] (Eq. 18).

f(x,y) = median {g(s, t)} (18)
(s, t) € Sxy

m-number of image rows spanned by the filter,

n-number of image columns spanned by the filter,

£-Noisy image,

Sxy - m x n neighbourhood of the input noisy image; the neighbourhood is centred at
spatial coordinates (x, y)

f(x,y)- estimate of fthat denotes the filter response at coordinates (x, y).

d) Normalisation

For each m/z, a vector of maximum intensities for a given m/z is constructed. Then, the
average from that vector is calculated, so it is the average of maximum intensities for all
m/z.

e) Differential intensity map

After visualising all peaks from the mass spectrum as the map of intensities, pairwise
differential intensity maps were created by subtracting the intensity maps of two peaks
(Figure 34 and Figure 36, Figure 35 and Figure 37). The outcome is the absolute value of
two spatial intensity maps (Figure 38, Figure 39).[93]
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Figure 35. Image C[53].
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Figure 36. Image B[53]. Figure 37. Image D[53].
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Figure 38. Differential image /A - B/[53]. Figure 39. Differential image /C - D/[53].

The assumption is that for isotopic envelope peak members, the spatial distribution is similar.
That means that the intensity structure and structural image properties are similar - there is no

texture visible in the obtained differential intensity map for those peaks (Figure 38). Hence, the
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differential image has a noise character, only uniform intensity distribution is visible or the
intensities are at similar level. On the contrary, peaks not included in isotopic envelopes have no
similar spatial distribution, resulting in clearly visible structure in the differential image (Figure
39). In order to turn this assumption into measurable values, several measures for image

structure and texture analysis have been employed, described in detail in 5.2.1. [63][93 ]

5.2. Classifier construction process

5.2.1. Descriptors selection

In order to assign peaks to the correct class: envelope (E) or non-envelope (nE), several metrics
have been applied (Figure 40). They can be divided into two groups: based on parameters of the
model components and image-based. The second ones are split into texture metrics (most of
them are based on Gray-Level Co-Occurrence matrix - GLCM) and image structure. GLCM-based
texture metrics are calculated based on the differential intensity maps, whereas those concerning
the parameters of the model components, image structure, and non-GLCM-based texture metrics

are calculated on the spatial intensity map of a single peak (model component). [53]
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DESCRIPTORS
Image-based

Texture metrics

~~—

Non-GLCM-based

Parameters of the
model components

Image structure

GLCM-based

Legend:

based on differential
intensity map:
[IMG1 - IMG2|

based on single peak
intensity maps: IMG]1,
IMG2, ...

Figure 40. Descriptors divided into groups and distinguished based on calculations:
differential image-based and based on separate peaks images [53].

| group of descriptors: parameters of the model components [53]

The first group of descriptors is based on parameters of the model components[53].
1. The distance between the means of two adjacent model components is approximately
equal to 1.003 Da(Figure 41)(Eq. 19)[53]:
m = 1.003 (19)

where:

z-1ion charge.
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This assumption is based on the condition that in MALDI MS, there is a single peptide ionisation in

most cases. It was aforementioned and explained in 2.5, based on [49].

o50F T T T T T

200

-
4]
[=]

I

X 857.6 7
|Y 122

bl ] 1
57 858
m/z

Intensity

-

o

=]
1

855 856 8 859 860

Figure 41. Distance between the means of two adjacent model components [53].

2. The estimated variances ratio of two adjacent model components (s) that are members
of the isotopic envelope is approximately equal to 1(Figure 42) (Eq. 20)[53]:

s Sy (20)
S>

This assumption is based on expert knowledge in the field of mass spectrometry.
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Figure 42. The estimated variances ratio of two adjacent model components [53].

Il group of descriptors: texture metrics

“Texture is data variation at scales smaller than the scales of interest”. It is a characteristic that
splits the image into areas of interest. [95] In essence, texture represents the local spatial
arrangement of reflectance values [96]. It is worth mentioning that texture carries valuable
information about the structural arrangement of surfaces and how they are related to the
surrounding environment [97].

Texture can be defined as distribution of patterns, spatial arrangement of textons, or specific
spatial frequencies [98]. Several different approaches can be applied to assess the texture:
statistical, structural, model-based, and transform-based methods [98]. Texture metrics can be
characterised as first- or second-order metrics. Second-order texture measures take into
consideration the relationships between pixels in an image, whereas the first-order are statistics
that do not consider a relationship between the pixels[99].

A plethora of texture metrics is based on the Gray-Level Co-Occurrence Matrix (GLCM). GLCM can
be defined as directional. In this case, it is parametrised by two parameters: distance d between
pair of pixels (one is called the reference and the second - the neighbouring pixel [95]) and an
angle @ formed by the line connecting the pair of pixels with the reference direction of the image

[100](Eq. 21, Eq. 22):

Clk,;d,®) = %:%;6 (k—g(@i,j))s (I — g(i + dcos®,j + dsin®)), (21)
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where:
g0 J) - grey value of pixel (i, j),
C(k, I; d @ )-total number of pixels pairs at distance d and angle @ from each other,

k, [- grey values of the first and second pair of pixels, respectively.

! Cq (Mm,n) (22)
All pairs of pixels used ¢~

p(mn) =

In all the above definitions, ¢ is the total number of grey levels that were used. The co-
occurrence matrix corresponds to a joint probability distribution function (“a given pair of gray-
levels co-occur at a specific relative distance in the image”[98]). [95][100]

In essence, the GLCM presents the frequency of occurrence of different combinations of grey
levels (pixel brightness values) in an image [99]. Haralick [97] proposed 14 texture measures
based on GLCM and tonal differences between pixel pairs [96]. Generally, statistical texture
metrics are based on evaluating of the spatial distribution of grey values. The evaluation process
is as follows: local characteristics in the image are calculated at each stage, and then, from the
local characteristic distribution, a collection of statistics is extracted.[95]

The most commonly used features computed from the GLCM were calculated in order to
differentiate envelope from non-envelope differential images. The statistical analysis, including
contrast probability estimation and empirical cumulative distribution function, is based on the
training data.

According to [99], texture metrics can be divided into four groups (Figure 43). Despite calculating
texture features based on GLCM, another image texture metric has been analysed, which is not
based on GLCM: autocorrelation function .

All image texture metrics were calculated on the differential images. In order to avoid classifier
overfitting, only some descriptors were chosen for further analysis in the process of feature
selection, described in details in 5.2.1. Probability density estimate and empirical cumulative

functions based on the training data are presented only for those descriptors. [53]
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Gl CM-based
Contrast . L Non-GLCM-

- contrast « entropy « mean e autocorrelation
« homogeneity . energy . standard
« M1-based deviation
« variance
« correlation
« moment
« median
- interquartile
range (IQR)
« coefficient of
variation(cV)

Figure 43. Groups of texture metrics [53].

1. Contrast focused
These metrics are based on calculating the weights related to the distance from the GLCM

diagonal [99].

a) Contrast compares a pixel-neighbour intensity over the entire image [95]. It reflects
the depth of the texture grooves and sharpness of an image [101] and represents the
grey level variation in GLCM [102]. It carries information for two neighbouring pixels
about the linear dependency of grey levels [102]. This feature is represented by

(Eq. 23)[100]:

1

G Zmmo Lnzo(m = n)? p(m,n) (23)

Contrast =
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= contrast ksdensity

= Non envelope

m— Envelope

0.2 0.4

Figure 44. Contrast probability density estimate for the training data (£ and nE peaks)[53].

It can be observed that over 95% of envelopes are in the range (0; 0.3), whereas non-envelopes in

the same range are about 15% (Figure 44), (Figure 45)[53].

contrast ecdf

0.6

0.8

1 T T T T —-— T
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= 0.5 7

0.2 I]

0.1 f yd

0 [ . I " I I I I

— Non envelope
Envelope

0.5
X

Figure 45. The empirical cumulative distribution function of contrast metric for the £ and nE

peaks [53].
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b) Homogeneity measures how close is the distribution of the components in GLCM to
the GLCM diagonal [95]. It denotes how homogenous the image textures are and
scaled the local changes of image texture [101]. This feature is represented by (Eq. 24)

[100]:

G-1

Q

— (m n) (24)

1+|m n|
0

Homogeneity =

m=0

S
Il

a5 homogeneity ksdensity

MNon envelope

Envelope
30 |- P .

25

0.8 0.85 0.9 0.95 1 1.05

Figure 46. Homogeneity probability density estimate for the training data (£ and nE peaks).

It can be observed that below 0.9 homogeneity value ~90% are the peaks that are not included in

isotopic envelopes (Figure 46), (Figure 47).
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Figure 47. The empirical cumulative distribution function of homogeneity metric for the £ and nE

c) Mlis a GLCM-based measure used for denoting the structured molecular images. The
assumption is that structured images contain many co-occurring low-intensity and
high-intensity pixel pairs since the contrast between those two groups of intensity
values shows a clear structure. Based on that assumption, two weight vectors are

created in order to assign higher weights to the pairs of the aforementioned pixels of

homogeneity ecdf

i I
S I

=i

—F

Non envelope
Envelope

0.86 0.88 0.9 0

.92 0.94

X

peaks.

interest and lower to other values (Eq. 25)[103]

2. Order type

The second group of texture features is related to the order - how reqular are the

differences of pixel values in an image are [99].

a) Entropy reflects the randomness of intensity distribution and complexity and the non-

uniformity of image texture [100][101] (Eq. 26).
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M1 = 4 X GLCM(1,1) + 2 X {GLCM(1,2) + GLCM(2,1) +
GLCM(2,2)} + {GLCM(1,3) + GLCM(2,3) + GLCM(3,1) +
GLCM(3,2) + GLCM(3,3)}
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G-1

[

-1 (26)
Entropy = Z p(m,n)logp(m,n)

m=0 0

S
Il

entropy ksdensity

25 T T T T
Non envelope
— Envelope

2 — —
1.5 N
1 — —
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O L 1 \A
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Figure 48. Entropy probability density estimate for the training data (£ and nE peaks).

It can be observed (Figure 48, Figure 49) that below the 2.6 entropy value, ~90% are

the peaks that members of isotopic envelopes.
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Figure 49. The empirical cumulative distribution function of entropy feature for the £ and nkE
peaks.

b) Energy carries an information about the grayscale distribution homogeneity of an

image and the crudeness of texture [100][101] (Eq. 27).

Energy = Y50 256 p(m, n)? (27)

3. Statistical
These are the descriptive statistics descriptors based on histogram analysis. Their

regions’ textures are described by higher-order moments of their grayscale histogram.
[99]

e Mean informs about the mean intensity level of the image or texture.
Eq. 28. is related to the mean of reference pixels, whereas Eq. 29 refers to the mean
based on the neighbour pixels. Both values are identical in the case of the symmetrical
GLCM.[95]
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G-1 G-1 ( 28 )
m ) p(m,n)
m=0 n=0
G-1 G-1 ( 29 )
n > p(m,n)
n=0 m=0
to
e Standard deviation (Eq. 30, Eq. 31):
G-1 G-1 ( 30 )
o= Y (m=-w) ) p(mn)
m=0 n=0
G—-1 G-1 ( 3] )
oy = ) (=) ) p(mn)
n=0 m=0

e Variance (o2, cf,) denotes the dispersion of the pixel values around the mean (difference

between the reference and neighbour pixels)[99].

e Correlation (Eq. 32)indicates if there is a linear and predictable relationship between the

neighbouring pixels [99] and if an image texture is consistent [101].

Zm 0 n Omnp(m n) .ux.uy (32)
O'xO'y

Correlation =
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- correlation ksdensity

Non envelope
m— Envelope
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Figure 50. Correlation probability density estimate for the training data £ and nE peaks).

In 90% of cases, the envelope peaks are in the range (0; 0.55), whilst the peaks not included in the

isotopic envelopes are over 0.55 correlation values (Figure 50, Figure 5]).
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Figure 51. The empirical cumulative distribution function of correlation metric for the E and nkE
peaks.

e The central second moment (moment about the mean) is used to describe an image

histogram’s shape (Eq. 33)[94].
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L-1 ( 33 )
Ho = ) (= m)p(z)
i=0

where:

z;- discrete random variable denoting intensity levels in an image,

p(zi) =0 1,2, .., L-1-corresponding normalised histogram,

L - number of possible intensity levels,

p(z;) - a histogram component (estimation of the probability of the occurrence of
intensity value z),

m - mean.

e Median is the middle measurement (pixel intensity) in an ordered set of image pixels [104].

median ksdensi
20 | | | ty

Non envelope

18 = Envelope

16

14

12 .

Figure 52. Median probability density estimate for the training data £ and nE peaks).

Median seems to be the descriptor that differentiates the least between envelope and non-

envelope peaks (Figure 52, Figure 53).
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Figure 53. The empirical cumulative distribution function of median for the £ and nE peaks.

e Interquartile range (IQR) is the distance between the first and third quartiles of pixel

intensities (Eq. 34)[104].

IQR = Q3 — 4 (34)

e Coefficient of variation (cV) (Eq. 35) is a measure of variability. The variance and the

standard deviation have magnitudes dependent of the magnitudes of the data.[104]

cV=Ex100% (35)

In Figure 54, an analysis of image texture metrics is presented. What is more, isotopic envelopes
membership was also considered. Below every arrow, it is shown whether low and high values

determine the peaks that are members of isotopic envelopes (E) or non-Envelope peaks (nE). [53]
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e (=constant texture
e uniformimage
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distribution in image
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distribution of an image
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0 (G-1)?

i
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I
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crudeness image texture
1=constant image

structured image

Figure 54. Image texture metrics from contrast- and order-type groups interpretation in relation

to isotopic envelopes membership. Interpretation based on [53]1[95]1[96]1[101][103].



Glodek A.: Deisotoping methods in MALDI ToF Mass Spectrometry Imaging

0.14 -0.052 -0.052 FHOIS3 N =0i81 =075 =0:85" -0.33" 0.087 04 0.43 1 &Y

-0.57 -065 -0.65 -0.63 -0.75 -0.47 -0.38 -0023 0.81 0.98 1 [VEX energy
-0.62 -0.71 -0.71 -0.66 -0.75 -0.46 -0.37 -0.016 0.82 1 098 04 QLU

-0.68 -0.63 -0.63 -0.33 -047 -0.14 -0.077 -0.13 1 0.82 0.81 0.087 gleplelelul=l]
-0.079 -0.08 -0.08 0.067 0.2 0.029 0.52 1 -0.13 -0.016 -0.023 [=0:33 Elalige]s}%

-0.027 0.14 0.14 057 0.79 0.69 1 0.52 -0.077/-0.37 -0.38 -0.85 Jlel}

0 012 03 03 06 083 1 0.69 0.029 -0.14 046 -0.47 -0.75 [yCllED]
041 058 058 0.74 1 083 079 0.2 047 075 -0.75 -0.81 [uEEN
04 052 0.2 1 0.74 06 057 0.067 -0.33 -0.66 -0.63 -0.53 [eelif=IENIN]

0.5

.05 0.96 1 052 058 03 0.14 -0.08 [=0:68 =0:71 =0.65" -0.052 Fg]
0.96 1 052 058 03 0.14 -0.08 F=0:63 =0:71 =0.65"-0.052 {El

1 04 041 0.12 -0.027 -0.079 [SOI68==0.62 =0.57 0.14 [ulelnlhls

0.78 038 049 025 0.13 0.053 [SOIBENS0NE =00 S -0.08 [eslilieEn

r
d
n
1

mean
Q

entropy
M

energy
[

median

’g T
]

= E

5 s}

<]

o E

correlatio
homogeneity

Figure 55. Clustergram of Spearman'’s rank correlation coefficient of the image texture metrics
[53].
In order to assess the correlation between the descriptors, Spearman’s rank correlation
coefficient was calculated [105] (Figure 55). The vast majority of texture descriptors within the
same group are strongly correlated because of the similar way of calculation [96]. Nonetheless,
variance is closely correlated to the measures included in the contrast group [96] (contrast
r = 0.7487, homogeneity r = -0.6327 and M1 r = 0.7068). Between contrast and homogeneity,
a negative correlation is expected [96], and it turns out that homogeneity is strongly correlated to
contrast (r=-0.8623). Entropy is more independent of other texture measures since r< 0.5194 for
every other descriptor. Those descriptors can be used profitably in combination with each other.
For classification purposes, at least one texture descriptor from each group should be chosen for

further analysis. [53][96]

4. Autocorrelation function
An autocorrelation function can be used directly for textures similarity comparison [100].
The image's autocorrelation function applies to the texture's coarseness of fineness evaluation in
the image. It is also used to identify periodic textures in the image, indicating some repeated

element models of texture in the image. [95]

73



Glodek A.: Deisotoping methods in MALDI ToF Mass Spectrometry Imaging

Images with a rough texture are characterised by progressively falling autocorrelation function
(Figure 56), whereas the shape of the function for images with no rough texture falls hastily

(Figure 57)(Eq. 36)[95].

(36)

1
S I DG+ x,

W= D@ —pp 2 2 DI T+ )

P(x;)’) = 1 N; N]- . N2
M Zica Tl 1)

where:
1(ij) - the grey value of pixel (i)
N; x N;-size of the image
X, y- shifts.
In order to find high-frequency variations of the data and to avoid any drift caused by spatially

variable illumination, the mean of the image should be removed before performing the

calculations[100].
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Figure 56. Normalised autocorrelation function for exemplary envelope peak.

In order to find similarities between the autocorrelation functions of two adjacent model

components (peaks), the correlation coefficient was employed [100].
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Figure 57. Normalised autocorrelation function for exemplary non-envelope peak.

Structural similarity index (SSIM)

SSIM is the only metric that is not calculated based on the differential image but on the separate
peaks’ images. It measures the two images’ local brightness (luminance), structure, and contrast
separately. Then, all those local assessments are combined into one overall measure [106]. It
ranges from 0 (no similarity between compared images - non-envelope peaks) to 1(perfect match
between two images - isotopic envelope members) (Eq. 37).

SSIM(x,y) = [1(x,y)]*[c(x y)]P[s(x, 3] (37)
where:
a, B, y - exponents,
/-luminance,
c-contrast,

s-structure.

Descriptors selection

In order to avoid redundancy in descriptors, a descriptor selection method was employed based
on the wrapper approach. In such an approach for descriptor evaluation, the clustering algorithm
is used. This approach incorporates a search component (sequential forward selection) wrapped
around Naive Bayes model clustering. As a descriptor evaluation criterion, the best accuracy was

taken into consideration.[107]
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One of the commonly used algorithm for feature selection is forward selection(also called forward

stepwise selection) [53] [108] [109] [110].This method starts with the empty set of descriptors,

and add descriptors one by one greedily [108].

Descriptors impertances

m

5

cotrelation
entropy
median
contrast
homogeneity

moment

Oescriptors

energy
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iqr
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0 10 20 30 40 50 60 70 80 a0
F =core

Figure 58. Descriptors importances [53 ].

100

Eighty models were randomly generated, and the feature selection method was applied to each.

According to Figure 58, the descriptors are divided into four clusters (red, orange, green, and

blue). Once this step was carried out, only eight descriptors out of 17 were selected for further

analysis [53]:
1) distance of the means of adjacent model components (m)

2) estimated variances ratio of adjacent model components (s)

5) median
6) contrast
7) homogeneity

8) moment.
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5.2.2. Classifier construction

Supervised classification is essential from a data analysis point of view. Generally, a classifier
assigns a class label to instances that are described by variables. [111]

In order to classify peaks into the envelope and non-envelope classes, a supervised learning
approach was employed. Three types of classifiers were tested: Naive Bayes (NB) with
Epanechnikov kernel function, Support Vector Machine (SVM) with cubic kernel function, and
Decision Tree (DT). All of them were tested on the testing data set, which was not used in the
training process. NB is the generative model, whereas SVM and DT are discriminative. All the
metrics were calculated after the completion of the fuzzy-inference decision process. As a
consequence, the values of the metrics are only related to the classification step, resulting in not

considering non-envelope peaks removed after the fuzzy-inference decision step.

Dataset

8 datasets

Remaining Validation

data data

70 peak pairs (nE)

Trainin .
aining Testing data
data
115 peak pairs 40 peak pairs

Figure 59. Dataset division scheme [53].
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The process of building the model includes a training phase and a testing phase. Training and
testing data are involved in the creation of the model. The dataset was divided into three sets:
testing data, training data, and validation data (Figure 59). The testing data is a sample of data
used to evaluate the final model fitted to the training data. Validation data was used to evaluate
the final model fit. It is worth noting that the validation dataset does not affect the model creation
process.

Training data was used to fit a model. This dataset was created in the following way: the matrix of
differential images was created. Each differential image was based on subtracting two peaks
from each other. Once an expert had annotated the peaks, it is possible, at this stage, to assign
exactly one label to each cell in the matrix, whether or not the differential image came from peaks
that were members of an isotopic envelope (E) or not (nE). To validate the model, cross-validation,
with the division of the entire dataset into five subsets, was performed. Then, the model was
trained 100 times on each subset. The performance measure (accuracy) of overall training subsets
was calculated.

In order to make the calculations less complex, differential images that contain peaks that are not
so far apart from each other were only included in the further calculations (working range in
yellow - Figure 60) because it is implausible that these peaks are members of an isotopic
envelope if the distance between the means of adjacent model components is considerable. In
nature, the distance between peaks enclosed in the same isotopic envelope is approximately 1 Da.
Then, the descriptors described in section Il are calculated for the differential images obtained in

the previous step.

M/z 799.7757 | 799.8721 800.5334 842.6263 | 843.6202
799.7757 - nE nE nE nE
799.8721 nE - nE nE nE
800.5334 nE nE - nE nE
842.6263 nE nE nE - E
843.6202 nE nE nE E -

Figure 60. Matrix of a differential image.

78



Glodek A.: Deisotoping methods in MALDI ToF Mass Spectrometry Imaging

= Naive Bayes

The Naive Bayes classifier is a probabilistic classifier based on the Bayes’ theorem. The reason for
choosing this classifier to decide which peaks are members of isotopic envelopes was that it is
advantageous when the dimensionality of the inputs is high. Moreover, it can be successfully
applied to large datasets due to its ability to perform with high accuracy. [112]

In the case of this work, objects (peaks) should be classified into one of two classes: envelope (C7)
and non-envelope (C2). Objects X = (x1, x» .., x,) are characterised by their descriptors
(distance of the means of adjacent model components, estimated variances ratio of adjacent
model components, median, entropy, contrast, correlation, homogeneity, moment). The classifier
predicts that the object is included in the category because of the highest value of the posterior

probability conditioned on that object. [113]

Figure 61. A graphical representation of the naive Bayes model for classification [53][114].

In Figure 61, the key assumption of the naive Bayes model can be observed: conditioned on class
G, the distributions of the input variables (peaks) x3, ..., x»are independent [114].

Object Xis classified into category C;if and only if (Eq. 38)[113]:

P(CiIX) > P(Cj|X)forallj # i (38)
It can be expressed by Bayes’ theorem in the following way (Eq. 39)[113]:
P(X|C,)P(C) (39)
P(GlX) = TR
which means (Eq. 40):
likelihood X prior (40)

terior =
POSTETIOT = e probability of X being observed

Due to this assumption, the classifier is called ‘naive’, since this is an assumption that the features

(predictors) are independent [113].
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In order to represent the prior probability, in case the predictors are non-binary and no
assumptions of normality of the distribution can be made, a kernel density estimator (KDE) is used
(Eq. 41)[115].

(41)

.1 z":K x— X;
f_nh - ( h )’
1=

where:

n-sample size,

h - bandwith.

The true density of variables is estimated using Epanechnikov kernel function (Eq. 42)[116][117]
[18].

KG) =2 (- x),lxl <1 (42)

The main formula of the naive Bayes is an attribute conditional independence (Eq. 43)[113]:

P(xlg) = | [Pewdcy
k=1

The essential part of the Bayesian model formulation is P(X|Cj) determination (time-consuming

(43)

and computationally expensive), which in that classifier is simplified by using the equation [113].
The process of classification peaks to the classes is as follows [113]:
1. Training data is used for determining the probabilities P(C;)
2. Category conditional probabilities for discrete variables are based on training data
3. Foreach C;, P(X|C;)P(C;)are calculated in order to classify the unclassified object
(peak) to one of the class

4. The unclassified object (peak) is assigned to the category which attains the largest score.

= Support Vector Machines (SVM) [112][119]
SVM is based on finding a hyperplane between the data points in N-dimensional space (N is the
number of features) to separate the data points into two classes. Separability implies the
existence of margins delimited by two parallel hyperplanes, inside which not a single data item

lies. The margin should be as wide as possible. [112][119]
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That works aims to denote the peaks included in isotopic envelopes. Thus, the number of classes
is two: E'and nE. SVM with cubic kernel function was created. The Cubic SVM hyperplane is based
on a three-order polynomial [112][119].
Given the data in the form of label-feature pairs (Eq. 44)[112][119],

(X1, y1)s o, X, ¥,y € {=1,1}, x; € RP (44)
where the classes (E and nE) were denoted as 1and -1.
The goal is to find a decision function which correctly predicts the label y of an input feature x
(Eq. 45)[12][M9]:

_ (+1when h(x) >0, (45)
fx) = {—1 when h(x) < 0.

The separating surface is defined as follows (Eq. 46)[112][119]:

H = {x |h(x) = 0}. (46)

= Decision Tree

This kind of classifier is based on binary selections that correspond to the traversal of a tree
structure [114]. From the mathematical point of view, a tree is defined as an undirected acyclic
connected graph. A decision tree is a directed tree with an apex (called ‘a root’), which is the initial
apex of the tree.[119]
Generally, the decision tree partitions the input space (data) hierarchically until it reaches a
subspace associated with a class label (envelope or non-envelope) by traversing the tree
beginning at the root [112]. The whole data sample is concentrated in the tree root, and then the
subsequent data items (peaks) are moved along the branch, from top to bottom, through the
nodes, in each of which a decision is made to choose the branch along which the data item will
move. In this way, at each node (which is not a leaf), the data items reaching that node are divided
into subgroups. Under each node, there is a criterion for dividing the subgroup reaching this node
into smaller subgroups reaching the child nodes based on the data’s attributes. The splitting rule
made in a given node is the same for all elements of the sample that are in that node. The sample
elements are moved to an end node, the tree's leaf, which is usually labelled with the class of the
analysed discrimination problem, from which most data items that reached this leaf originate.
[M2][M9]
In order to denote the isotopic envelope member peaks, the 2-class (E and nE) decision tree of

medium flexibility with a smaller number of leaves has been constructed (Figure 62). It was
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constructed based on 115-element data sample, and the prior chosen features describe each data
item: distance of the means of adjacent model components, estimated variances ratio of adjacent

model components, median, entropy, contrast, correlation, homogeneity, and moment.

sigRatio >= 1160500 non-
dist < 0.914479 non- Envelope

dist >=
0.991739 non- Envelope
Figure 62. 2-class decision tree for determining the envelope member peaks.

In order to compare the three aforementioned classifiers, several statistics metrics have been
calculated and gathered in Table 8:

1. True Positive (TP)

2. True Negative (TN)
3. False Negative (FN)
4. False Positive (FP)
5. Specificity = pesp—
6. Precision=

TP+ FP
7. Recall=

TP+ FN
8. Balanced Accuracy = Recall +Specificity
' 2
9. Critical Success Index (CSI): CSI = S L —
TP+ FN+ FP

(TP XTN)—(FP XFN)

10. Matthews Correlation Coefficient (MCC)[120]: MCC =
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

1. Fowlkes-Mallows Index (FMI)[121]: FMI = +/Precision x Recall
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Table 8. Confusion matrix-based metrics.

Naive Bayes SVM Decision Tree
TP 128 10 29
TN 1437 126 1100
FN 5 23 104
FP 33 1344 370
Specificity [ %] 97.76 8.57 74.83
Precision[%] 79.50 7.57 7.27
Recall [ %] 96.24 82.71 21.81
Balanced Accuracy 97.00 45.64 48.32
[%]
Critical Success 77.11 7.45 5.77
Index (CSI)[ %]
Matthews 86.26 -8.29 -2.15
Correlation
Coefficient [ %]
Fowlkes-Mallows 87.47 25.01 12.59

Index (FMI)[ %]

It can be observed (Figure 63) that SVM has significant compliance with the results compared to
the expert in annotating members of isotopic envelopes since the recall value is 82.71%.
Nevertheless, it annotates many peaks as the envelope ones, whereas they are not included in
isotopic envelopes - the value of specificity is notably low in comparison to other investigated
classifiers (8.57%). Decision Tree classifier has a substantial compliance of non-envelope peaks
annotation with the expert (specificity = 74.83%), but unlike the SVM classifier - it has low
envelope peaks detection ability (recall = 21.81%). Both SVM and DT classifiers are characterized
by low values of precision (7.57% and 7.27%, respectively). Therefore they cannot accurately
classify peaks that are members of isotopic envelopes. Moreover, balanced accuracy values
obtained for the two classifiers mentioned above are comparable (below 50%), which means that

only less than 50% of peaks were classified correctly to the envelope or non-envelope classes.
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Figure 63. Comparison of four confusion matrix metrics for Naive Bayes, Cubic SVM and Medium

Tree classifiers.

Concerning the results of the metrics gathered in Table 8, the Naive Bayes classifier has the best
performance compared to SVM and DT classifiers due to the fact that all of the metrics are
significantly high. The CSI value of the NB model is 77.11%, which is much better than that of SVM
and DT. Additionally, Matthews Correlation Coefficient indicates that the quality of the NB model
(regardless of the differences in the quantity of envelope and non-envelope classes) is remarkably
better than those of SVM and DT. Moreover, the FMI of NB is notably higher than of the
aforementioned two classifiers. Thus, this classifier seems to classify peaks as members of
isotopic envelopes and non-envelopes correctly. The low performance of SVM and DT could be
that DT is sensitive to outliers and likely overfit the data, whereas SVM classifies the data based
on geometry. Moreover, because the weights of the variables are not constant in SVM, the
contribution of each variable to the output is variant [122]. Generally, for many classification
problems, the probability-based approach gives better results. Hence, the Naive Bayes is further

considered a classifier for defining envelopes’ member peaks.
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6. RESULTS

The proposed two-step method based on Mamdani-Assilan fuzzy-inference system potential
isotopic envelope members preselection and verification based on the Naive Bayes classifier was
tested on eight datasets comprised of peptides data, mentioned in 3.1. Results evaluation in 6.1
and 6.2 comprises of the combined results obtained in both method steps. The results were

published in [53].

6.1. Results for Head and Neck Cancer - Fresh Frozen tissues peptide datasets
Four datasets of peptide-related data collected from patients suffering from head and neck
cancer were used to test the proposed algorithm. After performing the first step of the method -
preselection of the input peak pairs by the Mamdani-Assilan fuzzy-inference system, the number
of peaks that should be considered as the potential isotopic envelope members decreased
significantly - for these four datasets number of input peak pairs ranges from 46 350 to 55 070

and was diminished to the values ranging from 1662 to 1603 number of peaks.

Envelope 48 5.9%

NonEnvelope 8 0.0%

True Class

100.0%

14.3% 0.0%

Envelope NonEnvelope
Predicted Class

Figure 64. Confusion matrix for HNC-FF Dataset Tresults [53].

In Figure 64, the confusion matrix for HNC-FF Dataset 1is presented, which contains combined
results of the two steps of the method, as the significant number of peak pairs were removed
from further analysis based on the first step of the method (Mamdani-Assilan fuzzy-inference
system). The numbers included in the confusion matrix reflect the peak pairs - 48 peak pairs were

classified as the members of isotopic envelopes by the expert and by the proposed two-step
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method. Eight peak pairs were incorrectly classified as the isotopic envelope members. 47 691
peak pairs were correctly classified as not included in any isotopic envelope. Three peak pairs
were incorrectly classified as the non-Envelope ones. Further steps of the analysis of the results
are adjusted to the data characterised by the considerable number of negative predictions, since
a significant number of peaks is not included in any isotopic envelope.

Table 9. Confusion matrix-based metrics for 4 HNC-FF peptide datasets [53].

HNC-FF HNC-FF HNC-FF HNC-FF
Dataset 1 Dataset 2 Dataset 3 Dataset 4
TP 48 45 89 128
TN 47 691 46289 53 896 54900
FN 3 6 12 9
FP 8 10 33 33
Specificity 99.98 99.98 99.94 99.94
[%]
Precision 85.71 81.82 72.95 79.50
Recall 94.12 88.24 88.12 93.43
Balanced 97.05 94.12 94.03 96.69
Accuracy
Critical 81.36 73.77 66.42 75.29
Success
Index
Matthews 89.81 84.95 80.14 86.15
Correlation
Coefficient
Fowlkes- 89.82 84.97 80.18 86.19
Mallows
Index

In order to evaluate obtained results, several confusion matrix-based metrics were calculated and
gathered in Table 9. According to every dataset's recall and precision values, the envelope-
member peaks were classified accurately, ranging from 88.12% to 94.12% and from 72.95% to
85.71%. In comparison, the peaks not included in isotopic envelopes were classified with an
accuracy of over 99% (specificity). Matthews Correlation Coefficient carries information on the
model quality regardless of the differences in the number of elements included in two classes:
Envelope and non-Envelope. It can be observed that a correlation between predicted values and

those annotated by the expert ranges from 80.14% to 89.81%. In order to evaluate the obtained
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results, Balanced Accuracy was calculated instead of the standard accuracy measure due to the
fact that the sets of Envelope and non-Envelope peak pairs are imbalanced, as the number of nE
is notably higher than the E set size. Balanced accuracy changes from 94.03% to 97.05%.
Moreover, the Fowlkes-Mallows Index indicates a significant similarity (over 80%) between

predicted values and those assessed by the expert.[53]
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Figure 65. Exemplary isotopic envelope consisted of four member peaks.

In Figure 65 exemplary isotopic envelope correctly classified by the proposed method is
presented. This isotopic envelope comprises four peaks, where the second peak has an
abundance higher than the first one. Nonetheless, the distance between adjacent model
components is approximately equal to one, which was one of the assumptions that should be met

if two peaks belong to the isotopic envelope.
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Differential image
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Figure 66. Differential image: abs | m/z; - m/z2| , where m/z;=1909.90, m/z,=1910.91.

In Figure 66, Figure 67, and Figure 68, the differential image (differential map of a spatial

distribution) of the two adjacent peaks is presented.

Differential image

1
10 0.9
20 0.8
30 0.7
40 0.6
50 0.5
60 0.4
70 0.3
80 0.2
90 0.1

100k L L 1 L L 1 ' 1 48,

10 20 30 40 50 60 70 80

Figure 67. Differential image: abs | m/z; - m/zz2| , where m/z;=1910.91, m/z,=1911.91.
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It can be observed that there is no structurality visible in the aforementioned images that prove
that from the peaks' spatial distribution point of view, those peaks should be considered as

members of the isotopic envelope.

Differential image
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Figure 68. Differential image: abs | m/z: - m/zz| , where m/z;=1911.91, m/z,=1912.92.

6.2. Results for Head and Neck Cancer - Formalin-Fixed Paraffin Embedded
peptide datasets

Four HNC-FFPE datasets of peptide-related data collected from patients suffering from head and

neck cancer were used to test the proposed algorithm. After performing the first step of the

method - preselection of the input peak pairs by the Mamdani-Assilan fuzzy-inference system, the

number of peaks that should be considered as the potential isotopic envelope members

decreased significantly - for these four datasets number of input peak pairs ranges from 55 030

to 97 910 and was diminished to the values ranging from 1945 to 1457 number of peaks.

89



Glodek A.: Deisotoping methods in MALDI ToF Mass Spectrometry Imaging

Envelope 242 9.0%

% NonEnvelope 366 0.4%
O
[0)
2
-

39.8% 00.0%

60.2% 0.0%

Envelope NonEnvelope

Predicted Class

Figure 69. Confusion matrix for HNC-FFPE Dataset Tresults [53].

In Figure 69, the confusion matrix for HNC-FFPE Dataset 1is presented, which contains combined
results of the two steps of the method, as the significant number of peak pairs were removed
from further analysis based on the first step of the method (Mamdani-Assilan fuzzy-inference
system). The numbers included in the confusion matrix reflect the peak pairs - 242 peak pairs
were classified as the members of isotopic envelopes by the expert and by the proposed two-step
method. 366 peak pairs were incorrectly classified as the isotopic envelope members. 97 278 peak
pairs were correctly classified as not included in any isotopic envelope. 24 peak pairs were
incorrectly classified as the non-Envelope ones. Further steps of the analysis of the results are
adjusted to the data characterized by the considerable number of negative predictions, since a

significant number of peaks is not included in any isotopic envelope.
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Figure 70. Exemplary overlapping isotopic envelopes in the m/z 1040-1050 mass range(orange -
first isotopic envelope, violet - second isotopic envelope, green - third isotopic envelope). The
reference for FP (False Positive) and TP (True Positive) is the expert annotation [53].
Figure 69 presents exemplary overlapping isotopic envelopes detected by the proposed method.
It can be noticed that the expert did not annotate the green envelope. In Figure 71, Figure 72,

Figure 73, and Figure 74, differential images (maps of spatial distribution) are pairwise presented

for all peaks shown in Figure 69.
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Figure 71. Differential image of two peaks marked in orange: abs | m/z1 - m/z2 |,
where m/z; = 1044, m/z, =1045[53].
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Figure 72. Differential image of two peaks marked in violet: abs | m/z; - m/z |,
where m/z;= 1044, m/z,=1045[53].
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Figure 73. Differential image of two peaks marked in violet: abs | m/z; - m/zz|.
where m/z;=1045, m/z,=1046 [53].
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Figure 74. Differential image of two peaks marked in green: abs | m/z; - m/zz |,
where m/z;=1048, m/z,=1047[53].

It can be observed that all of the differential images prove that for every peak pair included in the
isotopic envelopes mentioned above, after pairwise subtracting the spatial distribution maps,
solely uniform intensity distribution is visible (or the intensities are at similar level), which

indicates that a pair of peaks is included in the isotopic envelope.
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Figure 75. Exemplary isotopic envelope in the m/z 974-980 mass range.
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In some cases, the isotopic envelopes were partially classified, as in Figure 75. At m/z 976.5 and
9717.5, the complete agreement between the expert and proposed method is observed, unlike at
m/z 975.5, 978.5, and 979.5, where the peaks were wrongly detected as the members of an
isotopic envelope since not all requirements for being an isotopic-envelope member were met
(abundances difference between adjacent peaks at m/z 975.5 and 976.5 and variance ratio of the
peaks located at m/z 978.5 and 979.5; probably at m/z 979.5 after applying the pre-processing
method of components merging, two components were merged which resulted in changing the
shape of the peak). According to the analysis performed concerning the LC-MS experiment briefly
described in 3.1, after comparing the list of MSI components with the list of identified peptides in
the LC-MALDI-MS/MS measurement (briefly described in 3.1), it can be assumed that this isotopic
envelope is probably derived from the peptide sequence K.AGFAGDDAPR.A.

Table 10. Number of detected isotopic envelopes with a given length in HNC-FFPE Dataset 1[53].

No. of peaks included in an isotopic No. of detected isotopic envelopes
envelope
2 295
3 B4
4 38
5 1
6 2
7 1
[l 1

In HNC-FFPE Dataset 1, the number of identified isotopic envelopes is 412. Table 10 presents the
number of detected isotopic patterns versus their length. It can be noticed that the vast majority

of isotopic envelopes are comprises two-member peaks.
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6.3. Discussion
This chapter discusses the advantages and limitations of the introduced two-step method for
deisotoping based on a fuzzy-inference system and molecular spatial distribution of peaks.
Presented results obtained for 4 HNC-FF datasets and 4 HNC-FFPE datasets show that regardless
of the type of datasets - a way of the tissue procurement, preparation or preservation, and size of
the dataset, their accuracy, and sensitivity of identifying peaks included in isotopic envelopes are

similar.
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Figure 76. Deisotoping outcome (zoom) on the m/z 806-813 mass range.

In Figure 76, the exemplary correctly identified 2-element-isotopic envelope is presented.
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Figure 77. Deisotoping outcome (zoom) on the m/z 1832-1839 mass range. An example of isotopic
envelope partially correctly identified by the proposed algorithm.

In Figure 77, the expert manually annotated the isotopic envelope comprised of four peaks,
whereas the algorithm identified 3 out of 4 peaks as the envelope members. The most probable
reason is that in that mass range, the fourth peak in the isotopic envelope, according to the
theoretical isotope pattern calculated using Compass IsotopePattern (Bruker Daltonik), should be
approximately 20.49% height (abundance) of the first peak, whilst in the case presented in Figure

77the abundance of the fourth peak is over 44.23%.
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Figure 78. Deisotoping outcome (zoom) on the m/z 1529-1534 mass range. An example of isotopic
envelope partially identified by the proposed algorithm.
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In Figure 78, an exemplary isotopic envelope partially correctly detected is presented. Despite the
unfavourable variance ratio of the adjacent peaks at m/z 1531.74 and m/z 1532.76 (o1 / 02 =
1.4078), the proposed method correctly identified 2 out of 4 peaks included in the isotopic

envelope.

6.4. Comparative results with selected existing algorithms

The proposed two-step method called DeisoLAB was compared with three algorithms that
perform deisotoping: mMass, pyOpenMS, and MS2-Deisotoper, described in detail in 2.6.
HNC-FFPE Dataset 1, which comprises of 200 704 peaks, was used for comparative testing. Such
raw data was the input for every algorithm since each algorithm has its pre-processing step
embedded.

In order to compare results obtained by the aforementioned algorithms, a number of peaks
classified by the Envelope and non-Envelope ones obtained by each algorithm have been

compared with the expert’s annotations.
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Figure 79. Venn diagram constructed using [123] - the intersection between non-Envelope peaks
obtained by the expert, DeisoL AB, mMass, pyOpenMS and MS2-Deisotoper[DOI].

Figure 79 shows that the intersection of non-Envelope peaks between the expert and four

mentioned algorithms is 85.1%. “mMass slightly outperforms DeisoLAB for true negatives (TNs)

but simultaneously reveals notably smaller values of true positives (TPs) [53].
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Table 11. Confusion matrix-based metrics for DeisoLAB, mMass, MS2-Deisotoper and pyOpenMS

[53].

|  DeisoLAB | mMass - MS2-Deisotoper ~ pyOpenMS

TP | 342 | 89 | 29 | 55

TN | 199 828 200008 | 197 403 | 173 994

FN | 21 | 274 | 334 | 308

FP | 513 | 333 | 2938 . 26347
Specificity 99.74 99.83 98.53 86.85
[%]

'Recall[%] | 94.21 | 24.52 | 7.99 | 15.15
Balanced 96.98 62.18 53.26 51.00
Accuracy
[%]

It can be noticed that DeisoLAB outperforms other algorithms when taking into consideration the
number of correctly classified peaks to the isotopic envelope. A high value of negative accuracy
(Figure 80) is observed for all the investigated algorithms (nE peaks were correctly classified as
the nE ones with specificity in the range of: 86.85% - 99.83%) (Table 11). Despite DeisoLAB, the
algorithms have low values of balanced accuracy (from 51.00% to 96.98%). It provides information

on how accurately isotopic envelope member peaks and non-Envelope peaks were correctly

classified.[53]
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Figure 80. Comparison of three confusion matrix metrics for DeisoLAB, mMass, MS2-Deisotoper
and pyOpenMS[53].
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To sum up, in comparison with mMass, MS2-Deisotoper, and pyOpenMS, DeisoLAB exhibits better
results with respect to all statistical measures gathered in Table 11and presented in Figure 80. It
is undeniable that all three mentioned algorithms suffer from a severe decrease in recall values.
Moreover, pyOpenMS suffers from a notable increase in false positives (FPs), yielding significant

decreases in specificity and balanced accuracy. [53]

Hence, one can conclude that the DeisoLAB method classifies members of isotopic envelopes
more accurately than other investigated algorithms. Moreover, it simultaneously copes with non-

isotopic envelope members with also good accuracy.
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7. SUMMARY AND CONCLUSION

This PhD dissertation copes with deisotoping methods used for MALDI-TOF MSI experiments. The
primary purpose of the dissertation was to discuss the current challenges and perspectives in the
field of a part of mass spectrometry pre-processing, which is deisotoping, in reference to the
subject of MALDI-TOF experiments. The prominent gaps in the knowledge within the field of
MALDI-TOF MSI deisotoping were comprehensively analysed.

For this purpose, the two-step methodology was introduced to handle large MALDI MSI
datasets. The method incorporates two approaches: fuzzy reasoning and spatial map of a
molecular distribution of peaks included in a mass spectrum. As it has been proven, such a novel
approach is unique and allows for applying expert knowledge in algorithm creation and method
development. The method has been tested on eight datasets obtained from different samples,
which were also preserved in different ways - fresh frozen tissues versus formalin-fixed paraffin-
embedded tissues. The results were presented and thoroughly analysed. It turned out that the
method's first step based on the Mamdani-Assilan fuzzy-inference system significantly diminished
the number of peaks that should undergo further analysis. As a consequence, even large datasets
can be analysed. However, the method's limitations have been stated, and a few examples have
been shown. Owing to the fact that the second part of the method is based on the spatial
distribution of peaks and pairwise differential spatial distribution maps are created, the outcome
is the peak pairs included in isotopic envelopes, which causes a formidable challenge to handle
overlapping isotopic envelopes. A pairwise approach for identifying member peaks of isotopic
envelopes leads to accurately detecting overlapping isotopic envelopes. Every dataset's recall and
precision values, the envelope-member peaks were classified accurately, ranging from 88.12% to
94.12% and from 72.95% to 85.71%. In comparison, the peaks not included in isotopic envelopes
were classified with an accuracy of over 99% (specificity). Matthews Correlation Coefficient and
Fowlkes-Mallows Index values are over 80% for each dataset. Therefore, it can be stated that a
correlation between predicted values by the proposed method and those annotated by the expert
is high. What is worth mentioning is that the proposed method detects more isotopic envelope
members than the expert, which is an advantage because, in many cases, there is no opportunity
to annotate isotopic envelopes due to the signal density. Thanks to the combination of the fuzzy-
inference system and classification based on the spatial distribution of peaks, isotopic envelopes

can be effectively identified with the accuracy 96.98% (when compared to other algorithms).
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Moreover, due to the pairwise approach for isotopic envelope peak members identification, the
method allows to identify not only the simplest non-overlapping isotopic envelopes, but also the
overlapping ones. Generally, the application of the proposed method allows for identifying
potential isotopic envelope members that might be required to be proven experimentally. The
proposed pipeline can be employed to other mass spectrometers that are characterised by similar
properties of the isotopic envelope.

The dissertation theses were justified, as the new methodology for isotopic envelope
identification in MALDI-TOF MSI data based on the spatial distribution of adjacent peaks that takes
expert knowledge into consideration was developed. Furthermore, the significant data reduction
was confirmed in the first step of the proposed methodology (after applying the fuzzy-inference
system) since the number of peaks decreased by 96% for every dataset. Presented results show
that regardless of the type of datasets - a way of the tissue procurement, preparation or
preservation, and size of the dataset, their accuracy, and sensitivity of identifying peaks included
in isotopic envelopes are similar. Hereby, considering expert knowledge in the field of mass
spectrometry and information on the spatial distribution of spectral peaks, a novel approach
towards isotopic envelope identification was proposed, leading to optimisation of a pre-

processing step, which results in more accurate peptide/protein identification.
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ABSTRACT

Mass spectrometry is one of the essential steps toward protein identification due to the fact
that it provides information on the proteins’ structure. Since most chemical elements have
isotopes of different masses, the isotopic mass of a molecule observed in a mass spectrum
reflects the type and number of atoms in the ion being measured and the distribution of the
different isotopes. Depending on the resolution of the mass spectrometer, molecular ions can be
represented either by the monoisotopic mass (taking into account only the mass of the most
abundant stable isotope of each atom present in the molecule) or by the average mass (taking into
account the presence of both light and heavy isotopes). For an atom, the difference between the
two masses is insignificant. However, in molecules such as proteins, the difference between them
increases with the number of atoms that make up the molecule. Such a discrepancy leads to the
misidentification of peptides, which is why it is vital to remove isotope peaks from the mass
spectrum by performing a deisotoping procedure. Several existing algorithms include the
deisotoping step. However, most of them are dedicated to different mass spectrometry
experiments and have limitations depending on the kind of data from those experiments. The
MALDI-ToF technique provides high-dimension data. This dissertation introduces a method for
isotopic envelopes identification in MALDI-ToF MSI data. It is based on combining the Mamdani-
Assilan fuzzy-inference system with analysing the spatial molecular distribution of the peaks
(model components). The spatial molecular distribution is evaluated by several image texture
metrics. The proposed method was tested on eight MALDI-ToF MSI datasets provided by the
National Institute of Oncology in Gliwice from patients who suffered from head and neck cancer.
Obtained results were compared with three existing deisotoping algorithms. The method
presented in this research is based on the pairwise approach for isotopic envelopes member
identification. Such an approach enables the identification of overlapping isotopic envelopes in
large MALDI-ToF MSI-driven datasets.

m



Glodek A.: Deisotoping methods in MALDI ToF Mass Spectrometry Imaging

112



Glodek A.: Deisotoping methods in MALDI ToF Mass Spectrometry Imaging

STRESZCZENIE

.Metody identyfikacji obwiedni izotopowych w danych z obrazowania molekularnego MALDI
TOF”

Jednym ze znaczacych etapow procesu prowadzacego do identyfikacji biatek jest
spektrometria masowa, ktora pozwala na pozyskanie informacji o strukturze biatek. Ze wzgledu na
to, ze wiekszoS¢ pierwiastkow chemicznych ma izotopy o rdznej masie, masa izotopowa
czasteczki obserwowana na widmie masowym odzwierciedla rodzaj i liczbe atoméw wchodzacych
w sktad mierzonego jonu oraz rozmieszczenie roznych izotopow. W zaleznosci od zdolnosci
rozdzielczej spektrometru masoweqgo, jony czasteczkowe mogg byc reprezentowane albo przez
mase monoizotopowa (uwzgledniajaca jedynie masy najliczniej wystepujacego stabilnego izotopu
kazdego atomu obecnego w czasteczce), albo przez $rednig mase (uwzgledniajgca obecno$é
zarowno lekkich, jak i ciezkich izotopéw). Dla atomu réznica miedzy tymi dwiema masami jest
nieznaczna. Jednak w czasteczkach takich jak biatka, roznica miedzy nimi wzrasta wraz z liczbg
atomow, z ktorych zbudowana jest czasteczka. Taka rozbieznos¢ prowadzi do btednej identyfikacji
peptydow, dlatego tak wazne jest, usuniecie z widma masowego pikow izotopowych w procesie
nazywanym deizotopingiem. Istniejg rézne algorytmy umozliwiajgce przeprowadzenie
deizotopingu, natomiast majg swoje ograniczenia, sg dedykowane do ro6znych metod
spektrometrii masowej. Dane pochodzace z eksperymentow wykonanych technika MALDI-TOF
cechujg sie duzg wymiarowoscig. W niniejszej pracy przedstawiono metode identyfikacji obwiedni
izotopowych w danych z obrazowania molekularnego MALDI-TOF opartg na systemie rozmytym
Mamdaniego-Assilana oraz przestrzennych mapach dystrybucji molekularnej pikdw wchodzacych
w skiad obwiedni izotopowej. Do oceny przestrzennych map dystrybucji molekularnej
zastosowano szereg miar tekstury obrazu. Algorytm przetestowano na o$miu zbiorach danych
otrzymanych wskutek przeprowadzenia eksperymentu technikg MALDI-TOF na probkach
pochodzacych z Narodowego Instytutu Onkologii im. Marii Sktodowskiej-Curie w Gliwicach od
pacjentow cierpigcych na nowotwor regionu gtowy i szyi. Dane zostaty poddane przetwarzaniu
wstepnemu oraz ekstrakcji cech. Wyniki zebrano i porownano z trzema istniejgcymi algorytmami
do deizotopingu. Analiza otrzymanych wynikow wykazata, iz zaproponowana w niniejszej pracy
metoda do identyfikacji obwiedni izotopowych umozliwia wykrycie obwiedni naktadajgcych sie
dzieki zastosowania podejscia zorientowanego na badanie par pikow. Ponadto, zaproponowany
algorytm umozliwia analize duzych zbioréw danych.
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