POLITECHNIKA ŚLĄSKA

Wydział Mechaniczny Technologiczny Katedra Materiałów Inżynierskich i Biomedycznych

PRACA DOKTORSKA

Projektowanie składu chemicznego stopów aluminium o strukturze amorficznej, nanokrystalicznej i kwazikrystalicznej w oparciu o obliczenia termodynamiczne

mgr inż. Katarzyna Młynarek-Żak

Dyscyplina: Inżynieria Materiałowa

Promotor: dr hab. inż. Rafał Babilas, prof. PŚ

Gliwice 2023

Katarzyna Młynarek-Żak

Streszczenie poszerzone

1. Wstęp

Dynamiczny rozwój przemysłu stwarza zapotrzebowanie na wysokiej jakości stopy aluminium, które są stosowane na ważne elementy konstrukcyjne. Aspekty ekologiczne związane z ograniczonymi zasobami naturalnymi stanowią szczególne wyzwanie dla współczesnej inżynierii materiałowej. Stopy aluminium ze względu na małą gęstość wraz z obniżeniem masy wytworzonych z nich konstrukcji, zapewniają niższe zużycie energii. Szacuje się, że zastąpienie stali przez aluminium może skutkować zmniejszeniem masy elementów budowy statków morskich do 65%. Naukowcy ponownie zwrócili uwagę na stopy lekkie, szczególnie na bazie aluminium, równocześnie podkreślając istotne znaczenie nowo opracowanych składów chemicznych. W celu poprawy własności konwencjonalnych stopów metali, w drugiej połowie XX wieku opracowano nowatorskie technologie polegające na doprowadzeniu materiału do stanu nierównowagowego. Technologie szybkiego krzepnięcia ze stanu ciekłego wraz z odpowiednim doborem składu chemicznego, pozwalają otrzymać materiały metalowe o unikatowych strukturach o odmiennych własnościach w porównaniu do konwencjonalnej, uporządkowanej struktury krystalicznej. Możliwe jest wytwarzanie stopów na bazie aluminium o strukturze amorficznej, nanostrukturalnej, krystalitów w osnowie amorficznej oraz o złożonej strukturze faz międzymetalicznych (SCAPs) w tym kwazikryształów oraz ich aproksymantów. Pomimo licznych artykułów naukowych, brakuje uporządkowanych danych na temat zasad determinujących uzyskanie określonej struktury w zależności od składu chemicznego w nowo opracowanych stopach aluminium. Istnieje wiele teorii dotyczących projektowania stopów amorficznych. Między innymi, Akihisa Inoue ustalił ogólne reguły empiryczne brane pod uwagę w projektowaniu szkieł metalicznych. Według założeń opisanych w literaturze, udział aluminium powinien mieścić się w zakresie 80÷92 at.%, TMs 1÷15 at.% oraz REEs 3÷20%. W monografii "*Kwazikryształy*" profesor Marian Surowiec podkreślił, że większość pierwiastków bierze udział w tworzeniu faz kwazikrystalicznych, ale brakuje teorii, która wskazuje czynniki sprzyjające powstawaniu tych struktur. W odniesieniu do zapotrzebowania na zaawansowane stopy aluminium dla zastosowań konstrukcyjnych oraz stale rosnącego zainteresowania dla struktur osiąganych technologiami RS, istotne jest ustalenie odpowiedniego podejścia do zasad projektowania składu chemicznego w celu ograniczenia ilości badań eksperymentalnych.

Katarzyna Młynarek-Żak

2. Część badawcza

2.1. Teza

Zastosowanie analizy termodynamicznej w projektowaniu stopów typu Al-(Cu,Ni,Cr,Zr)-Fe oraz Al-Ni-Fe-Y umożliwia wytwarzanie materiałów o złożonej strukturze atomowej, w tym amorficznej, nanokrystalicznej i kwazikrystalicznej, co prowadzi do poprawy ich własności fizykochemicznych.

2.2. Cele pracy

W oparciu o analizę danych literaturowych, postawiono założenia ideowe, według których realizacja prac badawczych przyczyni się do opracowania nowoczesnych stopów aluminium. Na rysunku 1 przedstawiono schemat założeń ideowych postawionych przed realizacją prac badawczych.

Rysunek 1. Schemat założeń ideowych postawionych przed realizacją prac badawczych

Na podstawie sformułowanej tezy, wyznaczono cele badawcze:

- Określenie minimalnych i maksymalnych wartości parametrów wskazujących na formowanie struktury amorficznej, nanokrystalicznej i złożonych faz międzymetalicznych.
- Wytworzenie stopów do badań z zastosowaniem technologii szybkiego krzepnięcia ze stanu ciekłego w celu przeprowadzenia analizy wpływu szybkości chłodzenia na strukturę.

Katarzyna Młynarek-Żak

- 3. Przeprowadzenie badań struktury i własności stopów Al-(Cr,Cu,Zr,Ni)-Fe w celu identyfikacji faz o złożonej strukturze faz międzymetalicznych oraz oceny ich wpływu na własności fizykochemiczne.
- 4. Przeprowadzenie badań struktury stopów Al-Ni-Fe-Y o strukturze amorficznej i nanokrystalicznej w celu określenia wpływu składu chemicznego na zdolność do zeszklenia. Analiza parametrów elektrochemicznych do oceny odporności na korozję stopów o strukturze amorficznej i nanokrystalicznej.

2.3. Wybór składów chemicznych stopów do badań oraz metody badawcze

W ramach prac badawczych wybrano trzy grupy stopów: Al₆₅(Cu,Ni,Zr,Cr)₂₀Fe₁₅, $Al_{71}(Cu,Zr,Cr,Ni)_{24}Fe_5$ oraz Al-Ni-Fe-Y (Al_{79}Ni_5Fe_5Y_{11}, Al_{79}Ni_5Fe_{11}Y_5, Al_{79}Ni_{11}Fe_5Y_5, Al₇₉Ni₇Fe₇Y₇). Udziały poszczególnych pierwiastków wyrażono w procentach atomowych. W pierwszej grupie, udziały atomowe zostały dobrane na podstawie wyników badań dla stopu Al₆₅Cu₂₀Fe₁₅. Dodatek miedzi został zastąpiony niklem, cyrkonem oraz chromem. W drugiej grupie, stopem bazowym na podstawie, którego zaproponowano udziały atomowe był Al71Ni24Fe5. Dodatek niklu został zastąpiony miedzią, cyrkonem oraz chromem. Wybór miedzi, niklu, cyrkonu oraz chromu w stopach Al₆₅(Cu,Ni,Zr,Cr)₂₀Fe₁₅, Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅ wynikał z ich pozytywnego wpływu na własności stopów aluminium. Ponadto, różnice promieni atomowych, temperatury topnienia, parametrów interakcji pierwiastków w roztworze warunkowały wartości entropii, entalpii i energii swobodnej Gibbsa, które zostały zweryfikowane w celu ustalenia parametrów optymalizacji w projektowaniu stopów o złożonej strukturze faz międzymetalicznych (w tym kwazikryształów oraz ich aproksymantów). Wybór składów chemicznych stopów Al79Ni5Fe5Y11, Al79Ni5Fe11Y5, Al79Ni11Fe5Y5, Al79Ni7Fe7Y7 został podparty obliczeniami termodynamicznymi, które polegały na uzyskaniu minimalnych wartości entropii oraz zastosowaniu udziału aluminium poniżej 80%. Według literatury, udział aluminium powinien mieścić się w zakresie 80÷92 at.%, TMs 1÷15 at.% oraz REEs 3÷20%. Dlatego, celem zmniejszenia udziału aluminium w trzeciej grupie stopów była weryfikacja tych założeń. Materiały w postaci stopów wstępnych (wlewków) zostały wytworzone dla wszystkich składów chemicznych. Dodatkowo, zastosowano dwie technologie szybkiego krzepnięcia ze stanu ciekłego: odlewanie wysokociśnieniowe do form miedzianych chłodzonych wodą (HPDC) oraz melt-spinning. Dla stopów Al₆₅(Cu,Zr,Cr,Ni)₂₀Fe₁₅ oraz Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅ zastosowano technologię HPDC, w celu uzyskania złożonych strukturalnie faz

Katarzyna Młynarek-Żak

międzymetalicznych. Dla stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅, Al₇₉Ni₇Fe₇Y₇ zastosowano metodę melt-spinning w celu zapewnienia jak największej szybkości chłodzenia dla uzyskania struktury amorficznej. Ciecz metaliczna została wprowadzona na bęben miedziany po osiągnięciu temperatur odlewania: 1150°C (seria nr 1), 1200°C (seria nr 2) oraz 1400°C (seria nr 3).

Na rysunku 2 przedstawiono schemat przeprowadzonych prac badawczych.

Rysunek 2. Schemat przeprowadzonych prac badawczych

Część badawcza została podzielona na trzy części dotyczące badań struktury i własności stopów Al₆₅(Cu,Zr,Cr,Ni)₂₀Fe₁₅ oraz Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅, struktury i odporności korozyjnej stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅ i Al₇₉Ni₇Fe₇Y₇ oraz weryfikacji parametrów termodynamicznych. Badania struktury przeprowadzono z zastosowaniem dyfrakcji rentgenowskiej, dyfrakcji neutronów, mikroskopii świetlnej, skaningowej i transmisyjnej mikroskopii elektronowej oraz spektroskopii Mössbauera. Mechanizmy krystalizacji zostały opisane na podstawie skaningowej kalorymetrii różnicowej. W celu weryfikacji wpływu złożonych faz międzymetalicznych, przeprowadzono badania wybranych

Katarzyna Młynarek-Żak

własności: magnetycznych, elektrochemicznych oraz mechanicznych dla stopów Al₆₅(Cu,Zr,Cr,Ni)₂₀Fe₁₅ oraz Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅. Badania odporności korozyjnej metodą potencjodynamiczną przeprowadzono również dla stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅ i Al₇₉Ni₇Fe₇Y₇.

2.4. Omówienie wyników badań stopów Al₆₅(Cu,Ni,Zr,Cr)₂₀Fe₁₅ oraz Al₇₁(Cu,Ni,Zr,Cr)₂₄Fe₅

Analizę struktury i składu fazowego badanych stopów przeprowadzono na podstawie wyników badań z zastosowaniem dyfrakcji rentgenowskiej. Zidentyfikowane fazy dla stopów Al₆₅(Cu,Zr,Cr,Ni)₂₀Fe₁₅ w postaci wlewków stopów wstępnych i płytek zestawiono w tabeli 1, natomiast dla stopów Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅ w tabeli 2. Dyfraktogramy dla stopów Al₆₅(Cu,Zr,Cr,Ni)₂₀Fe₁₅ oraz Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅ w postaci stopów wstępnych i płytek odlewanych wysokociśnieniowo do form miedzianych przedstawiono odpowiednio na rysunkach 3 i 4. Na podstawie przeprowadzonych badań struktury, zidentyfikowano fazę kwazikrystaliczną dla stopów Al₆₅Cu₂₀Fe₁₅ oraz płytek: Al₆₅Cu₂₀Fe₁₅, Al₇₁Cu₂₄Fe₅, Al₇₁Ni₂₄Fe₅. Ponadto dla stopów Al-Cr-Fe wykazano obecność fazy międzymetalicznej

Al₆₅Cr₂₇Fe₈ o złożonej strukturze (SCAPs). Na podstawie badań z zastosowaniem dyfrakcji neutronowej, obecność faz Fe₂CrAl oraz Cr w strukturze stopu Al₇₁Cr₂₄Fe₅ została wykluczona ze względu na małą liczbę dopasowanych refleksów dyfrakcyjnych. Dla stopu Al₇₁Zr₂₄Fe₅ w postaci wlewka i płytki, zidentyfikowano fazę Al₂Zr, która stanowi fazę Lavesa, również klasyfikowaną jako SCAPs. Badania z zastosowaniem mikroskopii świetlnej wykazały, że we wszystkich badanych stopach występowały różnice w mikrostrukturze, które charakteryzowały się rozdrobnieniem ziarn pod wpływem zwiększenia szybkości chłodzenia.

Składy chemiczne	Zidentyfikowane fazy	
_	Stopy wstępne	Płytki
Al ₆₅ Cu ₂₀ Fe ₁₅	$I-AlCuFe + Al_2Cu + Al_7Cu_2Fe$	$I-AlCuFe + Cu_3Al + Al_7Cu_2Fe$
	$+ AlFe + Al_{13}Fe_4 + Cu_3Al$	$+ Al_2Cu + Al_2Fe + Al_{13}Fe_4$
$Al_{65}Zr_{20}Fe_{15}$	$Al_3Zr + (Al_6FeZr_3)_{2,4} +$	$Al_3Zr + Al_{33}Zr_{20}Fe_7 +$
	$Zr(Fe_5Al_7)$	$Zr(Fe_6Al_6)$
Al ₆₅ Cr ₂₀ Fe ₁₅	$Al_{65}Cr_{27}Fe_8 + Al_{12,59}Fe_{6,41}$	$Al_{65}Cr_{27}Fe_8 + Al_{5,6}Fe_2$
Al ₆₅ Ni ₂₀ Fe ₁₅	$Al_3Ni_2 + Al_{9,9}Fe_{2,65}Ni_{1,45}$	$Al_{9,9}Fe_{2,65}Ni_{1,45} + Al_3Ni_2$

Tabela 1. Zidentyfikowane fazy dla stopów Al65(Cu,Zr,Cr,Ni)20Fe15 w postaci stopów

wstępnych i płytek

Katarzyna Młynarek-Żak

Rysunek 3. Dyfraktogramy rentgenowskiej analizy fazowej stopów Al₆₅(Cu,Zr,Cr,Ni)₂₀Fe₁₅ w postaci a) stopów wstępnych, b) płytek

Tabela 2. Zidentyfikowane fazy dla stopów Al71(Cu,Zr,Cr,Ni)24Fe5 w postaci stopów

Składy chemiczne	Zidentyfikowane fazy		
-	Stopy wstępne	Płytki	
Al ₇₁ Ni ₂₄ Fe ₅	$Al_3Ni_2 + Al_3Ni + AlNi_3 + B2$	D-Al _{70,83} Fe _{9,83} Ni _{19,34} + Al ₃ Ni ₂ +	
	Fe(Al,Ni)	B2 Fe(Al,Ni)	
Al ₇₁ Zr ₂₄ Fe ₅	$Al_3Zr + (Al_6FeZr_3)_{2,4} + Al_2Zr +$	$Al_3Zr + (Al_6FeZr_3)_{2,4} + Al_2Zr +$	
	$Zr(Fe_5Al_7)$	$Zr(Fe_5Al_7)$	
Al ₇₁ Cr ₂₄ Fe ₅	$Cr + Al_{65}Cr_{27}Fe_8 + Al_{8,26}Cr_{4,74}$	$Cr + Al_{65}Cr_{27}Fe_8 + Al_{8,26}Cr_{4,74} +$	
	$+ Al_2Cr + Fe_2CrAl + Al_8Cr_5 +$	$Al_2Cr + Fe_2CrAl + Al_8Cr_5 +$	
	Al ₄₅ Cr ₇	Al ₄₅ Cr ₇	
Al ₇₁ Cu ₂₄ Fe ₅	$Al_2Cu + Al_7Cu_2Fe + \alpha - Al + \alpha$	$Al_2Cu + \alpha - Al + I - Al_{65}Cu_{20}Fe_{15}$	
	Al _{3,2} Fe		

wstępnych i płytek

Rysunek 4. Dyfraktogramy rentgenowskiej analizy fazowej stopów Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅ w postaci a) stopów wstępnych, b) płytek

Katarzyna Młynarek-Żak

W celu scharakteryzowania struktury badanych materiałów oraz potwierdzenia obecności kwazikryształów w strukturze, przeprowadzono badania z zastosowaniem transmisyjnej mikroskopii elektronowej. Na rysunku 5 przedstawiono obraz wysokorozdzielczy oraz dyfrakcję elektronową z zaznaczonego obszaru (SAED). Na dyfrakcji SAED (rys. 5b) zaobserwowano uporządkowanie atomów tworzące 5-osiową symetrię charakterystyczną dla fazy ikosaedrycznej. Ponadto, obserwacje szybkochłodzonego stopu Al₆₅Cu₂₀Fe₁₅ w trybie wysokorozdzielczym (rys. 5a) wykazały występowanie granic antyfazowych, charakterystycznych dla układu Al-Cu-Fe.

Rysunek 5. Obraz wysokorozdzielczy HRTEM z zaznaczonym obszarem a), dla którego zarejestrowano dyfrakcję elektronową dla fazy ikosaedrycznej I-AlCuFe w stopie Al₆₅Cu₂₀Fe₁₅ w postaci płytki b)

Badania własności magnetycznych z zastosowaniem spektroskopii Mössbauera oraz magnetometrii wibracyjnej dla stopów Al₆₅(Cr,Zr,Cu,Ni)₂₀Fe₁₅ oraz Al₇₁(Cr,Zr,Cu,Ni)₂₄Fe₅ wykazały brak uporządkowania magnetycznego. Na podstawie badań własności elektrochemicznych, stwierdzono pozytywny wpływ faz o złożonej strukturze na odporność korozyjną, ze względu na większy opór polaryzacyjny i mniejszą gęstość prądu korozyjnego dla stopów Al₇₁Ni₂₄Fe₅ (wlewek: R_p = 10,1 kΩcm², j_{corr} = 1 µA/cm², płytka: R_p = 73,6 kΩcm², j_{corr} = 0,2 kΩcm²) oraz Al₇₁Cu₂₄Fe₅ (wlewek: R_p = 0,42 kΩcm², j_{corr} = 42,69 µA/cm², płytka: R_p = 1,71 kΩcm², j_{corr} = 14,78 kΩcm²) wytworzonych w postaci płytek zawierających fazy kwazikrystaliczne. Ponadto, najlepszą odporność korozyjną spośród wszystkich badanych stopów Al₆₅(Cr,Zr,Cu,Ni)₂₀Fe₁₅ oraz Al₇₁(Cr,Zr,Cu,Ni)₂₄Fe₅ stwierdzono dla krystalicznych stopów Al-Zr-Fe, charakteryzując je jako bardzo obiecującą grupę stopów na bazie aluminium. Na podstawie badań z zastosowaniem elektrochemicznej spektroskopii impedancyjnej dla stopu Al₆₅Cr₂₀Fe₁₅ oraz Al₆₅Zr₂₀Fe₁₅ stwierdzono, że warstwa pasywna powstała

Katarzyna Młynarek-Żak

na powierzchni stopu z dodatkiem chromu była szczelna. W przypadku stopu Al₆₅Zr₂₀Fe₁₅ opór polaryzacyjny był znacznie większy od oporu elektrolitu, co również potwierdza dobrą odporność korozyjną. Na podstawie wyników badań z zastosowaniem skaningowej mikroskopii sił z sondą Kelwina (SKPFM), stwierdzono, że potencjał katodowy dla fazy Al₆₅Cr₂₇Fe₈ (SCAPs) wynika ze złożonej strukturalnie budowy atomowej. Na rysunku 6 przedstawiono mapę potencjałów zarejestrowaną za pomocą mikroskopii SKPFM wskazującą różnice potencjałów, które skutkują powstaniem mikroogniw galwanicznych w środowiskach korozyjnych. Jasne obszary wskazują na występowanie większych wartości potencjałów w obszarze występowania fazy Al₆₅Cr₂₇Fe₈, natomiast ciemne obszary są charakterystyczne dla fazy krystalicznej Al_{12,59}Fe_{6,41} o potencjale skierowanym w kierunku anodowym. Potencjał katodowy dla fazy Al₆₅Cr₂₇Fe₈ (SCAPs) prawdopodobnie może wynikać ze złożonej strukturalnie budowy atomowej.

Rysunek 6. Mapa różnicy potencjałów SKPFM dla stopu Al₆₅Cr₂₀Fe₁₅ w postaci wlewka

Własności mechaniczne stopów Al₆₅(Cr,Zr,Cu,Ni)₂₀Fe₁₅ oraz Al₇₁(Cr,Zr,Cu,Ni)₂₄Fe₅ zostały scharakteryzowane na podstawie pomiarów mikrotwardości metodą Vickersa. Spośród badanych stopów, największą średnią twardością charakteryzowały się stopy z dodatkiem chromu oraz niklu: Al₆₅Cr₂₀Fe₁₅ stop wstępny 917±30 HV, płytka 943±20 HV, Al₆₅Ni₂₀Fe₁₅ stop wstępny 875±31 HV, płytka 953±47 HV, Al₇₁Cr₂₄Fe₅ stop wstępny 728±34 HV, płytka 801±43 HV, Al₇₁Ni₂₄Fe₅ stop wstępny 828±74 HV, płytka 896±47 HV, natomiast najmniejszą z cyrkonem oraz miedzią: Al₆₅Zr₂₀Fe₁₅ stop wstępny 596±92 HV, płytka 811±123 HV, Al₆₅Cu₂₀Fe₁₅ stop wstępny 845±64 HV, płytka 714±16 HV, Al₇₁Zr₂₄Fe₅ stop wstępny 492 ±47 HV, płytka 539±116 HV, Al₇₁Cu₂₄Fe₅ stop wstępny 554±115 HV, płytka 536±21 HV.

Badania tribilogiczne metodą pin-on-disc przeprowadzono w celu scharakteryzowania odporności na ścieranie stopów Al₆₅(Cr,Zr,Cu,Ni)₂₀Fe₁₅ oraz Al₇₁(Cr,Zr,Cu,Ni)₂₄Fe₅ w postaci

Katarzyna Młynarek-Żak

wlewków. Rysunek 7 przedstawia krzywe zależności współczynnika tarcia w funkcji (250 metrów) pokonanej przez przeciwpróbkę. Na podstawie uzyskanych wartości, można ocenić, że najmniejszymi średnimi wartościami współczynnika tarcia charakteryzowały się stopy Al₇₁Ni₂₄Fe₅ (0,47±0,11), Al₇₁Cr₂₄Fe₅ (0,55±0,06), Al₇₁Cu₂₄Fe₅ (0,56±0,21) oraz Al₆₅Cr₂₀Fe₁₅ (0,59±0,06). Stop Al₆₅Cu₂₀Fe₁₅ wykazał średni współczynnik tarcia 0,61, jednakże odnotowano dużą wartość odchylenia standardowego (0,17). Natomiast dla stopu Al₇₁Zr₂₄Fe₁₅ wyznaczono średnią wartość współczynnika tarcia 0,68±0,07. Największą średnią wartością współczynnika tarcia charakteryzował się stop $Al_{65}Zr_{20}Fe_{15}$ (0,83±0,1). Na podstawie pomiarów śladów wytarcia, odnotowano największe średnie szerokości dla stopu Al₇₁Zr₂₄Fe₅ (1,5±0,12 mm), Al₇₁Cr₂₄Fe₅ (1,24±0,1 mm) oraz Al₆₅Cr₂₀Fe₁₅ (1,24±0,05 mm). Najmniejszą średnią szerokością śladu wytarcia charakteryzował się stop Al₆₅Ni₂₀Fe₁₅ (0,58±0,12 mm). przeprowadzonych pomiarów, najmniejszym odchyleniem standardowym, Według sugerującym najbardziej równomierne ścieranie, było charakterystyczne dla stopu Al₆₅Cr₂₀Fe₁₅ oraz Al71Cu24Fe5, podczas gdy największe wartości odnotowano dla stopu Al71Ni24Fe5. Ponadto, wykazano, że odporność na zużycie ścierne stopów Al₆₅Cr₂₀Fe₁₅, Al₇₁Cr₂₄Fe₅ oraz Al₇₁Ni₂₄Fe₅ jest zbliżona do jednofazowych stopów o złożonej strukturze opisywanych

w literaturze.

Rysunek 7. Wyniki badań tribologicznych metodą pin-on-disc dla stopów Al₆₅(Cr,Zr,Cu,Ni)₂₀Fe₁₅ oraz Al₇₁(Cr,Zr,Cu,Ni)₂₄Fe₅ w postaci stopów wstępnych

2.5. Omówienie wyników badań stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅, Al₇₉Ni₇Fe₇Y₇

Strukturę amorficzną uzyskano dla stopu Al₇₉Ni₅Fe₅Y₁₁ odlewanego z temperatury 1400°C oraz dla stopu Al₇₉Ni₁₁Fe₅Y₅ odlewanego z temperatury 1200°C. Stop Al₇₉Ni₅Fe₁₁Y₅ oraz

Katarzyna Młynarek-Żak

Al₇₉Ni₇Fe₇Y₇ w postaci taśm charakteryzowały się strukturą nanokrystaliczną. Na rysunkach 8 i 9 przedstawiono obrazy struktur w trybie klasycznym (TEM) oraz wysokorozdzielczym (HRTEM) wraz z dyfrakcjami elektronowymi (SAED) dla stopu Al₇₉Ni₅Fe₅Y₁₁ oraz Al₇₉Ni₁₁Fe₅Y₅. Wyniki obserwacji mikroskopowych wykazały, że badane stopy charakteryzowały się jednorodną strukturą, pozbawioną krystalitów. Struktury w trybie wysokorozdzielczym (rys. 8b, 9b) charakteryzowały się nieuporządkowaniem atomowym, określanym jako efekt "salt and pepper". Ponadto, występowanie struktury amorficznej dla stopu Al₇₉Ni₅Fe₅Y₁₁ oraz Al₇₉Ni₁₁Fe₅Y₅ potwierdzono na podstawie dyfrakcji SAED (rys. 8c, 9c) przedstawiającej rozmyte prążki dyfrakcyjne.

Rysunek 8. Obraz TEM (w polu ciemnym) a) oraz wysokorozdzielczy b) wraz z dyfrakcją elektronową c) dla stopu Al₇₉Ni₅Fe₅Y₁₁ w postaci taśmy odlewanej z temperatury 1400°C

Rysunek 9. Obraz TEM (w polu jasnym) a) oraz wysokorozdzielczy b) wraz z dyfrakcją elektronową c) dla stopu Al₇₉Ni₁₁Fe₅Y₅ w postaci taśmy odlewanej z temperatury 1200°C

Ocenę odporności korozyjnej stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅, Al₇₉Ni₇Fe₇Y₇ w postaci wlewków i taśm przeprowadzono za pomocą badań elektrochemicznych w wodnym środowisku 3,5% roztworu chlorku sodu w temperaturze 25°C. Wyniki zmian potencjału obwodu otwartego w funkcji czasu wraz z krzywymi polaryzacyjnymi przedstawiono na rysunku 10. Wartości E_{OCP} skierowane w stronę wartości

Katarzyna Młynarek-Żak

dodatnich zarejestrowano dla stopu Al₇₉Ni₁₁Fe₅Y₅ odlewanego z temperatury 1200°C o strukturze amorficznej. Zauważalna poprawa potencjału obwodu otwartego względem stopu wstępnego, była również widoczna dla stopu Al₇₉Ni₅Fe₅Y₁₁ odlewanego z temperatury 1400°C o nieuporządkowanej strukturze atomowej. Na podstawie krzywych polaryzacyjnych oraz wyznaczonych parametrów E_{corr} , R_p i j_{corr} , również widoczna była poprawa własności korozyjnych dla taśm wytwarzanych metodą melt-spining. Potencjał korozyjny stopu Al₇₉Ni₅Fe₅Y₁₁ w postaci wlewka wynosił -0,729 V, natomiast dla taśmy odlewanej z temperatury 1400°C o strukturze amorficznej nastąpiło przesunięcie Ecorr w stronę wartości katodowych (-0,425 V). W przypadku stopu Al79Ni11Fe5Y5, uzyskano większą poprawę, ponieważ potencjał korozyjny stopu wstępnego wynosił -0,761 V, natomiast dla taśmy E_{corr} był równy -0,37 V. Największy opór polaryzacyjny uzyskano dla stopu Al₇₉Ni₁₁Fe₅Y₅, zarówno w postaci wlewka (7 kΩcm²), jak i taśmy (15,13 kΩcm²). Taśmy amorficzne Al₇₉Ni₅Fe₅Y₁₁ oraz Al₇₉Ni₁₁Fe₅Y₅ charakteryzowały się najmniejszymi gęstościami prądu korozyjnego, które wynosiły odpowiednio 1,2 µA/cm² oraz 2,91 µA/cm². Ponadto, stop Al₇₉Ni₅Fe₅Y₁₁ w postaci wlewka wykazywał największą wartość jeorr spośród wszystkich badanych stopów. Stop wstępny Al79Ni11Fe5Y5 charakteryzował się sześciokrotnie mniejszą gęstością prądu

korozyjnego (2,91 μA/cm²) w porównaniu ze stopami Al₇₉Ni₅Fe₁₁Y₅ (17,54 μA/cm²) oraz Al₇₉Ni₇Fe₇Y₇ (16,61 μA/cm²) w postaci wlewków.

Rysunek 10. Zmiany potencjału obwodu otwartego w funkcji czasu (a,c) oraz krzywe polaryzacyjne (b,d) dla stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅, Al₇₉Ni₇Fe₇Y₇ w postaci stopów wstępnych i taśm

Katarzyna Młynarek-Żak

2.6. Weryfikacja parametrów termodynamicznych

zaproponowanych składów chemicznych Al₆₅(Cu,Ni,Zr,Cr)₂₀Fe₁₅ Dla oraz Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅, wyznaczono wartości parametrów związanych z entropią, entalpią i energią swobodną Gibbsa. Ze względu na to, że entropia konfiguracyjna nie jest związana z wielkością promieni atomowych, lecz zależy od udziału dodatków stopowych, niezależnie od zastosowanych pierwiastków, wartość ΔS^{conf} była taka sama dla poszczególnych serii składów Al65(Cu,Ni,Zr,Cr)20Fe15 (7,37 J/molK) oraz Al71(Cu,Zr,Cr,Ni)24Fe5 (6,11 J/molK). Dla wszystkich stopów występowała taka sama tendencja obliczonych parametrów entalpii i energii swobodnej Gibbsa. Najbardziej skierowane w stronę wartości dodatnich parametry były charakterystyczne dla stopów zawierających fazy kwazikrystaliczne oraz będące aproksymantami faz kwazikrystalicznych (faza Al₆₅Cr₂₇Fe₈). Najmniejsze wartości entalpii oraz energii swobodnej Gibbsa wykazały składy chemiczne o strukturze krystalicznej, wielofazowej: Al₆₅Ni₂₀Fe₁₅, Al₆₅Zr₂₀Fe₁₅ oraz Al₇₁Zr₂₄Fe₅. Rysunek 11 przedstawia mapę zależności energii Gibbsa ΔG^{mix} oraz ΔG^{amorf} .

Al₇₁Cu₂₄Fe₅

Rysunek 11. Mapa zależności wyznaczonych energii swobodnych Gibbsa ΔG^{mix} i ΔG^{amorf} dla stopów Al₆₅(Cu,Ni,Zr,Cr)₂₀Fe₁₅ oraz Al₇₁(Cu,Zr,Cr,Ni)₂₄Fe₅

Na podstawie mapy, można zaobserwować, że punkty przecięcia wartości ΔG^{mix} oraz ΔG^{amorf} stopów, które charakteryzowały się strukturą krystaliczną przy zastosowaniu zwiększonej szybkości chłodzenia ze stanu ciekłego tj. Al₆₅Zr₂₀Fe₁₅ oraz Al₇₁Zr₂₄Fe₅, znajdowały się na zaznaczonym niebieskim obszarze. Stop Al₆₅Ni₂₀Fe₁₅ wytwarzany metodą HPDC również na podstawie badań strukturalnych wykazał strukturę krystaliczną, dlatego punkt przecięcia wartości energii swobodnej Gibbsa umiejscowiony jest w strefie przejściowej

Katarzyna Młynarek-Żak

między kolorem niebieskim, a żółtym. Stop Al₇₁Ni₂₄Fe₅ w postaci płytki, na podstawie badań struktury, charakteryzował się występowaniem dekagonalnej fazy kwazikrystalicznej (D-Al_{70,83}Fe_{9,83}Ni_{19,34}). Punkt przecięcia ΔG^{mix} oraz ΔG^{amorf} , podobnie jak dla stopu Al₆₅Ni₂₀Fe₁₅ znajdował się w strefie przejściowej, aczkolwiek wartości energii swobodnej Gibbsa były bardziej skierowane w stronę wartości dodatnich. Punty przecięcia ΔG^{mix} oraz ΔG^{amorf} dla stopów Al₆₅Cr₂₀Fe₁₅, Al₇₁Cr₂₄Fe₅, Al₆₅Cu₂₀Fe₁₅ oraz Al₇₁Cu₂₄Fe₅ zostały umieszczone w strefie oznaczonej kolorem żółtym. Te składy chemiczne charakteryzowały się największymi wartościami energii swobodnej Gibbsa oraz obecnością faz międzymetalicznych złożonej strukturze. Na podstawie obliczeń termodynamicznych dla stopów 0 Al₆₅(Cr,Zr,Cu,Ni)₂₀Fe₁₅ oraz Al₇₁(Cr,Zr,Cu,Ni)₂₄Fe₅ stwierdzono tendencję formowania faz energii strukturze dla wartości swobodnej Gibbsa mieszania złożonej 0 (-32,2 ÷ -16,17 kJ/mol) oraz formowania struktury amorficznej (-28,09 ÷ -12,5 kJ/mol) skierowanych w stronę wartości dodatnich.

Parametry związane z entropią, entalpią i energią swobodną Gibbsa zostały również wyznaczone dla stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅ oraz Al₇₉Ni₇Fe₇Y₇. Entropia konfiguracyjna dla stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅ była równa

6,06 J/molK. Dla stopu Al₇₉Ni₇Fe₇Y₇, ze względu na inne udziały atomowe pierwiastków, ΔS^{conf} wynosiła 6,19 J/molK. Największą wartość entropii niedopasowania wyznaczono dla stopu Al₇₉Ni₅Fe₅Y₁₁ (1,69 J/molK), dla którego zidentyfikowano strukturę amorficzną. Jednakże, wartość ΔS^{mis} dla stopu Al₇₉Ni₁₁Fe₅Y₅ (1,2 J/molK), który również charakteryzował się strukturą amorficzną przy zastosowaniu temperatury odlewania 1200°C, była taka sama jak dla stopu Al79Ni5Fe11Y5 o strukturze nanokrystalicznej. Dla wszystkich parametrów związanych z entalpią oraz energią swobodną Gibbsa, zachowana była tendencja, według której najmniejsze wartości były charakterystyczne dla stopu Al₇₉Ni₅Fe₅Y₁₁ (ΔH^{mix} = -25,26 kJ/mol, ΔH^{amorf} = -21,81 kJ/mol, ΔG^{mix} = -32 kj/mol, ΔG^{amorf} = -28,54 kJ/mol). Największe wartości ΔH i ΔG były wyznaczone dla Al₇₉Ni₅Fe₁₁Y₅ (ΔH^{mix} = -20,2 kJ/mol, ΔH^{amorf} = -16,72 kJ/mol, ΔG^{mix} = -26,94 kj/mol, ΔG^{amorf} = -23,46 kJ/mol). Na rysunku 12 przedstawiono mapę zależności entropii niedopasowania oraz entalpii mieszania wyznaczonych dla badanych stopów. Można zaobserwować, że dla większych wartości entropii niedopasowania oraz ujemnych wartości entalpii mieszania występuje tendencja formowania struktury amorficznej. Dla stopu Al₇₉Ni₇Fe₇Y₇ nie uzyskano struktury amorficznej, jednakże na podstawie wartości ΔS^{mis} (1,4 J/molK) oraz ΔH^{mix} (-22,74 kJ/mol) można przypuszczać, że dostosowanie parametrów

Katarzyna Młynarek-Żak

takich jak temperatura odlewania oraz szybkość chłodzenia ze stanu ciekłego mogłyby korzystnie wpłynąć na zeszklenie.

Rysunek 12. Mapa zależności entalpii mieszania i entropii niedopasowania dla stopów Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₅Fe₁₁Y₅, Al₇₉Ni₁₁Fe₅Y₅, Al₇₉Ni₇Fe₇Y₇

3. Wnioski

W oparciu o przeprowadzone badania oraz dyskusję, sformułowano następujące wnioski:

1. Fazy kwazikrystaliczne zidentyfikowano dla stopu wstępnego Al₆₅Cu₂₀Fe₁₅ (I-AlCuFe) oraz płytek odlewanych wysokociśnieniowo do form miedzianych w przypadku stopów Al₆₅Cu₂₀Fe₁₅ (I-AlCuFe), Al₇₁Cu₂₄Fe₅, (I-Al₆₅Cu₂₀Fe₁₅), Al₇₁Ni₂₄Fe₅ (D-Al_{70,83}Fe_{9,83}Ni_{19,34}). Dla wszystkich stopów Al-Cr-Fe wykazano obecność fazy Al₆₅Cr₂₇Fe₈ o złożonej strukturze (SCAPs). Ponadto, dla stopu Al71Zr24Fe5 w postaci wlewka i płytki, zidentyfikowano fazę Al₂Zr, która stanowi fazę Lavesa, klasyfikowaną jako fazę międzymetaliczną o złożonej strukturze.

2. Na podstawie przeprowadzonych badań elektrochemicznych wywnioskowano, że skład chemiczny stanowi główny czynnik decydujący o odporności korozyjnej. Spośród badanych stopów o strukturze kwazikrystalicznej, największą odpornością korozyjną charakteryzował się stop Al₇₁Ni₂₄Fe₅ w postaci płytki. Równocześnie, wykazano pozytywny wpływ faz o złożonej strukturze na odporność korozyjną, ze względu na większy opór polaryzacyjny i mniejszą gęstość prądu korozyjnego dla stopów Al₇₁Ni₂₄Fe₅ oraz Al₇₁Cu₂₄Fe₅ wytworzonych w postaci płytek zawierających fazy kwazikrystaliczne.

3. Spośród badanych stopów Al65(Cr,Zr,Cu,Ni)20Fe15 oraz Al71(Cr,Zr,Cu,Ni)24Fe5, największą średnią twardością charakteryzowały się stopy z dodatkiem chromu oraz niklu, natomiast najmniejszą z cyrkonem oraz miedzią. Stwierdzono korzystny wpływ fazy dekagonalnej

Katarzyna Młynarek-Żak

w stopie Al₇₁Ni₂₄Fe₅ w postaci płytki na zwiększenie średniej twardości w porównaniu ze stopem wstępnym o strukturze krystalicznej.

4. Na podstawie badań własności tribologicznych, stwierdzono, że najgorszą odpornością na zużycie ścierne charakteryzowały się stopy typu Al-Zr-Fe, aczkolwiek faza Lavesa Al₂Zr prawdopodobnie przyczyniła się do obniżenia współczynnika tarcia w stopie Al₇₁Zr₂₄Fe₅. Stopy wstępne o złożonej strukturze faz międzymetalicznych (Al₆₅Cu₂₀Fe₁₅, Al₆₅Cr₂₀Fe₁₅, Al₇₁Cr₂₄Fe₅) wykazały własności tribologiczne żbliżone do stopów jednofazowych typu CMAs opisanych w literaturze. Dobrą odpornością na ścieranie charakteryzował się również stop wstępny Al₇₁Ni₂₄Fe₅ ze względu na mały współczynnik tarcia oraz morfologię śladu wytarcia charakteryzującą się niedużym oraz równomiernym zużyciem.

5. Uzyskanie struktury amorficznej jest możliwe dla czteroskładnikowych stopów na bazie aluminium o udziale poniżej 80 at.% Al. Ustalono, że istotne znaczenie dla uzyskania nieuporządkowania atomowego w stopach Al-Ni-Fe-Y metodą melt-spining pełni temperatura odlewania. Strukturę amorficzną dla stopu Al₇₉Ni₅Fe₅Y₁₁ uzyskano przy zastosowaniu temperatury odlewania 1400°C, natomiast dla stopu Al₇₉Ni₁₁Fe₅Y₅ przy 1200°C. Stop Al₇₉Ni₅Fe₁₁Y₅ oraz Al₇₉Ni₇Fe₇Y₇ w postaci taśm charakteryzowały się strukturą

nanokrystaliczną.

6. Stopy Al₇₉Ni₅Fe₅Y₁₁, Al₇₉Ni₁₁Fe₅Y₅ w postaci taśm o strukturze amorficznej, charakteryzowały się najlepszą odpornością korozyjną w porównaniu do taśm nanokrystalicznych Al₇₉Ni₅Fe₁₁Y₅ i Al₇₉Ni₇Fe₇Y₇ oraz stopów wstępnych o strukturze krystalicznej. Na podstawie otrzymanych parametrów elektrochemicznych, wykazano korzystny wpływ nieuporządkowanej struktury atomowej na odporność korozyjną.

7. Na podstawie obliczeń termodynamicznych dla stopów Al₆₅(Cr,Zr,Cu,Ni)₂₀Fe₁₅ oraz Al₇₁(Cr,Zr,Cu,Ni)₂₄Fe₅ stwierdzono tendencję formowania faz o złożonej strukturze dla wartości energii swobodnych Gibbsa mieszania oraz formowania struktury amorficznej skierowanych w stronę wartości dodatnich. Dla stopów Al-Ni-Fe-Y o najbardziej dodatnich wartościach entropii niedopasowania wraz z ujemną entalpią stwierdzono możliwość występowania struktury amorficznej przy zastosowaniu odpowiedniej temperatury odlewania w metodzie melt-spinning.