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A PARALLEL HEURISTIC ALGORITHM TO SOLVE THE 

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 

Summary. The following article presents a parallel heuristic algorithm to solve 

the vehicle routing problem with time windows (VRPTW). The fleet size is 

minimized in the first phase and the traveled distance in the second one. The objective 

is to compare the accuracy of solutions obtained by the sequential and the parallel 

heuristics in the first phase. The influence of the population diversification and child 

generation on the accuracy is analyzed together with the speedups for the memetic 

algorithm in the second phase. The accuracy of solutions is defined as their proximity 

to the best known solutions of Gehring and Homberger’s benchmarking tests. 

Keywords: vehicle routing problem with time windows, heuristics, memetic 

algorithm, approximation algorithm 

RÓWNOLEGŁY HEURYSTYCZNY ALGORYTM DLA 

ROZWIĄZYWANIA PROBLEMU TRASOWANIA POJAZDÓW  

Z OKNAMI CZASOWYMI 

Streszczenie. W niniejszej pracy został przedstawiony równoległy heurystyczny 

algorytm dla rozwiązywania problemu trasowania pojazdów z oknami czasowymi. 

W pierwszej fazie jest minimalizowany rozmiar floty, a w drugiej fazie całkowita 

przebyta odległość. Celem pracy jest porównanie jakości rozwiązań otrzymanych za 

pomocą algorytmu sekwencyjnego oraz równoległego w pierwszej fazie. Przeana-

lizowany został wpływ zróżnicowania populacji i generowania rozwiązań potomnych 

na jakość rozwiązań wraz z przyspieszeniami dla algorytmu memetycznego drugiej 

fazy. Jakość rozwiązań jest oceniana na podstawie najlepszych obecnie znanych wy-

ników dla problemów testowych Gehringa i Hombergera. 

Słowa kluczowe: trasowanie pojazdów z oknami czasowymi, heurystyka, algo-

rytm memetyczny, algorytm aproksymacyjny 
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1. Introduction 

The vehicle routing problem with time windows (VRPTW) consists in finding a schedule 

for a fleet of homogenous vehicles servicing a set of geographically scattered customers. The 

capacities of the vehicles cannot be exceeded and the customers must be visited within their 

time windows. We consider the VRPTW as a hierarchical optimization problem. The primary 

objective is to minimize the total fleet size and the second one is to minimize the total 

distance traveled by the vehicles. This approach makes it possible to develop and optimize 

the algorithms for both phases independently. 

In this paper we present a parallel heuristic algorithm to minimize the fleet size and 

a parallel memetic algorithm to minimize the traveled distance. A memetic algorithm is 

a hybridization of a genetic algorithm utilized for exhaustive exploration of the search space 

with a local optimization [5]. The heuristics is based on the improved sequential algorithm 

originally described by Nagata and Bräysy [3]. The sequential distance minimization was 

proposed by Nagata, Bräysy and Dullaert [4]. The objective of the work is to compare the 

accuracy of solutions obtained by the sequential and the parallel heuristics. The influence of 

the population diversification and child generation on the solutions is examined for the 

parallel memetic algorithm. We investigate the speedups of the OpenMP implementations. 

Section 2 formulates the problem. The sequential and the parallel heuristics are discussed 

in Section 3. The memetic algorithm is described in Section 4. Section 5 describes the 

experimental results. Section 6 concludes the paper. 

2. Formulation of the problem 

Let         be a directed graph with a set   of     vertices representing the 

customers and the depot, together with a set of edges                        . The 

vertex    represents the depot. The customers                 are assigned their own 

non-negative service times    and demands   . The travel costs between each pair of travel 

points are given as     , where                  . Each customer and the depot have to 

be serviced within the time window                    . The values    and    define the 

earliest and the latest time of starting the service respectively. A vehicle can arrive to 

a customer before its time window, but it has to wait until     

The VRPTW is formulated as a problem of servicing   customers by a fleet of   

homogenous vehicles of capacity  . There is a single depot which is the start and the finish 

point of each route. A solution of the VRPTW, σ, is a set of routes in which all the customers 

are visited exactly once. 
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3. Minimizing the number of routes by the parallel heuristics 

3.1. Description of a sequential algorithm 

The route minimization heuristics reduces the number of routes in a feasible solution σ by 

one at a time. The process of removing the routes continues until the execution time reaches 

a defined maximum or the number of vehicles is minimal to ensure the feasibility [3]. The 

initial solution of the VRPTW consists of   routes. A randomly selected route (Fig. 1, line 1) 

is excluded from the current solution. The customers are inserted into the ejection pool (EP) 

(line 2). The penalty counters                   are set to 1 (line 3) and indicate the 

reinsertion difficulties of the corresponding customers. The customers are taken from the EP 

applying the LIFO strategy (line 5). 

function RemoveRoute(σ) 

begin 

1: Select and remove a random route from σ; 

2: Initialize the Ejection Pool (EP) with a random permutation of V removed customers; 

3: Initialize the penalty counters N};{1,2,...,i1,:p[i]   

4: while EP ≠ Ø and (currIter < maxIter or epSize  ≤  lastChanceSize) and epSize ≤ V + epAdd 

and epSteadyStateIter < maxIterFraction and currTime < maxTime do 

5:  Select and remove insv customer from EP using LIFO strategy; 

6:  if σ),(vN ins

f

ins ≠ Ø then 

7:   σ':σ  selected randomly from σ);,(vN ins

f

ins  

8:  else 

9:   σ);,(v:σ insSqueeze  

10:  end if 

11:  if insv is not in σ then 

12:   1;]p[v:]p[v insins  {increasing the penalty counter} 

13:   Select σ),(vNσ' ins

f

ej such that ]p[v...]p[vP (k)

out

(1)

outsum  is minimal; 

14:   ;σ':σ   

15:   Insert the ejected customers }v,...,{v (k)

out

(1)

out into EP; 

16:   );(:σ Perturb  

17:  end if 

18: end while 

19: if EP ≠ Ø then 

20:  Restore σ to the initial solution; 

21: end if 

22: return σ; 

End 

Fig. 1. A sequential heuristic algorithm for minimizing the total number of routes 

Rys. 1. Sekwencyjny heurystyczny algorytm minimalizacji liczby tras 

   

 

All feasible insertion positions are determined (line 6). The change of the vehicle loads 

may be computed in constant time. Introducing forward and backward time window penalty 
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slacks allowed for constant-time verification of the time window penalties [3]. If the set of 

feasible insertion positions is not empty, then a random insertion is performed (line 7). The 

solution    with the customer      becomes a new feasible (possibly partial) solution  . 

If the set     
 

         is empty, then it is impossible to insert the customer      without 

violating the constraints. The Squeeze method allows for creating the temporary infeasible 

solutions (line 9). The infeasible solution with the smallest value of the penalty function 

      is chosen [4] and the attempts of restoring the feasibility are undertaken. If the 

squeezing fails, then the penalty counter of the customer is increased (line 12). The last 

approach of reinserting      allows for ejecting other customers from the solution. A sum of 

the penalty counters      is minimized to eject the customers that will be relatively easy to 

reinsert later. The customers that were inserted during the last      iterations are not 

considered for ejections [1]. The increasing number of the ejected customers     

              is tested. If at least one feasible ejection is found for a given  , then the other 

tests are skipped. If there are more ejections with the same     , then one is chosen randomly 

[1]. A number of constant-time local moves are performed in Perturb method (line 16). The 

algorithm finishes if the EP is empty, the execution time exceeds the specified limit or the 

size of the EP is unacceptably large (line 4). The other breaking conditions are described in 

the next section. 

3.2. Suggested modifications 

The additional breaking condition of a main loop of the algorithm introduced in [1] 

addresses the maximal number of iterations maxIter. According to that, it should break even 

though the size of the EP is small and currIter > maxIter. A large number of iterations are 

usually performed if the number of routes is close to the optimum. Thus, it may be proficient 

to allow for additional loop executions if the EP is small and the probability of reinserting the 

customers is still high. The additional parameter lastChanceSize indicates the maximal 

number of customers allowed to reside in the EP for which the loop will continue despite of 

exceeding maxIter. 

However, the size of the EP can stay constant during the execution for a long time. The 

maximal number of iterations in steady state maxIterFraction is introduced. It should vary 

with the maximal number of allowed iterations, thus maxIterFraction corresponds to 

a fraction of maxIter. If the EP size does not change during the maxIterFraction iterations, 

then the probability of a feasible customer reinsertion drops and the loop breaks. 

The Squeeze function tries to restore the feasibility of an infeasible solution. The local 

search moves that may be calculated in constant time were used during the construction 

of      . If there are no feasible moves, then the linear-time moves are considered. This 
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approach is appropriate for smaller instances, since calculating the moves may become time-

consuming for the larger number of customers. Additionally, it may be worth limiting the 

number of moves to test, e.g. search until   edge-exchanges are found. 

A route to be removed is chosen randomly. The routes may be divided into two classes – 

the first containing the routes with the number of customers greater or equal to the average, 

and the second class with the others. Intuitively, it should be easier to reinsert the customers 

from the smaller route to the partial solution, thus choosing a random route from the first 

class gives a higher probability of feasible reinsertions. However, it is proficient to get rid of 

larger routes earlier and choose a random route from the second class, when the solution size 

is still far from the optimum. 

If the squeezing fails, then the other ejections are tested. After a successful reinsertion of 

     and ejections of other customers the solution is perturbed. In many cases perturbing is 

not necessary for efficient reinsertions. The perturbation may be omitted if the percentage of 

successful customer insertions without additional ejections is significant, e.g. 80%, for 

a given number of successive iterations (Fig. 1, lines 4-17). The main loop of the algorithm 

may fail due to e.g. exceeding the maximal number of trials. In this case, the perturbations of 

the partial solutions should be allowed. The number of moves during the perturbation may 

depend on the difficulty of reinserting the customers, i.e. it will increase with the decrease of 

the number of routes. The initial number of moves is multiplied by a constant factor, e.g. 2, 

every defined number of iterations until it reaches the maximal value. 

3.3. Description of a parallel algorithm 

The   available processors may be used either to achieve a higher accuracy of solution or 

to speed up the computations. In the first case, the goal is to obtain a solution that is closer to 

the global optimum. The main goal of the parallel heuristics is to improve the accuracy of 

solutions. The algorithm consists of   components denoted as             . The initial 

solution is treated as the starting solution for each team member (Fig. 2, line 4). Each 

component calls RemoveRoute (line 8) in parallel with others nrOfThreadSteps times. The 

components co-operate to exchange the best solutions found up-to-date. The solutions are 

assessed according to their costs. The solutions with the smaller number of routes   are 

preferred. If the number of routes is equal, then the solution with the shorter total travel 

distance is considered better. The cost may be also defined as a weighted sum of the number 

of routes   and total travel distance   [2].The parallel algorithm guides the search towards 

the optimal solutions with respect to the number of vehicles and the travel distance. 

The co-operation of components starts from thread   . Thread    receives the solution    

from thread   , and compares the costs of solution    with the received one. The solution 
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with the smaller cost replaces the current solution of thread   . Consequently, thread      

compares the solution      with      received from thread     . Finally, the best solution is 

held by thread     . If the best solution is found by thread   , then all the components get   . 

The co-operation scheme is presented in Fig. 3. 

1: Generate σinit; 

2: Set the co-operation mode; 

3: parfor Pi, i = 0,1,…,p – 1 do 

4:  ;σ:σ initi   

5: end parfor 

6: while currAlgTime < maxAlgTime and currK > minK do 

7:  parfor Pi, i =0,1,…, p – 1 do 

8:   RemoveRoute(σi); 

9:  end parfor 

10:  Call TeamCooperation procedure; 

11: end while 
Fig. 2. A parallel heuristic algorithm for minimizing the total number of routes 

Rys. 2. Równoległy heurystyczny algorytm minimalizacji liczby tras 

  

 

Fig. 3. The co-operation scheme 

Rys. 3. Schemat kooperacji 
  

 

 

 

 

 

 

 

The second variant of the co-operation scheme is cyclic and includes the communication 

between threads      and   . The better solution will be sent to thread   . The solution 

   should be updated only if the number of routes is larger than the number of routes in     . 

Keeping the original solution    with the same number of vehicles by thread    may prevent 

from having the same solution held by all the threads. Introducing the probability of replacing 

a worse solution by the solution received from the neighbor may further decrease the 

likelihood of having only one solution in the team. The probability of choosing the better 

solution should be large, but not equal to 1. 

The number of steps that are executed in parallel before the co-operation must be 

determined sensitively. If the co-operation is too frequent, e.g. for large problem instances, 

the total parallel overhead becomes more significant and the execution time increases rapidly. 
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However, if the components co-operate rarely for small instances, the gain from parallelism 

is hardly noticeable. 

The following possibilities for determining the co-operation frequency are introduced: 

 Constant – nrOfThreadSteps is constant. 

 Rare –nrOfThreadSteps is defined as a ratio of the problem size and a value of rare co-

operation factor. After a number of co-operations nrOfThreadSteps is divided by the 

factor until it reaches a defined lower limit. 

 Frequent – the scheme is similar to the rare co-operation, but the frequent co-operation 

factor is larger than the rare co-operation factor. 

 Adaptive –nrOfThreadSteps is defined as a ratio of the problem size and a value of 

adaptive co-operation factor. The nrOfThreadSteps parameter is divided by the ratio of 

the last average time and the previous average time (if     
      , otherwise 

nrOfThreadSteps is divided by the adaptive factor) of RemoveRoute executions. 

4. Minimizing the total traveled distance by the memetic algorithm 

4.1. Description of a sequential algorithm 

The initial population of size   containing the feasible solutions with   routes is found 

by the parallel heuristics discussed in Section 3.3. If the maximal time of generating the 

initial population is exceeded, then the solutions already found are copied and perturbed until 

the population size reaches  . Each individual is chosen once as the parent    and    in 

a random order to generate the child solutions using the EAX operator [4] (Fig. 4, line 2).     

defines the number of children generated for each pair    and    . The feasibility of a child is 

restored by the Repair function if necessary (line 11) using the concept of local moves 

utilized while squeezing an infeasible solution in the route minimization heuristics. If the 

solution is feasible, then a number of moves are performed to improve its quality, i.e. to 

decrease the total travel distance (line 14). The moves are limited to the customers belonging 

to the routes modified by the EAX operator and the repairing procedure [4]. The total 

distance of a new solution is compared with the total distance of the best child found up-to-

date (line 15). If a new solution is of higher quality, then the best child is updated (line 16). 

After generation of child solutions for   pairs of parents (line 6) the population is updated, 

i.e. the best individuals form a new population (lines 21-25). It is easy to see that the best 

child obtained for    and    replaces the first parent, not the worst individual in the 

population. Removal of     is motivated by the fact that the better individual replaces the 

worse with the similar characteristics to ensure the population diversification. The additional 
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termination condition addresses the steady state, i.e. the situation in which for a large number 

of subsequent generations the quality of the best individual is not improved. The algorithm 

finishes if the number of generations in the steady state is larger than the defined maximum, 

maximal number of generations maxGen is reached or the maximal execution time is 

exceeded (line 1). The best individual from the population is finally returned (line 27). 

function MinimizeDistance(σ, N, Nch) 

begin 
1: while currTime < maxTime and currGen < maxGen and steadyGen < maxSteadyGen do 

2:  Determine a random permutation N};{1,2,...,r(i)  

3:  for 1:i  to N do 

4:   ;σ:σ i

best

i   

5:   end for 

6:  for 1:i  to N do 

7:   ;σ:p;σ:p 1)%N)r((iBr(i)A   

8:   for 1:j  to Nch do 

9:    );p,(p:σ BAtmp EAX  

10:    if Fp(σtmp) > 0 then 

11:     );(σ:σ tmptmp Repair  

12:    end if 

13:    if Fp(σtmp) ≤ 0 then 

14:     );(σ:σ tmptmp hLocalSearc  

15:     if )T(σ)T(σ tmp

best

r(i)  then 

16:      ;σ:σ tmp

best

r(i)   

17:     end if 

18:    end if 

19:   end for 

20:  end for 

  {Updating the population} 

21:  for 1:i  to N do 

22:   if )T(σ)T(σ best

ii  then 

23:    ;σ:σ best

ii   

24:   end if 

25:  end for 

26: end while 

27: return the best individual in the population; 

end 

Fig. 4. A memetic algorithm to minimize the total traveled distance 

Rys. 4. Algorytm memetyczny minimalizacji przebytej drogi 

4.2. Description of a parallel algorithm 

The main goal of the presented parallel algorithm is to reduce the execution time without 

decreasing the quality of feasible solutions. The algorithm consists of   components denoted 

as             . The main part of the memetic algorithm, i.e. generating the child solutions, 
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is the most computationally intensive (Fig. 4, lines 6-20). The iterations of the loop may be 

executed in parallel, since     children are generated for the parents    and    

independently. The best child solution is stored as      
    . Each individual in the population 

serves once as    and    during the combination stage, therefore different      
     solutions are 

updated in every iteration. The   iterations are distributed between   threads, where    . 

The number of individuals in the population is usually large to avoid the similarities between 

the individuals. Once the loop finishes, the best child solutions are found and the current 

generation is updated. The cost, i.e. the total travel distance, of each individual in the current 

solution is compared with the cost of the best child. If the cost of the child   
     is smaller, 

then the child becomes a new individual in the population and replaces the solution   . The 

  solutions are compared independently (lines 21-25), therefore the iterations may be 

executed in parallel. Processing of the next generation of solutions starts with initializing of 

the set of the best child solutions (lines 3-5). Similarly, the loop iterations are independent 

and may be executed in parallel. 

5. Experimental results 

The algorithms were implemented in C++ using the OpenMP interface and were tested on 

Gehring and Homberger's problem instances. The code was compiled using Intel C++ 

Compiler 10.1.015 with -fast and -openmp flags. Calculations were carried out at 

a single node of Galera supercomputer at the Academic Computer Center in Gdańsk [7]. The 

computations were performed on the nodes with 16 GB RAM (2 GB/core) equipped with 

Intel Xeon Quad Core (2.33 GHz) processors with 12 MB of level 3 cache. The parameters 

used during the experiments are given in Table 1 and Table 3. The percentage of the nearest 

customers is limited for neighborhood calculations to decrease the execution time [3]. The 

number of additional customers allowed to reside in the EP has been proposed in [1]. The 

minimal number of local moves used during the solution perturbation should allow 

transforming a current solution to the neighboring, but still not too similar one. If the 

additional ejections are necessary for a successful customer insertion, then the number of 

moves is multiplied by IrandFactor to increase the probability of getting the new 

configurations. The maximal number of moves (for both stages) prevents from a rapid 

increase of the execution time. The maximal number of iterations in the steady state 

corresponds to a decent fraction of the maximal number of allowed algorithm iterations. The 

settings of the co-operation are given in Table 2. The EAX strategy [4] for recombination is 

chosen randomly. If a significant number of consecutive generations, e.g. 50, does not result 

in improving the best individual in a population, then the probability of further improvements 
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drops rapidly. A formula for the maximal execution time calculation of the memetic 

algorithm has been proposed in [4]. 

Table 1 

The parameters of the route minimization heuristic algorithm 

Parameter Description Value 

neighborPerc percentage of the nearest customers in the neighborhood 0.6 

kmax maximal number of customers to be ejected 3 

lmax number of iterations without ejecting a customer after the  

insertion 

5 

epAdd additional customers allowed to reside in the EP 7 

maxIter maximal number of iterations of the first-phase algorithm 1000 

maxIterFraction maximal number of iterations in the steady state        

 
 

IrandMin minimal number of feasible moves while perturbing 80 

IrandMax maximal number of feasible moves while perturbing 400 

IrandFactor update factor for the number of moves while perturbing 2 

IrandFreq frequency of updating the number of moves in iterations 50 

maxTime maximal time for reinsertions in RemoveRoute in seconds 300 

maxTotalTime maximal execution time in seconds 1200 

 

Table 2 

The co-operation frequency settings; CM – co-operation 

mode, CF – co-operation factor, UF – update factor,  

Ufr – update frequency, Mfr – minimal frequency 

Size CM CF UF Ufr Mfr 

200 Frequent 10 2 4 1 

400 Frequent 10 2 4 1 

600 Adaptive 10 - 1 1 

800 Rare 5 2 3 1 

1000 Rare 5 2 3 1 

      
A number of possible modifications and improvements have been suggested in Section 

3.2. The exemplary average execution times of the sequential route minimization heuristic 

algorithm are given in Fig. 5. If the algorithm gets stuck in the local minima of the search 

space (e.g. for rc2_4_1), then the decreased initial number of local search moves results in the 

increase of the total number of iterations necessary to leave the local minimum. However, it 

is not always necessary to explore the vast solution space for large instances (e.g. for 

r1_10_2, c1_8_2) and a relatively small number of moves during the perturbation is enough 

to get satisfactory results. The average execution time has been decreased for a number of 
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instances that were relatively easy to solve (Fig. 5, b) and for time-consuming ones (a). 

However, the modifications are less suitable for the problems with solution spaces containing 

a large number of local minima.  

Table 3 

The parameters of the memetic algorithm to minimize the travel distance 

Parameter Description Value 

Nch number of child solutions generated for each pair of parents 20 

IrandGen maximal number of moves improving the child solution 100 

genRandInit number of moves used during copying and perturbing 50 

maxTime maximal execution time in minutes    

   
 

gMax maximal number of generations without the improvement 50 

  

 

Table 4 

The percentage of the best known CVNs obtained with  

the sequential and the parallel heuristic algorithms 

Class OPTJNs OPTJNp 

C1 82% 84% 

C2 70% 78% 

R1 94% 94% 

R2 100% 100% 

RC1 100% 100% 

RC2 84% 86% 

Total 88% 90% 

 
a) b) 

  

Fig. 5. The average execution time   (in seconds) of a sequential algorithm for minimizing the 

number of routes for 100 experiments tests: a) more time-consuming, b) less time-consuming  

Rys. 5. Średni czas wykonania   (w sekundach) algorytmu sekwencyjnego minimalizacji liczby tras 

dla testów (100 eksperymentów): a) bardziej czasochłonnych, b) mniej czasochłonnych  
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The cumulative numbers of vehicles (CVNs), i.e. the number of vehicles servicing all 

instances, are presented in Table 4 for sequential and parallel algorithms. The number of 

vehicles was decreased for 16 instances, whereas the world's best results were obtained in 6 

cases using the parallel heuristics. Therefore, in 271 out of 300 (90%) cases the 

benchmarking tests were solved to the current optimum with respect to the number of 

vehicles using the parallel algorithm. The parallel memetic algorithm significantly improved 

the current world's best result for the problem instance c1_8_2. The solution has been already 

published on the SINTEF website [6]. The travel distances in the solutions obtained with the 

parallel algorithm are successively decreased, since the higher-quality solutions replace the 

worse during the co-operation. The exemplary distances are given in Fig. 6. 

a) b) 

  

Fig. 6. The average distance   vs. number of threads   for 100 experiments tests: a) c1_2_1, 

b) r1_4_2 

Rys. 6. Średnia długość trasy   w zależności of liczby wątków   dla testów (100 eksperymen-

tów): a) c1_2_1, b) r1_4_2  
  

The size of the population influences the execution time necessary to create a new 

generation of solutions. However, the probability of ending up with a set of similar 

individuals is lower in case of large populations. The problem of saturating the population is 

illustrated in Fig. 7. The experiments with the clustered customers have shown that the 

saturation of the population with similar individuals may occur relatively fast. The larger 

population should imply a larger population diversification. However, the populations with a 

large percentage of perturbed copies converge to the steady state fast and cannot be improved 

during the subsequent generations. If the number of individuals with similar configurations 

exceeds a certain threshold, then the population is in the diversity crisis [1]. 

The influence of the number of children     on the population quality is presented in 

Fig. 7. Increasing     results in the populations consisting of better individuals, since the 

child combines the best characteristics of parents. Obviously, the time necessary for creating 

the larger number of children increases. However, if the populations are of higher quality, 

then the smaller number of subsequent generations is necessary to converge to the similar 

results. 
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a) b) 

  

Fig. 7. Travel distance   of the best individual vs. generation   for different population sizes   

(A-10, B-25, C-50), for tests: a) r1_2_2, b) c2_4_1; WB – the world’s best known travel 

distance 

Rys. 7. Najmniejsza długość trasy   w zależności od pokolenia   dla różnych wielkości 

populacji   (A-10, B-25, C-50), dla testów: a) r1_2_2, b) c2_4_1; WB – najlepszy 

obecnie znany wynik na świecie 

  
The relative speedups obtained for two given problem instances are presented in Fig. 9. 

The population size is usually larger than the number of threads. The speedup depends not 

only on the problem size but also on its structure. If the number of generations required to 

obtain a minimal travel distance is large, then the relative speedup is almost ideal. However, 

if the solution converges to the minimum relatively fast, then the further improvements 

become difficult. It is possible to end up with a pair of parents    and    for which the 

children generation is more time-consuming than expected. The parallel overhead becomes 

more significant once the steady state is reached. 

 

Fig. 8. Travel distance   of the best individual vs. generation   for test rc1_6_3 for different 

number of children    (A-5, B-15, C-20) 

Rys. 8. Długość trasy   najlepszego osobnika w zależności od pokolenia   dla testu rc1_6_3 dla 

różnej liczby potomków    (A-5, B-15, C-20) 
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a) b) 

  

 
Fig. 9. Speedup   vs. number of threads   for tests: a) rc1_6_3, b) c1_2_1 (continuous line 

shows the ideal speedup) 
Rys. 9. Przyspieszenie   w zależności od liczby wątków   dla testów: a) rc1_6_3, b) c1_2_1 

(idelane przyspieszenie pokazano linią ciągłą) 
 

6. Conclusions 

The parallel heuristic algorithm for minimization of the fleet size has proven to be 

effective and competitive by solving 90% of problem instances to the current known 

optimum. The memetic algorithm for the distance minimization turned out to be powerful. 

A large number of parameters, both for the exploration and the exploitation of the search 

space, allow for adjusting the algorithm to the instance characteristics. The optimal 

assignment of parameters is to be cleared up during the further experiments. The experiments 

performed for various problem instances showed that the relative speedup is linear and close 

to the ideal one in many cases. The parallel algorithm significantly improved the world's best 

known solution of the clustered Gehring and Homberger's test c1_8_2 containing 800 

customers. 

A two-stage approach of solving the VRPTW makes it possible to combine the presented 

algorithms with other well-known heuristics, e.g. simulated annealing or tabu search. The 

parallel implementations for each stage can be compared to determine the most effective and 

scalable combination of heuristics addressing both objectives of the VRPTW. 
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Omówienie 

W niniejszej pracy zaprezentowano równoległy algorytm heurystyczny rozwiązywania 

problemu trasowania pojazdów z oknami czasowymi (ang. vehicle routing problem with time 

windows). Równoległa heurystyka minimalizacji liczby tras została oparta na algorytmie 

przedstawionym w pracy [3] i ulepszonym w pracy [1]. Zaproponowane zostały kolejne 

modyfikacje, mające na celu zwiększenie prawdopodobieństwa otrzymania rozwiązania 

o wyższej jakości oraz skrócenie czasu wykonywania obliczeń. Do najistotniejszych ulepszeń 

należą: 

http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/
http://www.task.gda.pl/kdm/sprzet/Galera
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 wprowadzenie maksymalnego rozmiaru puli usuniętych klientów (ang. ejection pool), dla 

którego algorytm nie zostanie przerwany pomimo przekroczenia maksymalnej liczby 

iteracji, 

 wprowadzenie koncepcji stanu ustalonego puli usuniętych klientów, 

 zdefiniowanie dwóch klas tras – z liczbą klientów większą lub równą liczbie średniej oraz 

liczbą klientów mniejszą od średniej, 

 zmodyfikowanie strategii urozmaicania otrzymanych rozwiązań (ang. diversification 

strategy). 

W równoległej heurystyce kooperacja wątków ma na celu wymianę najlepszych 

rozwiązań oraz zmniejszenie ryzyka utknięcia w lokalnym minimum przestrzeni poszukiwań. 

Ulepszone heurystyki – sekwencyjna oraz równoległa – były testowane przy użyciu testów 

Gehringa i Hombergera. W 90% przypadków otrzymano rozwiązania z liczbą tras równą 

opublikowanym najlepszym wynikom na świecie używając algorytmu równoległego. 

Całkowita długość przebytych tras została zminimalizowana przy użyciu równoległego 

algorytmu memetycznego, którego wersja sekwencyjna została opisana w artykule [4]. 

Zostały w nim przedstawione badania, mające na celu określenie wpływu zróżnicowania 

populacji rozwiązań oraz liczby rozwiązań potomnych na jakość kolejnych generacji. 

Przedstawiono przyspieszenia dla testów o różnych strukturach i właściwościach. Dla 

przypadku testowego c1_8_2 otrzymano rozwiązanie z całkowitą długością tras mniejszą od 

światowego minimum. Rozwiązanie zostało opublikowane na stronie norweskiej organizacji 

SINTEF (25 sierpnia 2011 r.) [6]. 
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