
STUDIA INFORMATICA 2012

Volume 33 Number 1 (104)

Jakub NALEPA, Zbigniew J. CZECH

Silesian University of Technology, Institute of Informatics

A PARALLEL HEURISTIC ALGORITHM TO SOLVE THE

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Summary. The following article presents a parallel heuristic algorithm to solve

the vehicle routing problem with time windows (VRPTW). The fleet size is

minimized in the first phase and the traveled distance in the second one. The objective

is to compare the accuracy of solutions obtained by the sequential and the parallel

heuristics in the first phase. The influence of the population diversification and child

generation on the accuracy is analyzed together with the speedups for the memetic

algorithm in the second phase. The accuracy of solutions is defined as their proximity

to the best known solutions of Gehring and Homberger’s benchmarking tests.

Keywords: vehicle routing problem with time windows, heuristics, memetic

algorithm, approximation algorithm

RÓWNOLEGŁY HEURYSTYCZNY ALGORYTM DLA

ROZWIĄZYWANIA PROBLEMU TRASOWANIA POJAZDÓW

Z OKNAMI CZASOWYMI

Streszczenie. W niniejszej pracy został przedstawiony równoległy heurystyczny

algorytm dla rozwiązywania problemu trasowania pojazdów z oknami czasowymi.

W pierwszej fazie jest minimalizowany rozmiar floty, a w drugiej fazie całkowita

przebyta odległość. Celem pracy jest porównanie jakości rozwiązań otrzymanych za

pomocą algorytmu sekwencyjnego oraz równoległego w pierwszej fazie. Przeana-

lizowany został wpływ zróżnicowania populacji i generowania rozwiązań potomnych

na jakość rozwiązań wraz z przyspieszeniami dla algorytmu memetycznego drugiej

fazy. Jakość rozwiązań jest oceniana na podstawie najlepszych obecnie znanych wy-

ników dla problemów testowych Gehringa i Hombergera.

Słowa kluczowe: trasowanie pojazdów z oknami czasowymi, heurystyka, algo-

rytm memetyczny, algorytm aproksymacyjny

92 J. Nalepa, Z. J. Czech

1. Introduction

The vehicle routing problem with time windows (VRPTW) consists in finding a schedule

for a fleet of homogenous vehicles servicing a set of geographically scattered customers. The

capacities of the vehicles cannot be exceeded and the customers must be visited within their

time windows. We consider the VRPTW as a hierarchical optimization problem. The primary

objective is to minimize the total fleet size and the second one is to minimize the total

distance traveled by the vehicles. This approach makes it possible to develop and optimize

the algorithms for both phases independently.

In this paper we present a parallel heuristic algorithm to minimize the fleet size and

a parallel memetic algorithm to minimize the traveled distance. A memetic algorithm is

a hybridization of a genetic algorithm utilized for exhaustive exploration of the search space

with a local optimization [5]. The heuristics is based on the improved sequential algorithm

originally described by Nagata and Bräysy [3]. The sequential distance minimization was

proposed by Nagata, Bräysy and Dullaert [4]. The objective of the work is to compare the

accuracy of solutions obtained by the sequential and the parallel heuristics. The influence of

the population diversification and child generation on the solutions is examined for the

parallel memetic algorithm. We investigate the speedups of the OpenMP implementations.

Section 2 formulates the problem. The sequential and the parallel heuristics are discussed

in Section 3. The memetic algorithm is described in Section 4. Section 5 describes the

experimental results. Section 6 concludes the paper.

2. Formulation of the problem

Let be a directed graph with a set of vertices representing the

customers and the depot, together with a set of edges . The

vertex represents the depot. The customers are assigned their own

non-negative service times and demands . The travel costs between each pair of travel

points are given as , where . Each customer and the depot have to

be serviced within the time window . The values and define the

earliest and the latest time of starting the service respectively. A vehicle can arrive to

a customer before its time window, but it has to wait until

The VRPTW is formulated as a problem of servicing customers by a fleet of

homogenous vehicles of capacity . There is a single depot which is the start and the finish

point of each route. A solution of the VRPTW, σ, is a set of routes in which all the customers

are visited exactly once.

A parallel heuristic algorithm to solve the vehicle routing problem with time windows 93

3. Minimizing the number of routes by the parallel heuristics

3.1. Description of a sequential algorithm

The route minimization heuristics reduces the number of routes in a feasible solution σ by

one at a time. The process of removing the routes continues until the execution time reaches

a defined maximum or the number of vehicles is minimal to ensure the feasibility [3]. The

initial solution of the VRPTW consists of routes. A randomly selected route (Fig. 1, line 1)

is excluded from the current solution. The customers are inserted into the ejection pool (EP)

(line 2). The penalty counters are set to 1 (line 3) and indicate the

reinsertion difficulties of the corresponding customers. The customers are taken from the EP

applying the LIFO strategy (line 5).

function RemoveRoute(σ)

begin

1: Select and remove a random route from σ;

2: Initialize the Ejection Pool (EP) with a random permutation of V removed customers;

3: Initialize the penalty counters N};{1,2,...,i1,:p[i]

4: while EP ≠ Ø and (currIter < maxIter or epSize ≤ lastChanceSize) and epSize ≤ V + epAdd

and epSteadyStateIter < maxIterFraction and currTime < maxTime do

5: Select and remove insv customer from EP using LIFO strategy;

6: if σ),(vN ins

f

ins ≠ Ø then

7: σ':σ selected randomly from σ);,(vN ins

f

ins

8: else

9: σ);,(v:σ insSqueeze

10: end if

11: if insv is not in σ then

12: 1;]p[v:]p[v insins {increasing the penalty counter}

13: Select σ),(vNσ' ins

f

ej such that]p[v...]p[vP (k)

out

(1)

outsum is minimal;

14: ;σ':σ

15: Insert the ejected customers }v,...,{v (k)

out

(1)

out into EP;

16:);(:σ Perturb

17: end if

18: end while

19: if EP ≠ Ø then

20: Restore σ to the initial solution;

21: end if

22: return σ;

End

Fig. 1. A sequential heuristic algorithm for minimizing the total number of routes

Rys. 1. Sekwencyjny heurystyczny algorytm minimalizacji liczby tras

All feasible insertion positions are determined (line 6). The change of the vehicle loads

may be computed in constant time. Introducing forward and backward time window penalty

94 J. Nalepa, Z. J. Czech

slacks allowed for constant-time verification of the time window penalties [3]. If the set of

feasible insertion positions is not empty, then a random insertion is performed (line 7). The

solution with the customer becomes a new feasible (possibly partial) solution .

If the set

 is empty, then it is impossible to insert the customer without

violating the constraints. The Squeeze method allows for creating the temporary infeasible

solutions (line 9). The infeasible solution with the smallest value of the penalty function

 is chosen [4] and the attempts of restoring the feasibility are undertaken. If the

squeezing fails, then the penalty counter of the customer is increased (line 12). The last

approach of reinserting allows for ejecting other customers from the solution. A sum of

the penalty counters is minimized to eject the customers that will be relatively easy to

reinsert later. The customers that were inserted during the last iterations are not

considered for ejections [1]. The increasing number of the ejected customers

 is tested. If at least one feasible ejection is found for a given , then the other

tests are skipped. If there are more ejections with the same , then one is chosen randomly

[1]. A number of constant-time local moves are performed in Perturb method (line 16). The

algorithm finishes if the EP is empty, the execution time exceeds the specified limit or the

size of the EP is unacceptably large (line 4). The other breaking conditions are described in

the next section.

3.2. Suggested modifications

The additional breaking condition of a main loop of the algorithm introduced in [1]

addresses the maximal number of iterations maxIter. According to that, it should break even

though the size of the EP is small and currIter > maxIter. A large number of iterations are

usually performed if the number of routes is close to the optimum. Thus, it may be proficient

to allow for additional loop executions if the EP is small and the probability of reinserting the

customers is still high. The additional parameter lastChanceSize indicates the maximal

number of customers allowed to reside in the EP for which the loop will continue despite of

exceeding maxIter.

However, the size of the EP can stay constant during the execution for a long time. The

maximal number of iterations in steady state maxIterFraction is introduced. It should vary

with the maximal number of allowed iterations, thus maxIterFraction corresponds to

a fraction of maxIter. If the EP size does not change during the maxIterFraction iterations,

then the probability of a feasible customer reinsertion drops and the loop breaks.

The Squeeze function tries to restore the feasibility of an infeasible solution. The local

search moves that may be calculated in constant time were used during the construction

of . If there are no feasible moves, then the linear-time moves are considered. This

A parallel heuristic algorithm to solve the vehicle routing problem with time windows 95

approach is appropriate for smaller instances, since calculating the moves may become time-

consuming for the larger number of customers. Additionally, it may be worth limiting the

number of moves to test, e.g. search until edge-exchanges are found.

A route to be removed is chosen randomly. The routes may be divided into two classes –

the first containing the routes with the number of customers greater or equal to the average,

and the second class with the others. Intuitively, it should be easier to reinsert the customers

from the smaller route to the partial solution, thus choosing a random route from the first

class gives a higher probability of feasible reinsertions. However, it is proficient to get rid of

larger routes earlier and choose a random route from the second class, when the solution size

is still far from the optimum.

If the squeezing fails, then the other ejections are tested. After a successful reinsertion of

 and ejections of other customers the solution is perturbed. In many cases perturbing is

not necessary for efficient reinsertions. The perturbation may be omitted if the percentage of

successful customer insertions without additional ejections is significant, e.g. 80%, for

a given number of successive iterations (Fig. 1, lines 4-17). The main loop of the algorithm

may fail due to e.g. exceeding the maximal number of trials. In this case, the perturbations of

the partial solutions should be allowed. The number of moves during the perturbation may

depend on the difficulty of reinserting the customers, i.e. it will increase with the decrease of

the number of routes. The initial number of moves is multiplied by a constant factor, e.g. 2,

every defined number of iterations until it reaches the maximal value.

3.3. Description of a parallel algorithm

The available processors may be used either to achieve a higher accuracy of solution or

to speed up the computations. In the first case, the goal is to obtain a solution that is closer to

the global optimum. The main goal of the parallel heuristics is to improve the accuracy of

solutions. The algorithm consists of components denoted as . The initial

solution is treated as the starting solution for each team member (Fig. 2, line 4). Each

component calls RemoveRoute (line 8) in parallel with others nrOfThreadSteps times. The

components co-operate to exchange the best solutions found up-to-date. The solutions are

assessed according to their costs. The solutions with the smaller number of routes are

preferred. If the number of routes is equal, then the solution with the shorter total travel

distance is considered better. The cost may be also defined as a weighted sum of the number

of routes and total travel distance [2].The parallel algorithm guides the search towards

the optimal solutions with respect to the number of vehicles and the travel distance.

The co-operation of components starts from thread . Thread receives the solution

from thread , and compares the costs of solution with the received one. The solution

96 J. Nalepa, Z. J. Czech

with the smaller cost replaces the current solution of thread . Consequently, thread

compares the solution with received from thread . Finally, the best solution is

held by thread . If the best solution is found by thread , then all the components get .

The co-operation scheme is presented in Fig. 3.

1: Generate σinit;

2: Set the co-operation mode;

3: parfor Pi, i = 0,1,…,p – 1 do

4: ;σ:σ initi

5: end parfor

6: while currAlgTime < maxAlgTime and currK > minK do

7: parfor Pi, i =0,1,…, p – 1 do

8: RemoveRoute(σi);

9: end parfor

10: Call TeamCooperation procedure;

11: end while
Fig. 2. A parallel heuristic algorithm for minimizing the total number of routes

Rys. 2. Równoległy heurystyczny algorytm minimalizacji liczby tras

Fig. 3. The co-operation scheme

Rys. 3. Schemat kooperacji

The second variant of the co-operation scheme is cyclic and includes the communication

between threads and . The better solution will be sent to thread . The solution

 should be updated only if the number of routes is larger than the number of routes in .

Keeping the original solution with the same number of vehicles by thread may prevent

from having the same solution held by all the threads. Introducing the probability of replacing

a worse solution by the solution received from the neighbor may further decrease the

likelihood of having only one solution in the team. The probability of choosing the better

solution should be large, but not equal to 1.

The number of steps that are executed in parallel before the co-operation must be

determined sensitively. If the co-operation is too frequent, e.g. for large problem instances,

the total parallel overhead becomes more significant and the execution time increases rapidly.

)(

0
0t)(

0
1t

)(

0
2t ...

)(

0
1nt

)(

0
nt

)(

1
0t)(

1
1t)(

1
2t ...

)(

1
1nt

)(

1
nt

...

)(

2
0t

p
)(

2
1t

p
)(

2
2t

p ...
)(

2
1

nt

p

)(

2
nt

p

)(

1
0t

p

)(

1
1t

p

)(

1
2t

p

...
)(

1
1

nt

p

)(

1
nt

p

init

A parallel heuristic algorithm to solve the vehicle routing problem with time windows 97

However, if the components co-operate rarely for small instances, the gain from parallelism

is hardly noticeable.

The following possibilities for determining the co-operation frequency are introduced:

 Constant – nrOfThreadSteps is constant.

 Rare –nrOfThreadSteps is defined as a ratio of the problem size and a value of rare co-

operation factor. After a number of co-operations nrOfThreadSteps is divided by the

factor until it reaches a defined lower limit.

 Frequent – the scheme is similar to the rare co-operation, but the frequent co-operation

factor is larger than the rare co-operation factor.

 Adaptive –nrOfThreadSteps is defined as a ratio of the problem size and a value of

adaptive co-operation factor. The nrOfThreadSteps parameter is divided by the ratio of

the last average time and the previous average time (if
 , otherwise

nrOfThreadSteps is divided by the adaptive factor) of RemoveRoute executions.

4. Minimizing the total traveled distance by the memetic algorithm

4.1. Description of a sequential algorithm

The initial population of size containing the feasible solutions with routes is found

by the parallel heuristics discussed in Section 3.3. If the maximal time of generating the

initial population is exceeded, then the solutions already found are copied and perturbed until

the population size reaches . Each individual is chosen once as the parent and in

a random order to generate the child solutions using the EAX operator [4] (Fig. 4, line 2).

defines the number of children generated for each pair and . The feasibility of a child is

restored by the Repair function if necessary (line 11) using the concept of local moves

utilized while squeezing an infeasible solution in the route minimization heuristics. If the

solution is feasible, then a number of moves are performed to improve its quality, i.e. to

decrease the total travel distance (line 14). The moves are limited to the customers belonging

to the routes modified by the EAX operator and the repairing procedure [4]. The total

distance of a new solution is compared with the total distance of the best child found up-to-

date (line 15). If a new solution is of higher quality, then the best child is updated (line 16).

After generation of child solutions for pairs of parents (line 6) the population is updated,

i.e. the best individuals form a new population (lines 21-25). It is easy to see that the best

child obtained for and replaces the first parent, not the worst individual in the

population. Removal of is motivated by the fact that the better individual replaces the

worse with the similar characteristics to ensure the population diversification. The additional

98 J. Nalepa, Z. J. Czech

termination condition addresses the steady state, i.e. the situation in which for a large number

of subsequent generations the quality of the best individual is not improved. The algorithm

finishes if the number of generations in the steady state is larger than the defined maximum,

maximal number of generations maxGen is reached or the maximal execution time is

exceeded (line 1). The best individual from the population is finally returned (line 27).

function MinimizeDistance(σ, N, Nch)

begin
1: while currTime < maxTime and currGen < maxGen and steadyGen < maxSteadyGen do

2: Determine a random permutation N};{1,2,...,r(i)

3: for 1:i to N do

4: ;σ:σ i

best

i

5: end for

6: for 1:i to N do

7: ;σ:p;σ:p 1)%N)r((iBr(i)A

8: for 1:j to Nch do

9:);p,(p:σ BAtmp EAX

10: if Fp(σtmp) > 0 then

11:);(σ:σ tmptmp Repair

12: end if

13: if Fp(σtmp) ≤ 0 then

14:);(σ:σ tmptmp hLocalSearc

15: if)T(σ)T(σ tmp

best

r(i) then

16: ;σ:σ tmp

best

r(i)

17: end if

18: end if

19: end for

20: end for

 {Updating the population}

21: for 1:i to N do

22: if)T(σ)T(σ best

ii then

23: ;σ:σ best

ii

24: end if

25: end for

26: end while

27: return the best individual in the population;

end

Fig. 4. A memetic algorithm to minimize the total traveled distance

Rys. 4. Algorytm memetyczny minimalizacji przebytej drogi

4.2. Description of a parallel algorithm

The main goal of the presented parallel algorithm is to reduce the execution time without

decreasing the quality of feasible solutions. The algorithm consists of components denoted

as . The main part of the memetic algorithm, i.e. generating the child solutions,

A parallel heuristic algorithm to solve the vehicle routing problem with time windows 99

is the most computationally intensive (Fig. 4, lines 6-20). The iterations of the loop may be

executed in parallel, since children are generated for the parents and

independently. The best child solution is stored as
 . Each individual in the population

serves once as and during the combination stage, therefore different
 solutions are

updated in every iteration. The iterations are distributed between threads, where .

The number of individuals in the population is usually large to avoid the similarities between

the individuals. Once the loop finishes, the best child solutions are found and the current

generation is updated. The cost, i.e. the total travel distance, of each individual in the current

solution is compared with the cost of the best child. If the cost of the child
 is smaller,

then the child becomes a new individual in the population and replaces the solution . The

 solutions are compared independently (lines 21-25), therefore the iterations may be

executed in parallel. Processing of the next generation of solutions starts with initializing of

the set of the best child solutions (lines 3-5). Similarly, the loop iterations are independent

and may be executed in parallel.

5. Experimental results

The algorithms were implemented in C++ using the OpenMP interface and were tested on

Gehring and Homberger's problem instances. The code was compiled using Intel C++

Compiler 10.1.015 with -fast and -openmp flags. Calculations were carried out at

a single node of Galera supercomputer at the Academic Computer Center in Gdańsk [7]. The

computations were performed on the nodes with 16 GB RAM (2 GB/core) equipped with

Intel Xeon Quad Core (2.33 GHz) processors with 12 MB of level 3 cache. The parameters

used during the experiments are given in Table 1 and Table 3. The percentage of the nearest

customers is limited for neighborhood calculations to decrease the execution time [3]. The

number of additional customers allowed to reside in the EP has been proposed in [1]. The

minimal number of local moves used during the solution perturbation should allow

transforming a current solution to the neighboring, but still not too similar one. If the

additional ejections are necessary for a successful customer insertion, then the number of

moves is multiplied by IrandFactor to increase the probability of getting the new

configurations. The maximal number of moves (for both stages) prevents from a rapid

increase of the execution time. The maximal number of iterations in the steady state

corresponds to a decent fraction of the maximal number of allowed algorithm iterations. The

settings of the co-operation are given in Table 2. The EAX strategy [4] for recombination is

chosen randomly. If a significant number of consecutive generations, e.g. 50, does not result

in improving the best individual in a population, then the probability of further improvements

100 J. Nalepa, Z. J. Czech

drops rapidly. A formula for the maximal execution time calculation of the memetic

algorithm has been proposed in [4].

Table 1

The parameters of the route minimization heuristic algorithm

Parameter Description Value

neighborPerc percentage of the nearest customers in the neighborhood 0.6

kmax maximal number of customers to be ejected 3

lmax number of iterations without ejecting a customer after the

insertion

5

epAdd additional customers allowed to reside in the EP 7

maxIter maximal number of iterations of the first-phase algorithm 1000

maxIterFraction maximal number of iterations in the steady state

IrandMin minimal number of feasible moves while perturbing 80

IrandMax maximal number of feasible moves while perturbing 400

IrandFactor update factor for the number of moves while perturbing 2

IrandFreq frequency of updating the number of moves in iterations 50

maxTime maximal time for reinsertions in RemoveRoute in seconds 300

maxTotalTime maximal execution time in seconds 1200

Table 2

The co-operation frequency settings; CM – co-operation

mode, CF – co-operation factor, UF – update factor,

Ufr – update frequency, Mfr – minimal frequency

Size CM CF UF Ufr Mfr

200 Frequent 10 2 4 1

400 Frequent 10 2 4 1

600 Adaptive 10 - 1 1

800 Rare 5 2 3 1

1000 Rare 5 2 3 1

A number of possible modifications and improvements have been suggested in Section

3.2. The exemplary average execution times of the sequential route minimization heuristic

algorithm are given in Fig. 5. If the algorithm gets stuck in the local minima of the search

space (e.g. for rc2_4_1), then the decreased initial number of local search moves results in the

increase of the total number of iterations necessary to leave the local minimum. However, it

is not always necessary to explore the vast solution space for large instances (e.g. for

r1_10_2, c1_8_2) and a relatively small number of moves during the perturbation is enough

to get satisfactory results. The average execution time has been decreased for a number of

A parallel heuristic algorithm to solve the vehicle routing problem with time windows 101

instances that were relatively easy to solve (Fig. 5, b) and for time-consuming ones (a).

However, the modifications are less suitable for the problems with solution spaces containing

a large number of local minima.

Table 3

The parameters of the memetic algorithm to minimize the travel distance

Parameter Description Value

Nch number of child solutions generated for each pair of parents 20

IrandGen maximal number of moves improving the child solution 100

genRandInit number of moves used during copying and perturbing 50

maxTime maximal execution time in minutes

gMax maximal number of generations without the improvement 50

Table 4

The percentage of the best known CVNs obtained with

the sequential and the parallel heuristic algorithms

Class OPTJNs OPTJNp

C1 82% 84%

C2 70% 78%

R1 94% 94%

R2 100% 100%

RC1 100% 100%

RC2 84% 86%

Total 88% 90%

a) b)

Fig. 5. The average execution time (in seconds) of a sequential algorithm for minimizing the

number of routes for 100 experiments tests: a) more time-consuming, b) less time-consuming

Rys. 5. Średni czas wykonania (w sekundach) algorytmu sekwencyjnego minimalizacji liczby tras

dla testów (100 eksperymentów): a) bardziej czasochłonnych, b) mniej czasochłonnych

102 J. Nalepa, Z. J. Czech

The cumulative numbers of vehicles (CVNs), i.e. the number of vehicles servicing all

instances, are presented in Table 4 for sequential and parallel algorithms. The number of

vehicles was decreased for 16 instances, whereas the world's best results were obtained in 6

cases using the parallel heuristics. Therefore, in 271 out of 300 (90%) cases the

benchmarking tests were solved to the current optimum with respect to the number of

vehicles using the parallel algorithm. The parallel memetic algorithm significantly improved

the current world's best result for the problem instance c1_8_2. The solution has been already

published on the SINTEF website [6]. The travel distances in the solutions obtained with the

parallel algorithm are successively decreased, since the higher-quality solutions replace the

worse during the co-operation. The exemplary distances are given in Fig. 6.

a) b)

Fig. 6. The average distance vs. number of threads for 100 experiments tests: a) c1_2_1,

b) r1_4_2

Rys. 6. Średnia długość trasy w zależności of liczby wątków dla testów (100 eksperymen-

tów): a) c1_2_1, b) r1_4_2

The size of the population influences the execution time necessary to create a new

generation of solutions. However, the probability of ending up with a set of similar

individuals is lower in case of large populations. The problem of saturating the population is

illustrated in Fig. 7. The experiments with the clustered customers have shown that the

saturation of the population with similar individuals may occur relatively fast. The larger

population should imply a larger population diversification. However, the populations with a

large percentage of perturbed copies converge to the steady state fast and cannot be improved

during the subsequent generations. If the number of individuals with similar configurations

exceeds a certain threshold, then the population is in the diversity crisis [1].

The influence of the number of children on the population quality is presented in

Fig. 7. Increasing results in the populations consisting of better individuals, since the

child combines the best characteristics of parents. Obviously, the time necessary for creating

the larger number of children increases. However, if the populations are of higher quality,

then the smaller number of subsequent generations is necessary to converge to the similar

results.

A parallel heuristic algorithm to solve the vehicle routing problem with time windows 103

a) b)

Fig. 7. Travel distance of the best individual vs. generation for different population sizes

(A-10, B-25, C-50), for tests: a) r1_2_2, b) c2_4_1; WB – the world’s best known travel

distance

Rys. 7. Najmniejsza długość trasy w zależności od pokolenia dla różnych wielkości

populacji (A-10, B-25, C-50), dla testów: a) r1_2_2, b) c2_4_1; WB – najlepszy

obecnie znany wynik na świecie

The relative speedups obtained for two given problem instances are presented in Fig. 9.

The population size is usually larger than the number of threads. The speedup depends not

only on the problem size but also on its structure. If the number of generations required to

obtain a minimal travel distance is large, then the relative speedup is almost ideal. However,

if the solution converges to the minimum relatively fast, then the further improvements

become difficult. It is possible to end up with a pair of parents and for which the

children generation is more time-consuming than expected. The parallel overhead becomes

more significant once the steady state is reached.

Fig. 8. Travel distance of the best individual vs. generation for test rc1_6_3 for different

number of children (A-5, B-15, C-20)

Rys. 8. Długość trasy najlepszego osobnika w zależności od pokolenia dla testu rc1_6_3 dla

różnej liczby potomków (A-5, B-15, C-20)

104 J. Nalepa, Z. J. Czech

a) b)

Fig. 9. Speedup vs. number of threads for tests: a) rc1_6_3, b) c1_2_1 (continuous line

shows the ideal speedup)
Rys. 9. Przyspieszenie w zależności od liczby wątków dla testów: a) rc1_6_3, b) c1_2_1

(idelane przyspieszenie pokazano linią ciągłą)

6. Conclusions

The parallel heuristic algorithm for minimization of the fleet size has proven to be

effective and competitive by solving 90% of problem instances to the current known

optimum. The memetic algorithm for the distance minimization turned out to be powerful.

A large number of parameters, both for the exploration and the exploitation of the search

space, allow for adjusting the algorithm to the instance characteristics. The optimal

assignment of parameters is to be cleared up during the further experiments. The experiments

performed for various problem instances showed that the relative speedup is linear and close

to the ideal one in many cases. The parallel algorithm significantly improved the world's best

known solution of the clustered Gehring and Homberger's test c1_8_2 containing 800

customers.

A two-stage approach of solving the VRPTW makes it possible to combine the presented

algorithms with other well-known heuristics, e.g. simulated annealing or tabu search. The

parallel implementations for each stage can be compared to determine the most effective and

scalable combination of heuristics addressing both objectives of the VRPTW.

Acknowledgments

We thank the following computing centers where the computations of our project were

carried out: Academic Computer Centre in Gdańsk TASK, Academic Computer Centre

A parallel heuristic algorithm to solve the vehicle routing problem with time windows 105

CYFRONET AGH, Kraków (computing grant 027/2004), Poznań Supercomputing and

Networking Center, Interdisciplinary Centre for Mathematical and Computational Modeling,

Warsaw University (computing grant G27-9), Wrocław Centre for Networking and

Supercomputing (computing grant 30).

BIBLIOGRAPHY

1. Błocho M., Czech Z. J.: An improved route minimization algorithm for the vehicle routing

problem with time windows. ZN Pol. Śl. Studia Informatica Vol. 30, No. 1(39), Gliwice

2010, p. 5÷19.

2. Czech Z. J., Mikanik W., Skinderowicz R.: Implementing a parallel simulated annealing

algorithm. Proceedings of the 8th international conference on parallel processing and ap-

plied mathematics, 2010, Vol. 6067, p. 146÷155.

3. Nagata Y., Bräysy O.: A powerful route minimization heuristic for the vehicle routing

problem with time windows. Operation Research Letters, 2009, Vol. 37, p. 333÷338.

4. Nagata Y., Bräysy O., Dullaert W.: A penalty-based edge assembly memetic algorithm for

the vehicle routing problem with time windows. Computers and Operations Research,

2010, Vol. 37, p. 724÷737.

5. Moscato P., Cotta C.: A Gentle Introduction to Memetic Algorithms in F. Glover (Ed.),

Handbook of Metaheuristics, Kluwer 2003, p. 105÷144.

6. Problems and benchmarks: The world’s best solutions for Gehring and Homberger’s

benchmark: http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/

7. CI TASK – Galera: http://www.task.gda.pl/kdm/sprzet/Galera

Wpłynęło do Redakcji 22 listopada 2011 r.

Omówienie

W niniejszej pracy zaprezentowano równoległy algorytm heurystyczny rozwiązywania

problemu trasowania pojazdów z oknami czasowymi (ang. vehicle routing problem with time

windows). Równoległa heurystyka minimalizacji liczby tras została oparta na algorytmie

przedstawionym w pracy [3] i ulepszonym w pracy [1]. Zaproponowane zostały kolejne

modyfikacje, mające na celu zwiększenie prawdopodobieństwa otrzymania rozwiązania

o wyższej jakości oraz skrócenie czasu wykonywania obliczeń. Do najistotniejszych ulepszeń

należą:

http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/
http://www.task.gda.pl/kdm/sprzet/Galera

106 J. Nalepa, Z. J. Czech

 wprowadzenie maksymalnego rozmiaru puli usuniętych klientów (ang. ejection pool), dla

którego algorytm nie zostanie przerwany pomimo przekroczenia maksymalnej liczby

iteracji,

 wprowadzenie koncepcji stanu ustalonego puli usuniętych klientów,

 zdefiniowanie dwóch klas tras – z liczbą klientów większą lub równą liczbie średniej oraz

liczbą klientów mniejszą od średniej,

 zmodyfikowanie strategii urozmaicania otrzymanych rozwiązań (ang. diversification

strategy).

W równoległej heurystyce kooperacja wątków ma na celu wymianę najlepszych

rozwiązań oraz zmniejszenie ryzyka utknięcia w lokalnym minimum przestrzeni poszukiwań.

Ulepszone heurystyki – sekwencyjna oraz równoległa – były testowane przy użyciu testów

Gehringa i Hombergera. W 90% przypadków otrzymano rozwiązania z liczbą tras równą

opublikowanym najlepszym wynikom na świecie używając algorytmu równoległego.

Całkowita długość przebytych tras została zminimalizowana przy użyciu równoległego

algorytmu memetycznego, którego wersja sekwencyjna została opisana w artykule [4].

Zostały w nim przedstawione badania, mające na celu określenie wpływu zróżnicowania

populacji rozwiązań oraz liczby rozwiązań potomnych na jakość kolejnych generacji.

Przedstawiono przyspieszenia dla testów o różnych strukturach i właściwościach. Dla

przypadku testowego c1_8_2 otrzymano rozwiązanie z całkowitą długością tras mniejszą od

światowego minimum. Rozwiązanie zostało opublikowane na stronie norweskiej organizacji

SINTEF (25 sierpnia 2011 r.) [6].

Adresses

Jakub NALEPA: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16,

44-100 Gliwice, Polska, jakub.nalepa@polsl.pl

Zbigniew J. CZECH: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16,

44-100 Gliwice, Polska, zbigniew.czech@polsl.pl

	1. Introduction
	2. Formulation of the problem
	3. Minimizing the number of routes by the parallel heuristics
	3.1. Description of a sequential algorithm
	3.2. Suggested modifications
	3.3. Description of a parallel algorithm

	4. Minimizing the total traveled distance by the memetic algorithm
	4.1. Description of a sequential algorithm
	4.2. Description of a parallel algorithm

	5. Experimental results
	6. Conclusions
	Acknowledgments

