
STUDIA INFORMATICA 2012

Volume 33 Number 1 (104)

Michał KOMOROWSKI

Warsaw University of Technology, Institute of Computer Science

ENHANCING AND EXTENDING THE INTELLITRACE

DEBUGGING CAPABILITIES

Summary. IntelliTrace is a historic debugger for the .NET platform. It has many

capabilities but also some serious limitations: it significantly affects the performance

of applications or provides only basic methods for analysis of collected data. In this

paper, IntelliTrace is examined and a set of tools called IntelliTrace Toolkit, which

allows these problems to be overcome, is proposed.

Keywords: debuggers, historic debuggers, IntelliTrace

WSPOMAGANIE I ROZSZERZANIE FUNKCJONALNOŚCI

DEBUGOWANIA INTELLITRACE

Streszczenie. IntelliTrace to debuger historyczny dla platformy .NET. Ma wiele

możliwości, ale również kilka ograniczeń, na przykład wpływa negatywnie na

wydajności aplikacji i udostępnia tylko podstawowe sposoby analizowania

zgromadzonych danych. W tym artykule możliwości IntelliTrace zostały poddane

analizie i na tej podstawie zaproponowano zestaw narzędzi IntelliTrace Toolkit, który

rozwiązuje wspomniane problemy.

Słowa kluczowe: debugery, debugery historyczne, IntelliTrace

1. Introduction

Every year companies produce millions of lines of code that unfortunately contain many

bugs. In the United States, according to [1], “annual costs of an inadequate infrastructure for

software testing is estimated to range from $22.2 to $59.5 billion'”. In other countries, the

situation is probably similar. In consequence, developers need efficient debuggers in order to

be able to cope with software bugs .

108 M. Komorowski

Nowadays, integrated development environments like Eclipse [7], NetBeans [13], Visual

Studio [18] provide programmers with sophisticated tools of this kind which make it easier to

detect, localize and fix bugs. However, most of these debuggers have limited insight in the

history of a program's execution. This fact compels developers to run the application many

times in order to find a bug and fix it. One of the debuggers that is able to go back in the

history of a program's execution is part of Visual Studio 2010 and is known as IntelliTrace.

IntelliTrace is dedicated for the .NET platform and it is the only tool of this kind intended for

this technology. It has many capabilities but also some limitations: it significantly affects the

performance of monitored applications, provides only basic methods for analysis of collected

data and cannot be used in production environments without installing Visual Studio 2010.

Having analyzed IntelliTrace, the author has proposed two new tools called Events

Manager and IntelliTrace Analyzer. Events Manager facilitates the use of IntelliTrace within

a production environment and monitoring applications with minimal overhead. IntelliTrace

Analyzer is a tool that can load collected data into a dedicated database designed with the aim

of data mining. These tools have been developed and tested.

At the beginning of this paper, in section 2, historic debuggers are described. Then, in

section 3 IntelliTrace is introduced. The description of IntelliTrace Toolkit can be found in

section 4. Finally, the experiments are described in section 5. The last section 6 contains the

summary.

2. Historic debuggers

Historic debuggers also known as time travelling, reversible, post-mortem or omniscient

debuggers are not a new idea. The concept of moving back and forward in the history of

a program execution was already described in the 60s [9]. However, despite their many

advantages, historic debuggers are not widely used.

They allow one to save a lot of time and money needed to fix bugs by reducing the

number of restarts that are required to debug an application. They also make it possible to

quickly reproduce rare problems or problems which only occur on the client side, but not in

the development environment. A historic debugger can also be used by developers to better

understand how complex programs or algorithms work.

There are two main approaches used by historic debuggers in order to provide insight into

the history of a program's execution. The first one is to log methods calls and program state

changes to some kind of storage (for instance a file) during the program's execution. This

approach is used by [2], RDXP (Reversible Debugger for Cross Platform) [3], TOD (trace-

oriented debugger) [4], Chronon [5], IntelliTrace [11], ODB (Omniscient Debugger) [14] or

Enhancing and extending the IntelliTrace debugging capabilities 109

[15]. The second one, which is less common, is to generate the reverse version of the

program code [8]. In this approach moving back in the history of the program's execution is

performed not by reading the recorded state of the program from the log, but by executing the

reverse code.

Historic debuggers can be also classified based on how they monitor applications and

collect information. It is achieved either by using the static instrumentation [4, 5, 11, 14, 15],

or by running the program on a special virtual machine [2, 3]. In case of the static instru-

mentation, instructions responsible for collecting information about a program execution are

inserted into program’s code before executing it. In the second approach a virtual machine is

responsible for this.

Finally, some debuggers allow only collected data to be browsed, like changes to the

value of some variable at different points of time [4, 5, 11, 14], while the others allow also

the program's execution to be resumed [2, 3, 8, 15].

Another group of tools are those that monitor the execution of programs in order to detect

so called invariants, for example: a variable A takes on values from the range 1 to 4. This

knowledge allows abnormal situations to be detected. Some examples of this type of tools

include Daikon [6], Perracotta [16], DIDUCE [17].

3. IntelliTrace

The IntelliTrace [11] debugger was introduced in Visual Studio 2010 Ultimate Edition

and is dedicated for managed single/multi- threaded desktop, web or cloud applications based

on the .NET platform. It uses a logging approach together with the instrumentation of

a program's code and is not able to resume the execution of a program.

IntelliTrace operates as a separate process (stared from within Visual Studio) that attaches

to an application and modifies its CIL (Common Intermediate Language) by injecting special

instructions that are responsible for recording data. Collected data are stored in log files with

the iTrace extension. These logs can be examined in Visual Studio 2010 at any time.

IntelliTrace operates in two modes: basic and extended, that differ in performance and the

range of information that is collected.

In the first mode, IntelliTrace monitors only so called diagnostic events. A diagnostic

event is an important point in the execution of an application, for instance establishing

connection to a database, executing a query or throwing an exception. Except for events that

are recorded when an exception is thrown, every other event is related to some method. The

range of information that is recorded for a particular event depends on the definition of this

event. The number of available events types is limited to about one hundred and fifty. In this

110 M. Komorowski

mode, IntelliTrace collects a limited amount of information about program’s execution, but

on the other hand, it does not affect the performance of the monitored application so much.

In the extended mode, IntelliTrace collects information about the execution of every

method or constructor. The values of primitive parameters passed on to a method or results

returned by the methods are also monitored. In the case of non-primitive parameters and

returned results, only the values of primitive fields are recorded. This mode allows one to

investigate an application more thoroughly but at the same time, the log with collected

information can be very big (of several gigabytes or even more). In this mode, IntelliTrace

affects seriously the performance of the monitored application (for details see section 5). It is

possible to instruct IntelliTrace to monitor only some assemblies, but the impact on the

application still can be serious.

Inside the iTrace logs there is no difference between the both modes, except for the

amount of collected data. Both diagnostic events, exceptions or method calls are represented

in a similar way, by different types of low level events (it should be noted that a diagnostic

event is something different than a low level event). For instance a method call is represented

by the pair of low level events MethodEnterEvent and MethodExitEvent, while diagnostic

events are represented by a low level event called DiagnosticEvent.

There are two possible ways of browsing IntelliTrace logs inside Visual Studio 2010.

IntelliTrace Events View shows list of recorded events, while Calls View shows a call tree.

For every executed and recorded method it also shows the values of actual parameters. If the

user clicks on an event or on a method, the proper place in the code will be shown.

IntelliTrace provides also IntelliTrace API [12] which allows one to programmatically

analyze the iTrace logs.

4. IntelliTrace Toolkit

IntelliTrace Toolkit is a set of two applications (Events Manger and IntelliTrace Ana-

lyzer) designed and implemented by the author. These applications use IntelliTrace and

IntelliTrace API, but provide a more convenient interface and more capabilities than the

original technology does.

4.1. EventsManger

The first important problem with IntelliTrace is that it can seriously affect the

performance of a monitored application, especially in the advanced mode. In the case of large

applications (many assemblies with many types and methods), it can be even impractical to

Enhancing and extending the IntelliTrace debugging capabilities 111

use IntelliTrace. The simple mode is a partial solution to this problem, because the set of

available events is limited.

Secondly, IntelliTrace cannot be used in production environments because it can only be

deployed together with Visual Studio 2010. In consequence, it is not possible to run

IntelliTrace on the client side without installing Visual Studio 2010, in order to record bugs

which are difficult to reproduce in the development environment.

Both of these problems can be overcome by using EventsManager. Firstly, Events-

Manager allows one to modify the CollectionPlan.xml file. This file contains the definitions

of diagnostic events and can be found in the Visual Studio 2010 installation directory. It is an

XML file with a quite complicated structure. Manual modification of this file is possible, but

this is not easy and is error prone. With the EventsManager events can be easily managed

(created, modified, updated), so the developer is not limited to the default set of 150 events

types.

IntelliTrace operates as a separated process. This means that there must exists an

executable file which can be run. This file is called IntelliTrace.exe and, similarly to Collec-

tionPlan.xml, can be found in the Visual Studio 2010 installation directory. EventsManager

uses this executable to run IntelliTrace beyond the control of Visual Studio 2010 which

makes it possible to take advantage of IntelliTrace in production environments.

 EventsManager is implemented in the C# language and uses the .NET platform in

version 4.0. It is a desktop application with a graphical user interface implemented in WPF

(Windows Presentation Foundation).

The user interface consists of two main parts. On the left-hand side there is a panel with

the configuration parameters of an experiment. It allows one to choose an application to

monitor, choose the simple or the advanced mode of IntelliTrace or to define the output

directory. Every configuration can be saved for future use.

The central part of the application contains a list with events, which can be grouped into

categories. EventsManager uses also a reflection mechanism to retrieve a list of types and

methods from the assemblies used by monitored applications. This makes the application

more user friendly. In order to define an event, the user does not have to know the precise

signature of a method, because he or she can choose it from a combo box.

It is also possible to define a so called short description and long description for an event.

A description can be a static text, or it can contain the values of actual parameters or a result

returned by a method. For instance, in order to refer to the value of the first argument, the

following syntax should be used: {0}. Descriptions of recorded events are stored in the

iTrace logs.

112 M. Komorowski

4.2. IntelliTrace Analyzer

Another major disadvantage of Visual Studio 2010 is that it does not provide more

sophisticated methods for the analysis of the collected data, for instance, a statistical analysis.

At the same time, the IntelliTrace log file is a binary file, so it is impossible to browse it

without a dedicated application or IntelliTrace API. If the content of the iTrace file is loaded

into the database, it will be much easier to analyze it in a different way, for instance, by using

data mining algorithms to detect execution invariants.

Fig. 1. Database schema diagram

Rys. 1. Schemat bazy danych

This is possible thanks to IntelliTrace Analyzer. This application uses IntelliTrace API in

order to read information about the calls of methods from the iTrace files and loads data into

the dedicated database. Later on in this article, I will use the term IntelliTrace Database for

describing a database that is able to store information from iTrace logs. The schema diagram

of this database is shown in Figure 1.

The central table is called Analysis and contains information about the log files that have

been loaded into the database. The four following tables: Namespaces, Types, Methods and

Parameters are used to store information about the structure of monitored applications. The

values of parameters that have been passed on to methods can be found in the Para-

metersValues table.

The most valuable pieces of information are stored in the Calls table. Every row in this

table corresponds to the execution of some method. The table contains cyclic references to

itself, which allow a call tree to be recreated. The other information that can be read from the

Calls table are: the number of exceptions thrown/caught during the execution of a method,

Enhancing and extending the IntelliTrace debugging capabilities 113

the string representation of a value returned by a method, and the identifier of the thread in

which the method was executed. IntelliTrace Database is designed with the aim of data

mining, so this table stores redundant information that can be found in other tables: the name

of a method, the name of a parent method, or the string representation of the values of

parameters.

Each of the above-mentioned tables has an additional field called Analysis which is

redundant, but allows data to be easily filtered by the source log file without having to use

complicated join operations. In order to conveniently browse information in the IntelliTrace

Database, three views have been prepared:

 TypesView allows one to browse the full names of types (the name of a type + the name

of a namespace);

 ParametersView allows one to browse parameters together with their types;

 MethodsView allows one to browse the full signatures of methods.

IntelliTrace Analyzer is a console application. Currently, it loads extracted data into the

selected instance of SQL Server 2008, but another database management system can also be

used. IntelliTrace Analyzer is implemented in the C# language and uses the .NET platform in

version 4.0.

5. Experiments

In order to verify the developed tools, four functionally completely different applications

were used. The first one is a console application that check if there is an Euler path in a graph

(356 lines of the C# code). The second one is an application developed by the author, called

LanguageTrainer, that is used to maintain a set of words in foreign languages and help the

users in repeating and learning of these words (2825 lines of the C# code). Farseer Physics

Engine [10] is a collision detection system with realistic physics responses (38 486 lines of

the C# code). Finally, a commercial transfer agent platform was used (126

478 lines of the

VB.NET code). The diversity of selected programs allowed the author to test IntelliTrace

Toolkit thoroughly. All experiments were performed on a machine with 4 GB of memory and

an Intel Core 2 Duo 2.53 GHz CPU processor .

The first experiments involved preparing, in EventsManager, different sets of events, for

example: loading the configuration of an application, finding a word, showing a dialog box.

Then the applications were run by EventsManager under the control of IntelliTrace

configured in the simple mode, and the following checks were made: if all of the defined

events were recorded, and if the created log could be opened by Visual Studio 2010 and did

not contain any errors. The applications were also monitored in the advanced mode, and the

114 M. Komorowski

results were loaded into IntelliTrace Database by IntelliTrace Analyzer, and were also

verified.

Table 1

Results of monitoring of the console application

Mode Events Log size Calculation time Slowdown factor

Without IntelliTrace - - 25 ms 1

Simple 1 105 5 MB 111 ms 4.44

Simple 2 113148 28 MB 2419 ms 96.76

Advanced 1003266 0.34 GB 7431 ms 297.24

Simple 1 + Advanced 1003371 0.34 GB 7705 ms 308.2

Simple 2 + Advanced 1116414 0.39 GB 9132 ms 365.28

The Table 1 shows the results of tests conducted based on the application that checks if

there is an Euler path in the graph. The input graph had about 100 thousand nodes. The first

column shows the configurations of IntelliTrace. Simple 1 means that IntelliTrace was

configured in the simple mode with monitoring of five rarely used methods (the five types of

diagnostic events). While Simple 2 means that diagnostic events were defined for frequently

used methods. The second columns shows the number of registered low-level events. The

Log size column contains the size of produced logs. The next column shows how much time

does it take to finish the computations.

The last column shows the value of the slowdown factor calculated by dividing the

computation time of the application running under the control of IntelliTrace, by the

computation time without IntelliTrace. The results varied from about 5 for the simple mode

to more than 300 for the advance mode + the simple mode. This indicates that it is very

important to be able to define the custom events for the simple mode in order to work

efficiently with IntelliTrace. However, it should be kept in mind that if we choose a

frequently called method to monitor, the slowdown factor for the simple mode can be also

high.

This experiment showed also that the simple and the advance modes are additive. If the

both modes were enabled, the number of collected events was equal to the sum of events

collected for each mode separately. The computation time was also correspondingly higher,

similarly as the size of logs.

Table 2

Results of monitoring of the application with GUI

Mode Events Log size Frames per second Slowdown factor

Without IntelliTrace - - 60 1

Simple with 12

custom diagnostic

events

9975 15 MB 60 1

Advanced 88 million 2.5 GB 3 20

Enhancing and extending the IntelliTrace debugging capabilities 115

In the next experiment, Farseer Physics Engine was used. The aim of this experiment

was to check how IntelliTrace affects the performance of an application that requires the

smooth display of animations. The author set himself the task of finding in which order and

how often the methods of the Screen Manager class, that are responsible for refreshing the

screen, are called. The author defined a diagnostic event for each of the 13 methods in this

class. Then, a demo application using Farseer Physics Engine was run under the control of

IntelliTrace operating in the advance mode and in the simple mode with custom events.

The results are shown in Table 2, which is built in a similar way as Table 1. In this case,

the slowdown factor was calculated by dividing the number of FPS (Frames per second) as

displayed by the application running under the control of IntelliTrace, by the number of FPS

as displayed without IntelliTrace.

According to the results, for the simple mode it was possible to work normally with the

application. The average number of FPS was the same as for the application running without

IntelliTrace. In the case of the advance mode, it was impossible to work with the application

because of the very low number of displayed FPS. IntelliTrace generated also a very big log

file and collected a large number of events. Such an amount of data could allow one to

analyze the execution of the application more thoroughly, however, working with such an

amount of data is difficult, especially if we only need a small part of it.

Table 3

Performance of IntelliTrace Analyzer

Program Log Size Types Methods Param. Calls Events Time(s) Events/s

LanguageTrainer 0.25 GB 96 290 178 2174512 6.6 million 1224 4339+

Physics Engine 70 MB 129 440 446 450862 2.3 million 370 6334

Transfer Agent 75 MB 329 1792 1241 239710 1.2 million 267 4437

The table 3 shows the results of the performance tests of IntelliTrace Analyzer. The three

columns: Types, Methods, Param contain information about the structure of a program, i.e.

the number of types (classes), the number of distinct methods, and the total number of the

parameters of methods that were found in the log. The number of recorded method calls and

low-level events can be found in the columns: Calls and Events. The average time (in

seconds) of loading data into IntelliTrace Database is given in the column Time. The last

column contains the average number of low-level events processed per second.

The experiments have shown that IntelliTrace Analyzer is able to load from about 4000 to

about 6000 low-level events per second. The reason for this is difficult to establish. If we

compare Farseer Physics Engine and Transfer Agent, it seems that the results depend on how

complex an application is. The more types and methods are used by an application, the

smaller number of low-level events can be processed per second. On the other hand, the log

for LanguageTrainer contains a considerably smaller number of distinct methods, but the

116 M. Komorowski

average speed of loading events was the worst. The author thinks that it could be dependent

on how IntelliTrace API operates internally and how the data are stored in the iTrace files.

The performed experiments revealed also more limitations of IntelliTrace. Two of them

have already been elevated by IntelliTrace Toolkit:

 IntelliTrace diagnostic events do not support interfaces. The support for abstract methods

is also limited. For instance, it is not possible to define an event for an abstract method

definition. However, an event can be defined for the implementation of this method in a

subclass derived from an abstract class. EventsManager takes this into account and does

not allow the definition of events that will not operate properly;

 It is not possible to refer, within the definition of an event, to the values of arguments and

to the return value, at the same time. Trying to do this will cause an error. In order to

solve this problem, EventsManager allows the user to choose which values are interesting

for him in the context of a particular diagnostic event.

The following identified limitations have not been overcome yet and should be taken into

account when planning experiments:

 IntelliTrace does not record the execution time of methods;

 It is only possible to refer within the definition of an event to the values of primitive types

and String;

 It is not possible to determine the value of out parameters (it compels the called method to

initialize it) or ref parameters (it allows the called method to change the object referenced

by a parameter). It is always undefined. The author did not manage to determine the

reason for this behavior. It might be due to a bug in IntelliTrace or IntelliTrace API;

 For some methods, it is not possible to extract the values of parameters from the log. If

we make an attempt to do this, an exception is thrown. The author did not manage to

determine the reason for this error. This is probably due to a bug in IntelliTrace API;

 The values of arguments passed on to the constructors are not recorded.

6. Summary

In this paper, the capabilities and limitations of IntelliTrace were investigated. In order to

overcome these limitations, two new applications, namely EventsManager and IntelliTrace

Analyzer, were proposed and developed. Experiments confirmed the efficiency of these tools.

Nonetheless, more work is needed regarding IntelliTrace Toolkit. Firstly, the

EventsManager and IntelliTrace Analyzer applications should be fully integrated in order to

provide a comfortable environment to work with IntelliTrace. Secondly, although Events-

Manager allows one to define the descriptions for events, the user has to know the proper

Enhancing and extending the IntelliTrace debugging capabilities 117

syntax. This is not very convenient and should be improved. Moreover, EventsManager

should support more complex scenarios of working with events. For instance, the possibility

to refer (within the definition of an event) to the field or property of an object for which the

method was called, or allowing the users to provide their own code that will be executed

when an event is recorded (so called Data Queries).

More work is also needed regarding the newly detected limitations of IntelliTrace. For

example, it is a quite serious problem that IntelliTrace does not record the execution time of

methods. It should be checked to see, if this can be overcome by preparing some special types

of diagnostic events.

It is also necessary to carry out more work regarding the analysis of collected data. In

particular, the performance of IntelliTrace Analyzer should be improved and IntelliTrace

Database should be extended to store not only a call tree but also diagnostic events. It will be

also valuable to test the data mining algorithms that are provided by SQL Server Analysis

Services in order to detect some interesting dependencies and the application execution

invariant. The association rules or clustering could be useful in this case.

BIBLIOGRAPHY

1. Gallaher M. P., Kropp, B. M.: Economic Impacts of Inadequate Infrastructure for

Software Testing. 2002.

2. Koju T., Takada S., Doi N.: An efficient and generic reversible debugger using the virtual

machine based approach. 1st ACM/USENIX international conference on Virtual

execution environments, 2005, p. 79÷88.

3. Wang L., Liu X., Song A., Xu L., Liu T.: An Effective Reversible Debugger of Cross

Platform Based on Virtualization. International Conference on Embedded Software and

Systems, 2009, p. 448÷453.

4. Pothier G., Tanter E.: Back to the Future: Omniscient Debugging. Software, IEEE, 2009,

p. 78÷85.

5. Chronon: http://www.chrononsystems.com.

6. Daikon: http://groups.csail.mit.edu/pag/daikon.

7. Eclispe: http://www.eclipse.org.

8. Lee J.: Dynamic Reverse Code Generation for Backward Execution. In: Proceedings of

the Workshop on Verification and Debugging, Vol. 174, 2006, p. 37÷54.

9. Balzer R. M.: EXDAMS: extendable debugging and monitoring system. Proceedings of

the May 14-16, 1969, spring joint computer conference, 1969, p. 567÷580.

10. Farseer Physics Engine: http://farseerphysics.codeplex.com.

11. IntelliTrace: http://msdn.microsoft.com/en-us/library/dd264915.aspx.

118 M. Komorowski

12. IntelliTrace API:

http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.intellitrace.aspx.

13. NetBeans: http://netbeans.org.

14. Omniscient Debugging, http://www.lambdacs.com/debugger/debugger.html.

15. Chen S., Fuchs W. K., Chung J.: Reversible Debugging Using Program Instrumentation.

IEEE Transactions on Software Engineering, Vol. 27, 2001, p. 715÷727.

16. Perracotta: http://www.cs.virginia.edu/perracotta/.

17. Hangal S., Lam M. S.: Tracking Down Software Bugs Using Automatic Anomaly

Detection. 24rd International Conference on Software Engineering, 2002, p. 291÷301.

18. Visual Studio 2010: http://www.microsoft.com/visualstudio/en-us.

Wpłynęło do Redakcji 2 grudnia 2011 r.

Omówienie

Debuger historyczny to narzędzie, które pozwala cofnąć się w historii wykonania progra-

mu. Dzięki temu można sprawdzić, kiedy i gdzie została wywołana dana metoda albo jak

zmieniał się stan jakiegoś obiektu w czasie działania programu. Takie podejście pozwala

ograniczyć liczbę ponownych uruchomień aplikacji potrzebnych do odtworzenia i zlokalizo-

wania błędu, ułatwia również zrozumienie działania programu lub algorytmu.

Debugery historyczne są przeważnie projektowane z myślą o konkretnej technologii, na

przykład dla platformy Java lub kodu natywnego. IntelliTrace to debuger historyczny, który

został wprowadzony w Visual Studio 2010 i jest dedykowany dla platformy .NET. Jest to

jedyne narzędzie tego rodzaju dla tej technologii. Ma wiele możliwości, ale również kilka

istotnych ograniczeń, na przykład wpływa negatywnie na wydajności monitorowanych

aplikacji i udostępnia tylko podstawowe sposoby analizowania zgromadzonych danych.

W tym artykule możliwości IntelliTrace zostały poddane gruntownej analizie i na tej

podstawie zaproponowano nowy zestaw narzędzi IntelliTrace Toolkit, który rozwiązuje

wspomniane problemy.

Address

Michał KOMOROWSKI: Warsaw University of Technology, Institute of Computer Science,

ul. Nowowiejska 15/19, 00-665 Warszawa, Polska,

M.Komorowski@ii.pw.edu.pl/michalkomorowski@tlen.pl.

http://www.microsoft.com/visualstudio/en-us

	1. Introduction
	2. Historic debuggers
	3. IntelliTrace
	4. IntelliTrace Toolkit
	4.1. EventsManger
	4.2. IntelliTrace Analyzer

	5. Experiments
	6. Summary

